

Computer Communications and Networks

For other titles published in this series, go to
www.springer.com/series/4198

The Computer Communications and Networks series is a range of textbooks, monographs
and handbooks. It sets out to provide students, researchers and non-specialists alike with
a sure grounding in current knowledge, together with comprehensible access to the latest
developments in computer communications and networking.

Emphasis is placed on clear and explanatory styles that support a tutorial approach, so that
even the most complex of topics is presented in a lucid and intelligible manner.

Sid Katzen

The Essential PIC18®

Microcontroller

Sid Katzen
School of Engineering
University of Ulster at Jordanstown
Newtownabbey BT37 0QB
Northern Ireland, UK
sj.katzen@ulster.ac.uk

Series Editor
Professor A.J. Sammes, BSc, MPhil, PhD, FBCS, CEng
Centre for Forensic Computing
Cranfield University
DCMT, Shrivenham
Swindon SN6 8LA
UK

ISSN 1617-7975
ISBN 978-1-84996-228-5 e-ISBN 978-1-84996-229-2
DOI 10.1007/978-1-84996-229-2
Springer London Dordrecht Heidelberg New York

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2010929754

© Springer-Verlag London Limited 2010
Apart from any fair dealing for the purposes of research or private study, or criticism or review, as per-
mitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publish-
ers, or in the case of reprographic reproduction in accordance with the terms of licenses issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to
the publishers.
The use of registered names, trademarks, etc., in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.
The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

Cover design: VTEX, Vilnius

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

In memory of my father Louis Cahill

Preface

In December 20091 Federico Faggin (see p. 55) wrote “TWO inventions have
shaped our modern world more that any other: the engine and the computer. Where
the engine captured and extended the human capacity to do physical work, the
computer did the same for the capacity of the human brain to think, organize and
control. . . ”. Federico Faggin, who was part of the team that developed the Intel
4004, the world’s first commercially successful microprocessor released in 1971,
was commissioned to write this article by New Scientist to celebrate the micropro-
cessor’s victory in a poll to find the discovery that has had the greatest impact on
the world in the past 50 years.2 That having been said, this was from a field of only
ten nominated discoveries, but nevertheless it won with 48% of the vote, followed
by the World Wide Web at 31%; which in reality is only made possible by the mi-
croprocessor.

Microprocessors and their microcontroller derivatives are a widespread, if
rather invisible, part of the infrastructure of our twenty-first-century electronic
information-based society. In 1998, it was estimated3 that hidden in every home
there were about 100 microcontrollers and microprocessors: in the singing birthday
card, washing machine, microwave oven, television controller, telephone, personal
computer and so on. About 20 more lurked in the average family car, for exam-
ple, monitoring in-tire radio pressure sensors and displaying critical data through
a control area network (CAN). As anyone will testify if they have driven a mod-
ern car, these figures can be dramatically revised upwards. Your pocket alone will
carry several disguised as smart credit, debit and employment cards, bus passes and
so on. Even your pets may be chipped in case they stray too far. Indeed, there is
more computing power in a singing birthday card than there was in the world in
1948, when the first von-Neumann computer was commissioned at the University
of Manchester.

1New Scientist, Computers top the poll of modern discoveries, vol. 70, no. 2737, 2 December,
2009.
2http://newscientist.com/special/big-impact.
3New Scientist, vol. 59, no. 2141, 4 July 1998, p. 139.

vii

viii Preface

Over 4 billion such devices are sold each year to implement the intelligence of
these ‘intelligent’ electronic devices, ranging from smart eggtimers through to air-
craft management systems. The evolution of the microprocessor from the first Intel
device introduced in 1971 has revolutionised the structure of society, effectively cre-
ating the second Industrial Revolution at the beginning of the twenty-first century.
Although the microprocessor is better known for its role in powering the ubiquitous
PC, where raw computing power is the goal, sales of microprocessors such as the
Intel Pentium represent only around 2% of the total volume. The vast majority of
sales are of low-cost microcontrollers embedded into a dedicated-function digital
electronic device, such as the smart card. Here the emphasis is on the integration
of the core processor with memory and input/output resources in the one chip. This
integrated computing system is known as a microcontroller.

In seeking to write a book in this area, the overall objective was to get the reader
up-to-speed in designing small embedded microcontroller-based systems, rather
than using microcontrollers as a vehicle to illustrate computer architecture in the
traditional manner. This will hopefully give the reader confidence that, even at such
an introductory level, he/she can design, construct, and program a complete working
embedded system.

Given the practical nature of this material, real-world hardware and software
products are used throughout to illustrate the material. The microcontroller market
is still dominated by devices that operate on 8-bit data (although 4–16 and 32-bit ex-
amples are readily available) like early microprocessors and unlike the 64-bit Intel
Pentium family ‘heavy brigade’. In contrast, the essence of the microcontroller lies
in its high system-integration/low-cost profile. Power can be increased by distribut-
ing processors throughout the system. Thus, for example, a robot arm may have a
microcontroller for each joint implementing simple local processes and communi-
cating with a more powerful processor making overall executive decisions.

In choosing a target architecture, acceptance in the industrial market, easy avail-
ability, and low-cost development software have made the Microchip family one
of the most popular choices as the pedagogic vehicle in learning microproces-
sor/microcontroller technology at all levels of electronic engineering from grade
school to university. In particular, the reduced instruction set, together with the rela-
tively simple innovative architecture, reduces the learning curve. In addition to their
industrial and educational roles, the PIC® MCU families are also the mainstay of
hobbyist projects, as a leaf through any electronics magazine will show.

Microchip, Inc., is a relatively recent entrant to the microcontroller market with
its family of Harvard architecture PIC devices introduced in 1989. By 2006, Mi-
crochip was the largest producer of 8-bit units—after a 20-year tousle with the mar-
ket leaders Motorola; which is now spun-off its activities in this field to Freescale
Semiconductor.

In 2001 (2nd edn. 2005) Springer published by first book on PIC microcon-
trollers; The Quintessential PIC Microcontroller. This is based on what was the
mainstream mid-range 8-bit family, the PIC16 series. Although this range still con-
tinues to expand, with a new enhanced core introduced in 2009, the enhanced-range
PIC18 has now become the mainstream as well as the most advanced 8-bit family.

Preface ix

With this in mind, a complete rewrite was in order. A new edition would not fit the
bill, both because the PIC16 family is still very much alive and also although the
PIC18 family is upwards compatible, there are considerable changes. However, the
aims and structure very much follow the Quintessential format.

This book is split into three parts. Part I covers sufficient digital, logic and com-
puter architecture to act as a foundation for the microcontroller engineering topics
presented in the rest of the text. Inclusion of this material makes the text suitable for
stand-alone usage, as it does not require a prerequisite digital systems module.

Part II looks mainly at the software aspects of the enhanced-range PIC micro-
controller family, its instruction set, how to program it at assembly and high-level
C coding levels, and how the microcontroller handles subroutines and interrupts.
Although the PIC18 family is the exemplar, both architecture and software are com-
parable to earlier families and indeed the 16-bit PIC24 device range.

Part III moves on to the hardware aspects of interfacing and interrupt handling,
with the integration of the hardware and software being a constant theme through-
out. Parallel and serial input/output, timing, analog, and EEPROM data-handling
techniques are covered. A practical build and program case study integrates the pre-
vious material into a working system, as well as illustrating simple testing strategies.

With the exception of the first two and last chapter, all chapters have both fully
worked examples and self-assessment questions. As an extension to this, an associ-
ated Web site has the following facilities:

• Solutions to self-assessment questions.
• Further self-assessment questions.
• Additional material.
• Source code for all examples and questions in the text.
• Pointers to development software and data sheets for devices used in the book.
• Errata.
• Feedback from readers.

You can visit http://www.springer.com, search for the text and click on Author’s
Manual to find the current web location of this site.

Hopefully, any gremlins have been exorcised, but if you find any or have any
other suggestions, I will be happy to acknowledge such communications via the
Web site.

University of Ulster at Jordanstown Sid Katzen

Contents

Part I The Fundamentals

1 Digital Representation . 3

2 Logic Circuitry . 17

3 Stored Program Processing . 41
Examples . 60
Self-Assessment Questions . 63

Part II The Software

4 The PIC18F1220 Microcontroller . 69
Peripheral Interface . 84
Examples . 89
Self-Assessment Questions . 93

5 The Instruction Set . 95
Examples . 147
Self-Assessment Questions . 154

6 Subroutines and Modules . 159
Examples . 189
Self-Assessment Questions . 201

7 Interrupt Handling . 205
Examples . 228
Self-Assessment Questions . 236

8 Assembly Language Code Building Tools 239
Examples . 268
Self-Assessment Questions . 271

xi

xii Contents

9 High-Level Language . 275
Examples . 294
Self-Assessment Questions . 301

Part III The Outside World

10 The Real World . 305
Examples . 329
Self-Assessment Questions . 331

11 One Byte at a Time . 333
Examples . 362
Self-Assessment Questions . 376

12 One Bit at a Time . 379
Examples . 440
Self-Assessment Questions . 449

13 Time Is of the Essence . 453
Examples . 482
Self-Assessment Questions . 487

14 Take the Rough with the Smooth . 489
Examples . 526
Self-Assessment Questions . 535

15 To Have and to Hold . 539
Examples . 557
Self-Assessment Questions . 561

16 A Case Study . 563

Appendix A Acronyms and Abbreviations 585

Appendix B Configuration Registers and Bits for the PIC18FXX20 593

Appendix C C Instruction Set . 595

Index . 599

Chapter 1
Digital Representation

To a computer or microcontroller, the world is seen in terms of patterns of digits. The
decimal (or denary) system represents quantities in terms of the ten digits 0, . . . ,9.
Together with the judicious use of the symbols +, − and · any quantity in the
range ±∞ can be depicted. Indeed non-numeric concepts can be encoded using nu-
meric digits. For example the American Standard Code for Information Interchange
(ASCII) defines the alphabetic (alpha) characters A as 65, B = 66, . . . ,Z = 90 and
a = 97, b = 98, . . . ,z = 122, etc. Thus the string “Microcontroller” could be en-
coded as “77, 105, 99, 114, 111, 99, 111, 110, 116, 114, 111, 108, 108, 101, 114”.
Provided you know the context—that is, what is a pure quantity and what is text—
just about any symbol can be coded as numeric digits.1

Electronic circuits are not very good at storing and processing a multitude of
different values. It is true that the first American digital computer, the Electronic
Numerical Integrator And Calculator (ENIAC) in 1946 did its arithmetic in decimal
form,2 but all computers since then have handled data in binary (base 2) form. The
decimal (base 10) system is really only convenient for humans, in that we have ten
fingers.3 Thus, in this chapter we will solely look at the properties of binary digits,
their groupings and processing. After reading it you will:

• Understand why a binary data representation is the preferred base for digital cir-
cuitry.

• Know how a quantity can be depicted in natural binary, hexadecimal and binary
coded decimal.

• Be able to apply the rules of addition and subtraction for both signed and unsigned
natural binary quantities.

• Know how to multiply by shifting left.
• Know how to divide by shifting right and propagating the sign bit.
• Understand the Boolean operations of NOT, AND, OR and XOR.

1Of course, there are lots of digital encoding standards; for instance, the 6-dot Braille code for the
visually impaired.
2As did Babbage’s mechanical computer of a century earlier.
3And ten toes, but base-20 systems are rare though not unknown.

S. Katzen, The Essential PIC18® Microcontroller,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-229-2_1, © Springer-Verlag London Limited 2010

3

4 The Essential PIC18® Microcontroller

The information technology revolution is based on the manipulation, computa-
tion and transmission of digitized information. This information is virtually univer-
sally represented as aggregates of binary digits (bits).4 Most of this processing is
effected using microprocessors5 and microcontrollers, and it is sobering to reflect
that there is more computing power in a singing birthday card than existed on the
entire planet in 1950!

Binary is the universal choice for data representation, as an electronic switch
is just about the easiest device that can be implemented using a transistor. Such
2-state switches are very small; they change state very quickly and consume little
power. Furthermore, as there are only two states to distinguish between, a binary
depiction is likely to be resistant to the effects of noise. The upshot of this is that
both the packing density on a silicon chip and switching rate can be very high.
Although a switch on its own does not represent much computing power, 5 million
switches changing at 100 million times a second manage to present at least a façade
of intelligence!

The two states of a bit are conventionally designated logic 0 and logic 1, or
just 0 and 1. A bit may be represented by two states of any number of physical
quantities; for instance, electric current or voltage, light, or pneumatic pressure.
Most microcontrollers use 0 V (or ground) for state 0 and 3–5 V for state 1, but
this is not universal. For instance, the RS232 serial port on your computer uses
nominally +12 V for state 0 and −12 V for state 1.

A single bit on its own can only represent two states. By dealing with groups of
bits, rather more complex entities can be coded. For example, the standard alphanu-
meric characters can be coded using 7-bit groups of digits, as listed in Table 1.1.
Thus the ASCII code for “Microcontroller” becomes:

1001101 1101001 1100011 1110010 1101111 1100011 1101111 1101110
1110100 1110010 1101111 1101100 1101100 1100101 1110010

Unicode is an extension of ASCII and with its 16-bit code groups is able to represent
characters from many languages and mathematical symbols.

The ASCII code is unweighted, as the individual bits do not signify a particular
quantity; only the overall pattern has any significance. Other examples are the die
code on gaming dice and the 7-segment code of Fig. 6.8 on p. 173. Here we will deal
with natural binary weighted codes, where the position of a bit within the number
field determines its value or weight. In an integer binary number the rightmost digit

4The binary base is not a new fangled idea invented for digital computers; some cultures have used
base 2 numeration in the past. The Harappān civilization existed more than 4000 years ago in the
Indus River basin. Found in the ruins of the Harappān city of Mohenjo-Daro, in the beadmak-
ers’ quarter, was a set of stone pebble weights. These were in ratios that doubled in the pattern,
1,1,2,4,8,16, . . . , with the base weight of around 25 g (≈1 oz). Thus bead weights were ex-
pressed by digits which represented powers of 2; that is, in binary.
5Microprocessors and microcontrollers are closely related (see Fig. 3.8 on p. 59) and so we will
often use the terms interchangeably.

1 Digital Representation 5

Table 1.1 7-bit ASCII characters

is worth 20 = 1, the next left column 21 = 2, and so on to the nth column which is
worth 2n−1. For instance, the decimal number 1998 is represented as:

103 102 101 100

1 9 9 8

i.e., 1 × 103 + 9 × 102 + 9 × 101 + 8 × 100, or just 1998. In natural binary the
same quantity is:

210 29 28 27 26 25 24 23 22 21 20

1 1 1 1 1 0 0 1 1 1 0

i.e., 1 × 210 + 1 × 29 + 1 × 28 + 1 × 27 + 1 × 26 + 0 × 25 + 0 × 24 + 1 × 23 +
1 × 22 + 1 × 21 + 0 × 20, or b’11111001110’.6 Fractional numbers may equally well
be represented by columns to the right of the binary point using negative powers

6The b’· · ·’ notation is not universal; for example, (1111011110)2 is an alternative. If the base is
unambiguous then the base indicator may be omitted.

6 The Essential PIC18® Microcontroller

Table 1.2 Some common bit groupings

of 2. Thus b’1101.11’ is equivalent to 13.75. As can be seen from this example,
binary numbers are rather longer than their decimal equivalent—on average, a little
over three times longer. Nevertheless, 2-way switches are considerably simpler than
10-way devices, so the binary representation is preferable.

An n-digit binary number can represent up to 2n patterns. Most computers store
and process groups of bits. For instance, the first microprocessor, the Intel 4004,
handled its data four bits (a nybble) at a time. Many current processors cope with
blocks of 8 bits (a byte), 16 bits (a word), 32 bits (a long-word) or 64-bits (a quad-
word). Some of these groupings are shown in Table 1.2. The names illustrated are
somewhat de facto, and variations are sometimes encountered.

As in the decimal number system, large binary numbers are often expressed us-
ing the prefixes k (kilo), M (mega) and G (giga). A binary kilo (officially called
a kibibyte) is 210 = 1024; for instance, 64 kbyte of memory. In an analogous
way, a binary mega (mebibyte) is 220 = 1,048,576 and a binary giga (gibibyte) is
230 = 1,073,741,824; thus a 4 Gbyte (or 4 GB) memory stick has a nominal storage
capacity of 4 × 230 = 6,442,450,944 bytes. The former representation is certainly
preferable.

Long binary numbers are not very human friendly. In Table 1.2, binary num-
bers were zoned into fields of four digits to improve readability. Thus the address
of a data unit stored in memory might be b’1000 1100 0001 0100 0000 1010’. If
each group of four can be given its own symbol, 0, . . . , 9 and A, . . . ,F, as shown in
Table 1.3, then the address becomes h’8C140A’;7 a rather more manageable charac-
terization. This code is called hexadecimal, as there are 16 symbols. Hexadecimal
(base-16) numbers are a viable number base in their own right, rather than just being
a convenient binary representation. Each column is worth 160,161,162, . . . ,16n in
the normal way.8

Binary coded decimal (BCD) is a hybrid binary/decimal code widely used at the
input/output ports of a digital system (see Example 11.6 on p. 370). Here each deci-
mal digit is individually replaced by its 4-bit binary equivalent. Thus 1998 is coded

7Other representations for the hexadecimal base are 8C140Ah and 0x8C140A.
8Many scientific calculators, including that in the Accessories group under Microsoft’s Windows,
can do hexadecimal (and binary) arithmetic.

1 Digital Representation 7

Table 1.3 Different ways of representing the quantities decimal 0, . . . ,20

Decimal Natural binary Hexadecimal Binary coded decimal

00 00000 00 0000 0000

01 00001 01 0000 0001

02 00010 02 0000 0010

03 00011 03 0000 0011

04 00100 04 0000 0100

05 00101 05 0000 0101

06 00110 06 0000 0110

07 00111 07 0000 0111

08 01000 08 0000 1000

09 01001 09 0000 1001

10 01010 0A 0001 0000

11 01011 0B 0001 0001

12 01100 0C 0001 0010

13 01101 0D 0001 0011

14 01110 0E 0001 0100

15 01111 0F 0001 0101

16 10000 10 0001 0110

17 10001 11 0001 0111

18 10010 12 0001 1000

19 10011 13 0001 1001

20 10100 14 0010 0000

as (0001 1001 1001 1000)BCD. This is very different from the equivalent natural bi-
nary code, even if it is represented by 0s and 1s. As might be expected, arithmetic in
such a hybrid system is difficult, and BCD is normally converted to natural binary
at the system input, and processing is done in natural binary before being converted
back (see Program 5.11 on p. 149).

The rules of arithmetic are the same in natural binary9 as they are in the more
familiar base 10 system, or indeed in any base-n radix scheme. The simplest of these
is addition, which is a shorthand way of totaling quantities, as compared to the
more primitive counting or incrementation process. Thus 2 + 4 = 6 is rather more
efficient than 2 + 1 = 3;3 + 1 = 4;4 + 1 = 5;5 + 1 = 6. However, it does involve
memorizing the rules of addition.10 In decimal this involves 45 rules, assuming that
order is irrelevant; from 0 + 0 = 0 to 9 + 9 = 18. Binary addition is much simpler
as it is covered by only three rules:

9Sometimes called 8-4-2-1 code after the weightings of the first four lowest columns.
10Which you had to do way back in the mists of time in primary/elementary school!

8 The Essential PIC18® Microcontroller

0 + 0 = 0
0 + 1
1 + 0

}
= 1

1 + 1 = 10 (0 carry 1)

Based on these rules, the least significant bit (LSB) is totalled first, passing a carry
if necessary to the next left column. The process ends with the most significant bit
(MSB) column, its carry being the new MSD of the sum. For example:

Just as addition implements an up count, subtraction corresponds to a down
count, where units are removed from the total. Thus 8 − 5 = 3 is the equivalent of
8 − 1 = 7;7 − 1 = 6;6 − 1 = 5;5 − 1 = 4;4 − 1 = 3.

The technique of decimal subtraction you are familiar with applies the subtrac-
tion rules commencing from LSB and working through to the MSB. In any given
column where a larger quantity is to be taken away from a smaller quantity, a unit
digit is borrowed from the next higher column and given back after the subtraction
is completed. Based on this borrow principle, the subtraction rules are given by:

0 − 0 = 0
10 − 1 = 1 Borrowing 1 from the higher column
1 − 0 = 1
1 − 1 = 0

For example:

Although this familiar method works well, there are several problems implement-
ing it in digital circuitry.

• How can we deal with situations where the subtrahend is larger than the minuend?
• How can we distinguish between positive and negative quantities?
• Can a digital system’s adder circuits be coerced into subtracting?

1 Digital Representation 9

To illustrate these points, consider the following example:

Normally when we know that the minuend is greater than the subtrahend, the
two operands are interchanged and a minus sign is appended to the outcome; that
is—(subtrahend—minuend). If we do not swap, as in (a) above, then the outcome
appears to be incorrect. In fact, 41 is correct, in that this is the difference between
59 (the correct outcome) and 100; 41 is described as the 10’s complement of 59.
Furthermore, the fact that a borrow digit was generated from the MSD indicates that
the difference is negative, and therefore will be in this 10’s complement form. Con-
verting from 10’s complement decimal numbers to the ‘normal’ magnitude form is
simply a matter of inverting each digit and then adding one to the outcome. A deci-
mal digit is inverted by computing its difference from 9. Thus the 10’s complement
of 3941 is −6059:

3941 �→ 6058; +1 = −6059

However, there is no reason why negative numbers should not remain in this com-
plement form just because we are not familiar with this type of notation.

The complement method of negative quantity representation of course applies to
binary numbers. Here the ease of inversion (0 → 1;1 → 0) makes this technique
particularly attractive. Thus in our example above:

1000111 �→ 0111000; +1 = −0111001

Again, negative numbers should remain in a 2’s complement form.11 This comple-
ment process is reversible. Thus:

complement ⇐⇒ normal

Signed decimal numeration has the luxury of using the symbols + and − to
denote positive and negative quantities. A 2-state system is stuck with 1s and 0s.
However, looking at the last example gives us a clue about how to proceed. A nega-
tive outcome gives a borrow back out from the highest column. Thus we can use this
MSD as a sign bit, with 0 for + and 1 for −. This gives b’1,1000101’ for −59 and
b’0,0111011’ for +59. Although for clarity the sign bit has been highlighted above
using a comma delimiter, the advantage of this system is that it can be treated in
all arithmetic processes in the same way as any other ordinary bit. Doing this, the
outcome will give the correct sign:

11If you enter a negative decimal number in the Microsoft Windows calculator and change base to
Binary, the number will be displayed in 2’s complement form.

10 The Essential PIC18® Microcontroller

From this example we see that if negative numbers are in a signed 2’s comple-
ment form, then we no longer have the requirement to implement hardware sub-
tractors, as adding a negative number is equivalent to subtracting a positive number.
Thus A−B = A+(−B). Furthermore, once numbers are in this form, the outcome of
any subsequent processing will always remain 2’s complement signed throughout.

There are two difficulties associated with signed 2’s complement arithmetic. The
first of these is overflow. It is possible that adding two positive or two negative
numbers will cause overflow into the sign bit; for instance:

In (a) the outcome of (+8) + (+11) is −13! The 24 numerical digit has overflowed
into the sign position (actually b’10011’ = 19 is the correct outcome). Example (b)
shows a similar problem for the addition of two signed negative numbers. Overflow
can only happen if both operands have the same sign bits. Detection is then a matter
of determining this situation with an outcome that differs. See Fig. 1.5 for a logic
circuit to implement this overflow condition.

The final problem concerns arithmetic on signed operands with different sized
fields. For instance:

1 Digital Representation 11

Both the examples involve adding an 8-bit to a 16-bit operand. Where the former is
positive, the data may be increased to 16 bits by padding with 0s—see also p. 120.
The situation is slightly less intuitive where negative data requires extension. Here
the prescription is to extend the data by padding out with 1s. In the general case
the rule is simply to pad out data by propagating the sign bit left. This technique is
known as sign extension.

Multiplication by the nth power of two is simply implemented by shifting the
data left n places. Thus 00110(6) << 01100(12) << 11000(24) multiplies 5 by 22,
where the << operator is used to denote shifting left. The process works for signed
numbers as well:

Should the sign bit change polarity, then a magnitude bit has overflowed giving an
overflow error.

Multiplication by nonpowers of 2 can be implemented by a combination of
shifting and adding. Thus, as shown in (c) above, 3 × 10 is implemented as
(3 × 8) + (3 × 2) = (3 × 10) or (3 << 3) + (3 << 1).

In a similar fashion, division by powers of 2 is implemented by shifting right
n places. Thus 1100(12) >> 0110(6) >> 0011(3) >> 0001.1(1.5). This process
also works for signed numbers:

Notice that rather than always shifting in 0s, the sign bit should be propagated in
from the left. Thus positive numbers shift in 0s and negative numbers shift in 1s.
This is known as arithmetic shift right as opposed to logic shift right which always
shifts in 0s.

12 The Essential PIC18® Microcontroller

Fig. 1.1 The NOT operation

Division by nonpowers of 2 is illustrated in (c) above. This shows the famil-
iar long division process used in decimal division. This is an analogous process to
the shift and add technique for multiplication, using a combination of shifting and
subtracting.

Arithmetic is not the only way to manipulate binary patterns. George Boole12 in
the mid-nineteenth century developed an algebra dealing with symbolic processing
of logic propositions. This Boolean algebra deals with variables which can be true
or false. In the 1930s it was realized that this mathematical system could equally
well be used to analyze switching networks and thus binary logic systems. Here
we will confine ourselves to looking at the fundamental logic operations of this
switching algebra.

The inversion or NOT operation is represented by overscoring. Thus f = A states
that the variable f is the inverse of A; that is if A = 0 then f = 1 and if A = 1 then f =
0. In Fig. 1.1(a) this transfer characteristic is presented in the form of a truth table.

By definition, inverting twice returns a variable to its original state; thus f = f.13

Logic function implementations are normally represented in an abstract manner
rather than as a detailed circuit diagram. The NOT gate is symbolized as shown in
Fig. 1.1(b). The circle always represents inversion in a logic diagram, and is often
used in conjunction with other logic elements, such as in Fig. 1.2(c).

The AND operator gives an all or nothing function. The outcome will only be
true when every one of the n inputs are true. In Fig. 1.2 two input variables are
shown, and the output is symbolized as f = B · A, where · is the Boolean AND
operator. The number of inputs is not limited to two, and in general f = A(0) · A(1) ·
A(2) · · ·A(n). The AND operator is sometimes called a logic product, as ANDing
(cf. multiplying) any bit with logic 0 always yields a 0 output.

If we consider B as a control input and A as a stream of data, then consideration
of the truth table shows that the output follows the data stream when B = 1 and

12The first professor of mathematics at Queen’s College, Cork.
13A true story from Dr. Seamus Laverty. In days of yore when logic circuits were built out of
discrete devices, such as diodes, resistors and transistors, problems arising from sneak current
paths were rife. In one such laboratory experiment the output lamp was rather dim, and the lecturer
in charge suggested that two NOTs in series in a suspect line would not disturb the logic but would
block off the unwanted current leak. On returning sometime later, the students complained that the
remedy had no effect. On investigation the lecturer discovered two knots in the offending wire—
obviously not tied tightly enough!

1 Digital Representation 13

Fig. 1.2 The AND function

Fig. 1.3 The inclusive-OR operation

is always 0 when B = 0. Thus the circuit can be considered to be acting as a valve,
gating the data through on command. The term gate is generally applied to any logic
circuit implementing a fundamental Boolean operator.

Most practical AND gate implementations have an inverting output. The logic
of such implementations is NOT AND, or NAND for short, and is symbolized as
shown in Fig. 1.2(c).

The Inclusive-OR (IOR) operator gives an anything function. Here the outcome
is true when any input or inputs are true (hence the ≥1 label in the logic symbol). In
Fig. 1.3 two inputs are shown, but any number of variables may be ORed together.
ORing is sometimes referred to as a logic sum, and the + used as the mathematical
operator; thus f = B + A. In an analogous manner to the AND gate detecting all
ones, the OR gate can be used to detect all zeros. This is illustrated in Fig. 2.20 on
p. 34 where an 8-bit zero outcome brings the output of the NOR gate to 1. Inclusive-
ORing any bit with a logic 1 always yields a 1 output.

Considering B as a control input and A as data (or vice versa), then from
Fig. 1.3(a) we see that the data is gated through when B is 0 and inhibited (al-
ways 1) when B is 1. This is a little like the inverse of the AND function. In fact,
the OR function can be expressed in terms of AND using the duality relationship
A + B = B · A. This states that the NOR function can be implemented by inverting
all inputs into an AND gate.

The three fundamental Boolean operators are AND, OR and NOT. There is one
more operation commonly available as an electronic gate; the eXclusive-OR oper-
ator (XOR). The XOR function is true if only one input is true (hence the = 1 label
in the logic symbol). Unlike the inclusive-OR, the situation where both inputs are
true gives a false outcome.

14 The Essential PIC18® Microcontroller

Fig. 1.4 The XOR operation

Fig. 1.5 Detecting sign overflow

If we consider B is a control input and A as data (they are fully interchangeable)
then:

• When B = 0 then f = A; that is, the output follows the data input.
• When B = 1 then f = A; that is, the output is the inverse of the data input.

Thus an XOR gate can be used as a programmable inverter.
Another useful property considers the XOR function as a logic differentiator.

The XOR truth table shows that the gate gives a true output if the two inputs differ.
Alternatively, the XNOR truth table of Fig. 1.4(c) shows a true output when the two
inputs are the same. Thus an XNOR gate can be considered to be a 1-bit equality
detector. The equality of two n-bit words can be tested by ANDing an array of
XNOR gates (see Fig. 2.7 on p. 23), each generating the function Bk ⊕ Ak ; that is:

fB=A =
n−1∑
k=0

Bk ⊕ Ak

As a simple example of the use of the XOR/XNOR gates, consider the problem
of detecting sign overflow (see p. 10). This occurs if both the sign bits of word B and
word A are the same (SB ⊕ SA) AND the sign bit of the outcome word C is not the
same as either of these sign bits, say SB ⊕ SC. The logic diagram for this detector is
shown in Fig. 1.5 and implements the Boolean function:

(SB ⊕ SA) · (SB ⊕ SC)

Finally, the XOR function can be considered as detecting when the number of
true inputs are odd. By cascading n + 1 XOR gates, the overall parity function is
true if the n-bit word has an odd number of ones. Some measure of error protection
can be obtained by adding an additional bit to each word, so that overall the num-

1 Digital Representation 15

Fig. 1.6 Generating parity for a byte datum

ber of bits is odd. This oddness can be checked at the receiver and any deviation
indicates corruption.

Figure 1.6 uses a tree of 2-I/P Exclusive-OR/NOR gates to effectively create an
8-I/P XNOR gate. The output of this circuit will be logic 1 when there is an even
number of 1s. Adding this to the original 8-bit byte gives a 9-bit datum which will
always have an odd number of ones. A similar 9-I/P XOR array at the receiver will
then act in a similar way to indicate the oddness of the datum at that point. The
principle can be extended with additional parity checks to not only detect an error,
but to determine which bit is at fault and therefore correct it.

Chapter 2
Logic Circuitry

We have noted that digital processing is all about transmission, manipulation and
storage of binary word patterns. Here we will extend the concepts introduced in the
last chapter as a lead into the architecture of the computer and microcontroller. We
will look at some relevant logic functions, their commercial implementations and
some practical considerations.

After reading this chapter you will:

• Understand the properties and use of active pull-up, open-collector and 3-state
output structures.

• Appreciate the logic structure and function of the natural decoder.
• See how a MSI implementation of an array of XNOR gates can compare two

words for equality.
• Understand how a 1-bit adder can be constructed from gates, and can be extended

to deal with the addition and subtraction of two n-bit words.
• Appreciate how the function of an ALU is so important to a programmable sys-

tem.
• Be aware of the structure and utility of a read-only memory (ROM).
• Understand how two cross-coupled gates can implement a R S latch.
• Appreciate the difference between a D latch and a D flip flop.
• Understand how an array of D flip flops or latches can implement a register.
• See how a serial cascade of D flip flops can perform a shifting function.
• Understand how a D flip flop can act as a frequency divide by two, and how a

cascade of these can implement a binary count.
• See how an ALU/PIPO register can implement a programmable accumulator pro-

cessor unit.
• Appreciate the function of a RAM.

The first digital integrated circuits, available at the end of the 1960s, were mainly
NAND, NOR and NOT gates. The most popular family of logic functions was the
74 series Transistor Transistor Logic (TTL) introduced by Texas Instruments and
soon copied by all the major semiconductor manufacturers. In various forms TTL
still represents the de facto standard.

S. Katzen, The Essential PIC18® Microcontroller,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-229-2_2, © Springer-Verlag London Limited 2010

17

18 The Essential PIC18® Microcontroller

Fig. 2.1 The 74LS00 quad 2-I/P NAND package

The 74LS001 comprises four 2-input NAND gates in a 14-pin package. The in-
tegrated circuit (IC) is powered with a 5 ± 0.25 V supply between VCC

2 (usually
about 5 V) and GND. The logic outputs are 2.4–5 V for the High state and 0–0.4 V
for the Low state. Most IC logic families require a 5 V supply, but 3 V versions are
available, and some CMOS implementations can operate with a range of supplies
between 3 V and 15 V.

The 74LS00 IC is shown in Fig. 2.1(a) in its dual in-line (DIL) package. Strictly
it should be described as a positive-logic quad 2-I/P NAND, as the electrical equiv-
alent for the two logic levels 0 and 1 are Low (L is around ground potential) and
High (H is around VCC, usually about 5 V). If the relationship 0 � H; 1 � L is used
(negative logic) then the 74LS00 is actually a quad 2-I/P NOR gate. The ANSI/IEC3

logic symbol of Fig. 2.1(b) denotes a Low electrical potential by using the polarity
symbol. The ANSI/IEC NAND symbol shown is thus based on the real elec-

trical operation of the circuit. In this case the logic coincides with a positive-logic
NAND function. The & operator shown in the top block is assumed applicable to the
three lower gates.

The output structure of a 74LS00 NAND gate is active pull-up. Here both the
High and Low states are generated by connection via a low-resistance switch to
VCC or GND, respectively. In Fig. 2.2(a) these switches are shown for simplicity as
metallic contacts, but they are of course transistor derived.

1The LS stands for “low-power schottky transistor”. There are very many other versions, such
as ALS (advanced LS), AS (advanced schottky) and HC (high-speed complementary metal-oxide
transistor, CMOS). These family variants differ in speed and power consumption, but for a given
number designation have the same logic function and pinout.
2For historical reasons the positive supply on logic ICs are usually designated as VCC; the C re-
ferring to a bipolar’s transistor collector supply. Similarly field-effect circuitry sometimes use the
designation VDD for drain voltage. The zero reference pin is normally designated as the ground
point (GND), but sometimes the VEE (for emitter) or VSS (for source) label is employed.
3The American National Standards Institution/International Electrotechnical Commission.

2 Logic Circuitry 19

Fig. 2.2 Output structures

Fig. 2.3 Open-collector buffers driving a party line

Logic circuits, such as the 74LS00, change output state in around 10 nano-
seconds.4 To be able to do this, the capacitance of any interconnecting conductors
and other logic circuits’ inputs must be rapidly discharged. Mainly for this reason,
active pull-up (sometimes called totem-pole) outputs are used by most logic circuits.
There are certain circumstances where alternative output structures have some ad-
vantages. The open-collector (or open-drain) configuration of Fig. 2.2(b) provides
a ‘hard’ Low state, but the High state is in fact an open circuit. The High-state volt-
age can be generated by connecting an external resistor to either VCC or indeed to
a different power rail. Nonorthodox devices, such as relays, lamps or light-emitting
diodes, can replace this pull-up resistor. The output transistor is often rated with a
higher than usual current and/or voltage rating for such purposes.

The application of most interest to us here is illustrated in Fig. 2.3. Here four
open-collector gates share a single pull-up resistor. Note the use of the symbol
to denote an open-collector output. Assume that there are four peripheral devices,
any of which may wish to attract the attention of the processor, e.g., computer or
microcontroller. If this processor has only one Attention pin, then the four Signal
lines must be wire-ORed together as shown. With all Signal lines inactive (logic 0)
the outputs of all buffer NOT gates are off (state H), and the party line is pulled up
to +V by RL. If any Signal line is activated (logic 1), as in Sig_1, then the output of

4A nanosecond is 10−9 s, so 100,000,000 transitions each second are possible.

20 The Essential PIC18® Microcontroller

Fig. 2.4 Sharing a bus

the corresponding buffer gate goes hard Low. This pulls the party line Low and thus
interrupts the processor.

The three-state structure of Fig. 2.2(c) has the properties of both preceding out-
put structures. When enabled, the two logic states are represented in the usual way
by high and low voltages. When disabled, the output is open circuit irrespective of
the activities of the internal logic circuitry and any change in input state. A logic
output with this three-state is indicated by the symbol.

As an example of the use of this structure, consider the situation depicted in
Fig. 2.4. Here a master controller wishes to read one of several devices, all con-
nected to this master over a set of party lines. As this data highway or data bus is
a common resource, only the selected device can be allowed access to the bus at
any one time. The access has to be withdrawn immediately after the data has been
read, so that another device can use the resource. As shown in the diagram, each
‘thing’ connected to the bus outputs is designated by the symbol. When selected,
only the active logic levels will drive the bus lines. The 74LS244 octal (×8) 3-state
(sometimes called tristate or TRIS) buffer has high-current outputs (designated by
the symbol) specifically designed to charge/discharge the capacitance associated
with long bus lines.

Integrated circuits with a complexity of up to 12 gates are categorized as small-
scale integration (SSI). Gate counts upwards to 100 on a single IC are medium-scale
integration (MSI); up to 1000 are known as large-scale integration (LSI) and over
this, very large scale integration (VLSI). Memory chips and microcontrollers are
examples of this latter category.

The NAND gate networks shown in Fig. 2.5 are typical MSI-complexity ICs.
Remembering that the output of a NAND gate is logic 0 only when all its inputs
are logic 1 (see Fig. 1.2(c) on p. 13) then we see that for any combination of the
select inputs BA (21 20) in Fig. 2.5(a) only one gate will go to logic 0. Thus output
Y2 will be activated when BA = 10. The associated truth table shows the circuit
decodes the binary address BA so that address n selects output Yn. The 74LS139
is described as a dual 2- to 4-line natural decoder. Dual because there are two

2 Logic Circuitry 21

Fig. 2.5 The 74LS138 and 74LS139 MSI natural decoders

such circuits in the one chip. The symbol X/Y denotes converting code X (natural
binary) to code Y (unary—one of n). The enabling input G is connected to all gates
in parallel. Thus the decoder function only operates if G is Low (logic 0). If G is
High, then irrespective of the state of BA (the X entries in the truth table denote
a ‘don’t care’ situation) all outputs remain deselected—logic 1. An example of the
use of the 74LS139 is given in Fig. 2.25 on p. 38.

The 74LS138 of Fig. 2.5(b) is similar, but implements a 3- to 8-line decoder
function. The state of the three address lines CBA (22 21 20) n selects only one of
the eight outputs Yn. The 74LS138 has three Gate inputs which generate an internal
enabling signal G2B · G2A · G1. Only if both G2A and G2B are Low and G1 is High
will the device be enabled.

The priority encoder illustrated in Fig. 2.6 is a sort of reverse decoder. Bringing
one of the eight input lines Low results in the active-Low three-bit binary equivalent
appearing at the output. Thus if 5 is Low, then a2 a1 a0 = 010 (active Low 101).

22 The Essential PIC18® Microcontroller

Fig. 2.6 The 74LS148 highest-priority encoder

If more than one input line is active, then the output code reflects the highest.
Thus if both 5 and 3 are Low, the output code is still 010. Hence the label HPRI for
Highest PRIority. The device is enabled when Enable_IN (Ein) is Low. Enable_OUT
(Eout) and Group_Strobe (GS) are used to cascade 74LS148s to expand the number
of lines.

A large class of ICs implement arithmetic operations. The gate array illus-
trated in Fig. 2.7 detects when the 8-bit byte P7,...,P0 is identical to the byte
Q7,...,Q0. Eight XNOR gates each give a logic 1 when its two input bits Pn &
Qn are identical, as described on p. 14. Only if all 8-bit pairs are the same, will the
output NAND gate go Low. The 74LS688 equality comparator also has a direct
input G into this NAND gate, acting as an overall enabling signal.

The ANSI/IEC logic symbol, shown in Fig. 2.7(b), uses the COMP label to de-
note the arithmetic comparator function. The output is prefixed with the numeral 1,
indicating that its operation P=Q is dependent on any input qualifying the same
numeral; that is G1. Thus the active-Low enabling input G1 gates the active-Low
output, 1P=Q.

One of the first functions beyond simple gates to be integrated into a single IC
was that of addition. The truth table of Fig. 2.8(a) shows the sum (S) and carry-out
(C1) resulting from the addition of the two bits A and B and any carry-in (C0).

For instance, row 6 states that adding two 1s with a carry-in of 0 gives a sum
of 0 and a carry-out of 1 (1 + 1 + 0 =10). To implement this row we need to detect
the pattern 1 1 0; that is, A · B · C0; which is gate 6 in the logic diagram. Thus we
have by ORing all applicable patterns together for each output:

S = (A · B · C0) + (A · B · C0) + (A · B · C0) + (A · B · C0),

C1 = (A · B · C0) + (A · B · C0) + (A · B · C0) + (A · B · C0).

2 Logic Circuitry 23

Fig. 2.7 The 74LS688 octal equality detector

Using such a circuit for each column of a binary addition, with the carry-out from
column k − 1 feeding the carry-in of column k means that the addition of any two
n-bit words can be implemented simultaneously.

As shown in Fig. 2.8(b), the 74LS283 adds two 4-bit nybbles in 25 ns. In prac-
tice the final carry-out C4 is generated using additional circuitry to avoid the delays
inherent on the carries rippling through each stage from the least to the most signif-
icant digit. n 74LS283s can be cascaded to implement addition for words of 4 × n

width. Four 74LS283s can perform a 16-bit addition in 45 ns, the extra time being
accounted for by the carry propagation between the two units.

Adders can, of course, be coaxed into subtraction by inverting the minuend and
adding one, that is 2’s complementation—as described on p. 9. An adder/subtractor
circuit could be constructed by feeding the minuend word through an array of XOR
gates acting as programmable inverters (see p. 14). The mode line ADD/SUB in
Fig. 2.9 that controls these inverters also feeds the Carry-In C0, effectively adding
one when in the Subtract mode.

Extending this line of argument leads to the arithmetic logic unit (ALU). An
ALU is a circuit which can undertake a selection of arithmetic and logic processes
on input data as controlled by mode inputs. The 74LS382 in Fig. 2.10 processes two
4-bit operands in eight ways, as controlled by the three Mode Select bits S2 S1 S0

and tabulated in Fig. 2.10(a). Besides addition and subtraction, the logic operations
of AND, OR and XOR are supported. The 74LS382 also generates the 2’s comple-
ment overflow function—see p. 10.

24 The Essential PIC18® Microcontroller

Fig. 2.8 Addition

As we shall see, the ALU is at the heart of the computer and microcontroller
architectures. By feeding the Mode Select inputs with a series of binary words,
a program of operations can be performed by the ALU. Such operation codes are
stored in an external memory, and are accessed sequentially by the computer’s con-
trol circuits.

Sequences of program operation codes are normally stored in some kind of LSI
read-only memory. Consider the architecture illustrated in Fig. 2.11. This is essen-
tially a 3- to 8-line decoder driving an 8×2 array of diodes. The 3-bit address selects
only row n for each input combination n. If a diode is connected to this row, then
it conducts and brings the appropriate column Low. The inverting 3-state output
buffer consequently gives a High for each connected diode and Low where the link
is broken. The pattern of diode links then defines the output code for each input. For
illustrative purposes, the structure has been programmed to implement the 1-bit full
adder of Fig. 2.8(a), but any two functions of three variables can be generated.

The diode matrix look-up table shown here is known as a read-only memory
(ROM), as its ‘memory’ is in the diode pattern, which is programmed in when
the device is manufactured. Early devices, which were typically decoder/32 × 8
matrices, usually came in user-programmable versions in which the interconnec-
tions were implemented with fusible links. By using a high voltage, a selection of

2 Logic Circuitry 25

Fig. 2.9 Implementing a programmable adder/subtractor

Fig. 2.10 The 74LS382 ALU

diodes could be taken out of contact. Such devices are called programmable ROMs
(PROMs).

Fuses are messy when implementing the larger sizes of VLSI PROMs neces-
sary to store computer programs. For instance, the small 27C64 PROM shown in
Fig. 2.12 has the equivalent of 65,536 fuse/diode pairs, and this is a relatively small
device capable of storing 8192 bytes of memory. The 27C64 uses the electrical
charge on the floating gate of a metal-oxide field-effect transistor (MOSFET) as
the programmable link, with another MOSFET to replace the diode. Charge can
be tunneled onto this isolated gate by, again, using a high voltage. Once on the
gate, the electric field keeps the link MOSFET conducting. This charge takes many

26 The Essential PIC18® Microcontroller

Fig. 2.11 A ROM-implemented 1-bit adder

decades to leak away, but this can be dramatically reduced to about 20 minutes
by exposure to intense ultraviolet radiation. For this reason the 27C64 is known
as an erasable PROM (EPROM). When an EPROM is designed for reusability, a
quartz window is integrated into the package, as shown in Fig. 2.12 and on p. 2.
Programming is normally done externally with special equipment, known as PROM
programmers, or colloquially as PROM blasters. Versions without windows are re-
ferred to as one-time programmable (OTP) ROMs, as they cannot easily be erased
once programmed. They are, however, much cheaper to produce and are thus suit-
able for small- to medium-scale production runs. However, as a general rule flash
EEPROM has a more limited lifetime, as measured as the number of times a cell
can be written to.

Figure 2.13 shows a simplified representation of such a floating-gate MOSFET
link. The cross-point device is a metal-oxide enhancement n-channel field-effect
transistor TR1, rather than a diode. This MOSFET has its gate G1 connected to the
X line and its source S1 to the Y line. If its drain D1 is connected to the positive
supply and the X line is selected (positive), then the Y line too becomes positive
(positive-logic 1) as TR1 is conducting (switch is on). However, if TR1 is discon-
nected from VDD then it does not conduct and the output on the Y line is logic 0.
Transistor TR2 is in series with VDD and thus acts as the programmable element.

2 Logic Circuitry 27

Fig. 2.12 The 2764 erasable PROM (EPROM)

Fig. 2.13 Floating-gate MOSFET link

Transistor TR2 has an extra unconnected gate buried in the silicon dioxide insulation
layer. Normally there is no charge on this gate and TR2 is off. If the programming
voltage VPP is pulsed high to typically 20–25 V, negative charges tunnel across the

28 The Essential PIC18® Microcontroller

extremely thin insulation surrounding the buried gate. This turns TR2 on perma-
nently and thus connects TR1 to its supply. This shows up as a logic 1 on the Y line
when selected by the internal memory decoder.

This charge remains more or less permanently on the buried gate until it is ex-
posed to ultraviolet light. The high-energy light photons knock electrons (negative
charges) out of the buried (floating) gate5 effectively discharging in around 20 min-
utes and wiping out all stored information.

There are PROM structures which can be erased electrically, often in situ in the
circuit. These are known variously as electrically-erasable PROMs (EEPROMs) or
flash memories. In the former case a large negative pulse at VPP causes the captured
electrons on the buried gate to tunnel back out. Generally the negative voltage is
generated on the chip, which saves having to provide an additional external supply.
The flash variant of EEPROM relies on hot electron injection rather than tunneling
to charge the floating gate. The geometry of the cell is approximately half the size
of a conventional EEPROM cell which increases the memory density. Programming
voltages are also somewhat lower. An example of a commercial EEPROM memory
is given in Fig. 12.28 on p. 443.

Most modern EPROMs/EEPROMs are fairly fast, taking around 150 ns to access
and read. Programming is slow, at perhaps 10 ms per word, but this is an infre-
quent activity. Flash EEPROMs program around 100 times faster, in around 100 µs
per cell. However, as a rule they have a more limited lifetime, as measured by the
number of times they can be successfully written to. Typically this may be around
100,000 times6 as compared to over a million.

All the circuits shown thus far are categorized as combinational logic. They
have no memory in the sense that the output depends only on the present input, and
not the sequence of events leading up to that input. Logic circuits, such as latches,
counters, registers and read/write memories are described as sequential logic. Their
output not only depends on the current input, but the sequence of prior inputs.

Consider a typical doorbell pushswitch. When you press such a switch the bell
rings, and it stops as soon as you release it. This switch has no memory.

Compare this with a standard light switch. Set the switch and the light comes
on. Moreover, it remains on when you remove the stimulus (usually your finger!).
To turn the light off you must reset the switch. Again it remains off when the in-
put is taken away. This type of switch is known as a bistable, as it has two stable
states. Effectively it is a 1-bit memory cell, that can store either an on or off state
indefinitely.

A read/write memory, such as the 6264 device of Fig. 2.26, implements each
bistable cell using two cross-coupled transistors. Here we are not concerned with

5This is called the Einstein effect. Einstein was awarded his Nobel prize for this discovery and not
for his theories of relativity, as these were considered too revolutionary!
6There are around 600,000 seconds in a week and so if a cell is written into once every six seconds
the entire lifetime could be used up in a week!

2 Logic Circuitry 29

Fig. 2.14 The R S latch

this microscopic view. Instead, consider the two cross-coupled NOR gates of
Fig. 2.14. Remembering from Fig. 1.3(c) on p. 13 that any logic 1 into a NOR gate
will always give a logic 0 output irrespective of the state of the other inputs, allows
us to analyse the circuit:

• If the S input goes to 1, then output Q goes to 0. Both inputs to the top gate are
now 0 and thus output Q goes to 1. If the S input now goes back to 0, then the
lower gate remains 0 (as the Q feedback is 1) and the top gate output also remains
unaltered. Thus the latch is set by pulsing the S input.

• If the R input goes to 1, then output Q goes to 0. Both inputs to the bottom gate
are now 0 and thus output Q goes to 1. If the R input now goes back to 0, then
the upper gate remains 0 (as the Q feedback is 1) and the bottom gate output also
remains unaltered. Thus the latch is reset by pulsing the R input.

In the normal course of events—that is assuming that the R and S inputs are not
both active at the same time7—then the two outputs are always complements of
each other, as indicated by the logic symbol of Fig. 2.14(b).

There are many bistable implementations. For example, replacing the NOR gates
by NAND gives a R S latch, where the inputs are active on a logic 0. The circuit illus-
trated in Fig. 2.15 shows such a latch used to debounce a mechanical switch. Manual

7If they were, then both Q and Q would go to 0. On relaxing the inputs, the latch would end
up in one of its stable states, depending on the relaxation sequence. The response of a latch to a
simultaneous Set and Reset input signal is not part of the latch definition, shown in Fig. 2.14(a),
but depends on its implementation. For instance, trying to turn a light switch on and off together
could end in splitting it in two!

30 The Essential PIC18® Microcontroller

Fig. 2.15 Using a R S latch
to debounce a switch

switches are frequently used as inputs to logic circuits. However, most metallic con-
tacts will bounce off the destination contact many times over a period of several tens
of milliseconds before settling. For instance, using a mechanical switch to interrupt
a computer/microcontroller will give entirely unpredictable results.

In Fig. 2.15, when the switch is moved up and hits the contact the latch move
into its Set state. When the contact is broken, the latch remains unchanged, provided
that the switch does not bounce all the way back to the lower contact. The state will
remain Set no matter how many bounces occur. By symmetry, the latch will reset
when the switch is moved to the bottom contact, and remain in this Reset state on
subsequent bounces.

The D latch is an extension to the R S latch, where the output follows the D (Data)
input when the C (Control) input is active (logic 1 in our example) and freezes when
C is inactive. The D latch can be considered to be a 1-bit memory cell where the
datum is retained at its value at the end of the sample pulse.

In Fig. 2.16(b) the dependency of the Data input with its Control signal is shown
by the symbols C1 and 1D. The 1 prefix to D shows that it depends on any signal
with a 1 suffix, in this case the C input. That is, C1, clocks in the 1D data.

A flip flop is also a 1-bit memory cell, but the datum is only sampled on an edge
of the control (known here as the Clock) input.

The D flip flop described in Fig. 2.16(c) is triggered on a (as illustrated in
the truth table as ↑), but clocked flip flops are common. The edge-triggered
activity is denoted as on a logic diagram, as shown in Fig. 2.16(d).

The 74LS74 shown in Fig. 2.17 has two D flip flops in the one SSI circuit. Each
flip flop has an overriding Reset (R) and Set (S) input, which are asynchronous, that
is, not controlled by the Clock input. MSI functions include arrays of four, six and
eight flip flops all sampling simultaneously with a common Clock input.

The 74LS377 shown in Fig. 2.18 consists of eight D flip flops all clocked by the
same single Clock input C, which is gated by input G. Thus the 8-bit data 8D, . . . ,1D

is clocked in on the of C if G is Low. In the ANSI/ISO logic diagram shown

2 Logic Circuitry 31

Fig. 2.16 The D latch and flip flop

Fig. 2.17 The 74LS74 dual D flip flop

in Fig. 2.18(b), this dependency is indicated as G1→1C2→2D, which states that G
enables the Clock input, which in turn acts on the Data inputs.

Arrays of D flip flops are known as registers, that is, read/write memories that
hold a single word. The 74LS377 is technically known as a parallel-in parallel-out
(PIPO) register, as data is entered in parallel (that is, all in one go) and is available
to read at one go. D latch arrays are also available, such as the 74LS373 octal PIPO
register shown in Fig. 2.19, in which the eight D flip flops are replaced by D latches.
In addition, the latch outputs have a 3-state capability. This is useful if data is to be
captured and later put onto a common data bus to be read subsequently as desired
by a computer.

32 The Essential PIC18® Microcontroller

Fig. 2.18 The 74LS377 octal D flip flop array

A pertinent example of the use of a PIPO register is shown in Fig. 2.20. Here an
8-bit ALU is coupled with an 8-bit PIPO register, accepting as its input the ALU
output, and in turn feeding one input word back to the ALU. This register accumu-
lates the outcome of a series of operations, and is sometimes called an Accumulator
or Working register. To describe the operation of this circuit, consider the problem
of adding two words A and B. The sequence of operations, assuming the ALU is
implemented by cascading two 74LS382s, might be:

1. Program step.

• Mode = 000 (Clear).
• Pulsing Execute loads the ALU output (0000 0000) into the register.
• Data out is zero (0000 0000).

2 Logic Circuitry 33

Fig. 2.19 The 74LS373 octal D latch array

2. Program step.

• Fetch word A down to the ALU input.
• Mode = 011 (Add).
• Pulse Execute to load the ALU output (word A + zero) into the regis-

ter.
• Data out is word A.

3. Program step.

• Fetch word B down to the ALU input.
• Mode = 011 (Add).
• Pulse Execute to load the ALU output (word B + word A) into the

register.
• Data out is word B plus word A.

34 The Essential PIC18® Microcontroller

Fig. 2.20 An 8-bit ALU-accumulator processor

The sequence of operation codes, that is 000–100–100 constitutes the program. In
practice each instruction would also contain the address (where relevant) in memory
of the data to be processed; in this case the locations of word A and word B.

Each outcome of a process will have associated properties. For instance, it may
be zero, be negative (most-significant bit is 1), have a carry-out or 2’s complement
overflow.

Such properties may be significant in the future progress of the program. In the
diagram, four D flip flops, clocked by Execute, are used to grab this status infor-
mation. In this situation the flip flops are usually known as flags (or sometimes
semaphores). Thus we have C, N, Z and V flags, which form a Status register.

As we will see in the next chapter, the ALU/Working register processor is the
heart of digital computing engines. In complex systems, such as a computer or mi-
crocontroller, the detail of a diagram like Fig. 2.20 is not necessary and will hide the
underlying system process from the observer. Figure 2.21 shows the same process at
a higher level of abstraction. For instance, the various multiple wire data connections
or buses are shown as a single thick path; the actual details are unimportant. The

2 Logic Circuitry 35

Fig. 2.21 A system look at
our ALU-accumulator
processor

number of connections in a path is not shown, but if important, is usually indicated

by a diagonal tick, thus .
The ALU, with its distinctive shape, is at the center of our system. Its two data

inputs, or operands, are processed according to the Mode input. Operand 1 comes
from outside our system, whilst Operand 2 is connected from the Working register.
In a computer, the Mode input codes normally come from the program memory,
whilst Operand 1 is obtained from the data memory.

The ALU output can be either latched back into the Working register when sam-
pled by the Execute signal, or it can be fed outside into a data memory via the bus.
This enhancement is shown in Fig. 3.2 on p. 43.

There are various other forms of register. The 4-bit shift register of Fig. 2.22(a)
is an example of a serial-in serial-out (SISO) structure. In this instance the data held
in the nth D flip flop is presented to the input of the (n + 1)th stage. On receipt of
a clock pulse (or shift pulse in this context), this data moves into this (n + 1)th flip
flop, i.e., effectively moving from stage n to stage n+1. As all flip flops are clocked
simultaneously, the entire word moves once to the right on each shift pulse.

In the example of Fig. 2.22 a 4-bit external data nybble is fed into the leftmost
stage bit-by-bit as synchronized by the clock. After four shift pulses the serial 4-bit
word is held in the register. To get it out again, four further shifts move the word bit-
by-bit out of the shift register; this is SISO. If the individual flip flops are accessible
then the data can be accessed at one go, that is, serial-in parallel-out.

The logic diagram of Fig. 2.22(b) uses the → symbol prefixed by the clock input
to indicate the shift action; i.e., C1 → . SRG4 indicates a Shift ReGister 4-stage
architecture. An example of an 8-stage shift register is given in Fig. 12.2 on p. 381.

Other architectures include parallel-in serial-out, which is useful for parallel to
serial conversion. Counting registers (counters) increment or decrement on each

36 The Essential PIC18® Microcontroller

Fig. 2.22 The SISO shift register

Fig. 2.23 The T flip flop

clock pulse, according to a binary sequence. Typically an n-bit counter can perform
a count of 2n states. Some can also be loaded in parallel and thus act as a store.

Consider the negative-edge triggered D flip flop shown in Fig. 2.23 where its
Q output is connected back to the 1D input. On each at the Clock input C1,

2 Logic Circuitry 37

Fig. 2.24 A modulo-16 ripple counter

the data at the 1D input will be latched in to appear at the Q output. As it is the
complement of this output that is fed back to the input, then the next time the flip
flop is clocked the opposite logic state will be latched in. This constant alternation is
called toggling and is depicted on the diagram by T. The output waveform resulting
from a constant-frequency input pulse train is half this frequency. This waveform
is a precision squarewave, provided that the input frequency remains constant. This
T flip flop is sometimes known as a binary or a divide-by-2.

T flip flops can be cascaded, as shown in Fig. 2.24(a). Here four triggered
flip flops are chained, with the output of binary n clocking binary n + 1. Thus if the
input Count frequency was 8 kHz, then QA would be a 4 kHz square waveform and
similarly QB would measure in at 2 kHz, QC at 1 kHz, QD at 500 Hz.

The waveform QA of Fig. 2.24(b) was derived in the same manner as in Fig. 2.23.
QB is toggled on each of QA and likewise for the subsequent outputs. Marking
a High as logic 1 and a Low as logic 0 gives the 24 (16) positive-logic binary patterns
as time advances, with the count rolling over back to state 0 on a continual basis.
Each pattern remains in the register until the next event clocks the chain; an event
being defined in our example as a at Count. Examining the sequence shows

38 The Essential PIC18® Microcontroller

Fig. 2.25 Generating timing waveforms

it to be a natural 8-4-2-1 binary up count, incrementing from b’0000’ to b’1111’. In
fact, the circuit is a modulo-16 binary counter or timer. A modulo-n count is the
sequence taking only the first n numbers into account.8

In theory there is no limit to the number of stages that can be cascaded. Thus
using eight T flip flops would give a modulo-256 (28) counter. In practice there
is a small propagation delay through each stage and this limits the ultimate fre-
quency. For instance, the 74LS74 dual D flip flop of Fig. 2.17 has a maximum
propagation from an event at its Clock input to Q output of 25 ns (the maxi-
mum toggling frequency for a single stage, such as in Fig. 2.23, is quoted as
25 MHz). An 8-stage counter thus has a maximum ripple-through time of 200 ns
(8 × 25). If such a ripple counter were clocked at the resulting 5 MHz (1

200 ns)

then no sooner would one particular code pattern stabilize then the next one
would begin to appear. This is only really a problem if the various states of the
counter are to be decoded and used to control other logic. The decoding logic,
such as shown in Fig. 2.25, may inadvertently respond to these short transient
states and cause havoc. In such cases more sophisticated synchronous counter
configurations are more applicable where the flip flops are clocked simultane-
ously and steered by the appropriate logic configuration to count in the desired
sequence.

The circuit illustrated here implements an up count. If the complement Q lines
are used as the outputs, but with the clocking arrangements remaining the same,
then the count sequence will decrement, that is a down count. Likewise, if
triggered flip flops, such as the 74LS74 dual flip flop (see Fig. 2.25), are used as the
storage element, then the count will be down. It is easily possible to use some simple
logic to combine the two functions to produce a programmable up/down counter. It
is also feasible to provide logic to load the flip flop array in parallel with any number

8Mathematically any number can be converted to its modulo-n equivalent by dividing by n. The
remainder, or modulus, will be a number from 0 to n − 1.

2 Logic Circuitry 39

Fig. 2.26 The 6264 8196 × 8 RAM

and then count up or down from that point. Such an arrangement can be thought of
as a parallel-in counting register.

In addition to the more obvious uses of a counter register to add up the number of
events, such as cans of peas coming along a conveyor belt, there are other uses. One
of these is to time a sequence of operations. In Fig. 2.25 a modulo-4 counter is used
to address one section of a 74LS139 2- to 4-line decoder; see Fig. 2.5(a). This detects
each of the four states of the counter, and the outcome is four time-separated outputs
that can be used to sequence, say, the operation of a computer’s control section
logic—such as that in Fig. 4.5 on p. 76. As a practical point, the complement Q
flip flop outputs have been used to address the decoder to compensate for the
triggered action that would normally give a down count. Larger counters with the
appropriate decoding circuitry can be used to generate fairly sophisticated sequences
of control operations.

The term register is commonly applied to a read/write memory that can store
a single binary word, typically 4–64 bits. Larger memories can be constructed by
grouping n such registers and selecting one of n. Such a structure is sometimes
known as a register file. For example, the 74LS670 is a 4 × 4 register file with a
separate 4-bit data input and data output and separate 2-bit address. This means
that any register can be read at any time, independently of any concurrent writing
process.

Larger read/write memories are customarily known as read/write random-
access memories, or RAMs for short. The term random-access indicates that any
memory word may be selected with the same access time, irrespective of its position

40 The Essential PIC18® Microcontroller

in the memory matrix.9 This contrasts with a magnetic tape memory, where the reel
must be wound to the sector in question—and if this is at the end of the tape

For our example, Fig. 2.26 shows the 6264 RAM. This has a matrix of 65,536
(216) bistables organized as an array of 8192 (213) words of 8 bits. Word n is ac-
cessed by placing the binary pattern of n on the 13-bit Address pins A12, . . . ,A0.

When in the Read mode (Read/Write = 1), word n will appear at the eight data
outputs (I/O7, . . . ,I/O0) as determined by the state n of the address bits. The A
symbol at the input/outputs (as was the case in Fig. 2.12) indicates this addressabil-
ity. In order to enable the 3-state output buffers, the Output Enable input must be
Low.

The addressed word is written into if R/W is Low. The data to be written into
word n is applied by the outside controller to the eight I/O pins. This bidirectional
traffic is a feature of computer buses.

In both cases, the RAM chip as a whole is enabled when CS1 is Low and CS2
is High. Depending on the version of the 6264, this access from enabling takes
around 100–150 ns. There is no upper limit to how long the data can be held, pro-
vided power is maintained. For this reason, the 6264 is described as static (SRAM).
Rather than using a transistor pair bistable to implement each bit of storage, data can
be stored as charge on the gate-source capacitance of a single field-effect transistor.
Such charge leaks away in a few milliseconds, so needs to be refreshed on a regular
basis. Dynamic RAMs (DRAMs) are cheaper to fabricate than SRAM equivalents
and obtainable in larger capacities. They are usually found where very large memo-
ries are to be implemented, such as found in a personal computer. In such situations,
the expense of refresh circuitry is more than amortized by the reduction in cost of
the memory devices.

Both types of read/write memories are volatile, that is, they do not retain their
contents if power is removed. Some SRAMs can support existing data at a very low
holding current and lower than normal power supply voltage. Thus a backup battery
can be used in such circumstances to keep the contents intact for many months. The
advantage of this strategy over EEPROM technology is the unlimited number of
writes to memory—see Footnote 2.

9Strictly speaking, ROMs should also be described as random access, but custom and practice has
reserved the term for read/write memories.

Chapter 3
Stored Program Processing

In Chap. 2 we designed a simple computing engine based on an arithmetic logic
unit (ALU) paired with a parallel-in parallel-out register. The ALU did the number
crunching and the Working register held one of the operands and also stored any
outcome. In our example, shown on p. 32, we added three numbers together, with
the result accumulating in the Working register. If the ALU’s mode code is set up
before each step, then we can potentially make the computing engine carry out any
task that can be described as a sequence of arithmetic and logic operations. This set
of command codes (e.g., Add, Subtract, AND, . . .) can be stored in digital memory,
as can the various operands fed to the ALU and likewise any outcomes. These codes
constitute both the software of the programmable machine and the various operands
or data. By fetching these instructions down one at a time, we can execute the
system’s program. This structure, together with its associated data paths, decoders
and logic circuitry is known as a digital computer.

As we will see, microcontroller architecture is modeled on that of a computer.
With this in mind, this chapter looks at the architecture and operating rhythm of the
computer structure. Although this computer is strictly hypothetical, it has been very
much ‘designed’ with our book’s target microcontroller in mind.

After reading this chapter you will have an understanding of:

• The von Neumann computer structure and recognise its weakness.
• The Harvard architecture with its parallel fetch and execute units, and separate

memory spaces.
• The relationship between a digital computer, microprocessor and a microcon-

troller.
• The structure of a Program store and its interaction with the Program Counter and

Pipeline.
• The binary anatomy of typical program instructions.
• The function and structure of a Data store.

Historically the electronic digital computer that we know today was an indirect
outcome of the Second World War. Several experimental computers were designed,

S. Katzen, The Essential PIC18® Microcontroller,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-229-2_3, © Springer-Verlag London Limited 2010

41

42 The Essential PIC18® Microcontroller

Fig. 3.1 An elementary von Neumann computer; Address bus not shown

and some actually functioned in that period.1 These computing machines were either
special-purpose structures, mainly designed to do a single task on various data, or
else needed to be partly rewired to change their behavior.

Given the feasibility of building such computing structures, a major breakthrough
by a team of engineers working with von Neumann2 was to recognize that the pro-
gram could be stored in memory along with any data. The advantage of this ap-
proach is flexibility. To alter the software the new program bit patterns are simply
loaded into the appropriate area of memory. In essence, the von Neumann architec-
ture, shown in Fig. 3.1, comprises a Central Processing Unit (CPU), a memory
and a common connecting bus (or highway) carrying data back and forth. In prac-
tice the CPU must also communicate with the environment outside the computer.
For this purpose, data to and from suitable interface ports are also funneled through
this single highway or data bus.

1A prime example was the British Colossus which spent several years breaking Enigma codes. See
the book’s website for more historical and technical details of these early machines.
2Von Neumann was a Hungarian mathematician working for the American Manhattan nuclear
weapons program during the Second World War. After the war he became a consultant for the
Moore School of Electrical Engineering at the University of Pennsylvania’s EDVAC computer
project, for which he was to employ his new concept that the program was to be stored in memory
along with its data. He published his ideas in 1946 and EDVAC became operational in 1951.
Ironically, a somewhat lower key project at Manchester University, UK made use of this approach
and the Mark 1 executed its first stored program in June 1948! This was closely followed by
Cambridge University’s EDSAC which ran its program in May 1949, almost two years ahead of
EDVAC.

3 Stored Program Processing 43

Fig. 3.2 An elementary Harvard architecture computer; Address bus not shown

The great advantage of the von Neumann architecture is simplicity, and because
of this the majority of general-purpose computers are modeled after this concept.
However, the use of a common bus means that only one thing can happen at time.
Thus an execution transaction between the CPU and the Data store cannot occur
at the same time that an instruction is being fetched from the Program store. This
phenomena is sometimes known as the von Neumann bottleneck.

In the first decade after the war, Harvard University designed and implemented
the Mark 1 through Mark 4 series of computers, which used a variation of this struc-
ture where the program memory was completely separate from the data memory. In
the original Mark 1 and Mark 2 machines the program was physically implemented
as patterns of holes on punched paper tape, which was read as required. This strategy
was more efficient then the von Neumann (or, as it is sometimes known, Princeton)
architecture, since code could be fetched from program memory concurrently with
activity between the CPU and the data memory or input/output transactions. How-
ever, such machines were more complex and expensive, and with 1950s technology
never became widely accepted after loosing out in a Department of Defence compe-
tition to build a computer to monitor the far-flung radar stations in North America.
With the evolution of complex integrated circuits this Harvard architecture has
made a reappearance, with the additional bus connections being subsumed onto the
silicon.

Figure 3.2 shows the two physically distinct buses used to carry information to
the CPU from these disjoint memories. Each memory has its own address bus and

44 The Essential PIC18® Microcontroller

thus there is no interaction between a Program store cell’s address and a Data store
cell’s address. The two memories are said to lie in separate memory spaces. The
Data store is sometimes known as the File store, with a cell at location n being
described as File n.

Let us look at these elements in a little more detail.

The Central Processing Unit
The CPU consists of the ALU/Working register together with the associated con-
trol logic. Under the management of the control circuitry, program instructions are
fetched from memory, decoded and executed. Data resulting from, or used by, the
program is also accessed from memory. This fetch-and-execute cycle constitutes the
operating rhythm of the computer and continues indefinitely, as long as the system
is active.

Memory
All computing structures use memory to hold both program code and data. Random
access memories are characterised by the contents they hold in a set of cells and
the location or address of each cell. In the case of von Neumann type architectures
these are held in a single memory space, whereas in Harvard structures they are
located in completely separate memory spaces. That is, the addresses of one type of
memory do not relate in any way to the addresses of the other memory. In all cases
the data stored in a memory is transported to the CPU via a data bus. The CPU sends
the address code of the cell it wishes to communicate with via an address bus. In
Harvard structures, there will be separate data and address buses for each memory
space; see Fig. 3.4.

Most computers have large backup memories, usually magnetic or optical disk-
based, in which case access time depends on the cell’s physical position in the
memory rather than being random access. Apart from this sequential access prob-
lem, such media are normally too slow to act as the main memory and are used for
backup storage of large arrays of data (e.g., student exam records) or programs that
must be loaded (or swapped) into main memory before execution.

Program Memory
The Program store holds the bit patterns which define the program or software.
The word is a play on the term hardware; as such patterns do not correspond to
any physical rearrangement of the circuitry. Memory holding software should
ideally be as fast as the CPU, and normally use semiconductor technologies,
such as that described in the last chapter.3

Data Memory
The Data store holds data being processed by the program. Again, this memory

3This wasn’t always so; the earliest practical large high-speed program memories used miniature
ferrite cores (donuts) that could be magnetized in any one of two directions. Core memories were
in use from the 1950s to the early 1970s, and program memory is sometimes still referred to as
core.

3 Stored Program Processing 45

is normally as fast as the CPU. The processor may also locate special-purpose
registers in this memory space; for instance, input/output ports.

The Interface Ports
To be of any use, a computer must be able to interact with its environment. Although
conventionally one thinks of a keyboard and screen, any of a range of physical
devices may be read and controlled. Thus the flow of fuel injected into a cylinder
together with engine speed may be used to alter the instant of spark ignition in the
combustion chamber of an internal combustion engine.

Data Highway
All the elements of the von Neumann computer are wired together with the one
common data highway, or bus (see Fig. 2.4 on p. 20 for a definition of a bus). With
the CPU acting as the master controller, all information flow is back and forward
along these shared wires. A Harvard computer has a separate data bus for the Pro-
gram store allowing the instruction codes to be fetched in parallel with activity on
the Data store’s data bus. Other buses carry addresses to the various memories and
control/status information; see Fig. 3.4.

Our target microcontroller is a Harvard computing engine and so we will con-
centrate on this structure from now on. Based on the CPU of Fig. 2.20 on p. 34, we
can add program and data memory with some control and decoding logic to give us

Fig. 3.3 A system look at a rudimentary Harvard computer

46 The Essential PIC18® Microcontroller

the elementary Harvard computer of Fig. 3.3. The delineated portion of the diagram
is the original circuit of Fig. 2.21 on p. 35.

By extending the data bus out to the Data store, we can both source operand 1
from this memory and also optionally put the outcome back there. The address of
this operand is part of the instruction fetched from the Program store and decoded
by the control circuitry. This Control Unit also extracts the mode bits for the ALU,
which depends on the current instruction. The outcome from the ALU can either
be loaded into the Working register (the control unit pulses WREG) or back into
the File in the Data store where the operand originated (the Control Unit pulses F).
Again, this destination information is part of the instruction code.

Instructions are normally located as sequential code words in the Program store.
A binary up counter (see Fig. 2.24 on p. 37) is used to address each instruction word
in turn. If we assume that this Program Counter is zeroed when the computer is
reset, then the first instruction is located at address h’000’ in the Program store, the

Fig. 3.4 A snapshot of the CPU executing the first instruction whilst simultaneously fetching the
second instruction. All addresses/data are in hexadecimal

3 Stored Program Processing 47

second at h’001’ and so on; see Fig. 3.4. The Control Unit simply increments the
counter after each instruction has been fetched. By parallel loading a new address
into the Program Counter, overriding this incrementation, the program can be forced
to jump to another routine.

The fetch instruction down/decode it/execute sequence, the so-called fetch-and-
execute cycle, is fundamental to the understanding of the operation of the com-
puter. To illustrate this operating rhythm we are going to look at a simple program
that takes a variable datum which is stored in location h’25’ in the Data store, then
adds the constant four to it and finally assigns the resultant outcome to File h’26’.
For reasons of clarity, programmers give names to addresses, and thus NUM_1 and
NUM_2 are actually the addresses h’25’ and h’26’ in which the data are stored. In the
high-level language C this may be written as:

NUM_2 = NUM_1 + 4;

A rather more detailed close-up of our computer, which I have named BASIC (for
Basic All-purpose Stored Instruction Computer) is shown in Fig. 3.4. This shows
the CPU and memories, together with the two data buses and corresponding address
buses.

The CPU can broadly be partitioned into two sectors. The leftmost circuitry deals
with fetching the instruction codes and sequentially presenting them to the Instruc-
tion decoder. The rightmost sector executes each instruction, as controlled by this
Instruction decoder ID.

Looking first at the fetch process:

Program Counter
Instructions are normally stored sequentially in program memory, and the PC is the
counter register that keeps track of the current instruction word. This up-counter is
sometimes called (perhaps more sensibly) an Instruction Pointer.

As the PC is connected to the execution unit—via an internal data bus—the ALU
can be used to manipulate this register and disrupt the orderly execution sequence.
In this way various Goto and Skip to another part of the program operations can be
implemented.

Pipeline
Two instruction registers hold instruction codes from the Program store. At the top,
instruction word n is latched into Instruction Register 1 (IR1) and held for process-
ing during the next cycle. This enables instruction n−1 at the bottom of the Pipeline
(Instruction Register 2, IR2) to be executed at the same time as instruction n is being
fetched into the top of the Pipeline. The Pipeline operation is illustrated in Fig. 3.7.

Instruction Decoder
The ID is the ‘brains’ of the CPU, deciphering the instruction word in IR2 and send-
ing out the appropriate sequence of signals to the execution unit as necessary to
locate any operand in the Data store and to configure the ALU to its appropriate
mode. In the diagram, the instruction shown is movf h’25’,w (MOVe contents
of File h’25’ to the Working register).

48 The Essential PIC18® Microcontroller

The execution section deals with accesses to the Data store and configuring the
ALU. Execution circuitry is controlled from the Instruction decoder, which is in turn
commanded by instruction word n − 1 at the bottom of the pipeline in IR2.

All number crunching in the execute unit is done eight bits at a time, and all the
registers and Data store likewise hold data in byte-sized chunks. Because of this, the
computer would usually be described as an 8-bit processor.

File Address Register
When the CPU wishes to access a cell (or File) in the Data store, it places the File
address in the FAR. This directly addresses the memory via the File address bus. As
shown in the diagram, File h’25’ is being read from the Data store and the resulting
datum is latched into the CPU’s File Data register.

File Data Register
This is a bidirectional register which either:

• Holds the contents of an addressed File if the CPU is executing a read cycle.
This is the case for instruction 1 (movf h’25’,w) that MOVes (copies or reads
from) a datum from File h’25’ into the Working register.

• Holds the datum that a CPU wishes to send out (write to) to an addressed File.
This write cycle is implemented for the movwf h’26’ instruction that moves
(writes) out the contents of the Working register to File h’26’.

Arithmetic Logic Unit
The ALU carries out an 8-bit arithmetic or logic operation as commanded by its
mode code (see Fig. 2.10 on p. 25) which is extracted from the instruction code by
the Instruction decoder.

Status Register
This holds the C, Z, N and V flags, as described in p. 34.

Working Register
WREG is the ALU’s Working register, generally holding one of an instruction’s
operands, either source or destination. For instance, addwf h’20’,w ADDs the
contents of the Working register to the contents of File h’20’ and places the sum back
in WREG. Some computers call this a data or accumulator register.

In addition to the CPU, our BASIC computer has two stores to hold the program
code and data.

Program Store
Each location (or cell) in the Program store holds one instruction which is coded as
a 16-bit word. In Fig. 3.4 each one of these cells has an address, which originates
from the Program Counter via the Program store’s address bus. In the diagram the
contents of the PC are h’001’ (or b’0000000000001’), and this enables the contents
of cell h’001’ to be placed on the Program store’s data bus and hence read into the top

3 Stored Program Processing 49

of the Pipeline IR1. In the illustrated case this is h’0F04’ (or b’0000111100000100’),
which is the machine code for the instruction addlw 04.addlw This will eventu-
ally be interpreted by the Instruction decoder as a command to add the constant four
to the Working register.

Data Store
Each cell (or File) in the Data store holds one byte (eight bits) of data. The File
address is generated by the execute unit via the File Address Register (FAR) and the
Data store’s address bus. The contents of the addressed File is either read into the
File Data Register (FDR) or written from it.

The File address and data busses are completely separate from the Program store
counterparts and so processes can proceed on both stores at the same time. Also,
Program and Data store addresses are not the same; e.g., the Program store address
h’26’ is completely different from the Data store address h’26’—that is File h’26’.

Now that we have our CPU with its Program and Data stores, we need to look
in more detail at the program itself. There are three instructions in our illustrative
software, and as we have already observed, the task is to copy the contents of a byte-
sized variable located at the address we have called NUM_1 plus 4 into the location
at the address we have called NUM_2.

movf
movf The instruction MOVe File copies the contents of the specified File, usually
down to the Working register. Thus movf NUM_1,w loads the byte out in data
memory at location File h’25’ into the Working register. This will set the Z flag if the
contents of the specified File are all zero (b’0000000’) and the N if bit 7 is 1. This
can be used as a simple test for zero or for negative.

addlw
addlw The ADD Literal to Working register instruction adds a byte-sized literal
(constant) to the Working register. Thus addlw 04 adds four to the byte in the
Working register and overwrites it with the outcome. The C flag is set if a carry-out
is generated and the Z flag is set if the outcome is zero. Also the N is set if bit 7 is
set and the V is set if there is 2’s complement overflow.

movwf
movwf The MOV Working register to File instruction copies the contents of the
Working register to the specified File in the Data store. Thus movwf NUM_2 stores
the byte in the Working register in File h’26’. None of the flags are altered by this
instruction.

In our description of the instructions we have used mnemonics, such as addlw.
Of course the actual digital logic decoding these instructions only operate with bi-
nary patterns. Mnemonics are simply just a symbolic aide-mémoire for the program-
mer. Although it is unlikely he/she will ever program in machine code, the binary

50 The Essential PIC18® Microcontroller

Fig. 3.5 Machine-code
structure for Direct
instructions

structure of instructions are logical and a working knowledge of this will be use-
ful in understanding the foibles and limitations of the instruction set and the real
hardware we will discuss in the next two chapters.

Here we will look at two categories of instructions:

File Direct op-code d a ffffffff

Instructions that specify the File address where their target operand is located use
this type of addressing; e.g., movf h’25’,w designates File h’25’ as the target.

From Fig. 3.5 we see that the 16-bit instruction code is split into four zones.

• The leftmost six bits (bits 15 through 10) are known as the operation code, or
op-code for short. Every instruction has a unique op-code, and it is this pattern
that the decoding circuits use to define what type of instruction it is.

• The middle bit (bit 9) labeled d defines the destination of the outcome. For
instance, addwf h’30’,w means “add the contents of the Working regis-
ter to File h’30’ and put the answer back in the Working register”, whereas
addwf h’30’,f means “add the contents of the Working register to File h’30’
and put the answer back in File h’30’”. In the former case the destination is WREG
and the d bit is 0, and in the latter case the destination is the File and the d bit is 1.
We will look at this instruction in Chap. 5, p. 112. In our symbolic representation
of instructions, ,w symbolizes a destination bit of 0 whereas, f means d = 1.

• The rightmost eight bits (bits 7 through 0) define the File address. Thus in our
example File h’25’ is b’00100101’. The fact that the address field is just eight bits
wide means that only a bank of 28 = 256 Files can be directly addressed.

• Bit 8 is labeled a. This is really an expansion of the address field. If a is 0 then the
8-bit address to its right is the absolute address of the target datum. However, if a
is 1 then the 8-bit address field is augmented with four additional bits located in a
special function register called the Bank Switch Register (BSR). More details are
given in Fig. 4.8 on p. 80.

3 Stored Program Processing 51

Fig. 3.6 Machine-code
structure for Literal
instructions addlw

Literal op-code LLLLLLL

Instructions that deal with constants or literals are coded in a slightly different man-
ner, as shown in Fig. 3.6. The upper 8-bit zone defines the instruction op-code. The
lower 8-bit zone is the byte constant itself. The outcome is always in the Working
register and so there is no need for a destination bit nor any information on a Data
store address.

In our exemplar instruction addlw 04, the op-code is b’00001111’ and the lit-
eral is b’00000100’. As the instruction has only an 8-bit data zone, the literal is lim-
ited to the range b’00000000’–b’11111111’ (h’00’–h’FF’, or decimal 0–255), which
makes sense since the Working register, like all registers relating to the execution
unit, is only eight bits wide.4

In addition to using symbolic instruction mnemonics, we have already seen that
locations in the Data store can also be given names. Thus, in Fig. 3.4, NUM_1 is
our name for “the contents of File h’25’” and NUM_2 names File h’26’. We thus can
symbolise our program as:

NUM_2 = NUM_1 + 4;

Now as far as the computer is concerned, starting at location h’000’ our program
is:

0101000000100101
0000111100000100
0110111000100110

Unless you are a CPU this is not much fun!5

4One of the more frequent mistakes is to forget the 8-bit size restriction and try and use instructions,
such as addlw d’500’ in our program. That makes as much sense as trying to fill a liter (quart)
bottle with the contents of a 4-liter (gallon) bucket!
5I know; I programmed this way back in the primitive middle 1970s.

52 The Essential PIC18® Microcontroller

Using hexadecimal6 is a little better.

5025
0F04
6E26

but is still instantly forgettable. Furthermore, the CPU still only understands binary,
so you are likely to have to use a translator program running on, say a PC, to translate
from hexadecimal to binary.

If you are going to use a computer as an aid to translate your program, known as
source code, to binary machine code, known as object code, then it makes sense to
go whole hog and express the program symbolically. Here the various instructions
are represented by mnemonics and variables’ addresses are given names. Doing this
our program becomes:

movf NUM_1,w ; Copy the variable NUM_1 to W
addlw 4 ; Add the literal constant 4 to it
movwf NUM_2 ; Copy NUM_1 + 4 into NUM_2

where the text after a semicolon is comment, which makes the program easier to
understand by the tame human programmer.

Code written in this symbolic manner is known as assembly-level programming.
Chapter 8 is completely devoted to the syntax of assembly-level language, and its
translation to machine-executable binary.

In writing programs using assembly-level symbolic representation, it is important
to remember that each instruction has a one-to-one correspondence to the underlying
machine instructions and its binary code. In Chap. 9 we will see that high-level
languages lose that 1:1 relationship.

The core of computer operation is the rhythm of the fetch-and-execute cycle.
Here each instruction is successively fetched from the Program store, interpreted
and then executed. Because any execution memory access will be on the Data store
and as each store has its own busses, then the fetch and execution processes can
progress in parallel. Thus while instruction n is being fetched, instruction n − 1
is being executed. In Fig. 3.4 the instruction codes for both the imminent and cur-
rent instructions are held in the two Instruction registers IR1 and IR2 respectively.
Instructions are fetched into one end of this Pipeline and ‘popped out’, into the In-
struction decoder at the other end. Figure 3.7 shows the timeline of our 3-instruction
exemplar program, quantized in instruction cycles. During each cycle, except for the
first, both a fetch and an execution is proceeding simultaneously.

6Remember that we are only using hexadecimal notation as a human convenience. If you took
an electron microscope and looked inside these cells you would only ‘see’ the binary patterns
indicated.

3 Stored Program Processing 53

Fig. 3.7 Parallel fetch and execute streams

In order to illustrate the sequence in a little more detail, let us trace through our
specimen program. We assume that our computer (that is, the Program Counter) has
been reset to h’000’ and has just finished the Cycle 1 fetch.

Fetch (Fig. 3.4) . Cycle 2

• Increment the Program Counter to point to instruction 2.
• Simultaneously move the instruction word 1 down the Pipeline (from Instruction

register 1 to Instruction register 2).
• Program Counter (h’001’) to the Program store’s address bus.
• The instruction word 2 then appears on the Program store’s data bus and is loaded

into Instruction register 1.

Execute (Fig. 3.4) . Cycle 2

• The operand address h’25’ (i.e., NUM_1) moves to the File Address register and
out onto the File address bus.

• The resulting datum at NUM_1 is read onto the Data store’s data bus and loaded
into the File Data register.

• The ALU is configured to the Pass Through mode, which feeds the datum through
to the Working register.

Fetch . Cycle 3

• Increment the Program Counter to point to instruction 3.
• Simultaneously move the instruction word 2 down the Pipeline (from Instruction

register 1 to Instruction register 2).
• Program Counter (h’002’) to the Program store’s address bus.
• The instruction word 3 then appears on the Program store’s data bus and is loaded

into the Pipeline at Instruction register 1.

Execute . Cycle 3

• The ALU is configured to the Add mode and the literal (which is part of instruction
word 2) is added to the datum in WREG.

• The ALU output, NUM_1 + 4, is placed in WREG.

54 The Essential PIC18® Microcontroller

Fetch . Cycle 4

• Increment the Program Counter to point to instruction 4.
• Simultaneously move instruction word 3 down the Pipeline to IR2.
• Program Counter (h’003’) to the Program store’s address bus.
• The instruction word 4 then appears on the Program store’s data bus and is loaded

into the Pipeline at IR1.

Execute . Cycle 4

• The operand address (i.e., NUM_2) h’26’ to the File Address register and out onto
the File address bus.

• The ALU is configured to the Pass Through mode, which feeds the contents of
WREG through to the File Data register and onto the Data store’s data bus.

• The datum in the File Data register is written into the Data store at the address on
the Data store’s address bus and becomes the new datum in NUM_2.

Notice how the Program Counter is automatically advanced during each fetch
cycle. This sequential advance will continue indefinitely unless an instruction to
modify the PC occurs, such as goto h’200’. This would place the address h’200’
into the PC, overwriting the normal incrementing process, and effectively causing
the CPU to jump to whatever instruction was located at h’200’. Thereafter, the linear
progression would continue.

Although our program doesn’t do very much, it only takes around 1 µs to imple-
ment each instruction. A million unimpressive operations each second can amount
to a great deal! In essence, all computers, no matter how intelligent they may appear,
are executing relatively simple instructions very rapidly. The skill of course lies with
the programmer in deciding what sequence of instructions and data structures are
needed to implement the appropriate task!

Up to now we have referred specifically to computerlike structures. To finish
the chapter we have to link the subject of this text to this material—that is, the
microcontroller.

What exactly is a microcontroller unit (MCU)? In a nutshell, a microcontroller
is a microprocessor unit (MPU) which is integrated with memory and input/output
peripheral interface functions on the (usually) one integrated circuit. In essence it
is a MPU with on-board system support circuitry. Thus we begin by investigating
the origins of the MPU. From a historical perspective the story begins in 1968 when
Robert Noyce (one of the inventors of the integrated circuit), Gordon Moore7 and
Andrew Grove left the Fairchild Corporation and founded their own company, which

7Moore’s law stated in 1965 (when ICs had around 50 transistors per chip) that the number of
elements on a chip would double every 18 months. This was based on an extrapolation of growth
from 1959 and this was subsequently revised to 2 years.

3 Stored Program Processing 55

they called Intel.8 Within three years, Intel had developed all the basic types of
semiconductor memories used today—dynamic and static RAMs and EPROMs.

As a sideline, Intel also designed large-scale integrated circuits to customers’
specifications. In 1970 they were approached by the Busicom corporation of Japan,
and asked to manufacture a suitable chip set for a line of calculators. At that time
calculators were a fast-evolving product and any LSI devices were likely to be super-
seded within a few years. This of course would reduce an LSI product’s profitability
and increase its cost. Engineer Ted Hoff—reputedly while on a topless beach in
Tahiti—came up with a revolutionary way to tackle this project. Why not make a
simple computer CPU on silicon? This could then be programmed to implement the
calculator functions, and as time progressed these could be enhanced by developing
this software. Besides giving the chip a longer and more profitable life, Intel was
in the business of making memories—and computerlike architectures need lots of
memory! Truly a brain wave. The Japanese company endorsed the Intel design for
its simplicity and flexibility in late 1969, rather than the conventional implementa-
tion.

Federico Faggin joined Intel in spring 19709 and by the end of the year had
produced working samples of the first chip set. This could only be sold to Busicom,
but by the middle of 1971 they were in financial straits and in return for a payback
of their $65,000 design costs, Intel was given the right to sell the chip set to anyone
for non-calculator purposes. Intel was dubious about the market for this device, but
went ahead and advertised the 4004 “Micro-Programmable Computer on a Chip”
in the Electronic News of November 1971. The term microprocessor unit was not
coined until 1972. The 4004 created a lot of interest as a means of introducing
‘intelligence’ into electronic products.

The 4004 MPU featured a von Neumann architecture using a four-bit data bus,
with direct addressing of 512 bytes of memory. Clocked at 108 kHz, it was im-
plemented with a transistor count of 2300.10 Within a year the 8-bit 200 kHz 8008
appeared, addressing 16 Kbytes and needing a 3500 transistor implementation. Four
bits is satisfactory for the BCD digits used in calculators, but eight bits is more ap-
propriate for intelligent data terminals (like cash registers) which need to handle a
wide range of alphanumeric characters. The 8008 was replaced by the 808011 in
1974, and then the slightly modified 8085 in 1976. The 8085 is still the current Intel
8-bit device.

The MPU concept was such a hit that many other electronic manufacturers clam-
bered onto the bandwagon. In addition, many designers set up shop on their own,
such as Zilog. By 1976 there were 54 different MPUs either available or announced.
For example, one of the most successful families was based on the 6800 introduced

8Reputed to stand for INTELligence or INTegrated ELectronics.
9He was later to found Zilog (last word (Z) in Integrated LOGic) which became notable with the
Z80 MPU, a rather superior Intel 8085.
10Compare with the Pentium Pro (also known as the P6 or 80,686) at around 5.5 million!
11Designed by Masatoshi Shima, who went on to design the 8080-compatible Z80 for Zilog.

56 The Essential PIC18® Microcontroller

by Motorola.12 The Motorola 6800 had a clean and flexible von Neumann architec-
ture, could be clocked at 2 MHz and address up to 64 Kbyte of memory. The 6802
(1977) even had 128 bytes of on-board memory and an internal clock oscillator.
By 1979 the improved 6809 represented the last in the line of these 8-bit devices,
competing mainly with the Intel 8085, Zilog Z80 and MOS Technology’s 6502.

The MPU was not really designed to power conventional computers, but a small
calculator company called MITS,13 faced with bankruptcy, took a final desperate
gamble in 1975 and decided to make and market a computer. This primitive ma-
chine, designed by Ed Roberts, was based on the 8080 MPU and interacted with
the operator using front-panel toggle switches and lamps—no keyboard or VDU.
The Altair14 was advertised, and within a few weeks MITS had around 650 advance
orders at about $400 each; going from $400,000 in the red to $250,000 in the black.

This first commercially successful15 personal computer (PC) spawned a gener-
ation of computer hackers. Thus an unknown 19-year-old Harvard computer science
student, Bill Gates, and a visiting friend, Paul Allen, in December 1975 noticed a
picture of the Altair16 on the front cover of Popular Electronics and decided to
write software for this primordial PC. They called Ed Roberts with a bluff, telling
him that they had just about finished a version of the BASIC programming language
that would run on the Altair. Thus was born the Microsoft® Corporation.

In a parallel development, some two months later, 32 people in San Francisco set
up the Home-brew Club, with initially one hard-to-get Altair between them. Two
members were Steve Jobs and Steve Wozniak. As a club demonstration, they built
a PC which they called the Apple.17 By 1978 the Apple II made $700,000; in 1979
sales were $7 million, and then $48 million. . . .

The Apple II was based on the low-cost 6502 MPU which was produced by a
company called MOS Technology. It was designed by Chuck Peddle, who was also
responsible for the 6800 MPU, and had subsequently left Motorola. The 6502 bore
an uncanny resemblance to the Motorola 6800 family and indeed Motorola sued
to prevent the related 6501 MPU being sold, as it even had the same pinout as the
6800. The 6502 was one of the main players in PC hardware by the end of the 1970s,
being the computing engine of the BBC series and Commodore PETs amongst many
others.

What really powered up Apple II sales was the VisiCalc spreadsheet package.
When the business community discovered that the PC was not just a toy, but could

12Motorola was launched in the 1930s to manufacture motor car radios, hence the name ‘mo-
tor’ and ‘ola’, as in pianola. Motorola spunoff its microcontroller business in 2006 to Freescale
Semiconductor. Also in 2006, Microchip overtook Motorola in achieving the largest share of the
worldwide 8-bit microcontroller market in number and value.
13Located next door to a massage parlor in New Mexico.
14After a planet in Star Trek.
15There was an earlier design published in Radio Electronics of June 1974. The Mark 8 by Jonathan
Titus was based on an Intel 8008 MPU.
16The picture was just a mock-up; they actually were not yet available; an early example of com-
puter ‘vaporware’!
17Jobs was a fruitarian and had previously worked in an apple orchard.

3 Stored Program Processing 57

do ‘real’ tasks, sales took off. The same thing happened to the IBM PC. Reluctantly
introduced by IBM in 1981, the PC was powered by an Intel 8088 MPU clocked
at 4.77 MHz together with 128 Kbyte of RAM, a twin 360 Kbyte disk drive and a
monochrome text-only VDU. The operating system was Microsoft’s® PC/MS-DOS
version 1.0. The spreadsheet package was Lotus 1-2-3.

By the end of the 1970s the technology of silicon VLSI fabrication had pro-
gressed to the stage that several tens of thousands of transistors could be integrated
on a single chip. Microprocessor designers were quick to exploit this capability in
one of two ways. The better known of these was to increase the size of the ALU
and buses/memory capacity. Intel was the first with the 29,000-transistor 8086, in-
troduced in 1978 as a 16-bit version of the 8085 MPU.18 It was designed to be
compatible with its 8-bit predecessor in both hardware and software aspects. This
was wise commercially, in order to keep the 8085’s extensive customer base from
looking at (better?) competitor products, but technically dubious. It was such previ-
ous experience that led IBM to use the 8088 version, which had a reduced 8-bit data
bus and 20-bit address bus19 to save board space.

In 1979 Motorola brought out its 16-bit offering called the 68000 and its 8-bit
data bus version, the 68008 MPU. However, internally it was 32-bit, and this has
provided compatibility right up to the 68060 introduced in 1995 and the ColdFire
RISC device launched in 1997. With a much smaller 8-bit customer base to worry
about, the 68000 MPU was an entirely new design and technically much in advance
of its 80X86 rivals.

The 68000 was adopted by Apple for its Macintosh series of PCs. However, the
Apple Mac only accounted for less than 5% of PC sales. Motorola MPUs have been
much more successful in the embedded microprocessor market, the area of smart
instrumentation from egg timers to aircraft management systems. Of course, this is
just the area which MPUs were developed for in the first place, and the number, if not
the profile and value, of devices sold for this purpose exceeds those for computers
by more than an order of magnitude.

In this applications area an MPU is ‘buried’ in the application circuit together
with memory and various input and output interface circuits. The MPU with its
program acts as the controller of the system by virtue of the software in program
memory. Over 4 billion microprocessor and related devices are sold each year for
embedded control, making up over 90% of the MPU market.

The second way of using the additional integrated circuit complexity that be-
came available by the end of the 1970s was to keep a relatively simple CPU and
use the extra silicon ‘real estate’ to implement on-board memory and input/output
interface. In doing so, simple embedded control systems on a single chip became

18And the Intel 8086 architecture-based MPUs are by far the largest-selling MPU for computer-
based circuitry.
19A 220 address space is 1 Mbyte, and this is why for backwards compatibility MS-DOS was
limited to 1 Mbyte of conventional memory, called real memory in a Microsoft® Windows envi-
ronment.

58 The Essential PIC18® Microcontroller

possible and the overall chip count to implement a given function was thereby con-
siderably reduced. The majority of control tasks require relatively little computing
power, but the reduction in size (and therefore cost) is vital. A simple example of
this is the intelligent smart card, which has a processor integrated into the card
itself. Such microprocessor-based devices were called microcontrollers.20 For in-
stance, there are several hundred microcontrollers hidden in every home—in do-
mestic appliances, entertainment units, PCs, communication devices, smart cards
and in particular in the family’s cars.

In terms of architecture, referring back to Figs. 3.1 and 3.2, the microprocessor
is the central processor unit, whereas the microcontroller is the complete function-
ing computerlike system. As an example, consider the electronics of a car odome-
ter monitoring system displaying total distance since manufacture and also a trip
odometer. The main system input signal is a tachometer generating pulses on each
rotation of the engine flywheel, which when totaled gives the number of engine
revolutions—and the pulse-to-pulse duration could also give the road speed. Of
course the actual road distance depends on the gearing of the engine, and thus we
need to know which of the five gear ratios has been chosen by the driver at any time.
This is shown as five lines G5, . . . ,G1, (usually designated G[5:1]), originating from
the gear box. One signal will be high for the appropriate forward gear, with reverse
being ignored. Additional inputs are used to give a manufacturer’s option of a mile
or kilometer display, and a user input to reset the trip display to zero.

The display itself consists of seven 7-segment digits (see Fig. 6.8 on p. 173) to
indicate up to (optimistically) As there are so many segments to control
(49 in total), Fig. 3.8 shows the display data fed via a single digital line, shunted
serially into a shift register; see Fig. 2.22 on p. 36. A second line provides clock
pulses for the register with 49 clock pulses being needed to refresh the display.21

The trip odometer display comprises four digits, which will record up to
Similarly two output lines are used to feed and clock the shift register, with 28

clock pulses needed to shift in a new 4-digit trip display.
The resource budget (list of subsystem functions) for this system is:

• An edge-triggered input for the tachometer pulse train, connected to a counter/
timer to add up engine revolutions.

• Seven static digital input lines to interface to the gear ratio, mi/km option and trip
reset.

• Four output digital lines to clock the two shift registers and provide segment data.
• A microprocessor to do the calculations and to read/write to the input/ output

ports, respectively.
• Program memory, usually ROM of some kind.
• Data memory for temporary storage of program variables, usually static RAM.
• Non-volatile storage for physical variables, such as total distance and distance

since trip reset.

20The term microcomputer was an alternative term but was easily confused with early personal
computers and has dropped into disuse.
21Many displays have this shift register built in as a complete subsystem.

3 Stored Program Processing 59

Fig. 3.8 An example of a system based on a microcontroller

This functionality could be implemented onto a single integrated circuit, and in this
situation would be known as a microcontroller, that is, a microprocessor integrated
with its support circuitry giving a complete microcomputer function. Of course the
resource budget listed above is specific to our example. Although the core functions
(microprocessor and memory) are common to a wide range of applications, the in-
put/output (I/O) interface needs to be tailored to the task at hand. Some typical I/O
functions are:

• I/O to interface to a serial bit stream of various synchronous and asynchronous
protocols.

• Counter/timer functions to add up input events and to generate precision time-
varying digital output signals.

• Analog-to-digital multiplex/conversion to be able to read and digitize analog in-
puts.

• Digital-to-analog conversion to output analog signals.
• Display ports to drive multidigit liquid crystal displays.

This alternative approach to using additional silicon resources led to the first
MCUs in the late 1970s. For instance, the 35,000-transistor Motorola 6801, de-
signed in response to a specific application from a car manufacturer, used the exist-
ing 6800 MPU as a core, with 2048 bytes of ROM program memory, 128 bytes of
data RAM, 29 I/O lines and a 16-bit timer. With the viability of the MCU approach

60 The Essential PIC18® Microcontroller

vindicated, a range of families, each based on a specific core but with individual
family members having a different selection of I/O facilities, was introduced by the
leading MPU manufacturers. For instance, the Motorola 68HC11 family (a devel-
opment of the 6801 MCU) uses a slightly enhanced 6800 core. The 68HC12 and
68HC16 families use 16-bit cores but are designed to be upwardly compatible with
the 8-bit 68HC11. It was quickly realized that many embedded applications did not
even need the power of the (antique) 6800 core, and the 68HC05 family22 had a
severely reduced core and lower price. Actually, 4-bit MCUs, such as the Texas
Instruments TMS1000 series, outsold all other kinds of processor until the early
1990s (and are still going strong) and 8-bit MCUs, now the most popular, are likely
to continue in this role for the foreseeable future. Indeed the Motorola 14500 pro-
cessor even uses one bit!

All these MPUs and MCUs are based on the von Neumann architecture used
by mainframe computers. The alternative Harvard architecture first reappeared in
the Signetics 8X300 MPU, and this was adapted by General Instruments in the mid
1970s for use as a Peripheral Interface Controller (PIC) which was designed to be
a programmable I/O port for their 16-bit CP1600 MPU. When General Instruments
sold off their microelectronics division in 1988 to a startup company called Arizona
Microchip Technology, this device resurfaced as a stand-alone microcontroller. This
family of microcontroller devices is the subject of the rest of our book.

Examples

Example 3.1 A greenhouse controller is to monitor an analog signal from a soil
moisture probe and if below a certain value turn on a water valve for 5 seconds and
off for 5 seconds. The source of the water is a tank with a float and if the level in the
tank drops too low, a switch will be closed. In this event a buzzer is to be activated
to sound the alarm.

Can you devise a system based on a microcontroller that will implement the
system intelligence?

Solution The solution given in Fig. 3.9 is based on the car odometer of Fig. 3.8. The
only new peripheral device is the analog port which can read and digitize the analog
output of the soil moisture transducer. This works on the principle that the resistance
of the soil between the two electrodes depends on the moisture content. This forms
a potential divider and thus a varying voltage at the junction with the fixed resistor.
The MCU can digitize this analog voltage, giving an internal digital equivalent byte,
which is then compared in software with a predetermined value. Alternatively, the
input port can simply be an analog comparator, giving a digital on/off response if
the input voltage exceeds a value which can be set by the program.

On the basis of this diagram we can list the resource budget.

22The 68HC05 has found a niche as the computing engine of smart cards, where high-power com-
puting is not a priority.

3 Stored Program Processing 61

Fig. 3.9 A greenhouse environmental controller

• An input for an external oscillator, connected to a counter/timer to allow the MCU
to calculate time. In practice the system clock can often be used by this internal
timer to measure duration.

• A 1-input analog input line to measure the analog signal from the moisture detec-
tor.

• A 1-input digital line to check the level of the reservoir water tank.
• A 1-output digital line to open and close the water valve.
• A 1-output digital line to activate the buzzer alarm.
• A microprocessor to do the calculations and to read/write to the input/ output

ports, respectively.
• Program memory, usually ROM of some kind.
• Data memory for temporary storage of program variables, usually static RAM.

Assuming that the software does not take up all the MCU’s processing time, extra
inputs may be used to monitor other environmental signals, such as temperature and
light, to give a more comprehensive climate control.

Example 3.2 The most difficult problem that is being solved by a programmer is
to define the problem that is being solved. This is the logical thought process that
humans are (quite) good at and machines are not. The mark of a good programmer
is one who has this ability of problem solving. It is a developed skill, coupled with
some talent, and a good understanding of the problem being solved.

To illustrate this process, devise a sequence of simple steps that a MCU-
controlled robot must perform to cross a busy road at a pedestrian-controlled cross-
ing.

62 The Essential PIC18® Microcontroller

Solution

1. Walk up to the pedestrian crossing and stop.
2. Look at the traffic light.
3. Is it green for your direction of travel—make a decision?
4. IF the light is red THEN go to step 2 ELSE continue.
5. Look to the right.
6. Are there still cars still passing by?
7. IF yes THEN go to step 5 ELSE continue.
8. Look to the left.
9. Are there cars still passing by (there shouldn’t be any by now, but you never

know!)?
10. IF yes THEN goto step 5 ELSE continue.
11. Proceed across the street—carefully!

An alternative visual representation is illustrated in Fig. 3.10. This flow chart
uses boxes to show statements, diamonds for decisions and ovals for entry and exit
points. Lines with arrows give action paths, with annotations at decision points.
Although this is not much of an advantage in this relatively simple case, for more
complex situations with multiple decisions and flow paths, the visual presentation
may have the edge in documenting system behavior. Neither the task list or flow
chart is much use for very complex situations and here a hierarchy of descriptions
starting with the more general and working down to the more particular must be
implemented.

Now, this example may seem childish at first glance, but this is exactly what you
should do every time you traverse a busy street with a pedestrian light-controlled
crossing. This is also exactly what you need to tell a MCU-controlled robot to cross
a street at a pedestrian crossing. This sequence of simple steps or instructions is
called a program. Taken as a whole, the steps lead you across a busy road, which
if a robot did it, would seem very intelligent. It is not intelligence; people are intel-
ligent. The programmer that programmed these steps into the MCU would impart
that intelligence to the robot.

Of course, the MCU-programmed robot would not know what to do when it got
to the other side, since we did not tell it! In the case of the person, though, there has
been some programming; it’s called past experience!

Notice that the steps are numbered in the order they should be executed. The
Program Counter, in this case the reader, starts with instruction 1 (the reset state) and
ends with instruction 11. In a MCU the Program Counter automatically advances
to the next step, after doing what the current step says, unless a skip or goto is
encountered. A skip type of instruction directs the Program Counter to hop over the
next instruction, usually based on some condition or outcome. A goto instruction
directs the Program Counter to jump to any step in the program. Without these types
of instructions, a program would be unable to make decisions or implement loops,
where an action is repeated may times over; for instance, repetitively checking for a
green light for as long as it takes.

3 Stored Program Processing 63

Fig. 3.10 A flow chart
showing the robot how to
cross the road

Self-Assessment Questions

3.1 Given the three instructions discussed in this chapter, can you devise a way
of incrementing and also decrementing the contents of the Working register of
Fig. 3.4?

3.2 If we add the new instructions addwf (ADD the byte in the Working register
to that in the specified File) and movlw (MOVe a literal byte into the Working
register) to our set of operations, devise a program to multiply the contents of
File h’30’ by two and place the resulting product in File h’20’. What would be the
limitation of your program for an accurate outcome? What type of instruction
would you need to overcome this?

64 The Essential PIC18® Microcontroller

3.3 Devise a program to enable the MCU-controlled robot of Example 3.2 to fill a
glass of water from a tap/faucet.

3.4 The BASIC computer of Fig. 3.4 can fetch an instruction at the same time as it
can execute an instruction. Discuss what features enable it to do these tasks in
parallel.

3.5 Design a task list to program a robot to go to the nearest ATM and withdraw a
specified amount of money, request a statement and return. Your consideration
should include a request to print a statement and also what to do if your account
does not have sufficient funds!

3.6 The gear inputs to the microcontroller system shown in Fig. 3.8 require five pins
on the integrated circuit. MCU packages often have a small pin count; see, for
example, Fig. 4.1 on p. 71. Can you think of any way to reduce the pin count
and do you think this is economically viable? Hint: See Fig. 2.6 on p. 22.

3.7 In a similar attempt to reduce the pin count, can you think of a way to reduce
the number of output pins driving the odometer and trip displays by one, and is
this economically compatible?

Chapter 4
The PIC18F1220 Microcontroller

Within a year of acquiring the intellectual rights to the General Instrument’s Periph-
eral Interface Controller (PIC), as described on p. 60, Microchip had developed the
first of their range of Harvard architecture 8-bit microcontroller families. This low-
(or base-) range PIC16C5XX family, and currently the PIC10 and PIC12 families,
have a 33-instruction répertoire 12-bit Program store with parallel ports and an 8-bit
timer/counter. The execution unit processes all data as bytes, to match the 8-bit Data
store.

By 1992 the mid-range PIC16 family appeared. This has a 14-bit Program store;
the longer instruction word facilitating the access of larger Data stores. Two instruc-
tions were added to the original low-range set. The base set of interface devices was
expanded, with functions such as 16-bit timers, A/D converters, and serial ports;
together with an interrupt handling capability.

Known as the enhanced-range family, the PIC18 was introduced in 1999. Cat-
egorized along with all other previous introductions as an 8-bit MCU, as all data
processing is byte sized, the Program store is 16-bit, with 42 additional instructions
and many enhanced hardware features.

Microchip have since introduced ranges such as the digital signal processing-
oriented dsPIC30/33 (2004) and the PIC24 (2005) families. These 16-bit processors
are targeted to high-end applications, which require a faster processing throughput
with more powerful instructions. In 2007 Microchip announced the PIC32, with a
32-bit core. Nevertheless, the bulk of applications are expected to remain 8-bit for
the foreseeable future. For this reason, this book uses the enhanced-range PIC18
family

In this chapter we introduce the enhanced-range core from an architectural as-
pect. After completing this chapter you should:

• Understand the enhanced-range Harvard-based Microchip PIC microcontroller
architecture;

• Appreciate the function, structure and memory map of the separate Program and
Data stores;

• Appreciate the principle of banking in the Data store and its relationship to the
Bank Select Register;

S. Katzen, The Essential PIC18® Microcontroller,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-229-2_4, © Springer-Verlag London Limited 2010

69

70 The Essential PIC18® Microcontroller

• Be able to interpret the Status register bits C, DC, Z, N and OV flags;
• Know how to manipulate the contents of the Program Counter in conjunction with

the PCLATU and PCLATH buffers;
• Recognize the interaction between the clock phases and the internal sequence of

micro-operations;
• Be aware of the basic peripheral functions, using the PIC18F1220 as an exemplar.

From the point of view of software, all devices with the same core are identi-
cal. Indeed, there is considerable commonality across the entire range of 8-bit PIC
MCU cores. At the time of writing (late 2007) there are over 150 members of the
enhanced-range family. These mostly differ from each other in their memory ca-
pacity, mix and specification of peripherals and footprint (number of pins; ranging
from 18 through 80—see p. 304). In this chapter we are mainly concerned with the
processor core; that is the family CPU. For completeness we will briefly list the
peripheral ports of our chosen exemplar, but we will leave a detailed discussion of
these until Part III. Apart from interrupt handling, Part II generally is concerned
with software issues, and these are common across the PIC18 family.

As our exemplar for Part II we have chosen the PIC18F1220/1320 (known gener-
ically as the PIC18F1X20). These are 18-pin devices and only differ in that the
latter has double the Program store capacity at 4 kword. In Part III we use the
PIC18F4420/4520 which have a larger footprint together with additional ports and
peripheral devices—see Fig. 4.10.

The architecture of the PIC18F1220/1320 is shown in a simplified form in
Fig. 4.1. Although initially this looks rather complex, it is little more than the ar-
chitecture of our BASIC computer of Fig. 3.4 on p. 46 but with interface ports
connected to the internal Data store’s data bus. You should review this material now
as background to our discussion. In essence the PIC MCU family is based on a
Harvard structure with its separate Program and Data stores, and with peripheral in-
terface ports mapped onto the Data Store’s address space. That is, the various ports
appear to the software to be in the Data store. The miscellaneous status and control
registers, and even the Program Counter, also appears to the software to be in the
Data store—see Fig. 4.10.

Fetch Unit
The fetch unit, shown close-up in Fig. 4.2, is primarily concerned in fetching in-
structions down into the Pipeline from the Program store. The location of each in-
struction is maintained by the Program Counter (PC). Copies of this 21-bit PC can
be made into a local store called the stack, primarily to facilitate calls to subroutines
and interrupt handling. A 21-bit Table Pointer can be used to point to any byte in
the Program store, which can then be extracted into the 8-bit TABle LATch register.

Each instruction copied into the top of the Pipeline from the Program store,
pushes the previous instruction down to the bottom which feeds the decoding cir-
cuitry. This in turn activates the appropriate logic in the execute unit in the correct
sequence.

The Program Store
Central to the fetch unit is the Program store. Software in embedded systems is

4 The PIC18F1220 Microcontroller 71

Fig. 4.1 Architecture of the PIC18F1220/1320 (PIC18F1X20) microcontrollers

72 The Essential PIC18® Microcontroller

Fig. 4.2 A close-up look at the PIC18F1220/1320’s fetch unit

invariably fixed, in that on power-on the microcontroller is expected to perform its
duty without having to load in its operating program. This means that the Program
memory will normally be ROM of some kind. Most PIC MCUs use some sort of
electrically programmable technology; in the case of F parts this is Flash EEPROM.
For the PIC18F1220, up to 1024 instructions can be stored, with each instruction
comprising 16 binary bits; see Fig. 3.5 on p. 50. The PIC18F1320 holds up to 2048
words, but potentially the architecture of the expanded-range is such that family
members can potentially store 220 = 1 Mword) of code and data. At the time of
writing (late 2007) the largest implemented capacity is 64 k instructions; for instance
the PIC18F8722.

From Fig. 4.3 we see that the Program store is actually organised as an array
of bytes, even though instructions are stored as 16-bit words. The need to address
individual bytes arises from the dual purpose nature of the code memory.

Software
The primary role of the Program store is to act as the repository of the in-
struction codes which define the program. We have already seen in Fig. 3.5

4 The PIC18F1220 Microcontroller 73

Fig. 4.3 A simplified look at the PIC18F1220’s Program store

on p. 50 that these instructions are 16 bits wide.1 The 21-bit Program Counter
effectively increments twice when each instruction is fetched, and thus always
holds an even address (PC[0] is 0). This is implemented by holding the least
significant bit of PC permanently 0.

In Fig. 4.3 the program code is shown at the bottom addresses; starting with
the first instruction at location h’0000’. This is where the PC resets to. Regard-
less of where the bulk of the program is located, there must always be an in-
struction at this so called Reset vector. This instruction is often a goto some-
where else in the store. Other special locations are h’00008’, which is called
the Default Interrupt vector and is where the PC is pointed-to whenever an
enabled interrupt is responded to. This will be a goto instruction taking the
execution focus to a piece of code called an interrupt service routine. Location
h’00018’ holds the Low-priority Interrupt vector. Interrupts are discussed in
Chap. 7.

Apart from these three vectors, all store locations are equivalent; although
usually executable code is in the lower end of the store. Figure 4.3 shows in-
struction 16 being extracted from location h’001E’ into the top register of the
Pipeline.

1Actually three instructions need two words; that is 32 bits.

74 The Essential PIC18® Microcontroller

Data
In this family the Program Store can also hold data of a semi-permanent nature
as a table of bytes; for instance, strings of ASCII characters. Typically this data
is programmed in at the same time as the executable code. In some devices
(such as our exemplar) such data can even be written into the store by the
program, while execution is temporarily halted. These TABle ReaD (tblrd)
and TABle WriTt (tblwt) processes are the subject of Chap. 15.

When using the Program store in this way the 21-bit Table Pointer (actually
made up of three separate Special-Purpose Registers, as shown in Fig. 4.10)
point to the datum byte. This datum can then be copied out into the TaBle
LATch (TABLAT) register. TABLAT has an analogous function for those proces-
sors that can write data bytes into this store.

The diagram depicts an array of data bytes in the topmost 16 bytes of mem-
ory. The 21-bit Table Pointer can address anywhere in stores of up to 2 Mbyte
capacity. Data can be put anywhere in memory, apart from the three vectors,
but care must be taken to keep away from executable code. Typically it will
be located after the program code. Datum 2 at location h’0FF2’ is shown being
copied out to TABLAT.

Program Counter
The 21-bit PC can address a store of up to 220 = 1 M instructions. In our
PIC18F1220 only 211 = 2 kword is implemented, and thus only the bottom 12 bits
(including the superfluous bit 0) are implemented. Higher bits can be ignored. This
12-bit (13-bit for the PIC18F1320) register is normally incremented twice after each
fetch, effectively acting as a binary counter. However, as we will see in the following
chapter, there are a few instructions, such as goto, that will cause execution of the
program to jump to another part of the Program store. Thus the Program Counter’s
normal up count can be overridden.

Although the PC is normally left to its own devices, it is possible for the program
to ‘get at’ this register and override its normal progression. Typically this is useful
when implementing look-up tables; for instance, see Program 6.6 on p. 175.

The low byte of the PC is directly accessible as a Special-Function Register in
the Data store called PCL (Program Counter Low byte). The problem is that these
SFRs are byte sized. Any changes to the PC must be made to all 21-bits simultane-
ously and thus the part(s) of the PC above these eight bits are not directly mapped as
SFRs. They are indicated in Fig. 4.4 as ‘buried’. Instead, two buffer SFRs are used
to temporarily hold this data. These are called PCLATH (PC LATch High byte) and
PCLATU (PC LATch Upper byte) corresponding to PC[15:8] and PC[21:16] respec-
tively.

When PCL is written to (e.g. movwf PCL) the contents of pCLATH:PCLATU
are synchronously transferred to their corresponding PC sector. Conversely, reading
PCL (e.g. movf PCL,w) also copies the upper bits of the PC into their matching
buffer registers.

To illustrate the process, consider that we want to add 24 to the PC; that is
we want to branch forward 12 instructions (24 bytes). If we assume that there is a

4 The PIC18F1220 Microcontroller 75

Fig. 4.4 Showing how all of the Program Counter is altered at the same time when accessing the
PCL

General-Purpose Register File called TEMP, then the following code fragment will
do the trick:

movf PCL,w ; Get the PC Low byte, other bits to buffers
movwf TEMP ; and copy it into memory
movlw d’24’ ; Constant 24 (h’18’) into Working register
addwf TEMP,f ; Add it effectively to the low byte of PC
movlw 0 ; Zero the Working register
addwfc PCLATH,f ; and add any carry-out to it
movlw 0 ; Zero again the Working register
addwfc PCLATU ; and add any carry-out to it
movwf TEMP,w ; Finally get the new value of PCL and
movwf PCL ; in writing to PCL update the rest of the PC

See also Example 6.5 on p. 195.

Pipeline
Two 16-bit registers implement the Pipeline. The top register holds the instruction
that has just been fetched from the Program store at the location pointed to by
the PC. The bottom register feeds the decoder circuits and is the instruction that
is in the process of being executed. This allows an instruction to be fetched whilst
at the same time the processor is executing the previously fetched instruction. This
of course assumes that the instruction execution sequence is linear. For instructions
that action a jump to another part of the Program store, the instruction sitting at the
top of the Pipeline needs to be replaced by the far instruction. This process is known
as flushing and adds an extra instruction cycle to the execution time. As you can see
from Fig. 4.5, normally an instruction takes one instruction cycle to execute. Excep-
tionally, three instructions (out of 78) occupy two words in the Program store, and
these require two cycles to execute.

76 The Essential PIC18® Microcontroller

Fig. 4.5 Internal quadrature clock sequencing waveforms

Instruction Decoder
The Instruction decoder uses logic circuitry to decode each field of the 16-bit in-
struction and gate the appropriate addresses and data to the correct execution unit’s
circuitry and configure the ALU.

All PIC MCU families have an integral oscillator that generates the internal time-
related sequences of micro-operations commanded by the Instruction decoder. The
timing element is typically an external quartz crystal connected across pins OSC1
and OSC2 (Fig. 4.2), and this determines the clock frequency fosc. More details
are given in Chap. 10. Most enhanced-range devices have an upper frequency of
20 MHz.2 There is no minimum frequency.

The oscillator is frequency divided as shown in Fig. 2.25 on p. 38, to give four
internal non-overlapping quadrature clocks. These four pulses are used as part of the
decoding logic to activate internal processes in time-dependent sequences. A conse-
quence is that an instruction cycle takes four external clock frequency fosc periods
to complete; see Fig. 4.5. Thus with a 4 MHz crystal, the instruction cycle rate is
fosc/4, or one million per second, corresponding to a period of 1 µs.

The clock-related sequence of operations in the fetch unit are:

Q1: Increment the Program Counter and copy onto the Program store address bus.

Q4: Read the instruction code off the Program store’s data bus into Instruction
register 1 and at the same time move the previous instruction down the Pipeline
into Instruction register 2, where it is presented to the Instruction decoder.

Stack
Eight 21-bit registers are stacked below and are connected to the Program Counter.

2There is a phase-locked loop mode where the crystal frequency is effectively multiplied by four.
The maximum crystal frequency in this mode is 10 MHz, and this gives an effective clock fre-
quency of 40 MHz, or instruction cycle time of 100 ns.

4 The PIC18F1220 Microcontroller 77

We will see in Chap. 6 that the Stack is used to hold past states of the Program
Counter to ‘remember’ the jumping-off point when a subroutine is called up, and
perform a similar function for interrupt handling—see Chap. 7.

The STKPTR (STacK PoinTeR) is a 5-bit up/down counter which increments ev-
ery time a copy is made (the PC is said to be pushed into the stack), and decrements
when a value is pulled (or popped) out of the stack.

The 21-bit datum to which the STKPTR points to is visible in the Top Of Stack
register, and if desired this can be changed by writing to the three composite byte
SFRs TOSU:TOSH:TOSL. In this manner, non-PC data can be pushed into the stack
and pulled out at a later time. This gives a convenient and transparent method of
passing data to and from subroutines—see Program 6.12 on p. 194 for an example.

Execute Unit
The 8-bit execute unit is responsible configured by the Instruction decoder; typi-
cally to read a datum from the Data store, processing it using the ALU and put the
outcome back in the Data store. In accessing the Data store, various mechanisms
are used to generate its 12-bit address. The ALU, which also includes an auxiliary
multiplier, is set up according to the requirements of the instruction being executed
and activates the five status flags. A single 8-bit Working register normally holds
one of the ALU’s operands, and may be selected as the destination of the resultant
outcome. See Fig. 4.6.

Arithmetic Logic Unit
Central to the execution unit is the ALU (see Fig. 2.10 on p. 25) processing data from
up to two sources. One of these is the 8-bit Working register. The other can be:

• A byte directly from a specified File in the Data store. For instance
addwf h’020’,f ADDs the contents of the Working register to the byte in
File h’020’.

• A literal byte held as part of the instruction code; see Fig. 3.6 on p. 51. For in-
stance, addlw 5 ADDs the Literal 5 to the Working register.

The outcome in the former case can be directed either back into the Data store if the
destination bit is 0 (see Fig. 3.5 on p. 50) or into the Working register if this bit is 1,
e.g., addwf h’020’,w.

As we shall see in the following chapter, the ALU can perform pass-through,
logic inversion, AND, IOR, XOR, addition, subtraction, shift and multiplication
operations on byte data. The multiplication circuitry is shown as a separate entity
in the diagram. It can perform an unsigned 8 × 8 multiplication in one instruction
cycle. In order to handle its 16-bit product, the two SFRs PRODH and PRODL are
used to store this outcome.

Status Register
Associated with the ALU is the Status register, which holds five flag bits used to tell
the software something about the outcome from an instruction. For instance, if there
was a carry-out from an addition.

Carry Flag
Bit 0 of the Status register is the C flag. This primarily holds the carry out

78 The Essential PIC18® Microcontroller

Fig. 4.6 A close-up view of the execute unit

from the last addition operation. Subtraction operations activate this bit as the
complement of the borrow out—see Example 4.2. For instance, 24 − 12 = 12:
Borrow is 1 thus C is 0 and 12 − 24 = 88: Borrow is 0 thus C is 1. C also
functions as an input/output bit for some of the Rotate instructions, as shown
in Fig. 5.14 on p. 132.

The label R/W ? in Fig. 4.7 indicates that this bit can be read from or written
to and has an uncertain value on a Power-on Reset; its value does not alter on
any other type of reset.

Digit Carry Flag
Bit 1 of the Status register is the DC flag. This operates in the same manner as
the standard C flag but holds the carry out from the lower nybble to the upper
nybble; that is, from bit 3 to bit 4. In the same manner DC holds the complement
of the borrow out from bit 3 to bit 4.

Knowledge of the carry activity between the lower and upper halves of
the byte is useful where binary coded decimal data is being manipulated; for

4 The PIC18F1220 Microcontroller 79

Fig. 4.7 The enhanced-range Status register

instance, see Example 4.5. Here each nybble holds a 4-bit representation of
the decimal digits 0, . . . ,9 (see p. 6) and the half carry then indicates carries
between decimal decades.

Zero Flag
Bit 2 of the Status register is the Z flag. This is set whenever the outcome of the
instruction is zero, otherwise it is cleared.

OVerflow Flag
Bit 3 of the Status register is the OV flag. This is set whenever there is a 2’s
complement overflow from the 7-bit magnitude into bit 8; that is into the sign
bit. The logic of this operation is shown in Fig. 1.5 on p. 14. This is only mean-
ingful when the programmer is treating these quantities as 2’s complements
numbers.

Negative Flag
Bit 4 of the Status register is the N flag. This bit follows the logical value of
bit 7 of the outcome. Where the programmer is treating the operands as signed
2’s complement quantities, then a 0 indicates positive and a 1 negative—see
p. 10.

Unlike most MCUs, there are no instructions to specifically clear or set a flag,
such as sec for SEt Carry.3 However, as we shall see in Fig. 4.10, the Status register
is accessible as File h’FD8’ in the Data store, and thus any instruction that can alter
the contents of a File can potentially change the state of a flag. However, there is a
problem in that many of these instructions inherently affect one or more flags (see
for instance, Table 5.1 on p. 109) as part of their execution logic and this overrides
any change that would result from the outcome of the instruction’s execution. For
instance, trying to use the Clear instruction to zero the flags clrf h’FD8 (see

3For instance, the Motorola 6800/5/11 families.

80 The Essential PIC18® Microcontroller

Table 5.2 on p. 113), actually sets the Z flag to 1 to indicate a zero outcome! The Bit
Clear File and Bit Set File instructions (see Table 5.2) are recommended where an
individual bit in the Status register needs to be altered, as these instructions do not
inherently alter any flags. For instance, bsf h’FD8’,0 (Set Bit 0 in File h’FD8’) is
equivalent to sec and bcf h’FD8’,2 (Clear Bit 2 in File 3) will clear the Z flag.

All these bits are known as flags, or sometimes semaphores, as they signal an
outcome of an instruction, such as a zero result. Bits 5, 6 & 7 are not implemented
and always read as 0.

Data Store
Figure 4.8 shows the architecture of the enhanced-range Data store. This structure
has a potential capacity of 4 kbytes, organised as 4096 × 8; each byte cell of which
is called a File register. In fact the PIC18F1220 only implements 384 Files and the
PIC18F4520 has 1664 Files. Just a few family members, such as the PIC18F8722,
implement the full 4 kbyte complement.

Fig. 4.8 The enhanced-range Data store structure

4 The PIC18F1220 Microcontroller 81

A 4 kbyte store needs a 12-bit address (212 = 4096). As we have seen in Fig. 3.5
on p. 50, only eight out of the 16 bits defining an instruction are allocated to the
operand address. There are four ways to extend the reach of this 8-bit address field.

Banking
The Bank Select Register BSR can hold four additional address bits, making up the
required total of 12 bits as (a11a10a9a8)a7a6a5a4a3a2a1a0. As seen from this per-
spective, the Data store appears as 16 banks, each of which contains up to 256 Files.
This organisation requires the Access bit in the instruction’s machine code to be 1—
as shown in Fig. 3.5.

In order to address, say, File h’20’ in Bank 2, the programmer would have to:

• Load the constant 2 into the BSR.
• Ensure that the a-bit is 1.
• Specify File h’020’ (or File h’220’).

movlb 2 ; Move (copy) the constant 2 to the BSR
movf h’220’,w,1 ; Copy the datum in File h’220’ into the

; Working register using the Banking mode

As altering the BSR is so frequent an operation, the special instruction MOVe
Literal to BSR (movlb) is provided (rather than the movlw 2, movwf BSR
equivalent)—see Table 5.1 on p. 109.

Access RAM
When the a-bit is 0, the most-significant bit of the address a7 is extended to make up
a 12-bit address. In this situation the possible address range goes from (0000)0000-
0000–(0000)01111111 and (1111)10000000–(1111)11111111; that is File h’000’–
File h’07F’ and File h’F80’–File h’FFF’. This is known as Access RAM, and is shown
darkly shaded to the right of Fig. 4.8.

Figure 4.9 shows how the a-bit could be used by the Instruction decoder to
switch in either the lower four bits of the BSR to make up the highest four address
bits or else a replica of bit 7 of the instruction’s address field.

The obvious question to ask at this point, is why waste a precious bit in the
instruction code in switching between modes? The answer relates the dual use of
the Data store. As well as holding variables that are stored and retrieved by the
program, in what are called General Purpose Registers (GPRs), this RAM also
holds the Special Function Registers (SFR). We have already met several of these;
for instance, the Status register and PRODH:PRODL which hold the outcome from
the Multiplier. We see from Fig. 4.8 that the top half of Access RAM holds all these
SFRs—up to 128 of them.

SFRs relate to the configuration and control of both the core functions of the
processor and the many peripheral modules. No matter which bank the Data store is
configured for (that is the state of the BSR), the program can access these SFRs with-
out the delay needed to change banks back and forth, by simply specifying Access
RAM. For example, movf PORTB,w,0, where PORTB is a SFR at File h’F81’. In

82 The Essential PIC18® Microcontroller

Fig. 4.9 Extending an 8-bit
address to a 12-bit RAM
address

the same manner the 128 Files at the bottom half of Access RAM can quickly be
accessed no matter what the setting is of the BSR. Thus Access RAM can be thought
of as a common zone across all banks.

The specific complement of the PIC18F1220’s SFR locations are shown in
Fig. 4.10. These tend to be in the same location across the family, although a dif-
ferent mix of peripheral devices will be supported by any particular family member.
For example, the PIC18F4520 has a PORTC at File h’F82’. As we shall see in Ta-
ble 8.1 on p. 243, fortunately the programmer does not need to remember absolute
locations, as each device comes with a specific header file giving these addresses,
which can be included at the start of the program.

No matter how little of the 4 kbyte Data store is implemented, all PIC18 de-
vices have full Access RAM. Specifically, the PIC18F1220 has a full Bank 0 (that
is File h’000’ – h’0FF’) as well as the SFR region File h’F80’ – h’FFF’. Although this
gives 384 Files, only the 256 GPR capacity is listed in the device description; the
128 byte SFR space is taken for granted. Similarly, the PIC18F4520 has Banks 0
though 5 fully populated, and is listed as having a 1536 (26)-byte capacity.

Pointers
The operand address of all our examples up to now have been constant, as they are
an integral part of the binary code defining an instruction such as movwf h’020’
and therefore a permanent fixture in the Program store. In many instances, this is
too inflexible and a variable address is much more useful. Variable addresses, or
pointers, are particularly useful in dealing with arrays or tables of data.

All processors use data pointers, although sometimes they are called index reg-
isters. The PIC18 family has three pointer registers, each of which can hold a
full 12-bit Data store address. These are known as File Select Registers, named
FSR0, FSR1 and FSR2. Each FSR is implemented as two SFRs; for instance, from
Fig. 4.10 FSR0H:FSR0L at File h’FEA:9’. Both composite SFRs can be updated at
the same time with a 12-bit constant, using the lfsr (Load File Select Register)
instruction—see Table 5.1 on p. 109.

4 The PIC18F1220 Microcontroller 83

F
ig

.4
.1

0
T

he
Sp

ec
ia

lF
un

ct
io

n
R

eg
is

te
rs

in
th

e
PI

C
18

F1
22

0’
s

A
cc

es
s

ba
nk

84 The Essential PIC18® Microcontroller

Once a pointer is set up, it may be triggered by referencing a phantom location
linked to that FSR. For example, moving a datum from the Working register to
INDF0 (INDirect File 0) will actually use the address in the linked FRS0 as the
pointer into the destination location. If FSR0 was, say, h’220’ (lfsr 0,h’220’)
then the instruction movwf INDF0 will actually copy the byte in WREG to File
f’220’. The CPU’s logic will pick up on the address of INDF0 (h’FEF’ in Fig. 4.10)
and gate the 12-bit address held in FSR0 to the Data store. No data will be copied
into INDF0; indeed INDF0 does not actually exist; its address simply acts as a trigger
for this form of Indirect addressing.

Although this seems an overly complicated way of accessing memory, the
operand address is not fixed code, as it would be as part of an instruction, but is
a variable. This means that the address of the operand can be altered as the program
progresses. For instance, if the pointer were incremented after each write, complete
tables or arrays can be processed. More details are given in Fig. 5.8 on p. 106.

MOVe File to File
The movff instruction can move a byte from anywhere in RAM to nearly any-
where else. movff is an example of only four instructions that occupy two words
in the Program store (see p. 111) so that it can carry the full 12-bit address of
both the source and destination Files in the one instruction. lfsr is also a double-
word instruction for the same reason. For example, to copy the byte from File h’F81’
(PORTB) to File h’220’ we have movff h’F81’,h’220’. There is no resort to
banking or the Access RAM mechanism for this. However, because movff is a
double-word instruction, it takes an extra instruction cycle to fetch it down from the
Program store; that is two cycles to fetch and execute rather than one.

Peripheral Interface

Part III of this book concentrates mainly on the core peripheral interface capabilities
of our MCU family, to enable them to interact to the outside world. Here it will be
sufficient to list and briefly discuss the peripheral facilities available to our exemplar
device.

Parallel Ports; Chap. 11
The ability to externally alter or monitor several digital lines at the same time is
a virtually universal facility in microcontroller-based systems. Depending on the
package size, enhanced-range PIC MCUs range from potentially 16 (e.g. the 18-pin
PIC18F1220/1320) up to 70 (e.g. the 80-pin PIC18F8722) These figures are max-
imum, for as we shall see input/output (I/O) pins are often shared between several
peripheral modules. For instance, we see from Fig. 4.1 that the digital port pinRA0
(Register (port) A, bit 0) is shared with the analog to digital converter’s channel 0
input pinAN0; both of which share the MCU’s pin 1. This problem is particularly
severe for small pin-count devices.

The PIC18F1220 has 16 digital lines, divided up into two ports. Port A has eight
lines mapped into Access RAM at PORTA (File h’F80’). Similarly, Port B has eight

4 The PIC18F1220 Microcontroller 85

I/O lines at PORTB (File h’F81’). Larger footprint devices have extra ports; for in-
stance, PORTC at File h’F82’ etc.

These ports can be thought of as a ‘window’ into the Data store, in that data
written to, say, File h’F81’ appear to the outside world on the corresponding pins
RB7, . . . ,RB0 (shorthand RB[7:0])—see Fig. 11.1 on p. 334. However, the elec-
trical and logical behavior of these ports is more complex than that of a purely in-
ternal register File. This will be discussed in Chap. 11, but as an example, a port bit
must be configurable as either an output (so that the CPU can control the state of the
associated pin) or an input (so that the CPU can read the state of this pin). To do this,
each parallel port register has an associated data direction register, which Microchip
calls TRISA and TRISB, which map to File h’F92’ and File h’F93’ respectively. The
term TRIS stands for TRIState—see Fig. 11.4 on p. 343 for its origin. Each bit n in
a TRIS register controls the function of its linked pin as either an Output (bit n = 0)
or Input (bit n = 1).4 In the PIC18F1220/1320, pinRA5 is shared with the Master
CLeaR input MCLR. If the option is set to use this as a port pin (see Fig. 10.9 on
p. 10.9), it can only ever be an input.

As an example, consider that we wish to make Port B pins RB[6:0] an input
and pinRB7 an output. Then the set-up code would be:

movlw h’7F’ ; Binary pattern 0111 1111 in W
movwf h’F93’,0 ; makes RB7 Output, RB[6:0] Input

; in TRISB in Access RAM

Although this code fragment is correct and, with the aid of comments its function
can be followed, the code is not very human readable. The alternative is more user
friendly, but is identical as far as the assembler is concerned; see p. 52.

TRISB equ h’F93’ ; Data direction register @ File h’F93’
ACCESS equ 0 ; Specify Access RAM, a bit = 0

movlw b’01111111’ ; Binary pattern 0111 1111 in W
movwf TRISB,ACCESS ; makes RB7 Output, RB[6:0] Input

Obviously the latter is preferable. Although this might seem to be a cosmetic ex-
ercise, clarity reduces the chance of error and makes debugging and subsequent
alteration easier. Realistic programs, rather than the code fragment illustrated here,
use many variables and register bits, so lucidity is all the more important.

The two header lines of our program illustrate the means whereby the program-
mer tells the assembler translator program to substitute numbers for names. For
instance, the line

4Aid-mémoire: A 0 configures for an Output pin, a 1 configures for an Input pin.

86 The Essential PIC18® Microcontroller

TRISB equ h’F93’

states that when the programmer uses the name TRISB as an operand, it is to be
substituted by the number h’F93’5 (that is, File h’F93’). The equ directive means
“EQUivalent to.” A directive is a pseudo instruction in that it does not usually pro-
duce actual machine code but rather is a means of passing information from the
programmer to the assembler program. From now on we will give our Files and
bits names for clarity. In practice the modifier ACCESS is not generally used, as
the assembler will default to Access RAM for Files in the range h’000’–h’07F’ and
h’F80’–h’FFF’ and BANKED for Files outside this range.

As an example, let us pulse pinRB7 High and then Low as follows:

bsf PORTB,7 ; Pin RB7 High (set bit 7)
bcf PORTB,7 ; then Low (clear bit 7)

where we are using the instruction bcf (Bit Clear File) and bsf (Bit Set File) to
clear/set an individual bit in Port B to 0 or 1 respectively.

As we shall see in Table 5.2 on p. 113, these instructions work by first reading
the target File into an internal holding register, modifying it by changing one bit and
then writing back to the File. This type of instruction is described as read-modify-
write. In our example, the target File is PORTB and the logic state of the bits are
actually the voltage on the pins RB[7:0]. This does not normally lead to problems,
but in some rare situations where pins are loaded beyond their specifications (usually
±25 mA) or being quickly changed into a capacitive load, the physical voltage on
a pin may not match its primed logic state. In this circumstance, when being read,
a nominally logic 1 bit may read as a 0, or vice versa. Thus when written back, more
than one bit target bit may change!

To get around this problem, the PIC18F1220 has LATA (File h’F89’) and LATB
(File h’F8A’) to shadow PORTA and PORTB respectively.6 A read of a LATch register
yields the logic state before it gets to the pins. This LATch register holds the logic
state which is connected to the pins. Details of the circuitry are given in Fig. 11.4 on
p. 343. At this point, all that it is necessary to observe, is that LATA and LATB can be
interchanged with PORTA and PORTB respectively in nearly all cases, but provides
isolation between the set logic state and the actual pin voltages.

Serial Ports; Chap. 12
Communication streams, ranging from intra integrated circuits through automobile
networks up to trans-continental webs, are nearly always sent and received one bit
at a time. Problems in doing this include bit rate, start and stop conditions, numbers

5Actually, we could equate TRISB equ h’F93’,ACCESS in one go.
6Earlier PIC MCU families lack these Port LATch registers.

4 The PIC18F1220 Microcontroller 87

of bits and words in a frame, bit rate and format issues. Our exemplar MCU includes
one Universal Synchronous-Asynchronous Receiver/Transmitter (USART) module
which handles many of these issues for a range of common asynchronous (no clock)
and synchronous (needs a clock signal) protocols.

Most members of the family feature a Synchronous Serial Port (SSP) to deal
with serial links between integrated circuits. Some devices, such as the PIC18F8722
offer up to two USART and two SSP modules. Control Area Network (CAN; e.g.
PIC18F4580) and Universal Serial Bus (USB; e.g. PIC18F4450) modules are also
available in some family members.

Timers; Chap. 13
The ability to measure the duration of external events and generate timed wave-
forms, is a frequent requirement in a digital processor. The first PIC MCU family
(base-range) introduced in 1989, has an integrated 8-bit counter, originally called
a Real-Time Counter-Clock (RTCC), which is able to totalize pulses, either exter-
nally (usually from pinRA4) or internal instruction cycles. In either case, these can
be optionally frequency divided by powers of two up to 28. Unfortunately, this 8-bit
pre-divider (called a prescaler) flip-flop chain is shared with the Watchdog timer.

The mid-range PIC16 family renamed the RTCC Timer 0 and introduced a 16-
bit Timer 1 and 8-bit Timer 2. These counters can be used with one or more Com-
pare/Capture/PWM (CCP) modules to compare the timer state with settings in an
internal register, capture the state when an external event occurs (pulses on pins)
and generate pulse width modulated signals.

The enhanced-range family added a clone of Timer 1 called Timer 3, and some
large-footprint members have an 8-bit clone of Timer 2, called Timer 4. In the
PIC18F8722, Timer 3 and Timer 4 perform the same function as Timer 1 and
Timer 2 for a second Master CCP module.

Timer 0 was expanded to 16 bits, but retained an 8-bit mode for backwards com-
patibility. Additionally the prescaler frequency divider is now dedicated to the timer,
with the Watchdog timer acquiring its own—see Fig. 13.1 on p. 455. We see from
Fig. 4.1 that besides the two Timer 0 SFRs TMR0H and TMR0L at File h’FD7:6’,
which can synchronously be read from or written to, the T0CON (Timer 0 CONtrol
at File h’FD5’) allows the software to set various options and control the behavior of
Timer 0—see Fig. 13.2 on p. 458.

• To turn on the timer.
• To select either an 8- or 16-bit count.
• To select either an external or internal source of counting pulses.
• If external, to pick a or active edge.
• To switch in an 8-bit prescaler and select one of eight ratios from 21 though to 28

to frequency divide down the chosen pulse source.

As a general principle, all peripheral modules have one or more control registers,
which allow the software to configure its operational mode and allow the program
to monitor its state.

Analog-to-Digital Conversion; Chap. 14
In the real world the majority of physical quantities are analog in nature. Whilst it is

88 The Essential PIC18® Microcontroller

possible to externally convert the analog signals to digital equivalents, to allow digi-
tal processing, many MCUs have an integrated analog-to-digital converter module
for medium accuracy and conversion rates.

The first Microchip ADC module, introduced with the PIC16C71 (1994) had
an 8-bit resolution. Later PIC16 devices used a 10-bit version and virtually all
enhanced-range devices use a similar module. Unusually, the PIC18F4523 has a
12-bit resolution variant. In all cases an analog multiplexer is used to give several
analog channels. Our exemplar device can have up to seven analog inputs, any one
of which can be selected for conversion when required. The PIC18F8722 has 16
analog channels. These analog inputs are shared with digital I/O pins, and indeed
on reset all shared pins are initialized as analog inputs. The ADC control registers
can then be set to configure a subset of this shared resource as digital.

Maximum conversion rate for the PIC18F1220’s ADC module is 30 ksps—
30 × 103 samples (conversions) per second. However, the majority of devices have
a 100 ksps rate (e.g. the PIC18F4520) and some even go up to 200 ksps (e.g. the
PIC18F2331); whilst the 12-bit module has a reduced rate of 80 ksps.

Most family members, but not our exemplar, have two or three analog compara-
tors. This allows the software to determine if one or more analog signals exceed an
internal or external analog voltage.

Data EEPROM; Chap. 15
The PIC16F84 (1994) was the first PIC MCU device to offer a block of non-
volatile memory (64 bytes), which could be used for long-term data storage. Most
PIC18 devices have a 256-byte module, such as our exemplar. A few, such as
the PIC18F8722, have a 1024-byte equivalent module. Although many enhanced-
range devices can both read and write to the Flash EEPROM Program store, the
standard EEPROM used for these modules have a greater endurance; typically
1 million writes compared with 100,000 for the Program store. In both cases a
data retention of 40+ (some parts quote 100) years. This memory module is not
part of the (volatile) Data store and is accessed through SFRs as a peripheral de-
vice. Any byte can be addressed and then read from or written to via the EE-
DATA (EEprom DATA at File h’FA8’) register, as addressed by the EEADR (EEprom
ADdR at File h’FA9’) register and controlled by the EECON1 (EEprom CONtrol 1
at File h’FA8’) and EECON2 (EEprom CONtrol 2 at File h’FA7’) SFRs. In particu-
lar, the phantom EECON2 register is used as part of an interlock sequence to avoid
accidental writes to memory.

Interrupts; Chap. 7
All the various peripheral modules can interrupt the flow of execution (the back-
ground program) when one or more specified events occur; for instance, when a
timer overflows. The three INTerrupt CONtrol registers INTCON, INTCON2 and
INTCON3 registers give the software control over global enabling and prioritiza-
tion of the interrupt system and handle interrupt requests that come from outside
the processor, chiefly from the three pins INT0, INT1 and INT2 and also from
Timer 0.

A peripheral module can set one or more flags in the two Peripheral Interrupt
Registers PIR1 and PIR2, which potentially requests service. Each of these requests

4 The PIC18F1220 Microcontroller 89

can be individually enabled by a corresponding bit in a Peripheral Interrupt Enable
register PIE1 and PIE2. Finally, the Interrupt PRiority registers IPR1 and IPR2 set
each of these interrupt requests as either normal priority (causes a leap to the in-
struction located at h’0008’ in the Program store) or priority (can interrupt a normal
interrupt service routine and go to the instruction at h’0018’). Once the processor
recognises an interrupt request, it will switch to another program via either the
Normal or High-Priority interrupt vectors—see Fig. 4.3) to service the peripheral
device. This service routine is known as the foreground program.

Examples

Example 4.1 Discuss how the performance of the PIC MCU architecture is im-
proved by incorporating pipelining into the design of the instruction-fetch unit.
Do you foresee any problems associated with handling Jump instructions (such as
Branch) in connection with the Pipeline’s structure?

Solution The Pipeline is a precondition for the parallel operation of the fetch and
execution units. That is, in order to allow the execution of instruction n whilst the
next instruction n + 1 is being fetched from the Program store, internal storage
must be provided to present the instruction code to the Instruction decoder. As all
but four instructions are single 16 bit words, then the Pipeline’s register structure
and control is considerably simplified. Most conventional CISC processors have
instructions that vary considerably in length. For instance, the 68HC11 MCU core
has instructions that cover the range 1 through 4 bytes; that is, the fetch phase can
take between 1 and 4 bus transactions. Some more sophisticated processors have
multistage pipelines with each stage feeding part of the execution circuitry. Thus
several streams of execution activity can occur simultaneously.

The problem with pipelines is that they presuppose that the program instructions
will be executed sequentially as they are stored in memory. However, instructions
that disrupt this smooth running and move on the Program Counter require that the
Pipeline be emptied so that the destination instruction code travels down to the end
of the pipe. For instance, if instruction k is bra nn (BRAnch nn places), then in-
struction k + 1 will be in the first stage of the Pipeline by the time the processor
knows that the next step is actually to be the instruction nn words away. Thus a null
instruction cycle needs to be executed which simply brings this destination instruc-
tion code into the Pipeline but does not execute instruction k + 1 whose code is at
the end of the Pipeline. This is sometimes known as flushing the Pipeline. Instruc-
tions such as bra need two clock cycles to execute. Conditional Skip instructions
(see Chap. 5) take two cycles when the skip is implemented and one otherwise. All
other instructions always take one cycle, except the few double-word instructions
which take an extra cycle.

Example 4.2 Can you determine why, after a subtraction or addition of a negative
number, the setting of the C flag is the complement of the borrow-out. Hint: Look at
2’s complement arithmetic on p. 9.

90 The Essential PIC18® Microcontroller

Solution Subtract instructions in all PIC MCU families work by 2’s complementing
the datum byte and then adding; as shown in Fig. 2.9 on p. 25. In this situation the
resulting carry-out is 0 where a negative outcome is generated and 1 for a positive
outcome. For instance:

1. 06 − 0A � 00000110 + 11110110 = (0) 11111100 or − 4 (no carry).
2. 0A − 06 � 00001010 + 11111010 = (1) 00000100 or + 4 (carry).

In both cases the Carry flag acts as an inverted borrow. This is in keeping with the
RISC philosophy of the PIC MCU family, to keep the processor ‘lean and mean’.

Exactly the same borrow inversion occurs if you specify a negative datum with
an Add instruction, such as addlw -6. This is translated by the assembler to
addlw h’FC’, where h’FC is of course the 2’s complement of 6.

Example 4.3 A smart alec programmer has decided to copy the contents of the Sta-
tus register into File h’040’ (Access bank) for safekeeping so that it can be returned
later without alteration. However, bit 2 of the Status register sometimes changes
state. Why is this?

Solution From p. 49 we see that the movf instruction will set the Z flag if the
contents of the File in question is all zero, else it will clear Z. Thus the program
fragment

movf STATUS,w,0 ; Copy contents of File h’FD8’ to W
movwf h’040’,0 ; and to File h’040’ in Access RAM

will indeed copy the contents of File h’FD8’ into File h’040’, but if the Status register
bits are all zero, the Z flag will be set to 1, otherwise it will be cleared to 0.

The easiest way around this is to use the movff instruction (movff STA-
TUS,h’040’), which we see from Table 5.1 on p. 109 does not influence the
status flags.

Example 4.4 In the PIC18F4520 MCU banks 0 through 5 are fully populated
with GPRs. Show how you could copy File h’520’ and File h’521’ to File h’020’ and
File h’021’ respectively. Calculate how long this would take, assuming a clock fre-
quency of 4 MHz, and how much Program storage would be necessary.

Solution Basically there are three ways of doing this.

Banking
We can use the BSR to switch between banks.

4 The PIC18F1220 Microcontroller 91

movlb 5 ; Pick Bank 5
movf h’520’,w,1 ; Get Datum 1 using Banking mode into W
movlb 2 ; Pick Bank 2
movwf h’220’,1 ; Store away using Banking mode
movlb 5 ; Pick Bank 5 again
movf h’521’,w,1 ; Get Datum 2 using Banking mode into W
movlb 2 ; Pick Bank 2 again
movwf h’221’,1 ; Store away using Banking mode

In total it will take eight instruction cycles to implement and occupy the same num-
ber of words in the Program store.

Pointers
We can use Indirect addressing to the moving, with two pointers (File Select Regis-
ters) for the two banks. Furthermore (but not explained until p. 106), if we use the
two Indirect triggers POSTINC0 and POSTINC1, the two corresponding pointers
FSR0 and FSR1 will be automatically incremented when used.

lfsr 0,h’220’ ; Pointer FSR0 (Pointer 0) set to h’220’
lfsr 1,h’550’ ; Similar-
ily FSR1 (Pointer 1) set to h’520’
movf POSTINC1,w ; Get Datum 1 from File h’520’& FSR1++
movwf POSTINC0 ; Store away at File h’220’ & FSR0++
movf INDF1,w ; Get Datum 1 from File h’521’
movwf INDF0 ; and store away at File h’221’

This will also take eight instruction cycles, as each double-word lfsr instruction
takes two cycles. However, this technique comes into its own for longer arrays of
data.

Multiple Move
The movff double-word instruction allows us to copy any File directly (that is not
via the Working register)from source to destination.

movff h’520’,h’220’ ; Copy Datum 1 to File h’220’
movff h’521’,h’221’ ; Copy Datum 2 to File h’221’

This takes four instruction cycles and the same number of instruction words.
For a clock rate of 4 MHz, an instruction cycle takes 1 µs—see Fig. 4.5. Thus

the three techniques take 8 µs, 8 µs and 4 µs respectively to run.

Example 4.5 Write a program to increment a packed BCD quantity located in data
memory at File h’020’ in Access RAM. You can make use of two new instructions.

92 The Essential PIC18® Microcontroller

Program 4.1 Incrementing a packed BCD byte
;**
;* FUNCTION: Increments a BCD datum giving a BCD outcome *
;* ENTRY : BCD in File h’020’ *
;* EXIT : BCD+1 in File h’020’ *
;* EXAMPLE : 01111001 (79) + 1 = 10000000 (80) *
;* **
STATUS equ h’FD8’ ; The Status register
C equ 0 ; Carry flag is bit 0
DC equ 1 ; Digit Carry flag is bit 1
BCD equ h’020’ ; The BCD number is in File h’020’
; ---
BCD_INC incf BCD,w,0 ; Binary inc’ed BCD number put in W

addlw 6 ; Add six
btfss STATUS,DC ; Skip IF produced a half carry
addlw -6 ; ELSE remove the correction of +6

; Now check the upper digit by adding 6 to it and checking carry
addlw h’60’ ; Add h’60’ (i.e. six to upper digit)
btfss STATUS,C ; Skip IF caused a carry
addlw -h’60’ ; ELSE cancel the correction factor

; The incremented and corrected BCD number is now in W
movwf BCD,0 ; Put it out in Access RAM

INCrement File (incf) adds one onto the contents of any File, and Bit Test File
and Skip if Set (btfss) tests any bit in any File and skips the next instruction word
it that bit is 1.

Solution Two binary-coded decimal (BCD) digits may be packed into a single byte
to represent numbers up to 99. For instance, 0100 1001 File h’020’ represents BCD 49.
Incrementing a number stored in this hybrid decimal-binary form using the normal
binary addition rules may give an incorrect result. For instance, b’0100 1001 + 1’
(49 + 1) gives b’0100 1010’ (h’4A’) after addition, but should give b’0101 0000’
(h’50’). Similarly, b’1001 1001 + 1’ (99 + 1) gives b’1001 1010’ (h’9A’) instead of
b’0000 0000’ plus a carry of 1 (h’1 00’).

From these examples it can be seen that whenever any of the BCD decades
equals ten after incrementation then it should be zeroed and one added to any higher
decade. Based on this increment and add algorithm we can formulate the task list.

1. Increment the packed BCD byte using normal binary arithmetic.
2. IF the lower nybble of the outcome is ten then add six to the outcome.
3. IF the upper nybble of the outcome is ten then add six to it.

Program 4.1 gives an efficient implementation of this task list. After incrementing
using normal binary rules, six is added to the previous outcome and the Decimal
Carry (half carry) flag is checked for activity. The DC flag will only be set when the
original nybble is ten (h’0A + 6 = 1 0’). In this case the add six operation is allowed
to stand as the necessary correction, otherwise it is canceled by subtraction. The
upper nybble (BCD digit) is checked and corrected in the same manner, but this
time it is the full Carry flag that is tested. If this is set, then the addition of h’60’ is

4 The PIC18F1220 Microcontroller 93

allowed to stand, otherwise it is subtracted. This Carry flag could be used to set a
hundreds digit if desired, to show overflow from 99 to 100. See p. 116 for a more
efficient implementation.

An alternative approach would be to subtract nine before incrementation and if
the Z flag is set then leave the digit at zero and increment the higher digit; otherwise
add ten. Repeat for the upper digit.

Self-Assessment Questions

4.1 Where microprocessors are used in a general-purpose computing environment,
the program is normally loaded into and run from read/write RAM memory.
This means that the system can run a word-processor one minute and a spread-
sheet program the next. Of course this means of operation is not applicable to
embedded applications, where the program is stored in some variety of non-
volatile read-only memory. Discuss why this is so and the virtues of ROM,
EPROM and EEPROM implementations of non-volatile storage.

4.2 The goto instruction allows the software to jump to any part of the Program
store. It does this by overwriting the Program Counter with a new 20-bit word
address. Given that an instruction word is only 16 bits long, how do you think
and instruction like goto handles this problem.

4.3 Given the effect of the movf instruction on the Z flag discussed in Example 4.3,
how could you use this instruction to determine if the contents of any File is
zero?

4.4 From Table 1.1 on p. 5 we see that the upper-case letters A through Z differ
in coding from their lower-case siblings only in that bit 5 is 0 in the former
instance and 1 in the latter. With the instructions we have de facto introduced
in this chapter, how could you convert an ASCII character located in File h’020’
from lower-case to upper-case?

4.5 Write a program to pulse pin RA0 High for 4 µs and then Low. You may assume
a clock crystal of 4 MHz.

4.6 How could you bring pin RA1 High, then pulse RA0 four times and then RA1
is to go Low again? Your solution should include the setting for TRISA.

4.7 Given a 10 MHz crystal clock, how long would a PIC MCU take to execute the
code fragment of Example 4.4?

4.8 Most digital watches use a 32.768 kHz crystal, commonly known as a watch
crystal. Because of high production quantity, such crystals are low cost. Al-
though this slows the processing rate, we shall see in Fig. 10.3 on p. 309 that the
power dissipation is directly proportional to clocking frequency. Thus a watch
crystal is an attractive low-cost proposition for many low-power applications.

Can you determine the instruction cycle time for such a system? What is the
significance of the value 32,768 for timing circuits?

Chapter 5
The Instruction Set

Writing a program is somewhat akin to building a house. Given a known range
of building materials, the builder simply puts these together in the right order. Of
course, there are tremendous skills in all this; poor building techniques lead to
houses that leak, are drafty and eventually may fall down!

It is possible to design a house at the same time as it is being built. Whilst this
may be quite feasible for a log cabin, it is likely that the final result will not remain
rainproof very long, nor will it be economical, maintainable, ergonomic or very
pretty. It is rather better to employ an architect to design the edifice before building
commences. Such a design is at an abstract level, although it is better if the designer
is aware of the technical and economic properties of the available building materials.

Unfortunately, much programming is of the “off the cuff” variety, with little
thought of any higher-level design. In the software arena, design means devising
strategies and designing data structures in memory. Again, it is better if the design
algorithms keep in mind the materials of which the program will be built, in our
case the machine instructions.

At the level of our examples in this chapter, it will be this coding (building)
task we will be mostly concerned with. Later chapters will cover more advanced
structures which will help this process, and we will get more practice at devising
strategies and data structures.

If you like to think of writing a program as analogous to preparing an elaborate
meal, then for any given cooking appliance, such as a microwave oven or electric
stove (the hardware) there are a range of processes. These processes—for instance,
steaming, frying, boiling—are analogous to the instruction set which can be imple-
mented by the CPU. The various ingredients that can be handled by a process are the
instruction’s data. Such data may lie in internal registers or out in memory. There
are several different ways of specifying the effective address (ea) of an operand.
These are known as address modes.

In keeping with the PIC microcontrollers’ RISC-like philosophy, the enhanced-
range core have a total of only 75 instructions; plus an optional eight which are
primarily for handing software stacks used for C compiler operation; which we will
ignore. Of these instructions, 71 are coded in a single 16-bit word. Four instruc-
tions need two words. An instruction word in the main holds the operation code;

S. Katzen, The Essential PIC18® Microcontroller,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-229-2_5, © Springer-Verlag London Limited 2010

95

96 The Essential PIC18® Microcontroller

address, data or bit number, and destination and access bits. We covered a few of
these instructions and address modes when discussing our BASIC computer back in
Chap. 3 and also in Chap. 4; now would be a good time to review this material. Here
we look at the various address modes and the core instruction set in some detail.
Some of the more specialized instructions will be covered later; for instance, the
subroutine-related instructions are covered in Chap. 6. A full instruction set is given
on p. 66.

After reading this chapter you will:

• Know that an address mode is the way an instruction pin-points its data.
• Understand how Inherent, Literal, Absolute, File Direct, File Indirect and Bit

address modes permit an instruction to target an operand for processing.
• Recognize how the binary structure of the instruction word impacts on the usage

of instructions.
• Know that Movement instructions, copying data in-between the Working register

and the Data store or between two Files, are the most used of the instruction
categories.

• Appreciate that the processor can directly implement the common 2’s comple-
ment arithmetic operations of addition, subtraction and negation, as well as mul-
tiplication, incrementation, decrementation and bit twiddling.

• Be able to compare or test data for differences and relative magnitude, and take
appropriate action using the Conditional Branch instructions.

• Understand how the program flow can be diverted, based on the state of any bit
or a zero overall value in a File.

• Know that a datum in the Data store can be rotate-shifted.
• Be able to use the four basic logic instructions to invert, set, clear, toggle, bit test

and differentiate data.

Virtually all instructions act on data, either outside the CPU in its data or program
memory space, or in internal registers. Thus the 16-bit instruction code must include
bits which inform the CPU’s instruction decoder where this data is being held. The
exceptions to this are the few Inherent instructions, such as nop (No OPeration).
Before looking at the instruction set we will discuss the various techniques used to
specify the location of any operands.

The general symbolic form of an instruction is:

instruction mnemonic <operand A>,<operand B>

where operand A is the source datum or its location and operand B the destination.
For instance, movf h’020’,w (MOVe File) which copies a datum sourced from
File h’020’ in the Data store to its destination in the Working register.

There are some variations on this structure. 2 1
2 -operand instructions are com-

mon. For instance, addwf [FILE],d adds the WREG register’s contents to the
specified File’s contents and deposits the result either in WREG or back in the File
register itself. Thus addwf h’020’,f means “add the contents of WREG to that
of File h’020’ and put the outcome in File h’020’.” This could be written in shorthand
as [f020] <- W + [f020], where the brackets mean “contents of” and <-
means “becomes”. This notation is called register transfer language (rtl).

5 The Instruction Set 97

Of course, this is not a true 3-operand instruction, as the destination must be one
of the two source locations; that is WREG or File h’020’. A few instructions have only
a destination specified; for example, clrf h’020’, and the Inherent instructions
have no explicit operands.

Instructions can be classified by their address mode.

Inherent 00000000 XXXXXXXX
Sixteen instructions do not need to explicitly specify an operand. At the binary code
level, all these instructions are coded with the upper eight bits zero. For instance,
clrwdt has a machine code of b’0000000000000100’. These instructions are:

clrwdt
clrwdt CLeaR WatchDog Timer resets this monostable and its pre-divider
chain—see Fig. 13.1 on p. 455.

daw
Decimal Adjust Working register makes any required correction factor follow-
ing a normal binary addition of two packed BCD formatted variables—see
p. 116.

nop
No OPeration does nothing, apart from the resulting step of the Program
Counter as a consequence of its fetch. Exceptionally, it has two binary codes;
0000000000000000 and 1111XXXXXXXXXXXX. Unprogrammed areas of the
Program store are always logic 1 and so appear as blocks of nops.

pop and push
This pair of instructions interact with the stack and are described on p. 181 in
Chap. 6.

reset
This performs the software equivalent of an external reset as described on
p. 329 in Chap. 10.

return and retfie
This pair of instructions action the completion of either a subroutine or inter-
rupt service routine with a return to the caller or background program respec-
tively.

sleep
Turns the main oscillator off and powers down the core to reduce power
consumption—see p. 318 in Chap. 10.

Table Read and Table Write
There are four tblrd and four tblwt instruction variants which allow the
processor to both read data bytes from the Program store and (in some family
members) write data in blocks to the store. They are listed in Table 15.1 on
p. 548.

98 The Essential PIC18® Microcontroller

Fig. 5.1 Machine code
structure for the lfsr
instruction

Literal 00001 ??? LLLLLLLL
Literal instructions use the lower eight instruction word bits to specify a source
operand which is a constant datum, rather than a byte in a File. For instance,
addlw 06 is coded as b’11110000 00000110’. The destination of this type of in-
struction is always the Working register, and this is shown in the mnemonic. Thus
in our example, the sum W + 6 is copied back into WREG. In rtl this is expressed as
W <- W + #6, where the # (pound or hash) symbol denotes the following number
as a constant or literal rather than a File address.

The exception to this structure is the lfsr (Load File Select Register) instruc-
tion, which we have already met on p. 82. This loads a 12-bit constant into one of
three File Select Registers (FSRs). Each FSR carries a 12-bit address, and acts as
a pointer into the Data store. As we see in Fig. 5.4, a FSR is made up of two 8-bit
SFRs; for instance, FSR2 is actually a composite of FSR2H:FSR2L.

In order to code both the FSR number (0, 1 or 2) and the 12-bit literal, lfsr
needs two words in the Program store. As shown in Fig. 5.1 the first word fetched
from the Program store has a 10-bit op-code, a 2-bit FSR number and the top nybble
of the literal. The lower eight bits of the second word holds the remaining lower
byte of the literal. Rather unexpectedly, this second word also carries an auxiliary
op-code. Any op-code beginning with b’1111’ codes for nop! The reasoning behind
this, which is common for all double-word instructions (e.g. see Fig. 5.2), is that
if the Program Counter as a result of a Jump, Skip or Branch should point to the
second word of a double-word instruction, it will be treated as a No OPeration.

From Fig. 5.1 we see that the assembler form of the instruction specifies the FSR
number as operand A and the literal as operand B. For example, to put the constant
h’456’ in FSR1 we have lfsr 1,h’456’.

Absolute 111011 ?? AAAAAAAA

plus 1111 AAAAAAAAAAAA
Two instructions allow the program to jump to another instruction anywhere in the
Program store. These are goto and two variations of call (CALL up or go to

5 The Instruction Set 99

Fig. 5.2 Machine code
structure for the goto
instruction

a subroutine—see Table 6.1 on p. 164. As this potentially requires a 20-bit word
address1 these instructions are both double-word.

As shown in Fig. 5.2, the first word carries an 8-bit op-code and the top byte of
the absolute destination address. The second word has the op-code b’1111’ for nop
and then the remaining lower 12 bits of the 20-bit destination address.

Like all 2-word instructions, execution takes two instruction cycles.

Relative 1101 ? SNNNNNNNNNN

or 111001 ??? SNNNNNNN
Like the Absolute address mode, Relative addressing is used to change the focus
of the program to software in a different part of the Program store. However, it
does this by adding an offset to the Program Counter, rather than overwriting its
contents with a 20-bit absolute word address. For instance, bra 08 will add eight
to PC[21:1]; that is the program will effectively branch forward eight words up from
the instruction following the bra instruction.

The instructions BRAnch and Relative CALL (rcall see Table 6.1 on p. 164)
are coded with an 11-bit 2’s complement signed offset field. As the PC has already
incremented before the offset N is added, the maximum range of these instructions
is ±1024 words forwards and backwards from the instruction. The offset code is
shifted once left to give 2N before the addition, to effectively make the branch
offset in words, rather than bytes.

The majority of Relative instructions are conditional Branches (see Table 5.4)
in that the offset is only added if one of the status bits is set or clear. For instance,
bc -08 (Branch if Carry) will branch back eight words from the following instruc-
tion (seven from the bc instruction) if the C flag is 1. Conversely, bnc (Branch if
No Carry set) will branch if the C flag is 0.

Relative Branch instructions have a signed 2’s complement 8-bit offset, giv-
ing them a range of ±128 words. In practice, the programmer will rarely have to

1Don’t confuse this with the File address in the Data store. In the Harvard structure the two stores
are logically distinct with different address spaces.

100 The Essential PIC18® Microcontroller

calculate the offset for such Relative instructions; rather he/she will place a label
at the desired landing point. The assembler will calculate the offset; for instance,
bra LOOP. If LOOP is too far away, the assembler will output an error message.
Where this is the case, conditional Branches can be augmented with either an un-
conditional Branch or a goto.

Although Relative addressing instructions are all single-word, like all instruc-
tions that modify the PC two instruction cycles are needed for execution.

File Direct 0 ????? d a FFFFFFFF
The majority of data which the program will process are located in the Data store.
Instructions that specify that their source and/or destination operand lie in a File
use this address mode. The bottom byte of the File address is carried in the lower
eight bits of the instruction code—as shown in Fig. 3.5 on p. 50. This is extended
to the necessary twelve bits to match the potential 4 kbyte Data store—as described
in Fig. 4.9 on p. 82. In summary, if bit 8 of the instruction code (labeled a) is 0
then Files in the range h’000–07F’ (GPRs) and h’F80–FFF’ (SFRs) are accessed. To
access anywhere else in RAM, this a-bit is set to 1 and the lower nybble of the Bank
Select Register is used for the upper four bits of the address. This bank-oriented
structure for the Data store is shown in Fig. 4.8 on p. 80.

Most instructions that use Direct addressing can dump the outcome either in
the Working register or else back in RAM. Bit 9 of the instruction code, labeled d
(see also Fig. 3.5 on p. 50), is used to specify the destination, as in the following
example:

addwf h’02C’,w,0 ; Coded as 001001 0 0 00101100
addwf h’02C’,f,0 ; Coded as 001001 1 0 00101100

In both cases the byte contents of File h’02C’ in Access RAM (a = 0) are added
to the byte contents of the Working register. In the former instance, illustrated
in Fig. 5.3(a), the outcome is put in WREG, leaving the File contents unchanged
(d = 0), whilst in the latter, illustrated in Fig. 5.3(b), the original File data is over-
written (d = 1) with the sum.

In the base- and mid-range families, the Working register associated with the
ALU is not mapped as a SFR in the Data store. It is accessible only in its role as a
destination or as a result of an instruction explicitly referencing WREG; e.g. movlw.
In the enhanced-range family, the Working register is also reachable as a SFR called
WREG (File h’FE8’ in Fig. 4.10 on p. 83). It therefore can take the place of the File
address in Direct address mode instructions. This gives additional flexibility, in that
all Direct addressing instructions can operate directly on the Working register, rather
than the limited explicit subset previously allowed. For instance, setf sets up any
File to b’11111111’. Thus setf WREG will make the contents of WREG all 1s.

The 8-bit address of the operand is fixed as an integral part of the instruction
code, and thus cannot be changed as execution progresses. Although explicitly spec-
ifying its address may seem to be the obvious way to locate an object in the Data
store, there are some situations where this restriction is rather onerous.

5 The Instruction Set 101

Fig. 5.3 Selecting the destination for the instruction addwf h’02C’

Program 5.1 Clearing a block of Files the linear way
CLEAR_ARRAY clrf h’020’ ; Clear File 32

clrf h’021’ ; and File 33
clrf h’022’ ; Each clrf
clrf h’023’ ; uses one instruction word
clrf h’024’ ; in the Program store
clrf h’025’ ; File 37 cleared
clrf h’026’ ; and so on
....
clrf h’07E’ ; Clear File 126; nearly there
clrf h’07F’ ; Clear File 127; Phew!

As an example showing this lack of flexibility, suppose we wished to clear the
contents of File registers in Bank 0 of a PIC18F1220 from File h’020’–File h’07F’.
The obvious way to do this is to use the clrf instruction 96 times, as shown in
Program 5.1.

102 The Essential PIC18® Microcontroller

Fig. 5.4 The Indirect addressing mechanism shown for FSR0

Although this coding works, it is rather inefficient. Each of the 96 instructions
does exactly the same thing, although on a different location. If we were to clear all
1536 GPRs in the PIC18F4520 then we would need 1536 clrf instructions, all to
do this rather simple task. As there is only 16,384 locations available in the Program
store for this device then this represents more than 9% of its entire capacity.

There has got to be a better way!

File Indirect 0 ????? d a FFFFFFFF
All processors feature some form of Indirect addressing, where one or more internal
registers are used to hold the address of the operand in Data memory. Such address
registers effectively are used as a pointer to the data. The key difference from Direct
addressing is that the contents of a pointer register can be altered as execution pro-
gresses; that is, the address of the target datum is no longer fixed as bits in read-only
(usually) Program memory but is now a variable. For instance, the array of data in
Program 5.1 may be cleared by using a register to point to the target location and
repeating in a loop while incrementing that pointer—see Fig. 5.6.

The principle of Indirect addressing as implemented in PIC MCUs is to ‘trick’
an unsuspecting Direct addressing instruction to substitute its operand address for
the 12-bit address held in a File Select Register. It does this by using virtual SPRs,
called INDirect File registers, to trigger the subterfuge. In the enhanced-range fam-
ily, three2 of these pointers are available. Figure 5.4 specifically shows FSR0, but
FSR1 and FSR2 act in the same way. Each FSR is actually composed of two SRFs.
In the case of FSR0, FSR0L at h’FE9’ holds the bottom eight bits of the address
and FSR0H at h’FEA’ for the upper nybble. The composite register thus holds a full
12-bit address—see also p. 82.

Any instruction using Direct addressing can activate Indirect addressing by ref-
erencing a trigger address. For instance, to utilize the address in FSR0 to access the
Data store, the pseudo address h’FEF’, known as INDF0 (INDirect File 0), is used as

2In the base- and mid-range families only one 8-bit pointer is available, called FSR.

5 The Instruction Set 103

Fig. 5.5 Using a loop to
clear an array of data

the target. Thus, if the content of FSR0 at some point of time were h’070’, then the
instruction clrf INDF0 will actually clear File h’070’ and not File h’FEF’. INDF0
is a virtual location, in that this SFR does not physically exist. Its contents can nei-
ther be read-from or written-to. Its sole use is to act as a trigger to switch through
the contents of FSR0 as the actual operand address. Although this approach to Indi-
rect addressing may seem rather convoluted, it requires very little additional logic in
the processor and no extra clock cycles to execute; unlike the alternative techniques
used by other MPU/MCUs.

As an example, let us repeat Program 5.1 but folding the linear structure into a
loop, as shown in Fig. 5.5. A task list description of our program is now:

1. Set the FSR0 pointer to the initial array address.
2. Clear the pointed-to File by targeting the INDF0 File.
3. Increment the FSR0 pointer.
4. Check. Has the pointer gone over the top; in our case, has it reached h’080’? IF

no THEN go to item 2.
5. Continue on to the next part of the program.

This process is perhaps more easily visualised in Fig. 5.6.
The coding for this scheme is shown in Program 5.2. The linear structure of the

previous program has been folded into a loop, shown shaded. The execution path

104 The Essential PIC18® Microcontroller

Fig. 5.6 Walking through an array

keeps circulating around the clrf instruction, which is ‘walked’ through the array
of Files from File h’020’ upwards by incrementing the FSR0 pointer on each pass
through the loop. Eventually the pointer advances beyond the desired range and the
program then exits the loop and continues onto the next section of the code.

Program 5.2 has many new features, as we have yet to review the instruction set.

Program 5.2 Clearing a block of Files using a repeating loop

Task 1
The pointer is initialized to point to the first File to be cleared, by moving the 12-bit
constant h’020’ into FSR0 using the lfsr instruction—as described on p. 111.
Nearly all loop routines involve some initialization before entry.

Task 2
The key clearing instruction uses the Indirect address mode by specifying the phan-
tom File h’FEF’ (INDF0) as the destination address—clrf INDF0. This line has
a label associated with it called CLOOP. The assembler knows that this is a label
and not an instruction, as it appears in the leftmost column of the source File. Lines
without labels should begin with an indent of at least one space.

5 The Instruction Set 105

Task 3
Each pass around the loop involves advancing the pointer by one. This is done by
incrementing FSR0. In this example, advancing FSR0L on its own will work, as the
range of pointer values is limited to h’(0)20’–h’(0)80’ in which FSR0H is always 0.
Note that the destination is specified as the File and not the Working register.

Task 4
Unless you wish to go round the loop forever, you need a mechanism to eventually
exit. In our case this is done by comparing the contents of the low byte of FSR0 with
the constant h’80’; that is, with the first File after h’07F’. The instruction cpfseq
(Compare File with W and Skip if EQual) will skip over the following instruction
only if the contents of the File (that is FSR0L is equal to the byte in the Work-
ing register. In the program, the constant h’80’ is copied into WREG prior with the
comparison with FSR0L.

If there is not equality, then the following bra instruction actions a branch back
to the instruction alongside the label CLOOP and the process is repeated, but with
the pointer advanced one step. After 96 times around the loop, FSR0L will reach
h’80’ and with equality cpfseq will action a skip over the bra instruction and
break out of the loop.

The result of executing Program 5.2 (and indeed Program 5.1) is shown in
Fig. 5.7. Although the outcome is the same, our program now has only six instruc-
tions against the 96 of the linear equivalent, a 12:1 reduction. However, it takes six
times as long to execute, due to the overhead of the various loop control instructions
being executed 96 times! Normally the ratio of ‘housekeeping’ to core instructions
in a loop is not as extreme as this particular example.

The requirements of scanning through an array of data is sufficiently common to
warrant four additional Indirect modes of operation for each of the three pointers.
Figure 5.8 lists the five distinct modes for each of the FSRs. Each mode is selected
by invoking one of five different virtual trigger registers that exist for each of the
three pointers.

Fig. 5.7 A view of the Data store after execution

106 The Essential PIC18® Microcontroller

Fig. 5.8 Indirect addressing via FSR0

5 The Instruction Set 107

Program 5.3 Clearing memory using an auto-incrementing pointer

These are, where i indicates 0, 1, or 2:

INDirecti
For instance, clrf INDF2 zeros the File pointed to by the 12-bit FSR2.

POSTDECi
For instance, clrf POSTDEC2 zeros the File pointed to by the 12-bit FSR2 and
then decrements FSR2 after the action has been executed.

POSTINCi
For instance, clrf POSTINC2 zeros the File pointed to by the 12-bit FSR2 and
then increments FSR2 after the action has been executed.

PREINCi
For instance, clrf PREINC2 first increments FSR2 and only then zeros the File
pointed to by the 12-bit FSR2.

PLUSWi
For instance, if the contents of the Working register were h’06’ then the instruction
clrf PLUSW2 would zero the File pointed to by FSR2 + 06. Neither the contents
of FRS2 nor WREG would be altered. The contents of WREG are treated as a 2’s
complement signed number ranging from −128 through +127.

As a simple example of the use of these modes, Program 5.3 reworks our code,
but using the Post-increment Indirect addressing mode. Replacing the target address
INDF0 by POSTINC0 (File h’FEE’) automatically increments FSR0 after it has been
used to point into RAM. This has a two-fold advantage over our approach in Pro-
gram 5.2.

1. We do not require the incf instruction. This not only reduces the size of code,
but eliminating this housekeeping step saves 96 instruction cycle execution times.

108 The Essential PIC18® Microcontroller

2. The auto-incrementation is applied to the whole 12-bit address; that is FSR0H:
FSR0L, whereas our incf instruction just operates on the low byte. For cross-
bank arrays we would have to add two new instructions for a double-byte
incrementation—see p. 119.

Bit Addressing 10 ?? NNN a FFFFFFFF

or 0111 NNN a FFFFFFFF
Five instructions either alter or test the state of a single bit in any File. For these
operations, the instruction word has an embedded 3-bit code NNN defining the bit
number from 0 through 7, as well as the File address coded in the normal way. Thus
the instruction bcf h’020’,7,0 (Bit Clear bit 7 in File h’020’ in Access RAM)
is coded as b’1001 111 00100000’. The other bit twiddling instructions are bsf (Bit
Set in File) and btg (Bit ToGgle in File); the latter inverting the state of the target
bit and leaving the other seven bits unchanged.

Two instructions allow the program to test (but not change) any bit in any File
and optionally skip over the next instruction word. These are btfsc (Bit Test in
File and Skip if Clear) and btfss (Bit Test in File and Skip if Set). We used the
latter instruction in Program 4.1 on p. 92 to test bit 0 of the Status register (that is
the C flag) and skip the next instruction if it was set.

So far we have classified instructions by the method they pin-point their
operands. The alternative approach is to catalog the instruction set by function. Most
of these functional groups will be discussed in this chapter. Those relevant to sub-
routines and interrupts are listed in Chap. 6, and control instructions pertaining to
internal operation of the MCU hardware are left to Chap. 10.

In the instruction tables following; from left to right the instruction’s mnemonic
is listed, followed by the effect on the five status flags, with a • representing no
change and

√
normal operation. Finally a shortform description of the operation

is given. The complete instruction set is given for reference on p. 66. If a more
detailed reference is needed, any Microchip data sheet for the appropriate family
(see the book’s website) gives a detailed description for each instruction. However,
because of the RISC nature of the PIC MCU architecture, instructions are rather
minimalistic and details are easily consigned to memory.

Movement Instructions
About one in three instructions in any computer program, regardless of hardware or
language, simply move data around without alteration between memory and internal
registers. With this in mind the instructions in Table 5.1 are going to be the most used
in the PIC MCU’s repertoire.

All six Movement instructions copy byte data without alteration, either in be-
tween the Working register and a specified File, directly between Files or a constant
byte (literal) into WREG, BSR or FSRi. Where the source is in a File its contents
remain unaltered; it is simply copied into the destination. The swap instruction can
also copy a datum from a File to WREG, but in the process interchanges the higher
and lower nybbles.

5 The Instruction Set 109

Table 5.1 Move instructions

Operation Mnemonic Flags Description

N OV Z DC C

Move Copies a datum byte

Literal to W movlw kk • • • • • [W] <- #kk

Literal to BSR movlb kk • • • • • [BSR] <- #kk

File movf f,d,a
√ • √ • • [d] <- [f]

1 File to File movff fs,fd • • • • • [fd] <- [fs]

W to File movwf f,a • • • • • [f] <- [W]

Load Initializes a FSR pointer
1 Literal to FSRn lfsr n,kkk • • • • • [FSRn] <- #kkk

Swap Interchanges File nybbles

File swapf f,d,a • • • • • [d] <- [F(3:0)][F(7:4)]

• Flag not affected
√

Flag operates in the normal way
W Working register f File register
fs Source File fd Destination File
#kk 8-bit constant #kkk 12-bit constant
a Access RAM d Destination, WREG or a File register
BSR Bank Select Register <- Becomes
n FSR 0, 1 or 2 1 2-word instruction
[] Contents of

movlw 10001101 LLLLLLLL
Copies the specified 8-bit constant (i.e. literal) into WREG. For instance,
movlw h’80’ initializes WREG to b’10000000’.

Note that by definition, the target is always the Working register, so another step is
necessary to set up a File register to a constant value—see below.

movlb 00000001 LLLLLLLL
We have already seen in Fig. 4.9 on p. 82 that treating the Data store as a banked
structure, we need to be able to change the Bank Select Register to point to one of
16 banks. One way of doing this would be to initialize WREG and then copy the
datum to BSR; e.g. movlw 4, movwf BSR enables entry into Bank 4 of RAM.

Where general-purpose data is spread over several banks, then this bank switch-
ing process will occur frequently and it is desirable that the overhead of chang-
ing BSR should be kept to a minimum. This is the raison d’être for including
this instruction in the instruction set. As an example, consider copying the byte
at File h’422’ to Port B at File h’F81’:

110 The Essential PIC18® Microcontroller

movlb ; Point BSR to Bank 4
movf h’22’,w,1; Copy byte in File h’(4)22’ in Banked RAM to W
movwf h’F81’,0 ; and to PORTB in Access RAM

movwf 0110111 a FFFFFFFF
This instruction is used to copy (or store) the contents of WREG into a File. For in-
stance, movwf h’023’,0 stores the byte in WREG to File h’023’ in Access RAM.

For example, to initialize File h’023’ to, say, b’10000000’:

movlw h’80’ ; Set contents of W to b’10000000’
movwf h’023’,0 ; and copy to File h’023’ in Access RAM

movf 010100 d a FFFFFFFF
This instruction is normally used to copy (or load) the contents of any File into
WREG. For instance, movf h’022’,w,0 loads WREG with the contents of
File h’022’ in Access RAM.

It is possible to specify the File itself as the destination; for instance,
movf h’022’,f,0. This circuitous command copies the byte contents of
File h’022’ back onto itself; that is there is no change in its contents! However,
in the process the Z and N flags are activated as appropriate to the datum. Thus
the instruction movf [File],f can be used in lieu of a TeST File for zero or
negative instruction; i.e. tstf [File] that is commonly available to most other
MPU/MCU families. Earlier PIC MCU families did not have a tstf instruction,
but as we shall see in Table 5.4, the PIC18 family has a tstfsz (TeST File and
Skip if Zero) instruction. As the btfss instruction can be used to test bit 7 (i.e. for
negative) and skip, this use of movf is no longer as common as it was.

Given the property of most instructions acting on a File of specifying either the
same File or the Working register as the destination, then a Move operation can be
considered an implicit part of such instructions. As an example; for some situations
to increment the contents of a File and then move it to WREG could be coded either
as:

5 The Instruction Set 111

incf h’022’,f,0 ; Increment File h’022’s contents
movf h’022’,w,0 ; and copy it into W

or

incf h’022’,w,0 ; Copy File h’22’s contents plus 1 to W

Of course the latter does not actually change the state of the File.

lfsr 1110111000 ii LLLL

11110000 LLLLLLLL
The Load File Select Register double-word instruction is able to initialize any one of
the three (ii) FSR pointer registers with a 12-bit literal—see Fig. 5.1. For example,
lfsr 1,h’422’ initializes FSR1 to h’0422’; or FSR1H to h’04’ and FSR1L to
h’22’.

movff 1100 ssssssssssss

1111 dddddddddddd
The MOVe File to File instruction is unique in that it specifies two completely dif-
ferent Files, one holding the source datum and one the destination. A full 12-bit
address is carried by this double-word instruction, and thus movff treats the Data
store as a linear (that is non-banked) array—as described on p. 84.

movff is especially useful for copying data in between SPRs and general-purpose
storage. The diagram above shows a byte being relocated from File h’422’ to Port B
at File h’F81’. However, due to problems the interrupt service logic has with double-
word instructions,the target should not be PCL nor any of the TOS (Top Of Stack)
registers if interrupts are enabled.

swapf 001110 d a FFFFFFFF
swapf interchanges the top and bottom 4-bit nybble in a File and places
the outcome either back in the File or in the Working register. For instance,
swapf h’022’,w,0:

112 The Essential PIC18® Microcontroller

The swapf instruction is useful where the two nybbles are used to hold BCD digits.
It is sometimes used as an alternative way of copying the contents of a File into
WREG. Unlike movf, the Status flags are not altered with this instruction. The
downside of this transparent equivalent is of course the two nybbles are swapped
around in this process; but if required they can be unswapped by swapping a second
time; i.e. swapf WREG,f—see p. 195.

Arithmetic Instructions
The base- and mid-range PIC MCU processors can do little more arithmetic than
unsigned adding and subtracting byte operations. The enhanced-range family can
do byte signed addition and subtraction, with and without carry/borrow and un-
signed multiplication. Clearing, incremention and decrementation, negation setting
and individual bit operations complete the repertoire. See Table 5.2.

Addition
Three addition instructions add two bytes together, generating a carry-out. Also in
this category is an instruction to facilitate BCD addition.

addlw 00001111 LLLLLLLL
This instruction allows the programmer to add an 8-bit constant (literal) to WREG;
for instance, addlw b’10101010’:

addwf 001001 d a FFFFFFFF
Adds a variable in the Data store to the byte constants of WREG. Unlike addlw,
the destination of the outcome can be specified to be either the Working register or
the original File. For instance, addwf h’026’,f,0:

5 The Instruction Set 113

Table 5.2 Arithmetic

Operation Mnemonic Flags Description

N OV Z DC C

Add Binary addition

Literal to W addlw k
√ √ √ √ √

[W] <- [W] + #kk

W to File addwf f,d,a
√ √ √ √ √

[d] <- [W] + [f]

W + C to File addwfc f,d,a
√ √ √ √ √

[d] <- [W] + C + [f]

Bit twiddle Alters a single bit

Clear bcf f,n,a • • • • • [fn] <- 0

Set bsf f,n,a • • • • • [fn] <- #1

Toggle btg f,n,a • • • • • [fn] <- fn
Clear Zeroes destination byte

File clrf f,a • • √ • • [f] <- #00

Decimal Adjust Corrects addition of packed
BCD bytesW daw • • • √ √

Decrement Subtract one

File decf f,d,a
√ √ √ √ √

[f] <- [f] - #01

Increment Add one

File incf f,d,a
√ √ √ √ √

[f] <- [f] + #01

Multiply Unsigned 8 × 8 multiply

Literal with W mullw k • • • • • [PRODH:L] <- [W] x #kk

W with File mulwf f,a • • • • • [PRODH:L] <- [W] x [f]

Negate 2’s complement sign change

File negf f,a
√ √ √ √ √

[f] <- −1[f]

Set Sets all bits in a File to 1

File setf f,a • • • • • [f] <- #h’FF’

Subtract Binary subtraction

W from literal sublw k
√ √ √ √ √

[W] <- #kk - [W]

W from File subwf f,d,a
√ √ √ √ √

[d] <- [f] - [W]

F − W − B subwfb f,d,a
√ √ √ √ √

[d] <- [f] - [W] - C

W − F − B subfwb f,d,a
√ √ √ √ √

[d] <- [W] - [f] - C

#0 Single zero bit #1 Single one bit
#00 Zero byte #01 Byte h’01’
#kk 8-bit constant n 3-bit specifier 0–7
fn Bit n of File

addwfc 001000 d a FFFFFFFF
Like all arithmetic operations, data are processed in 8-bit chunks. In order to
facilitate multi-byte operations, instructions must be able to have regard to the
carry/borrow-out generated by a previous instruction. The addwfc instruction is
an extension to addwf but also adds the prior state of the C flag to the outcome. For
instance, addwfc h’030’,f,0:

114 The Essential PIC18® Microcontroller

In order to illustrate addition of any length, we need to code a sequence of
byte-sized additions which start from the least- and work their way up to the most-
significant digit, with any carry from the nth digit being added into the (n + 1)th
summation. The least significant addition has a presumed carry-in of 0 and carry-
out from the most significant becomes the highest bit of the outcome. For instance,
h’FF FF’ + h’FF’ = h’1 00 FE’ (65,535 + 255 = 65,790).

To illustrate this process we will write a program to add an unsigned 16-bit
number (the addend) to a 16-bit unsigned augend to give a 17-bit sum. The augend
from Fig. 5.9 is located in Access RAM in the two locations File h’020’ (low byte)
and File h’021’ (high byte). The addend is in File h’023:22’ and the outcome is in
File h’032:31:30’.

Given that we need to implement this process as a sequence of steps executable
by byte instructions, then we need to produce a task listing.

1. Add the low byte of the augend to the low byte of the addend, generating the low
byte of the sum and carry-out C1; Fig. 5.10(a).

2. Add with the carry C1 the high bytes of the augend and addend to give the high
byte of the sum and a new carry-out C2; Fig. 5.10(b).

3. The upper byte of the sum is the last carry-out C2; either 0 or 1; Fig. 5.10(c).

As this is the first program of any substance in this chapter, a detailed visualiza-
tion, such as shown in Fig. 5.10, has been given. For most instances, detail at this
level is not helpful, and a more abstract flow chart can augment a task list.

In the listing of Program 5.4 the three tasks are identified by an appropriate
comment.

Fig. 5.9 The process

5 The Instruction Set 115

Fig. 5.10 Visualisation of the task

Preamble
All data is named using the equ directive. As discussed in p. 85, meaningful names
rather than raw File addresses makes for a more readable program, with less chance
for error and facilities debugging.

Task 1
The lower byte of the augend is loaded into WREG, added to the low byte of the
addend and the outcome byte stored in memory as the lower byte of the sum. The
C flag is set as appropriate by the addwf instruction and (fortunately) is not altered
by the following movement instructions.

Task 2
The higher byte of the augend is fetched into WREG. It is then added with the pre-
vious (unaltered) state of the C flag to the higher byte of the Addend. The outcome
is then copied into the high byte of the sum.

Task 3
Both the contents of the upper byte of the Sum and Working register are cleared;
neither of which process affects the C flag. The instruction addwfc SUM_U,f,0
thus effectively puts C2 into the upper byte of Sum.

One point to reinforce in this program, is to ensure any intervening instructions
between the carry-out/borrow-out and carry-in/borrow-in operations do not alter the
C flag. In our case, movwf, movlw and clrf are C-flag neutral.

116 The Essential PIC18® Microcontroller

Program 5.4 The double-precision add program
AUGEND_L equ h’020’ ; Name the two augend Files
AUGEND_H equ h’021’
ADDEND_L equ h’022’ ; Name the two addend Files
ADDEND_H equ h’023’
SUM_L equ h’030’ ; Name the three sum Files
SUM_H equ h’031’
SUM_U equ h’032’

; Task1 --
DP_ADD movf AUGEND_L,w,0 ; Get low byte of Augend into W

addwf ADDEND_L,w,0 ; Add low byte Addend, result in W
movwf SUM_L,0 ; and put away as low byte Sum

; Task 2 ---
movf AUGEND_H,w,0 ; Get high byte of Augend
addwfc ADDEND_H,w,0 ; Add high byte of Addend with Cin
movwf SUM_H,0 ; Put away as mid byte Sum

; Task 3 ---
clrf SUM_U,0 ; Zero upper sum byte (C unchanged)
movlw 0 ; Zero Working reg. (C unchanged)
addwfc SUM_U,f,0 ; & add Cin, giving upper Sum byte

..... ; Continue with next routine

daw 00000000000001111
An 8-bit File can be used to store two BCD digits, each decimal digit being encoded
in a 4-bit nybble from b’0000’ through b’1001’ (0 . . .9)—see p. 6. When normal
binary addition is carried out on such a datum, a correction needs to be made to
account for the six illegal combinations b’1010’ through b’1111’. We have already
designed a program to implement a BCD incrementation in Example 4.5 on p. 91.
Essentially what we did in Program 4.1 was to check each nybble in turn and if it
was b’1010’ add six, to account for the unused combinations.

In the more general case of addition, the test before conditionally adding six
needs to be expanded somewhat. The examination is if the nybble is any of the six
unwanted patterns, or else a nybble carry-out (a half carry from the lower nybble or
full carry from the higher nybble) has occurred. For instance, using one of the PIC
MCU’s Addition instructions to add h’18’ + h’09’ = h’21’. The low nybble digit 1 is
perfectly legitimate, but the DC flag will be set to signify a half carry. We then need
to add h’06’ to give the corrected BCD value of h’27’.

The instruction daw automatically adjusts the contents of the Working register
from an earlier addition of two packed BCD nybbles to give a correct packed BCD
result. It implements the following algorithm.

• IF the lower nybble in WREG is greater than 9 or DC == 1 THEN add h’06’ to
the outcome.

• IF the higher nybble in WREG is greater than 9 or C == 1 THEN add h’60’ to the
outcome.

5 The Instruction Set 117

Both DC and C flags are altered as appropriate.
To illustrate the usage of this instruction, the following code fragment replaces

that of Program 4.1.

BCD equ h’020’ ; The packed BCD datum is in File h’020’
BCD_INC incf BCD,w,0 ; Binary incremented number put in W

daw ; Correct to BCD format
movwf BCD,0 ; Put it back in Access RAM @ File h’020’

Subtraction
The four Subtract instructions mirror the Addition instructions, but with one impor-
tant difference. Subtraction is not commutative; that is the order of the operands are
important. For instance; 8–6 is not the same as 6–8.

sublw 00001000 LLLLLLLL
This instruction subtracts the byte datum in WREG from a constant; that is [L]−[W].
This is a prime source of error as a common expectation is that this instruc-
tion should subtract the literal from WREG, rather than the other way around.
For instance, if the contents of WREG were, say, h’64’ (d’100’), then the instruc-
tion sublw 1 instead of subtracting 1 will give 1 − h’64’ = h’9D’, which is dec-
imal 157 (actually in 2’s complement form −h’63’). As an alternative, consider
addlw h’FF’. This will give in our example h’64 + FF = (1)63’ (decimal 99).
If we ignore the carry for the moment, the 8-bit outcome in WREG is one less than
the original contents. Of course, knowing that h’FF’ is the 2’s complement of −1
then our instruction is really addlw -1, which makes more sense in our context.

Thus if the intention is to subtract a constant from the contents of WREG, then
it is preferable to use the addlw instruction with the 2’s complement of the literal.
The assembler is happy to convert negative numbers to 2’s complement equivalents;
for instance, addlw -6 instead of addlw h’FA’.

subwf 010111 d a FFFFFFFF
This SUBtract Working register from File([F] − [W]) instruction subtracts the byte
contents of WREG from a variable in the Data store. Data may be either 2’s
complement signed or unsigned. As usual, the destination of the outcome can
be specified to be either the Working register or the original File. For instance,
subwf h’26’,f,0.

118 The Essential PIC18® Microcontroller

Program 5.5 The double-precision subtraction program
MINUEND_L equ h’020’ ; Name the two Minuend Files
MINUEND_H equ h’021’
SUBTRAHEND_L equ h’022’ ; Name the two Subtrahend Files
SUBTRAHEND_H equ h’023’
DIFFERENCE_L equ h’030’ ; Name the two Difference Files
DIFFERENCE_H equ h’031’

; Task1: First subtract the least-significant nybbles --------
DP_SUB movf SUBTRAHEND_L,w,0; Get low byte of SUBTRAHEND

subwf MINUEND_L,w,0 ; subtract from MINUEND
movwf DIFFERENCE_L,0 ; & put away as lo byte Dif

; Task 2: Now subtract the highest nybble with borrow ---------
movf SUBTRAHEND_H,w,0; Get hi byte of SUBTRAHEND THEN
subwfb MINUEND_H,w,0 ; sub from MINUEND with borrow-in
movwf DIFFERENCE_H,0 ; Put away as mid byte Difference

..... ; Continue with next routine

As we discussed on p. 78 and Example 4.2 on p. 89, the C flag acts as the com-
plement of the borrow-out after a Subtract instruction. Forgetting this complement
is a fruitful source of programming errors!

subwfb 010110 d a FFFFFFFF
This is an extension of subwf, which takes into account the state of the borrow-in
state held in the C flag (borrow). Here the outcome is the difference between the
byte in a File and the sum of WREG and the complement of C; i.e. [F] − ([W] + C).

In a similar manner to addwfc, this instruction is used for multiple-byte sub-
traction. As an example, consider subtracting an unsigned 16-bit Subtrahend from a
like-sized Augend to give the Difference. As the quantities are magnitude only, any
difference will be smaller than the originating quantities, so unlike Fig. 5.9, we only
need two bytes to hold the outcome.

We see from Program 5.5 that the subtraction of the lower column is imple-
mented using the plain subwf instruction. In using subwfb for the next signifi-
cant nybbles, the borrow-out from the previous column is added in. As in the case
of Program 5.4 any intermediate instructions do not alter the C flag.

The same code also works for 2’s complement signed quantities. However, it is
possible that the difference may be larger than either the Augend or Subtrahend.
For instance, +56 − (−27) = +83. In this case overflow into the sign bit may occur
and we will need a 3-byte Difference space. Program 5.9 shows the coding for this
situation.

subfwb 010101 d a FFFFFFFF
SUBtract File from WREG is a truncated version of subwfb, where the datum in a
File is subtracted from that in WREG, i.e. [W] − ([F] + C).

5 The Instruction Set 119

Single-Operand Instructions
The arithmetic operations of clearing, setting, incrementation and decrementation
on a target File are covered in this sub-category.

incf 001010 d a FFFFFFFF
The contents of the specified File plus one is placed either back in the File or else
in WREG. In the latter case the original state of the File remains unchanged. For
example, incf h’26’,0:

This instruction affects all the status flags in the same way as an Addition instruc-
tion3 which makes it easy to implement multiple-precision increments. For example,

if we wish to increment a 3-byte datum stored thus , then the
low byte is incremented and if this generates a carry (or is zero) then the High byte
is incremented, and so on. Thus:

incf LOWER,f,0 ; Add one
bnc NEXT ; IF No Carry THEN branch to exit

incf HIGHER,f,0 ; ELSE increment next higher byte
bnc NEXT ; IF No Carry THEN break out

incf UPPER,f,0 ; ELSE increment next significant byte

NEXT ; Next code

decf 000001 d a FFFFFFFF
This is the counterpart of incf, but subtracts one from the contents of the target
File. Like incf all status flags are altered appropriately. Thus to decrement our
3-byte datum we have:

3In earlier families this instruction only activated the Z flag; see Chap. 5 of S.J. Katzen’s The
Quintessential PIC® Microcontroller, Springer.

120 The Essential PIC18® Microcontroller

decf LOWER,f,0 ; Subtract one
bc NEXT ; IF No borrow THEN branch to exit

decf HIGHER,f,0 ; ELSE decrement next higher byte
bc NEXT ; IF No borrow THEN break out

decf UPPER,f,0 ; ELSE decrement next significant byte

NEXT ; Next code

Note that the breakout branch bc is taken when the C flag is 1. As the C flag is the
complement of the borrow-out state, this indicates no borrow.

clrf 0110101 a FFFFFFFF
The contents of any File can be directly zeroed using this instruction—see
Program 5.1 By targeting the Working register, we can also zero WREG (i.e.
clrf WREG,0) instead of using the specific instruction clrw available to ear-
lier families.

setf 0110100 a FFFFFFFF
The contents of the specified File are set to b’11111111’; for example,
setf h’026’,0:

As an example of the use of this instruction, consider we have a double-byte 2’s

complement datum which we wish to extend to 3-bytes thus .
From p. 11 we see that we need to extend the sign bit state to higher bytes. Thus if
bit 7 of the Higher byte is 0 then the Extension byte is to be all zeros and otherwise
all ones. For instance, if our datum is b’0,0000001 00101100’ (d’300’) then we want
b’0,0000000 00000001 00101100’. If it was b’1,1111110 11010100’ (−300) then the
24-bit version is b’1,1111111 11111110 11010100’. A simple routine to implement
this would be:

clrf EXTENSION,0 ; Start by clearing it
btfsc HIGHER,7,0 ; IF bit 7 of High byte is 0 THEN skip
setf EXTENSION,0 ; ELSE make it all ones

5 The Instruction Set 121

Actually a decf EXTENSION,f,0 instruction would do the same thing in this
case (00 − 1 = h’FF’).

Bit Twiddling
Being able to either Clear, Set or Toggle any individual bit in any File is important,
especially to manipulate the settings in the various SFRs controlling the processor
and peripheral devices, including the physical state of a pin. The general machine
structure of these bit twiddling (sometimes colloquially known as bit bashing or
banging) instructions was discussed on p. 108.

All these instructions, along with others (such as incf) that appear to modify
the contents of data in memory in situ actually transfer the byte into a temporary
register, process the datum (e.g. set a single bit, bsf) using the ALU and then trans-
fer the complete byte back to the Data store; all within a single instruction cycle.
Sometimes this read–modify–write action can cause unintended side effects; see
p. 344 for an example.

bcf 1001 NNN a FFFFFFFF
This instruction enables the programmer to clear any one of the eight bits in the
specified File. For example, to zero bit 0 of File h’FD8’ without altering any other bit
(actually this is the C flag in the Status register):

bsf 1000 NNN a FFFFFFFF
This is similar to bcf but the targeted bit is set to 1. For instance, to set bit 5 of
File h’026’ we have bsfh’026,5,0 (Bit Set 5 in File h’026’ in Access RAM).

btg 0111 NNN a FFFFFFFF
This instruction lets the program flip over the state of one bit in any File. Thus, to
toggle bit 7 of File h’030’ we have btg h’030’,7,0.

Multiplication
Two Multiply instructions implement an 8 × 8 unsigned multiplication with the
resulting 16-bit product being placed in the two SFRs PRODH and PRODL in a
single instruction cycle. Multiplication of signed and larger data can be implemented
as a series of 8 × 8 multiplications together with addition of partial products.

mullw 00001101 LLLLLLLL
This instruction multiplies an unsigned byte in the Working register by an 8-bit con-
stant. For example if the contents of WREG were h’E2 (d’114’), then the instruction
mullw h’0A’ will multiply it by ten and the outcome of h’AD08’ (or d’1140’) will
appear in the SFR pair PRODH:PRODL after an execution time of one instruction
cycle.

122 The Essential PIC18® Microcontroller

mulwf 0000001 a FFFFFFFF
mulwf multiplies an unsigned byte in the Data store with a like datum in the Work-
ing register. Again the 16-bit outcome is placed in PRODH:PRODL. Neither the
contents of the File or WREG are altered and the status flags remain unchanged by
this instruction.

As an example showing the use of this instruction, consider that the 2’s comple-
ment signed bytes in File h’020’, called NUM_1, and File h’021’, called NUM_2, are to
be multiplied together to give a 16-bit signed product in PRODH:PRODL. If we sim-
ply multiply the two signed numbers together then we will get the wrong outcome.
For instance, +85×−5 or 0,1010110×1,1111011 will give 0,101010001010010,
which appears to be +22,098 rather than −430. From this instance, we see that we
will have to apply a correction factor if any of the operands are negative to give the
outcome product the correct sign.

To determine this we have to look carefully at the form of a negative 2’s com-
plement byte number NUM; that is if its bit 7 is 1. From p. 9 we see that the 2’s
complement of −NUM is really 256 − NUM; or in general 2n − NUM for an n-bit
number. It turns out that inverting and adding one is an easy way to do this sub-
traction, but the former representation is more relevant to our problem here. On this
basis if, say, NUM_1 is negative then when we use unsigned multiplication we have
(256−NUM_1)×NUM_2 = (256×NUM_2)− (NUM_1×NUM_2). If we thus take
away 256 × NUM_2 from the outcome, we will be left with −NUM_1 × NUM_2.
However, a multiplication by 256 is the same as a shift left eight places, symbolized
as <<8, and so subtracting NUM_2 from the high byte of the product will implement
our correction factor. In a similar way we can check the sign of NUM_2 and if this
shows negative, then subtract NUM_1 from PRODH. If both operands are negative
then both corrections should be made.

Based on this approach we have as our task list.

• Multiply the two operands together as if unsigned quantities.
• Check sign of the first operand. IF negative subtract the second operand from the

high byte of the product.
• Check sign of the second operand. IF negative subtract the first operand from the

high byte of the product.

which is diagrammatically shown Fig. 5.11 with the example +86 × −5, giving
−430.

The implementation of this algorithm is shown in Program 5.6. mulwf is used
to implement the first task. The btfsc instruction is then used to check the state
of bit 7 of each of the two operands. If this bit is 0 (i.e. positive) then the following

5 The Instruction Set 123

Fig. 5.11 Multiplying two 2’s complement byte datums with mulwf

subtraction correction is skipped over, otherwise (negative) a correction is made.
Thus between zero and two correction subtractions may be made. Irrespective of
the sign of the operands, the program will always execute in six instruction cycles.

Logic and Shifting Instructions
All four basic logic operations of NOT, AND, Inclusive-OR and eXclusive-OR are
provided as well as shifting, as shown in Table 5.3.

NOT
The NOT logic function of Fig. 1.1 on p. 12 inverts (1’s complement) the logic state
of the input. This differs from the Negate instruction which is invert plus one.

124 The Essential PIC18® Microcontroller

Program 5.6 Implementing a 8 × 8 2’s complement multiplication
NUM_1 equ h’020’ ; Signed Number 1
NUM_2 equ h’021’ ; Signed Number 2
PRODL equ h’FF3’ ; Low byte of Product
PRODH equ h’FF4’ ; High byte of Product

; Task 1: Multiply the two operands --------------------------
SIGN_MUL movf NUM_1,w,0 ; Get Number 1 from memory into WREG

mulwf NUM_2,0 ; Multiply them

; Task 2: IF Number 2 is negative take away Number 1 >> 8 ----
btfsc NUM_2,7,0 ; Test NUM_2’s sign bit, skip if +ve
subwf PRODH,f,0 ; ELSE take away NUM_1 from PRODH

; Task 3: IF Number 1 is negative take away Number 1 >> 8 ----
movf NUM_2,w,0 ; Now get Number 2 into WREG
btfsc NUM_1,7,0 ; Test NUM_1’s sign bit, skip if +ve
subwf PRODH,f,0 ; ELSE take away NUM_2 from PRODH

NEXT ; Next routine

comf 000111 d a FFFFFFFF
The logic state of any specified File can be inverted. As an example, the instruction
comf h’026’,f,0 complements the contents of File h’026’ in Access RAM: In
the normal way the outcome can be placed either in the source File or in WREG,
with the original contents being unchanged; for instance:

There is no specific instruction to complement the state of the Working register,
rather use WREG as the target; i.e. comf WREG,f,0. As an alternative, the con-
tents of WREG can be subtracted from b’11111111’ to give the 1’s complement; i.e.,
sublw h’FF’.

5 The Instruction Set 125

Table 5.3 Logic instructions

Operation Mnemonic Flags Description

N OV Z DC C

AND Logic bitwise AND

Literal to W andlw k
√ • √ • • [W] <- [W] · #kk

W to File andwf f,d,a
√ • √ • • [d] <- [W] · [f]

Complement Invert or NOT

File comf f,d,a
√ • √ • • [d] <- [f]

Inclusive-OR Logic bitwise Inclusive-OR

Literal to W iorlw k
√ • √ • • [W] <- [W] + #kk

W to File iorwf f,d,a
√ • √ • • [d] <- [W] + [f]

eXclusive-OR Logic bitwise eXclusive-OR

Literal to W xorlw k
√ • √ • • [W] <- [W] ⊕ #kk

W to File xorwf f,d,a
√ • √ • • [d] <- [W] ⊕ [f]

Rotate File thru C Circular shift via Carry

Left rlcf f,d,a
√ • √ • b7

Right rrcf f,d,a
√ • √ • b0

Rotate File Circular shift

Left rlncf f,d,a
√ • √ • •

Right rrncf f,d,a
√ • √ • •

· Boolean bitwise AND + Boolean bitwise Inclusive-OR
⊕ Boolean bitwise eXclusive-OR [f] Bitwise inverse of the File contents

AND
From Fig. 1.2 on p. 13 you will recall the following relationship:

• ANDing a bit variable with 0 always gives a 0 output.
• ANDing a bit variable with 1 yields an unchanged logic state.

On this basis we can zero a selected group of bits in a datum byte by ANDing with
the appropriate pattern.

In the same manner, ANDing a datum with a test pattern to clear all unwanted
bits can also be used to check if a selected group of bits in the datum is zero. If this
is true, the overall result will be zero and the Z flag will be set accordingly.

andwf 000101 d a FFFFFFFF
The andwf instruction bitwise ANDs the contents of WREG together with the con-
tents of any File, with the outcome being placed either in that same File or in WREG.
For example, to AND each bit of WREG with each corresponding bit in File h’026’,
with the outcome being put back in File h’026’ we have:

126 The Essential PIC18® Microcontroller

For instance, to clear the upper six bits of File h’026’:

movlw b’00000011’ ; Mask pattern in Working register
andwf h’026’,f,0 ; AND it with contents of File h’026’

The alternative would be to use the bcf instruction six times.
To see how the AND function can be used to test for a set of zero bits, consider

a controller for a washing machine where the eight switches in the control panel are
read via Port B, that is, File h’F81’. It is desired to jump to a routine to implement a
Fast Wash if the switches connected to bits 7 and 6 are both zero; that is, the GO
and FAST switches are closed (logic 0). Here is how it could be done:

movlw b’11000000’ ; The test mask
andwf PORTB,w ; ANDed with PORTB
bz FAST_WASH ; Branch if Zero to routine FAST_WASH
..... ; Next routine

By ANDing the contents of File h’F81’ with b’11000000’, the lower six bits will be
cleared. The overall outcome in WREG will be all zero only if both bits 7 and 6 of
Port B are 0 before this action. In this case the Z flag will be set and the following
Branch if Zero instruction will be taken and the program will transfer to the instruc-
tion located at the label FAST_WASH. If a single bit in a File is being tested for zero
then it is more efficient to use btfsc to directly check that bit—see p. 138.

andlw 00001011 LLLLLLLL
The contents of WREG can be bitwise ANDed with a byte literal. For instance:

where the high nybble of WREG is zeroed and the low nybble is left untouched.

5 The Instruction Set 127

Inclusive-OR
From Fig. 1.3 on p. 13 you will recall the following relationship:

• IORing a bit variable with 0 yields an unchanged logic state.
• IORing a bit variable with 1 always gives a 1 output.

On this basis we can set a selected group of bits in a datum byte to 1 by IORing with
a suitable pattern.

iorwf 000100 d a FFFFFFFF
In a similar manner to andwf, the contents of any File can be bitwise Inclusive-
ORed with the contents of WREG. Thus to IOR each bit in WREG with its corre-
sponding bit in File h’026’, with the outcome being put back in the File, we have:

For instance, to set to 1 the top seven bits in File h’096’ in Banked RAM we have:

movlw b’11111110’; The mask byte
iorwf h’096’,f,1 ; Set top 7 bits to 1, lowest bit unchanged

where we are assuming that the BSR is set to h’00’ (its Power-on Reset state) for
Bank 0.

iorlw 00001001 LLLLLLLL
The contents of WREG can be bitwise IORed with a byte literal. For instance, to set
the lower two bits of the Working register to 1:

eXclusive-OR
From Fig. 1.4 on p. 14 you will recall the following relationship.

• XORing a bit variable with 0 yields an unchanged logic level.
• XORing a bit variable with 1 inverts or toggles the state of the input logic level.

Another useful property of the XOR logic operator is as a logic differentiator.
A close inspection of the truth table of Fig. 1.4(a) on p. 14 shows that the output
of an XOR gate is 1 if the two input logic levels are different and 0 if they are the

128 The Essential PIC18® Microcontroller

same. Thus bitwise XORing two bytes together will produce a byte output with 0 in
locations where the two input bits are the same and a 1 where they differ.

xorwf 000110 d a FFFFFFFF

The contents of any File can be bitwise eXclusively-ORed with the contents of
WREG. Thus to XOR each bit in WREG with its corresponding bit in File h’026’
with the outcome being put back in the File:

For example, to toggle the top two bits of File h’036’ in Access RAM we have:

movlw b’11000000’ ; The mask byte
xorwf h’36’,f,0 ; Toggle top two bits only of File h’036’

As an example showing the use of XOR to isolate changes between two bit
patterns, consider a program routine that continually monitors Port B, to which has
been connected eight switches as part of the control panel of a washing machine.
The routine waits until a switch is moved.

START movf PORTB,w,0 ; Get initial state of switches
movwf h’020’,0 ; Put away at File h’020’

S_LOOP movf PORTB,w,0 ; Sample switches
xorwf h’020’,w,0 ; Check for alterations from original
bnz NEXT ; Skip out IF Z flag clear (non zero)
bra S_LOOP ; ELSE Branch back and check again

NEXT ; Next routine

Two possible scenarios are:

5 The Instruction Set 129

The outcome in WREG reflects any changes. In the first case there are no differences
between the latest sample and the original switch settings put away in File h’020’. In
the second situation, Switch 4 has just been thrown from 1 to 0.

You can determine which switch changed by shifting the outcome (the change
byte) right, counting until the residue is zero; see Fig. 5.13. You can also determine
the type of change (0 → 1 or 1 → 0) by ANDing the change byte to the original
switch settings in File h’020’, i.e., andwf h’020’,w,0. If the outcome at bit 4 is
a 0, then the original state must have been 0 and therefore the change must have
been 0 → 1, and vice versa. In our example, bit 4 has gone 1 → 0.

xorlw 00001010 LLLLLLLL
The contents of WREG can be bitwise XORed with a byte literal. For instance, to
invert the lower nybble in WREG:

Shifting
Shifting data left or right is a fundamental operation found in all digital systems. We
saw in Fig. 2.22 on p. 36 how this could be done in hardware. Without exception,
all MPU/MCU devices have ALUs that allow various combinations of Shift Right
and Shift Left operations to be performed.

The enhanced-range PIC MCU family has two pairs of instructions in this cate-
gory. Each pair shifts the contents of any File one place either right (>>, from most
to least-significant) or left (<<). They differ in their interaction with the C flag.

rrcf 001100 d a FFFFFFFF
Rotate Right File through Carry shifts the byte contents of the specified File once
right, with the incoming bit coming from the C flag, which is simultaneously re-
plenished with the outgoing bit. This circular action is emphasised in Fig. 5.12. In
essence, this is a Shift Right function but with the Carry flag acting as a sort of bit 8
buffer.

With this diagram in mind the programmer can do a plain shift right with a zero
coming in (as in Fig. 2.22) by first clearing the Carry bit before rotating; for instance,
for File h’030’:

bcf STATUS,C,0 ; Zero the Carry bit in the Status register
rrcf h’030’,f,0 ; Now rotate right \verb#»#

130 The Essential PIC18® Microcontroller

Fig. 5.12 Rotating the contents of a File once right

One use of the shifting operation is to bitwise examine a datum. For example,
assume that the state of an array of eight switches from a mobile phone has been
copied into File h’026’. You are required to find the leftmost open switch, where
you can assume that an open switch reads as 1 and a closed switch as logic 0. For
instance, if the reading was:

then the outcome in WREG should be 6 (b’00000110’) for SW6.
The coding given in Program 5.7 uses the Working register as a counter. As the

Carry flag is cleared each time before the shift, logic 0s are brought in from the left.4

Eventually the residue will become all zeros and the process should then terminate.
Thus 00010111 (1) � 00001011 (2) � 00000101 (3) � 00000010 (4) � 00000001
(5) � 00000000 (6).

A task list for this problem, also shown diagrammatically in Fig. 5.13, would
be:

1. Zero KEY_COUNT
2. DO shift right and increment WHILE SWITCH_PATTERN is not zero

a. IF residue is zero THEN break
b. Shift left SWITCH_PATTERN once
c. Increment KEY_COUNT

3. KEY_COUNT holds the position of the leftmost open switch

4MPU/MCUs that have Logic Shift instructions always shift in 0s irrespective of the state of the
C flag; for instance, Motorola’s lsr (Logic Shift Left).

5 The Instruction Set 131

Fig. 5.13 Finding the leftmost 1 by continuous shifting

Shifting right pops out the rightmost bit into the Carry flag. Replacing bz
(Branch if Zero) by bc (Branch if Carry) would determine the position of the right-
most bit. In many situations repetitively shifting into the Carry flag can be used to
examine the data on a bit-by-bit basis. For instance, we could modify our program
to total the number of set bits in the byte, as in Program 5.10.

Notice that Program 5.7 returned a zero outcome if no switch was open. If the
test for zero had been done after the Shift operation, then it would not be possible
to distinguish between this situation and Switch 1 alone being open. It is important
to design your software for robustness, so that limiting conditions, such as this, are
dealt with. Finally note that movf is used to test the File for zero by copying its
contents back onto itself, as described on p. 110.

rlcf 001101 d a FFFFFFFF
Rotate Left File through Carry is similar to rrcf but, as shown in Fig. 5.14, the
shift direction is from the low to the high bit position.

As an example of the use of rlcf we note from p. 11 that we can use shifting
to the left to multiply by powers of two. For instance:

132 The Essential PIC18® Microcontroller

00000110 (6) <<
00001100 (12) <<
00011000 (24) <<
00110000 (48) <<

etc.

where the C Shift-Left operator << is used to indicate a shift left.

Program 5.7 Scanning the File looking for the highest 1
PATTERN equ h’026’ ; Pattern is in File h’026’
STATUS equ h’FD8’ ; The Status reg is File h’FD8’
C equ 0 ; in which bit 0 is the C flag
WREG equ h’FE8’ ; The Working reg, in Access RAM

; Task 1 ---
HIGH_BIT clrf WREG,0 ; Zero the count

; Task 2: DO right shift & inc count, WHILE datum isn’t zero
; Task 2a --
LOOP movf PATTERN,f,0 ; Test for residue zero?

bz FINI ; If zero THEN Branch to exit

; Task 2b --
bcf STATUS,C,0 ; Carry flag (carry-in) cleared
rrcf PATTERN,f,0 ; Shift datum right

; Task 2C --
incf WREG,f,0 ; Continue by adding one to count
bra LOOP ; and do another shift

; Task 3 ---
FINI ; KEY_COUNT is in W

Fig. 5.14 Rotating the contents of a File once left

5 The Instruction Set 133

Fig. 5.15 Shifting a double-byte datum once to the left to multiply by two

To illustrate the process, assume that if we have the 16-bit number b’00000111
11010000’ (which is decimal 1024 + 512 + 256 + 128 + 64 + 16 = 2000), then this
will be stored in two Files; for example:

00000111
File h’031’

11010000
File h’030’

After shifting once left we have:

00001111
File h’031’

10100000
File h’030’

which is decimal 4000 (2048 + 1024 + 512 + 256 + 128 + 32 = 4000).
The problem is that our rlcf instruction can only shift a single byte at a time.

Thus we need to break this down to three steps, as illustrated in Fig. 5.15.

1. Clear the Carry flag so that we will rotate in a 0.
2. Rotate the low byte left, with b7 being popped out into the Carry flag.
3. Rotate in the carry-out of the previous Rotate operation into the high byte.

From the diagram we see that the process is straightforward, with the carry-out
from the previous File becoming the carry-in for the second File. The routine is thus:

bcf STATUS,C,0 ; Clear C flag; will hold the incoming bit
rlcf h’030’,f,0 ; Rotate into the lo byte, MSB pops out into C
rlcf h’031’,f,0 ; Rotate into the high byte

rrncf 010000 d a FFFFFFFF

rlncf 010001 d a FFFFFFFF
Rotate Right/Left File Not through the Carry flag is similar to rrcf/rlcf pair
except that the C flag is not used as an intermediary—see Fig. 5.16.

134 The Essential PIC18® Microcontroller

Fig. 5.16 The two plain Rotate instructions which do not pass through the C flag

Ancestor families only provided the Rotate through Carry instructions, using the
mnemonics rrf and rlf, but these instructions distort the datum in that the state
of the C flag is injected into the File on shifting. These plain Rotates illustrated
here are non destructive, in that rotating n places and then back n places preserves
the original datum. This can be useful if the 8-bit field is used to store several da-
tum of smaller bit groups. For example, if File h’050’ has three bit fields; arg1 =
File h’050’[7:6]’, arg2 = File h’050’[5:2] and arg3 = File h’050’[1:0]. The packed da-
tum thus is organised as arg1arg1 arg2arg2arg2 arg3arg3 . It is desired to extract
arg2 into the Working register right-aligned but leave the original data unchanged.
The following code is one possibility.

rrncf h’050’,f,0 ; Rotate the packed datum right once
rrncf h’050’,w,0 ; and again aligning arg2 right in W
andlw b’00000111’ ; Mask out arg1 and arg3 from W
rlncf h’050’,f,0 ; Rotate the packed datum left to restore

Program Counter Instructions
Anything other than trivial software requires an interaction with events occurring
either internally (such as a timer overflowing) or externally (such as a temperature
rising above a preset level)—see Fig. 3.8 on p. 59. In order to respond to environ-
mental events, the program must be able to jump to an appropriate service routine.
This entails modification of the state of the Program counter such as adding two to
the PC, causing it to skip over one program word. Other possibilities are adding
on a signed number, or offset, and thus causing a branch forward or backwards, or
overwriting the entire contents resulting in the focus of execution to go to a new
location in the Program store.

Whatever the mechanism of the jump, this may be unconditional; that is always
taken. Alternatively, this jump may depend on the state of some bit in a File or input
pin, or frequently the setting of a flag in the Status register.

5 The Instruction Set 135

Table 5.4 Program Counter and decision instructions

Operation Mnemonic Flags Description

N OV Z DC C

Absolute jump Goto a fixed instruction
1 Goto an instruction goto aaaaa • • • • • [PC]<-aaaaa

Branch unconditionally bra Offset • • • • • [PC]<-[PC]+Offset

No operation Do nothing
nop • • • • • [PC]<-[PC]+2

Branch conditionally IF condition true THEN branch
Branch if Carry bc offset • • • • • IF C==1: [PC]<-[PC]+offset

Branch if No Carry bnc offset • • • • • IF C==0: [PC]<-[PC]+offset

Branch if Negative bn offset • • • • • IF N==1: [PC]<-[PC]+offset

Branch if No Carry bnc offset • • • • • IF N==0: [PC]<-[PC]+offset

Branch if OVerflow bov offset • • • • • IF OV==1: [PC]<-[PC]+offset

Branch if No OVerflow bnov offset • • • • • IF OV==0: [PC]<-[PC]+offset

Branch if Zero bz offset • • • • • IF Z==1: [PC]<-[PC]+offset

Branch if No Zero bnz offset • • • • • IF Z==0: [PC]<-[PC]+offset

Bit test and skip Check bit in File and skip if true
Bit Test in File, Skip if 0 btfsc f,n,a • • • • • PC = PC+2 IF fn == 0

Bit Test in File, Skip if 1 btfss f,n,a • • • • • PC = PC+2 IF fn == 1

Decrement and skip Decrement & skip if result is #00
File decfsz f,d,a • • • • • d <- f--, PC-- IF [f] == #00

File dcfsnz f,d,a • • • • • d <- f--, PC-- IF [f] != #00

Increment and skip Increment & skip if result is #00
File incfsz f,d,a • • • • • d <- f++, PC++ IF [f] == #00

File infsnz f,d,a • • • • • d <- f++, PC++ IF [f] != #00

++ Increment contents -- Decrement contents
== is equivalent to != Is not equivalent to
aaaaa Absolute 20-bit instruction address 1 2-word instruction
Offset 11-bit signed word offset offset 8-bit signed word offset

Unconditional Jumps
These three instructions always alter the state of the PC. However, used in conjunc-
tion with the Conditional instructions listed later on, they are an indispensable part
of the decision making mechanism.

bra 11010 SNNNNNNNNNN
BRanch Always adds on a signed 11-bit word offset S,NNNNNNNNNNN to the state
of the whole PC, which then shifts execution to a new setting relative to the bra
instruction—as described on p. 99. Actually, the PC is already pointing to the fol-
lowing instruction, due to pipelining—see Fig. 4.3 on p. 73. Thus the instruction
bra .+8, shown to the left of Fig. 5.17, will end up nine words beyond. Notice
how the assembler uses the . operator to indicate current setting of the PC.

136 The Essential PIC18® Microcontroller

Fig. 5.17 Showing the difference between a branch (left) and absolute go to (right)

In practice the programmer will normally place a label at the destination instruc-
tion; in our example the instruction at h’00016’ is labeled JILL. This will enable
the assembler to work out the offset. The total range of bra is ±1024 words.

In the normal course of events the Program Counter has been incremented to
h’00006’ and the Instruction located here has already been fetched into the top of
the Pipeline, ready to be executed in the next instruction cycle. However, when
the bra .+8 instruction at the bottom of the Pipeline is executed, the computed
Program store address (h’00006 + 00010 = 00016’) is placed in the PC (note that
8 words is h’010’ or 16 bytes). This means that the next instruction to be executed
is the one at this location. To permit this to happen, Instruction 12 must be fetched
down into the Pipeline, overwriting the now unwanted code. This process is known
as flushing, and takes an extra instruction cycle to implement. Thus bra takes two
instruction cycles to execute.

5 The Instruction Set 137

goto 11101111 AAAAAAAA

1111 AAAAAAAAAAAA
This instruction allows the programmer to jump to a specified instruction anywhere
in the Program store. Unlike the bra instruction, a full 21-bit address is super-
imposed over the original contents of the Program Counter. In order to hold this
address, goto is a 2-word instruction with the first word holding the bottom eight
address bits and the second word the top 12 bits. As usual, A0 is forced to 0. The sec-
ond word is also prefixed with the op-code for a nop instruction, in case a jump is
performed in the middle of the instruction. An example of this is shown in Fig. 5.19.
In the example shown to the left of Fig. 5.17, the instruction goto h’3F9’ is lo-
cated in the Program store at location h’0000A’.

In the diagram, location h’007F2’ is labeled FRED (the following colon is op-
tional). Using labels rather than absolute locations is strongly recommended (see
also p. 104) as the programmer does not easily know where an instruction is located
in the Program store, and in any case, this location may change as the program
develops.

goto is sometimes known as a long jump, as compared to the short-jump bra
alternative. Compared to the latter, goto takes an extra word of storage. However,
despite its double-word structure, it still only takes one additional instruction cycle
to execute.

nop 00000000000000000

or 1111 XXXXXXXXXXXX
No OPeration does not alter the state of the system in any way, but the PC will in-
crement as a consequence of the instruction code being fetched from the Instruction
store. Thus, its sole outcome is [PC] <- [PC] + 2. This takes one instruction
cycle, so its main use is to implement a short delay, 1 µs for a 4 MHz clock rate. For
instance, to pulse Port A’s pin 2 low for 2 µs and then high we have:

bcf PORTA,2,0 ; Pin RA2 low
nop ; for 2 us
nop
bsf PORTA,2,0 ; and now high

with the assumption that bit 2 of Port A has been set up as an output (see p. 85) and
that pin RA0 was high before entering the routine.

The second binary coding of this instruction is found in the second word of a 2-
word instruction. This is to avoid erratic behaviour if execution jumps directly into
the second word of such an instruction—see Fig. 5.19.

Conditional Skips
The majority of instructions in Table 5.4 skip or branch only if the outcome of a
process meets a specified criterion. This is normally signaled by the setting of a bit
in a register or pin; typically a status flag. Decisions are binary, as indicated as an

138 The Essential PIC18® Microcontroller

Fig. 5.18 Skipping over the next instruction whenever bit 7 of File h’020’ is clear

IF-ELSE statement or symbol in a flow chart. More complex multiple pathways
are coded as a series of binary decisions; for example as shown in Fig. 5.25.

btfsc 1011 NNN a FFFFFFFF

btfss 1010 NNN a FFFFFFFF
All binary decisions fundamentally turn on the state of a single binary bit in a File.
As such, Bit Test in File and Skip if Clear/Set are all that are necessary to imple-
ment any binary decision and all the other listed Conditional instructions are simply
convenient derivatives.

Figure 5.18 illustrates the situation where Instruction 6 in the Program store is
btfsc h’020’,7,0. The execution of this instruction checks bit 7 of File h’020’
and on the basis of its state implements one of two outcomes:

1. IF bit 7 is 0 THEN skip over Instruction 7 and execute Instruction 8.
2. IF bit 7 is 1 THEN continue on as normal to Instruction 7.

Often Instruction 7 is a bra, so the program can react to the state of any bit in the
Data store by branching to an appropriate routine.

When a skip occurs, the Pipeline requires to be flushed, as do all instructions that
disrupt the orderly progression of the Program Counter. This means that a btfsc
or btfss instruction takes one instruction cycle to execute if no skip takes place
and two instruction cycles if a skip is executed. However, there are circumstances
where it takes three instruction cycles if a skip is performed. As an example, if
consider that we want to sample the state of pinRB7 and if high jump to a routine
labeled CONTINUE. This could be implemented by using btfsc PORTB,7,0 to

5 The Instruction Set 139

Fig. 5.19 Skipping into the middle of a double-word instruction

skip over a following goto instruction if RB7 were 0 otherwise with no skip the
program could go to CONTINUE.

SAMPLE btfsc PORTB,7,0 ; Check pin RB7. Skip IF == 0 (low)
goto CONTINUE ; ELSE jump out to CONTINUE

bra SAMPLE ; Try again waiting for high

As shown in Fig. 5.19, if the skip was taken (the pin being low) then the PC
would land in the middle of the 2-byte goto instruction. As we have already seen,
the second word of all double-byte instructions is coded as a pseudo nop instruc-
tion, so all that will happens is for the program to progress to Instruction 8, but
incurring an extra instruction cycle delay. Thus the execution time for all Jump in-
structions is listed as 1, 2 or 3 instruction cycles. In our case, if the instruction
labeled CONTINUE was closer than 1024 words away, goto CONTINUE should
be replaced by bra CONTINUE.

As a matter of style, the instruction following a Skip instruction is often indented,
to show that it is to be hopped over.

decfsz 001011 d a FFFFFFFF

dcfsnz 010011 d a FFFFFFFF
DECrement File and Skip if Zero represents an alternative way of making a decision.
As a combination of the instruction pair decf followed by btfss STATUS,Z,
this instruction allows the programmer to decrement the contents of any File, and if
the outcome is zero, then skip over the next instruction.

140 The Essential PIC18® Microcontroller

Fig. 5.20 Pulse pin RA0
repeating 20 times

A typical use of this instruction is to count the number of passes through a loop.
For example, suppose it is necessary to pulse Port A pin RA0 low 20 times. To
implement this task, shown in Fig. 5.20, we have the code, assuming a 4 MHz
crystal:

movlw d’20’ ; Put decimal 20 into W and copy into
movwf h’09F’,1 ; File h’09F’ (Bank 0) as a loop counter

;---
LOOP bcf PORTA,0,0 ; Pin RA0 low

nop ; One extra cycle delay
bsf PORTA,0,0 ; and now high

;---
decfsz h’9F’,f,1 ; Count down and skip out IF zero
bra LOOP ; ELSE repeat loop if not zero

..... ; Continue

The original code shown between dashed lines is cocooned by the decrementing
test which skips out of the loop whenever the contents of File h’09F’ in Bank 0 reach
zero. We are assuming that the BSR has been cleared; as it would be on Reset.
Notice the assembler notation d’20’ for decimal 20; see p. 266. This is equivalent

5 The Instruction Set 141

to h’14’ but more readily understood by the programmer. Incidentally, only one
nop is used, as the bsf and bcf between them add an extra cycle delay to the total.

DECrement File and Skip if Not Zero is the counterpart which skips over the
next instruction word if the contents of the target File is not zero. That is decf
followed by btfsc STATUS,Z.

incfsz 001111 d a FFFFFFFF

infsnz 010010 d a FFFFFFFF
INCrement File and Skip if Zero increments rather than decrements the con-
tents of the specified File. If this causes the contents to roll over to zero, e.g.,
h’FC → FD → FE → FF → 00’ then the following instruction will be skipped over.
It thus behaves as the instruction pair incf followed by btfss STATUS,Z. In
the case of our example of Fig. 5.20, if we were to preload File h’03F’ with −20 (or
h’EC’) and replace decfsz h’03F’,f,0 by incfsz h’03F’,f,0 then this
will give the same outcome by counting up rather than counting down.

INCrement File and Skip if Not Zero is the counterpart which skips over the
next instruction word if the contents of the target File are not zero. That is incf
followed by btfsc STATUS,Z.

As an example of the use of both these instructions, consider that we wish to

decrement the triplet File and when the array overflows to
h’00 00 00’ go to the routine labeled OVERFLOW. The task list would be:

1. Increment the low byte and IF no overflow THEN break.
2. Increment the high byte and IF no overflow THEN break.
3. Increment the upper byte and IF no overflow THEN break.
4. ELSE go to OVERFLOW.

A suitable routine based on this would be:

incfsz ARG_L,f,1 ; Increment low byte & skip IF zero
bra NEXT ; ELSE break out

incfsz ARG_H,f,1 ; Increment high byte & skip IF zero
bra NEXT ; ELSE break out

infsnz NEXT,f,1 ; Inc. upper byte & skip IF not zero
goto OVERFLOW ; ELSE go off to the specified routine

NEXT ; Continue after incrementation

tstfsz 0110011 a FFFFFFFF
TeST File and Skip if Zero behaves like a movf [FILE],f followed by
btfss STATUS,Z. It enables the program to side-step if the contents of the target
File is zero.

As an example, consider a bank of eight switches that are connected to Port B
(see p. 85); as shown to the left of Fig. 5.21. An open switch gives a high voltage

142 The Essential PIC18® Microcontroller

Fig. 5.21 Testing a bank of switches for any switch closed

(logic 1) when open, due to the pull-up resistor, and low (logic 0) when closed. We
want to continually monitor the switch array until one or more switch closes, then
go to a routine labeled ACTIVITY.

When all switches are open, the voltage pattern presented to the port will be
b’11111111’. The code to the right of the diagram first inverts the pattern with a tar-
get of the Working register. Thus an all-open array will give the pattern b’00000000’
in WREG. If this is the situation then tstfsz will skip over (actually into the mid-
dle of) the goto ACTIVITY instruction and the test will be repeated in an endless
loop. Once one or more switch closes, the datum will be non-zero and the skip will
not be taken. The program will then jump to the required routine.

cpfseq (ComPare File & Skip if Equal) 0110001 a FFFFFFFF

cpfsgt (ComPare File & Skip if Greater Than) 0110010 a FFFFFFFF

cpfslt (ComPare File & Skip if Less Than) 0110000 a FFFFFFFF
One of the more important operations is the comparison of the magnitude of two
numbers. Mathematically this can be done by subtracting the two quantities. If we
are comparing the datum in a File with the byte in the Working register then the
outcome of [W]–[f] gives the actual magnitude difference between the operands.
However, in most cases it is sufficient to determine the relative magnitude of the
quantities, e.g., is the datum in the File greater than the datum in WREG? For un-
signed numbers, this is determined by checking the state of the C and Z flags in the
Status register.

5 The Instruction Set 143

Fig. 5.22 Unsigned comparison of the contents of File h’036’ with WREG

Datum [f] greater than Working register No borrow, non-zero
Datum [f] equal to Working register .Zero
Datum [f] less than Working register . Borrow, non-zero

In terms of our processor, the C flag represents the complement of the borrow after
subtraction and the Z flag is set on a zero outcome. Thus:

[f] Greater than or equal [W] : [f]–[W] gives no borrow; (C = 1).
[f] Equal to [W] : [f]–[W] gives Zero; (Z = 1).
[f] Less than [W] : [f]–[W] gives a borrow; (C = 0).

Figure 5.22 illustrates this, where the byte in File h’036’ is to be compared to that
in the Working register. The instruction subwf h’036’,w,0’ generates the dif-
ference and alters the C and Z flags as shown, giving the three magnitude outcomes.
The actual difference in WREG is irrelevant, but overwrites the original contents,
which may have to be saved before the comparison.

The three Compare instructions listed here have several advantages over the
Subtract–Bit Test process used in earlier PIC MCU families. These instructions
also do the subtraction [f]–[W] but throw away the difference, which does not then
overwrite the contents of WREG. Non of the flags are altered. A single instruction
replaces the two or more needed with the more basic technique and the logic is
clearer.

As an example, consider a series of comparisons with fixed values for a 255-litre
fuel tank. A sensor at the bottom of the tank indicates the remaining volume of fuel
as a linear function of pressure. Assume that the sensor represents the capacity as
a byte that can be accessed at Port B (see p. 85), which we give the name FUEL.
We wish to write a routine that will light an ‘empty’ light (at bit 0 at Port A) if the
capacity is below 20 liters and ring an alarm buzzer (bit 1 at Port A) if below 5 liters.
Both output peripherals are active on logic 1. See Fig. 5.23.

In Program 5.8 the constant 4 is loaded into WREG and the fuel reading in Port B
is compared with this value for greater than. If true then the following instruction,

144 The Essential PIC18® Microcontroller

Fig. 5.23 Comparisons made
in the fuel warning system

Program 5.8 Coding the fuel tank warning system
DISPLAY equ h’F80’ ; Port A
LAMP equ 0 ; in which RA0 is the Lamp
BUZZER equ 1 ; and RA1 is the Buzzer

ALARM bcf DISPLAY,BUZZ,0 ; Turn off the Buzzer
bcf DISPLAY,LAMP,0 ; Turn off the Lamp

movlw 4 ; Set up to compare with 4 liters
cpfsgt FUEL,0 ; Skip IF Fuel is greater than 4
bsf DISPLAY,BUZZ,0 ; ELSE sound buzzer

movlw d’19’ ; Set up to compare with 19 liters
cpfsgt FUEL,0 ; Skip IF Fuel is greater than 19
bsf DISPLAY,LAMP,0 ; ELSE turn on Lamp

NEXT ; Continue with the next routine

which turns on the buzzer, is skipped over. Similarly, the fuel reading is checked for
>19 and if true the lamp turn-on is skipped. In this manner a series of tests can be
made, the outcome of each of these taking an appropriate action.

Note the use of the bsf (Bit Set in File) instruction to set the appropriate pin in
Port A, which we assume to have been initialized as an output. In the same manner
the bcf instruction is used to turn off the lamp and buzzer at the beginning of the
routine.

5 The Instruction Set 145

Fig. 5.24 Signed comparison of the contents of File h’036’ with WREG

The Compare instructions and the flag tests outlined in Fig. 5.22 only apply to
unsigned quantities. If the data is signed then subtraction is used, but this time the
N, OV and Z flags need to be checked, as shown in Fig. 5.24.

Conditional Branches
The PIC18F instruction set has four pairs of Conditional Branch instructions. Unlike
the Unconditional Branch bra which always adds an 11-bit signed offset to the PC
(see p. 135) a Conditional Branch instruction adds on an 8-bit signed offset only if
one of the four principle status flags (not DC) is either set or clear. The potential
branch range is ±128 program words (back or forwards). The four pairs are:

bc (Branch if Carry) 11100010 SNNNNNNN

bnc (Branch if No Carry) 11100011 SNNNNNNN

bn (Branch if Negative) 11100110 SNNNNNNN

bnn (Branch if Not Negative) 11100111 SNNNNNNN

bov (Branch if OVerflow) 11100100 SNNNNNNN

bnov (Branch if No OVerflow) 11100101 SNNNNNNN

bz (Branch if Zero) 11100000 SNNNNNNN

bnz (Branch if Not Zero) 11100001 SNNNNNNN
We have already used some of these instructions; for example bc on p. 119. For
a more extensive illustration, consider the double-precision subtraction of Pro-
gram 5.5. Here we coded for a 2-byte difference on the basis that its value would be

146 The Essential PIC18® Microcontroller

Program 5.9 A double-precision signed subtraction routine
MINUEND_L equ h’020’ ; Name the two Minuend Files
MINUEND_H equ h’021’
SUBTRAHEND_L equ h’022’ ; Name the two Subtrahend Files
SUBTRAHEND_H equ h’023’
DIFFERENCE_L equ h’030’ ; Name the three Difference Files
DIFFERENCE_H equ h’031’
DIFFERENCE_U equ h’032’

; Double-precision subtraction as Program 5.5 -----------------
; Task1 ---
DP_SUB movf SUBTRAHEND_L,w,0; Get low byte of SUBTRAHEND

subwf MINUEND_L,w,0 ; subtract from MINUEND
movwf DIFFERENCE_L,0 ; and put away as lo byte Diff

; Task 2 --
movf SUBTRAHEND_H,w,0; Get hi byte of SUBTRAHEND THEN
subwfb MINUEND_H,w,0 ; sub from MINUEND with borrow-in
movwf DIFFERENCE_H,0 ; Put away as mid byte Difference

; Extend sign into Upper byte ---------------------------------
clrf DIFFERENCE_U,0 ; Zero the Upper byte
bnn NEXT ; Branch if last subt. wasn’t -ve
setf DIFFERENCE_U,0 ; ELSE make it 11111111

NEXT bnov CONTINUE ; IF No OVerflow THEN finished
comf DIFFERENCE_U,f,0; ELSE invert the Upper byte

CONTINUE ; Continue on

Fig. 5.25 Double-precision signed subtraction

smaller than either of the minuend or subtrahend. However, if these quantities are
signed, then this is no longer necessarily true. For instance, +30,000−(−30,000) =
+60,000. The maximum positive quantity that can be represented in signed 16-bit
format is +32,680 (b’0111 1111 1111 1111’). What will happen in our instance, is
that there will be overflow into the sign bit; +60,000 is b’1110 1010 0110 0000’
which is −5536.

In order to cope with this overflow, we need to provide space to extend the sign
bit—see p. 120. In Fig. 5.25(a) this is shown as DIFFERENCE_U. If there is no

5 The Instruction Set 147

overflow then this is simply an 8-bit expansion of the sign bit in DIFFERENCE_H;
that is b’00000000’ if positive or b’11111111’. On the other hand if there has been
an overflow then bit 7 of DIFFERENCE_H is incorrect—see Fig. 1.5 on p. 14. As
shown in the flowchart of Fig. 5.25(b), the previous expansion is simply inverted to
give the true signage. In our instance above this will give b’0000 0000 1110 1010
0110 0000’ or d’60,000’.

The subtraction routine of Program 5.9 is identical to that of Program 5.5. The
sign extension makes use of the bnn and bnov instructions to test if the outcome
of the last subtraction was positive or negative and if a sign overflow occurred.
This sequential series of tests is possible as Conditional Branch instructions do not
change the state of the status flags. The coding follows the flow chart except that
the Upper byte is initially cleared before checking for negative. Neither clrf nor
setf affect the flags.

Examples

Example 5.1 Some early computers used a bi-quinary code to represent BCD
digits. This is a 7-bit code with only two bits set to one for any combination:

01 00001 0
01 00010 1
01 00100 2
01 01000 3
01 10000 4

10 00001 5
10 00010 6
10 00100 7
10 01000 8
10 10000 9

Although this is highly inefficient (with only ten out of a possible 128 code combi-
nations being used) it does have the advantage that it is very easy to decide when an
error has occurred. Design an error-detection routine to check the bi-quinary byte in
File h’020’ in Access RAM. Assume that the most-significant bit is zero. If an error
occurs then the Working register is to be set to h’FF’, otherwise zero.

Solution All we need to do here is to determine when there are more or less than
two bits set to one. Based on this approach we have the task list:

1. Count the number of ones in the bi-quinary byte.
2. Zero WREG.
3. IF the count is not two THEN finish with WREG set to h’FF’ to signal an error.

Program 5.10 shows a possible coding implementing this algorithm. Here the
loop continually shifts the bi-quinary byte left until the residue is zero. After each
shift, when the Carry flag is set, the bit count is incremented. On exit from the

148 The Essential PIC18® Microcontroller

Program 5.10 Bi-quinary error detection
WREG equ h’FE8’ ; The Working register
STATUS equ h’FD8’ ; Status register is File h’FD8’
C equ 0 ; Carry flag is bit0
Z equ 2 ; Zero flag is bit2
BI_QUIN equ h’020’ ; Bi-quinary byte is in File h’020’
COUNT equ h’021’ ; The bit count is put here

BI_QUINARY clrf COUNT, ; Bit count is cleared
; Task 1 ---
LOOP bcf STATUS,C ; Clear carry flag

rlcf BI_QUIN,f,0 ; Rotate code left
bnc NEXT ; No Carry THEN next?
incf COUNT,f,0 ; ELSE increment the count

NEXT tstfsz BI_QUIN,0 ; IF zero THEN skip out of loop
bra LOOP ; ELSE repeat shift and count

; Tasks 2 & 3 --
movf COUNT,w ; Get count
addlw -2 ; Compare with two (W - 2)
bz FINI ; IF ZERO finished with W == 00
setf WREG,0 ; ELSE put h’FF’ (-1) in W

FINI ; Next routine

loop, two is subtracted from the bit tally after moving into WREG. If it is zero, then
the routine is completed and the h’00’ setting of WREG shows a correct outcome.
Otherwise h’FF’ is placed in WREG to show a fault. This is equivalent to decimal −1
and is traditionally used to note an error situation. There are 20 code combinations in
all which have two ones, of which only 10 are legitimate. Can you think of a simple
extension to the routine to weed out these additional double-one code patterns?

Example 5.2 Eight-bit PIC MCUs do not have instructions to divide. However, di-
vision can be implemented by continual subtraction. For instance, to divide a num-
ber by ten you can count how many times ten can be subtracted before a borrow-out
is generated. The count is then the quotient and the residue is the remainder. Us-
ing this technique, write a routine to convert a binary number byte of magnitude
no greater than h’63’ (decimal 99) in File h’020’ to two Binary Coded Digits to be
placed in File h’021:22’ ordered as Tens:Units—see p. 6.

Solution Dividing the binary number by ten generates a quotient between 0 and 9
(remember the maximum value is 99) and a remainder. The quotient is the number
of tens and the remainder is the number of units.

The simplest way of doing this, illustrated in Fig. 5.26, is to keep subtracting ten
(addlw -d’10’ or addlw -h’0A’). Keeping a count in the TENS File register
gives the number of subtractions until a borrow is generated. The required number
of tens is one less than this tally; that is, the number of successful subtractions.
Adding that one extra ten back again to the residue gives the remainder, which is the
units tally.

5 The Instruction Set 149

Fig. 5.26 Conversion of a byte up to 99 to BCD

Program 5.11 Binary to 2-digit BCD conversion
BINARY equ h’020’ ; Binary byte is in File h’020’
TENS equ h’021’ ; The quotient is put here
UNITS equ h’022’ ; The remainder is put here

; First divide by ten
BIN_2_BCD clrf TENS,0 ; Zero the loop count

movf BINARY,w,0; Get binary byte into W
; DO subtract ten and counting WHILE no borrow is generated
LOOP addlw -d’10’ ; Subtract decimal ten

bnc NEXT ; IF a borrow (C == 0) THEN exit loop
incf TENS,f,0 ; ELSE record one more ten subtract
bra LOOP ; and do it again

; Correct for one ten too many, and hence determine the Units
NEXT addlw d’10’ ; Add on a ten

movwf UNITS,0 ; and copy remainder into memory
..... ; Next routine

Example 5.3 Another approach to division is to express the divisor as the sum of
fractional powers of two. For instance, the binary approximation to the fraction 1

3
is:

1

3
= 1

2
− 1

4
+ 1

8
− 1

16
+ 1

32
− 1

64
+ 1

128
· · · .

Using this series, write a program that will divide a byte N in the Working regis-
ter by three, with the quotient being in the same register at the end. You can use
File h’020’ temporary storage for the quotient.

Solution The coding shown in Program 5.12 simply zeros the Quotient byte and
then continually shifts the datum in the Working register to get the various fractions.

150 The Essential PIC18® Microcontroller

Program 5.12 Dividing by three
QUOTIENT equ h’020’ ; Put the final Quotient here
STATUS equ h’FD8’ ; The Status register
C equ 0 ; in which bit 0 is the Carry flag
WREG equ h’FE8’ ; The Working register

DIV_3 clrf QUOTIENT,0 ; Zero the outcome
bcf STATUS,C,0 ; Carry = 0
rrcf WREG,f,0 ; Shift right once to give N/2
movwf QUOTIENT,0 ; and copy into Quotient = N/2

bcf STATUS,C,0 ; Carry = 0
rrcf WREG,f,0 ; Shift again once right to give N/4
subwf QUOTIENT,f,0 ; Subtract to give Q = N*(1/2-1/4)

bcf STATUS,C,0 ; Carry = 0
rrcf WREG,f,0 ; Shift again to give N/8
addwf QUOTIENT,f,0 ; Add to give Q = N*(1/2-1/4+1/8)

bcf STATUS,C,0 ; Carry = 0
rrcf WREG,f,0 ; Shift again to give N/16
subwf QUOTIENT,f,0 ; Sub to give Q = N*(1/2-1/4+1/8-1/16)

bcf STATUS,C,0 ; Carry = 0
rrcf WREG,f,0 ; Shift again to give N/32
addwf QUOTIENT,f,0 ; Add: Q = N*(1/2-1/4+1/8-1/16+1/32)

bcf STATUS,C,0 ; Carry = 0
rrcf WREG,f,0 ; N/64
subwf QUOTIENT,f,0 ; Q = N*(1/2-1/4+1/8-1/16+1/32-1/64)

bcf STATUS,C,0 ; Carry = 0
rrcf WREG,f,0 ; N/128
addwf QUOTIENT,w,0 ; N*(1/2-1/4+1/8-1/16+1/32-1/64+1/128)

; Outcome now in the Working register
..... ; Next

These are then either added to or subtracted from this Quotient, which tends towards
the final value. This value is then copied down into WREG as specified.

The outcome up to 1
128 is 0.3359375, which is within 0.78% of the exact value.

With an 8-bit datum there is no point in including any further elements in the series.
If greater accuracy is desired, then the original number can be extended to a

16-bit datum, by adding a zero lower byte. The series can then be extended to give a
resolution down to one part in 32,768, with double-precision shifting and arithmetic
operations.

Example 5.4 A certain temperature logging system samples every hour and at the
end of a day the 24 samples are to be found in situ in the Data store between
File h’030’ and File h’047’. Write a program to scan through this array and evaluate
the average daily temperature. This average is to be located in Bank 0 at File h’080’.

5 The Instruction Set 151

Program 5.13 Average daily temperature
FSRL0 equ h’FE9’ ; Low byte of Pointer 0
POSTINC0 equ h’FEE’ ; Post-increment Indirect trigger
TEMP_0 equ h’030’ ; Array starts @ File h’30’
SUM equ h’048’ ; Grand total to be in File h’048:49’
AVERAGE equ h’080’ ; Average byte is to be here in Bank 1

; Task1: Clear grand total and Average ----------------------------
AV_DAILY clrf SUM,0 ; LSbyte sum zeroed

clrf SUM+1,0 ; MSbyte sum zeroed

; Task2: Point to Temp[0] ---
lfsr 0,TEMP_0 ; Put address of 1st byte in pointer 0

; Task3: DO --
; Tasks3A&B : Add Temp[i] to the double-byte sum and inc pointer
LOOP movf POSTINC0,w,0 ; Get Temp[i]: FSR0++

addwf SUM,f,0 ; Add LSB sum to it and put away
bnc NEXT1 ; IF no carry, don’t increment MSB
incf SUM+1,f,0 ; ELSE pass carry on

; Task3C: REPEAT WHILE i < 24 -------------------------------------
NEXT1 movlw TEMP_0+d’23’; Put the end address in W (TEMP[23])

cpfsgt FSRL0,0 ; IF pointer FSRL0 is > than THEN skip
bra LOOP ; ELSE repeat

; Task4: Divide by 24 to give the average -------------------------
clrf AVERAGE,1 ; Zero the average (in Bank 0)

; Keep subtracting 24 and keep a count until a borrow-out
DIV_24 movlw d’24’ ; Put the constant 24 in W

subwf SUM,f,0 ; Take away 24 from the sum LSB
bc NEXT2 ; IF no borrow out (C==1), THEN skip
decf SUM+1,f,0 ; ELSE decrement high byte
bnc FINI ; IF this generates a borrow THEN fini

NEXT2 incf AVERAGE,f,1; ELSE record one more subtract 24
bra DIV_24 ; and do next subtract

FINI ; Next routine

Solution Finding the average involves walking through the array, in the manner of
Fig. 5.6, adding each element to a 2-byte grand total. On completion this total is
divided by 24 to give the average function:∑23

i=0 Temp[i]
24

Based on this approach we have as a task list:

1. Clear Average.
2. Point to Temp[0] (i = 0).
3. DO

(a) Add Temp[i] to the 2-byte grand total.
(b) Increment i.
(c) Repeat WHILE i < 24.

4. Divide by 24.

Program 5.13 directly implements the task list, summing each datum byte by
adding to the double-byte location File h’048:49’, which has been cleared before

152 The Essential PIC18® Microcontroller

Program 5.14 Converting Celsius to Fahrenheit
PRODL equ h’FF3’ ; Low byte of Product
PRODH equ h’FF4’ ; High byte of Product
CELSIUS equ h’080’ ; The Celsius temperature byte
FAHRENL equ h’081’ ; Low byte of Fahrenheit equivalent
FAHRENH equ h’082’ ; High byte in Bank 0

; Task1: Multiply by nine ---------------------------------------
C_TO_F movlw 9 ; Nine

mulwf CELSIUS,1 ; Multiply Celsius

; Task2: Divide by five by subtracting until borrow from high byte
clrf FAHRENL,1 ; First zero the 2-byte Fahrenheit
clrf FAHRENH,1 ; equivalent temperature

DIV_5 movlw 5 ; Five
subwf PRODL,f,0 ; Take away from low byte of x9
bc NEXT ; IF no borrow (C==1) skip
decf PRODH,f,0 ; ELSE decrement high byte

bnc ADD_32 ; IF a borrow THEN continue
; DO a double-byte increment of Fahrenheit every successful subtract
NEXT incf FAHRENL,f,1 ; Add one onto the 2-byte Fahrenheit

bnc DIV_5 ; IF no Carry do another subtraction
incf FAHRENH,f,1 ; add one onto high byte

bra DIV_5 ; and do another subtraction

; Task3: Add 32 to Fahrenheit ----------------------------------
ADD_32 movlw d’32’ ; Thirty two

addwf FAHRENL,f,1 ; Add it to the low byte
bnc FINI ; IF no carry THEN thats it
incf FAHRENH,f,1 ; ELSE pass carry on

FINI ; Next routine

entry to the loop. Division is accomplished by repetitively subtracting 24 from the
final total. This is similar to the ÷10 routine of Program 5.11 but this time the
single-byte constant is taken off the double-byte dividend. The number of successful
subtracts is the quotient, which in this case is the truncated Average. Of course it
would be more accurate to round up if the remainder is more than half of the divisor.

Example 5.5 In the last example we evaluated the average temperature over a
24-hour period. On the basis that this an unsigned byte representing a Celsius value,
design a routine to convert this to its Fahrenheit equivalent. As the range 0◦C though
255◦C maps to 32◦F through 491◦F we need two bytes to store the outcome. This

16-bit product is to be located at .

Solution The relationship between the two tasks is given by:

Fahrenheit = (Celsius × 9)/5 + 32.

Based on this approach we have as a task list:

1. Multiply datum by nine.
2. Repetitively subtract five from the double-byte product.
3. Add 32 to the double-byte outcome.

5 The Instruction Set 153

Fig. 5.27 Multiplying for array multiplication

The task list implemented in Program 5.14 uses the mulwf instruction to
multiply Celsius byte by the preloaded constant nine. The double-byte prod-
uct in PRODH:PRODL is then continually decremented by five with the double
byte FAHRENH:FAHRENH being incremented every time this is done. When a
borrow-out is generated from the decrementation of PRODH, then the quotient in
FAHREHH:FAHRENL is augmented by 32 to give the final outcome.

Although this routine illustrates unsigned Celsius values, using the signed multi-
plication routine of Program 5.6 to replace the mulwf instruction would allow both
positive and negative Celsius temperatures to be converted.

Example 5.6 Consider two arrays of eight unsigned numbers labeled in Fig. 5.27
as NUM1 and NUM2. All arrays are to be placed in Bank 0, with NUM1[] located
at File h’080’ through File h’087’ and NUM2[] in File h’088’ through File h’08F’. We
wish to multiply each element i to give an array of eight unsigned 16-bit numbers
NUM3[]. ∣∣∣7

i=0
NUM3[i] = NUM1[i] × NUM2[i]

The resulting product array is assigned to File h’090’ through File h’09F’ with the
MSB offset from the LSB of each element of NUM3[i] by eight Files.

Solution Program 5.15 uses FSR0 to walk through NUM1[] and FSR1 to point to
the corresponding NUM2[] array. As NUM3[] is really two byte arrays displaced
by eight, FSR2 is used to point to the LS Byte of the Product array. These three
pointers are initialized to the location of element 0 of each array, shown shaded in
Fig. 5.27, using the lfsr instruction.

The core of the program is the mulwf instruction. This generates a 16-bit product
into the SFRs PRODH:PRODL from data in WREG and the designated File. By using
the Post-increment Indirect addressing mode to move the first datum into WREG
with FSR0 and also for FSR1 which points to the second array byte, the operation
is walked through the two arrays.

In order to copy the contents of each byte from PRODL into the LS Byte array
NUM3[] and PRODH into the MS Byte array, the program uses the movff instruc-
tion. This 2-word instruction (see p. 111) uses two 12-bit File addresses to locate

154 The Essential PIC18® Microcontroller

Program 5.15 Coding for the array multiplication
FSR0L equ h’FE9’ ; Low byte of first pointer
POSTINC0 equ h’FEE’ ; Pointer 1’s post increment mode
POSTINC1 equ h’FE6’ ; Pointer 2’s post-increment mode
POSTINC2 equ h’FDE’ ; Pointer 3’s post-increment mode
PLUSW2 equ h’FDB’ ; Pointer 3’s offset mode
PRODL equ h’FF3’ ; Low byte of product
PRODH equ h’FF4’ ; High byte of product

NUM1 equ h’080’ ; Start location of Array 1
NUM2 equ h’088’ ; Start location of Array 2
NUM3 equ h’090’ ; Start location of Array 3

ARRAY_M lfsr 0,NUM1 ; Point to LSByte of Number 1
lfsr 1,NUM2 ; Point to MSByte of Number 2
lfsr 2,NUM3 ; Point to LSWord of Number 3

M_LOOP movf POSTINC0,w,0 ; Get NUM1[n] & advance pointer 1
mulwf POSTINC1,0 ; Multiply by NUM2[n] & advance ptr2

movlw 8 ; Offset for NUM3 LSB:MSB
movff PRODH,PLUSW2 ; Copy High byte Product into MSB
movff PRODL,POSTINC2; Copy lo byte Prod into LSB; ptr3++

movlw NUM1+8 ; Check pointer 1 has not overrun
cpfseq FSR0L,0 ; IF reached h’088’ THEN finished
bra M_LOOP
...... ; Next routine

source and destination data anywhere in the Data store without the need to use the
banking mechanism. The contents of PRODH are first copied into the MS Byte by
using the Plus W Indirect mode. As WREG has been preset to 8, effectively this
datum is copied to a location eight Files above that pointed to by FSR2. Finally,
PRODL is copied into the LS Byte array location pointed to by FSR2. By using the
Post-increment Indirect mode for this destination, this pointer too will walk through
the Product array. The process terminates whenever the FSR0 pointer reaches h’088’.

Self-Assessment Questions

5.1 Can you deduce what function the following code fragment performs on the
data byte in the Working register?

addwf FILE,w
subwf FILE,w

5.2 How could you extend Example 5.2 to give an outcome packed into a single-
byte TENS:UNITS in File h’021’? This is known as packed BCD where each

5 The Instruction Set 155

byte holds two decade nybbles rather than one digit per byte. Hint: Consider
making use of the swapf instruction.

5.3 Develop Example 5.2 to give a 3-digit BCD outcome, removing the restriction
that the original binary byte should be limited to decimal 99. The outcome is
to be in File h’023:22:21’ as HUNDS:TENS:UNITS respectively.

5.4 As part of a Data memory testing procedure, each File in Bank 0 (that is
File h’000’ through File h’0FF’) is to be set to the pattern b’01010101’ (h’55’).
If an error is detected (datum not stored correctly) the routine is to exit with
−1 in the Working register and FSR0 pointing to one beyond to the erroneous
location, otherwise WREG should be zero. Using Program 5.2 as a model,
design a suitable coding to implement this task.

5.5 Data from an array of data memory between File h’030’ and File h’04F’ is to
be transmitted byte-by-byte to a distant computer over the Internet. In order
to allow the receiver to examine the data and check for transmission errors
it is proposed to append a single byte, which is the 2’s complement of the
8-bit sum of all the data bytes together. If all the received data bytes plus this
checksum byte are similarly added then the outcome should be zero if no error
has occurred. Code a routine to scan through this data, placing this checksum
in File h’020’.

5.6 Based on the data logger specified Example 5.4, write a program to evaluate
the maximum daily temperature. By the end of the routine this is to be in
File h’07F’.

5.7 Example 5.4 evaluated the average of an array of hourly temperature samples
by summing all bytes and then subtracting 24 until the residue dropped below
zero. Write an extension to this program to round the average to the nearest
integer; that is, if the remainder is more than 12 then round up.

5.8 One simple way of encrypting a data byte is to reverse the order of bits. For
example b’10111100’ −→ b’00111101’. Write a routine to implement this re-
versal on a data byte in File h’020’. The encrypted outcome is to be in the
Working register. You can use location File h’021’ as a temporary workspace
and WREG as a loop counter. Hint: Use the Rotate Right through Carry and
Rotate Left through Carry instruction eight times.

5.9 Reverse encryption is a somewhat weak coding as once the code is broken
all subsequent messages can be unscrambled! Teleprinter traffic used by the
German high command during the Second World war was based on the Ver-
nam cipher. Essentially this eXclusive-ORs each plain text code pattern with
a key.5 This key is usually a pseudo-random number sequence, such as that
generated in SAQ 6.6.10 on p. 203. However, the key could be simply a daily
crib sheet. Figure 5.28 shows an example based on 8-bit ASCII code groups,
although originally a 5-bit Baudot/Murray code was used.6

5Actually a patchboard was used on the Lorentz teleprinter to transpose bits within each code
group to further complicate attempts to break the code.
6The ten Colossi 25,000 valve/tube digital processor based in Bletchley park were designed to
eXclusive-OR monitored text with various keys at a rate of 25,000 characters per second. For more
details see http://www.codesandciphers.org.uk.

156 The Essential PIC18® Microcontroller

Fig. 5.28 Illustrating the Vernam cipher used to encrypt teleprinter traffic

Design a routine to encipher a string of ASCII-coded characters terminated
with a NUL character (h’00’) located in the range File h’080’ – h’08F’ with a
key string in situ in File h’090’ – h’09F’. The resulting enciphered text is to be
placed in File h’0A0’ – h’0AF’ for subsequent transmission.

5.10 A simple digital low-pass filter can be implemented using the algorithm:

Array[i] = Sn

4
+ Sn−1

2
+ Sn−2

4
where Sn is the nth sample from an eight-bit analog to digital converter located
at Port B.

Write a routine assuming that the three byte memory locations to store
Sn, Sn−1 and Sn−2 are located at File h’022:21:20’ respectively. The outcome
Array[i] is to be located at File h’048’.

5.11 Consider a 24-bit word stored in the Data store at the three locations

Design
a routine to count the number of bits set to 1 in this triple-byte datum.

5.12 A certain television show has eight contestants who are evenly divided into
Team A and Team B. Each member has a switch, giving logic 1 when pressed,
which may all be read simultaneously by the microcontroller at Port B. Team A
switches appear on the lower four bits of the port.

Write a routine that will:

• Decide when a response to the question has been made, any switch closed
(non zero at Port B).

• Determine the team identity that has responded by either clearing File h’020’
for Team A, otherwise setting it to any non-zero value to signify Team B.

• Ascertain which team member pressed the switch by putting the member
number 0–3 in File h’021’.

5.13 Parity is a simple technique to protect digital data from corruption by noise.
Odd parity adds a single bit to a word in such a way as to ensure the overall
packet has an odd number of 1s. Write a routine that takes an 8-bit byte stored

5 The Instruction Set 157

Fig. 5.29 Multiplying two double-byte numbers to give a 4-byte product

at File h’020’ and alters its most significant bit to comply with this specifica-
tion. You can assume that bit 7 is always 0 before the routine begins. Hint:
Determine if a binary number is odd or even by counting the number of bits as
in Example 5.1 and then examining its least significant bit. All powers of two
are even except 20 = 1. Thus without exception all odd numbers must have
this bit set to 1.

5.14 Write a routine to multiply two 16-bit operands to give a 32-bit product.
Operand 1 is located in File h’021:20’ as OP1_H:OP1_L, Operand 2 is stored
in File h’023:22’ as OP2_H:OP2_L and File h’083:82:81:80’ holds the 4-byte
Product PROD4:PROD3:PROD2:PROD1.

Figure 5.29 shows how the Product can be built up with four 8 × 8 mul-
tiplications, suitably aligned and added. Shifting one byte eight places left is
effectively multiplying by 28, so overall the cross product is mathematically
defined as:

PROD16 = (OP1_H × OP2_H)216 + (OP1_H × OP2_L

+ OP1_L × OP2_H)28 + (OP1_L × OP2_L).

Your target should be 24 instructions in all; taking 28 instruction cycles to
execute (2.8 µs at a clock speed of 40 MHz).

Chapter 6
Subroutines and Modules

Good software should be configured as a set of interacting modules rather than one
large program working straight through from beginning to end. There are many
advantages to modular programming, which is almost mandatory when code lengths
exceed a few hundred lines or when a project is being developed by a team.

What form should such modules take? In order to answer this question we will
look at the use of program structures designed to facilitate this modular approach
and the instructions associated with it.

After completing this chapter you will:

• Appreciate the need for modular programming.
• Have an understanding of the structure of the Hardware stack and its use in the

call–return subroutine mechanism.
• Understand the term ‘nested subroutine’.
• See how parameters can be passed to a subroutine and returned to the caller.
• Be able to write a transparent subroutine, having a minimal impact on its envi-

ronment, using either the Hardware or a Software stack to pass parameters and
provide a temporary workspace.

• Know how to use the optional Extended instruction set to more efficiently imple-
ment Software stacks.

Take a look at the inside of your personal computer. It will probably look some-
thing like the photograph in Fig. 6.1, with a motherboard hosting the MPU, assorted
memory and other support circuitry, and a variable number of expansion sockets.
Into this will be plugged a disk controller card and a video card. There may be oth-
ers, such as a soundboard, USB or network card. Each of these plug-in cards has a
distinct and separate logical task and they interact via the services supplied by the
main board, the motherboard.

Advantages of this modular construction are:

• Flexibility; that is, it is relatively easy to upgrade or reconfigure by adding or
replacing plug-in cards.

• Can reuse from previous systems.
• Can buy standard boards or design specialist boards in-house.
• Easier to maintain.

S. Katzen, The Essential PIC18® Microcontroller,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-229-2_6, © Springer-Verlag London Limited 2010

159

160 The Essential PIC18® Microcontroller

Fig. 6.1 Modular hardware implementing a PC

Of course there are a few disadvantages. A fully integrated motherboard (such as
commonly found in a laptop computer) is smaller and potentially cheaper than an
equivalent mother-daughterboard configuration. It is also likely to be more reliable,
as input and output signals do not have to traverse so many sockets and plugs. How-
ever, when they do occur, faults are often more difficult to track down and rectify.

Modular programming uses the same principle to construct ‘software circuits’,
i.e. programs. A formal definition of modular programming is:

An approach to programming in which separate logical tasks are programmed separately
and joined later.1

Thus, to write a program in a modular fashion we need to decompose the specifica-
tion into a number of stand-alone routines, each implementing a well-defined task.
Such a module should be relatively short, be well documented and be easy for a
human, not necessarily the original programmer, to understand.

The advantages of a modular program are similar to those for modular hardware,
but even more compelling:

• Modules can be tested, debugged and maintained on a stand-alone basis; this
makes for overall reliability.

• Can be reused from previous projects or bought in from outside.
• Easier to update by changing modules.

Deciding how to segment a program into individual stand-alone tasks requires
expertise. The actual coding of such tasks as sub-programs is no different than the

1From Chambers Science and Technology Dictionary, Cambridge University Press, 1988.

6 Subroutines and Modules 161

Fig. 6.2 Subroutine calling

examples we have given in previous chapters, such as that shown in Program 5.5 on
p. 152. There are a few additional instructions associated with such subprograms,
and these are listed in Table 6.1. We will look at these and some useful techniques
in constructing software in the remainder of the chapter.

Program modules may be entered by calling from other software or by a hard-
ware event external to the CPU. The latter may be a voltage at one of the processor
pins or an internal peripheral interface wanting service, such as a Timer module
overflowing. In the former case modules at assembly level are universally known
as subroutines; as they are in some high-level languages such as FORTRAN and
BASIC.2 In the latter they are classified as interrupt service routines. The tech-
niques for writing these interrupt modules and their entry and exit techniques are
sufficiently different to warrant a separate treatment in Chap. 7. Here we will look
at subroutines.

Subroutines are the analog of hardware plug-in cards. Consider the situation
where a 1 ms delay task is to be implemented. This may be needed to generate a
500 Hz tone to alert an aircraft pilot to look at the control panel warning lights for
various scenarios, such as low fuel or overheating. In a modular program, this delay
would be implemented by coding a 1 ms delay subroutine, which would be called
by the main program as necessary to, say, continually force a port pin high and low
for 1 ms durations. This is represented diagrammatically in Fig. 6.2.

In essence, calling up a subroutine involves nothing more than placing the ad-
dress of the first subroutine instruction in the Program Counter (PC); that is, doing
a goto. Thus, if our initial instruction was located at, say, h’0400’, then goto
h’0400’ would seem to do the trick. Assuming the programmer has labeled the
subroutine entry point instruction DELAY_1MS, as in Program 6.1, we have goto
DELAY_1MS.

The problem really is how to get back again! Somehow the MCU has to remem-
ber from where in the caller program the subroutine was entered, so that it can return
to the next instruction in the caller’s sequence. This can be seen in Fig. 6.2, where
the jumping-off point can be from either of two points in the main program. Indeed
it can even be called from another subroutine—see Fig. 6.4.

2Other high-level languages use the terms function (C and Pascal) or procedure (Pascal).

162 The Essential PIC18® Microcontroller

Fig. 6.3 Using the Hardware stack to hold return addresses

One possibility is to place this address in a designated Address register or mem-
ory location prior to jumping off. As the return mechanism, this can then be moved
back into the Program Counter at the end of the subroutine. This approach breaks
down whenever one subroutine wishes to call another. Then the secondary subrou-
tine will overwrite the return address of the first, and the main program can never
be regained. To get around this problem, more than one register or memory location
can be used to hold a stack of return addresses. This last-in first-out stack structure
is shown in Fig. 6.3(a).

The PIC18 MCU core has a stack of 32 21-bit registers, which are exclusively
used to hold subroutine and interrupt (collectively known as function) return ad-
dresses.3 Shown in Fig. 6.3, this structure is known as a Hardware stack. This
stack is outside the PIC MCU’s Data store memory map and normally its contents
are left alone. However, unlike earlier family architectures, there are ways of see-
ing and altering the contents of this stack—see p. 179. For the moment, we will
concentrate on the automatic operation of the stack.

Associated with this stack is a 5-bit dead-end counter known as the Stack Pointer
(SP), which is located in the STKPTR register—see Fig. 6.12. Whenever a call
instruction is executed the Stack Pointer is automatically incremented and the Pro-
gram Counter state is copied into the pointed-to stack cell. This state is the address of
the instruction after the call instruction, as the PC has already been incremented
and the following instruction is being fetched into the pipeline. After the PC has
been pushed into the stack it is overwritten by the destination instruction address.

3The 12-bit base-range core devices have only two 11-bit stack registers and the mid-range core
has an 8-deep 13-bit Hardware stack.

6 Subroutines and Modules 163

Fig. 6.4 Nested subroutines

As in the analogous goto instruction, call is a double-word instruction and so
the first subroutine instruction can be anywhere in the Program store.

Figure 6.3(a) shows the stack configuration after a Power-on Reset with the SP
zeroed. In Fig. 6.3(b) the situation is shown after a call to a subroutine labeled
DELAY_1MS. The execution sequence of this call DELAY_1MS is:

1. The Stack Pointer is incremented.
2. Copy the 21-bit contents of the PC into the stack at the location pointed to by the

Stack Pointer. Effectively this stored datum will be the address of the instruction
following the call instruction.

3. The destination address DELAY_1MS, that is the location of the entry point in-
struction of the subroutine, overwrites the original state of the PC. This causes
the program execution to transfer to the subroutine.

The exit point from the subroutine should be a return instruction. This reverses
the push action of the preceding call and pulls the return address back from the
stack into the PC, as shown in Fig. 6.3(c). The execution sequence for return is:

1. Copy the 21-bit address in the stack pointed to by the Stack Pointer into the
Program Counter.

2. Decrement the Stack Pointer.

Thus no matter where the subroutine was called from, it will return to the instruction
just past the original call instruction when the subroutine has been completed.

The beauty of the stack mechanism is its handling of nested subroutines. Con-
sider the situation in Fig. 6.4, where the main program calls the first-level subrou-
tine SR1 which in turn calls the second-level subroutine SR2. In order eventually
to get back to the main program, the outward progression sequence must be pre-
cisely matched by the inward path. This pattern is reflected in the last-in first-out
(LIFO) structure of the stack mechanism, which can automatically handle any ar-
bitrary nesting sequence up to the depth of the stack. Actually cell 0 is never used
(see Fig. 6.3(c)) as the SP is always incremented before the PC is pushed onto

164 The Essential PIC18® Microcontroller

Table 6.1 Subroutine and interrupt handling instructions

Operation Mnemonic Description

Call Transfer to subroutine

Call subroutine call aaa Push PC on to stack, PC <- <aaa>

Fast call call aaa,1 As above but saves W, STATUS, BSR in Fast stack

Relative Call rcall ±offset11 Push PC on to stack, PC <- PC + offset

Return Transfer back to caller

from subroutine return Pull original PC back from Stack

Fast return return 1 As above but recovers W, STATUS, BSR

with literal in W retlw Put literal in W and return as above

from interrupt retfie Return with the GIE flag in INTCON[7] set

Fast from interrupt retfie 1 As above but recovers W, STATUS, BSR

Stack Stack control

pop Pull data from stack into TOS

push Push PC into stack

the stack, so the effective depth of the stack is 31 and not 32. As we shall see in
Chap. 7, the stack mechanism is also used to handle interrupts. Thus, in a system
using both subroutines and interrupts, the nesting depth will be somewhat less. This
LIFO mechanism can even handle the (painful) situation where a subroutine calls
itself! Such a subroutine is known as recursive. This structure is so useful that vir-
tually all MPU/MCUs support subroutines in this manner.

As the stack-Stack Pointer mechanism is part of the PIC MCU’s hardware and re-
quires no initialization, from the programmer’s perspective only the following points
are relevant:

• The subroutine should be invoked using the call instruction.
• The entry point to a subroutine should be labeled, and this label is then the name

of that subroutine.
• The exit point from the subroutine should be a Return instruction.

Instructions that are associated with coding functions are listed in Table 6.1. For
reference these are:

call 1110110 F AAAAAAAA

1 1 1 1 AAAAAAAAAAAA
This double-word instruction pushes the address of the following instruction into the
stack and then transfers to the target instruction.

If the F (Fast) bit is 1 then copies are made of WREG, STATUS and BSR into a
set of shadow registers prior to the transfer—see Program 6.2.

rcall 11011 SNNNNNNNNNN
Relative CALL is a 1-word version of call which allows the program to switch to

6 Subroutines and Modules 165

a subroutine which is located not more than ±1024 words away. However, like the
double-word call it takes two instruction cycles to execute.

return 000000000001001 F
Pops out the last return address from the stack, effectively returning control to the
caller. If the F-bit is 1 then the state of the WREG, STATUS and BSR registers are
restored from their shadow counterparts—see Program 6.2.

retlw 00001100 LLLLLLLL
Similar to a plain return, this Literal instruction copies the specified 8-bit literal
into the Working register before going back to the caller—see Program 6.6.

retfie 000000000001000 F
RETurn From an Interrupt and Enable is the counterpart to return used to go back
from a function entered via an interrupt event, as will be described in the following
chapter. As well as popping out the stacked address, it re-enables the appropriate
interrupt system. Like return, it can also restore the WREG, STATUS and BSR
states prior to the interrupt.

pop 00000000000000110
Decrements the Stack Pointer and allows the software to change the contents of the
newly pointed-to stack cell—see p. 179.

push 00000000000000101
Increments the Stack Pointer and copies the current value of PC into the newly
pointed-to stack cell—see p. 179.

For our first example, let us code the 1 ms delay subroutine of Fig. 6.2. Creating
a delay in software is simply a matter of doing nothing for the relevant duration.
A common way of doing this is to count down an initial constant to zero, as shown
in Fig. 6.5. By choosing an appropriate constant, the delay can be tailored to the
desired value. Obviously, this delay will depend on the PIC MCU’s oscillator rate.
For this example we will assume a clock rate of 4 MHz, giving an instruction cycle
of 1 µs—see Fig. 4.5 on p. 76. Program 12.8 on p. 407 gives an example which can
cope with a range of clock rates.

Consider the subroutine shown in Program 6.1. Here a constant N is placed in the
Working register, and this value is decremented down to zero inside a 3-instruction
loop. The subroutine then exits using a return instruction.

In order to calculate the total number of instruction cycles the program takes, and
thus determine a value for N , we need to evaluate an execution cycle budget.

1. The call DELAY_1MS instruction used by the caller to jump to the subroutine
takes two instruction cycles (2~) to execute.

2. The movlw instruction preceding entry into the loop takes one cycle.
3. The 1~ addlw instruction decrementing the contents of WREG takes in total N

cycles (N times round the loop).

166 The Essential PIC18® Microcontroller

Fig. 6.5 Delaying by
counting N times

Program 6.1 A 1 ms delay subroutine
; **
; * FUNCTION: Delays for nominally 1ms with a 4MHz crystal *
; * ENTRY : None *
; * EXIT : Flags and W altered *
; **
N equ d’249’ ; Delay parameter computed in the text

DELAY_1MS movlw N ; Set up loop 1~

; LOOP --
D_LOOP addlw -1 ; Decrement count N~

nop ; Put in extra cycle N~
bnz D_LOOP ; Repeat unless zero 2*(N-1)+1~

; ---
return ; 2~

4. The 1~ nop instruction is added to boost the number of loop cycles inside the
loop. It takes one instruction cycle and does not alter the status flags; necessary
for the following test for zero. In total N cycles are added to the budget.

5. The bnz instruction branching back to the top of the loop if the Z flag is not set
(is WREG zero after the last decrement?) is also executed N times. Each branch
taken takes two instruction cycles. However, the very last time when the loop exits
takes only one cycle. Thus the total delay is 2 × (N − 1) + 1.

6. The final return takes two cycles.

The total number of cycles is then:

2 (call) + 1(movlw) + N(addlw) + N(nop) + [2 × (N − 1) + 1] (bnz)

+ 2 (return)

Equating this to 1000 cycles gives:

6 Subroutines and Modules 167

2 + 1 + N + N + [2 × (N − 1) + 1] + 2 = 1000,

4 + (4 × N) = 1000,

4 × N = 996,

N = 249.

Our delay subroutine is pretty limited in that the Working register, like all data
registers, is only eight bits wide and thus the maximum value of N is b’11111111’ or
decimal 255. Actually, in the case of our subroutine in Program 6.1, a value N = 0
gives the longest delay! This is because WREG is decremented before being tested
for zero. So the sequence would actually go h’00 → FF → FE → ·· · → 01 → 00’.
Thus effectively N acts as if it were d’256’, giving a maximum delay of 4 + (4 ×
256) = 1028 cycles, or 1.028 ms with a 4 MHz crystal.

Simple as it is, our exemplar program illustrates an important characteristic of
functions; it alters its environment. In this instance, on return to the caller, the con-
tents of both the Working and Status registers have been altered. In both cases the
writer of the code will take this into account and there will be no problem. However,
if a team is working on the project or if the function is being reused from another
project, then there is ample opportunity for confusion. At the very least, a subroutine
should be well documented in its header comments, narrating what Files are altered
and what resources are being used and assumptions that are made. For instance, the
clock frequency.

One way around this problem is to allocate GPRs to store vulnerable data on en-
try to the subroutine and retrieve it just prior to exit. Of course, care is needs to be
taken that these data will not be overwritten by some other process, such as another
subroutine called from within the current function. In all but the most elementary
subroutine, the Status flags and Working register will be changed, and in many cases
the state of the Bank Select register will be altered as data is fetched from various
banks of RAM. To speed up the save and retrieve process for these core resources,
the PIC18 instruction set provides Fast versions of the call and return instruc-
tions—see p. 164. A Fast call automatically stashes away WREG, STATUS and BSR
in three shadow registers; known as the Fast stack. Conversely, a Fast return re-
stores these states from the Fast stack and only then pops out the caller’s return
address into the PC. Confusingly, the Microchip assembler treats these alternative
instructions as variants, and they are designated as such by a ,1 in the operand
field; e.g. call DELAY_1MS,1 and return 1. Strictly a ,0 should be used
for an ordinary (slow) call, but this is the default and is usually omitted—see also
p. 241.

As an example, let us repeat our 1 ms delay subroutine, but this time for an 8 MHz
clock frequency. For this situation, we are going to have to double the number of
cycles, as each instruction cycle now only takes 0.5 µs. In Program 6.2 we do this
by adding four additional nop instructions inside the loop, and as our following
calculation shows, we require an additional four cycles outside the loop. The total
number of cycles is now:

2 (call) + 1(movlw) + N (addlw) + 5 × N(5,nop)

+ [2 × (N − 1) + 1] (bnz) + 4(4,nop) + 2(return)

168 The Essential PIC18® Microcontroller

Program 6.2 A 1 ms delay subroutine for an 8 MHz clock
; **
; * FUNCTION : Delays for nominally 1ms with a 8MHz crystal *
; * ENTRY : None (uses Fast stack) *
; * EXIT : Delays 1ms @ 8MHz *
; * ENVIRONMENT : No change *
; **
N equ d’249’ ; Delay parameter computed in the text

DELAY_1MS movlw N ; Set up loop 1~

; LOOP ---
D_LOOP addlw -1 ; Decrement count N~

nop ; Put in one extra cycle N~
nop ; Put in four extra cycles N~
nop ; N~
nop ; N~
nop ; N~
bnz D_LOOP ; Repeat unless zero 2*(N-1)+1~

; Fine tune total cycles ---------------------------------------
nop ; 1~
nop ; 1~
nop ; 1~
nop ; 1~
return 1 ; Fast return 2~

Equating this to 2000 cycles gives:

2 + 1 + N + N + 4N + [2 × (N − 1) + 1] + 4 + 2 = 2000,

8 + (8 × N) = 2000,

8 × N = 1992,

N = 249.

Adding nops in this manner can be used to design delay routines that can cope
with different clock frequencies. Thus adding an appropriate number of nops will
allow the programmer to ‘tweak’ our subroutine to cope with crystals between 4 and
40 MHz; see also Program 12.8 on p. 407. How many nops would you need to give
a 1 ms delay with a 20 MHz crystal?

This technique isn’t much use if you need a substantially longer delay. This can
be achieved by using a GPR as a second decrementing counter, effectively encapsu-
lating a kernel comprising our 1 ms delay loop; as shown shaded in Fig. 6.6. If we
execute this kernel 100 times, then we will have a 100 ms delay.

The coding of our 100 ms delay subroutine is shown in Program 6.3. The File,
named COUNT1, is initialized to d’100’ on entry and thereafter the inner 1 ms loop is
executed. When WREG reaches zero and the inner loop exits, the File count is decre-
mented in situ using the instruction decfsz COUNT1,f. The outer loop only exits
when COUNT reaches zero, that is, after 100 inner loops. As long as this outer count
remains non-zero, the inner 1 ms delay is re-executed.

6 Subroutines and Modules 169

Fig. 6.6 A nested loop delay
algorithm

Our simplified treatment of the timing of Program 6.3 is of course not completely
accurate, as we have ignored the time taken by the instructions in the outer loop,
such as decfsz. However, to compensate somewhat, the number of cycles in the
inner loop has dropped four cycles to 4 × N , giving an overall time reduction of
100 × 4 cycles, as the entry call and exit return instruction now belongs to the
outer loop. The actual delay turns out to be 99,905 ms; that is accurate to better than
0.1%. Adding a single nop in the outer loop will give an extra delay of 100 cycles,
giving 100.005 ms, or 5 µs too long in 100,000 µs.

The maximum delay possible with this program is 256,000 cycles, which could
give us our 100 ms delay even up to a 10 MHz crystal, or up to 256 ms delay
with a 4 MHz crystal. For even longer delays, we could use a triple-loop structure,
potentially giving more than a minute delay. For instance, see Example 6.2.

Our 100 ms delay program is an example of a double-void subroutine, in that
no parameters (cf. signals in our hardware plug-in card analog) are sent to it and
nothing is returned—just the side effect of a delay (and the alteration of a File).
Most subroutines process parameters made available at entry time and provide data
at return time.

170 The Essential PIC18® Microcontroller

Program 6.3 A 100 ms delay subroutine
; **
; * FUNCTION : Delays for nominally 100ms with a 4MHz xtal *
; * ENTRY : None *
; * EXIT : Delay 100ms *
; * ENVIRONMENT : File h’030’ zero (Fast call) *
; **
COUNT1 equ h’030’ ; Use File h’30’ as a loop counter
N equ d’249’ ; Delay parameter computed in text
; --
DELAY_100MS movlw d’100’ ; Initialize outer loop count to 100

movwf COUNT1 ; held in File h’030’
; Outer loop ---
DELAY_1MS movlw N ; Set up loop -
; Inner loop --- -
D_LOOP addlw -1 ; Decrement count - -

nop ; Put in four extra cycles - -
bnz D_LOOP ; Repeat unless zero - -

; -- -
decfsz COUNT1,f ; Decrement outer loop count -
bra DELAY_1MS ; and repeat until zero -

; --
return 1 ; Fast return (restores registers)

Fig. 6.7 System view of
K × 100 ms delay subroutine

As a simple example, consider the extension of Program 6.3 to give a delay of
K × 100 ms, where K is a byte parameter ‘sent’ by the caller. The system view of
this function is shown in Fig. 6.7 as a single input signal of range 1–256, with no
output signal; that is, with a void output. This diagram also documents the location
of all local variables used internally by the subroutine. This latter attribute is useful
in checking for multiple usage of a File register between different subroutines and
callers. Notice the double line vertical borders commonly used in flow diagrams to
denote functions.

As there is only one input byte-sized parameter, the most convenient place to
place K in the calling program is in the Working register. Thus to call up a 5 s
delay, the caller could use the sequence:

movlw d’50’ ; 50 x 0.1s gives 5 seconds
call DELAY_K100MS ; Go to it!

The subroutine itself in Program 6.4 implements the task list:
1. DO:

(a) Delay 100 ms.
(b) Decrement K .

2. WHILE (K > 0).
3. End.

6 Subroutines and Modules 171

Program 6.4 A K × 100 ms delay subroutine
; ***
; * FUNCTION : Delays for around K x 100ms @ 4MHz *
; * EXAMPLE : K = 100, delays 10 seconds *
; * ENTRY : K in W, range 1 - 256 *
; * EXIT : Delay K x 100ms *
; * ENVIRONMENT: Flags and W altered. Files h’030:31’ zero *
; ***
COUNT1 equ h’030’ ; 100ms loop counter
K equ h’031’ ; Temporary storage for K

#define N d’249’ ; Delay parameter

DELAY_K100MS
movwf K ; Put K away in a File

; DO 100ms delay --
DELAY_100MS movlw d’100’ ; Setup outer loop cnt to 100-

movwf COUNT1 ; -
; DO 1ms delay --- -
DELAY_1MS movlw N ; Set up loop - -
; --- -
D_LOOP addlw -1 ; Decrement count - - -

nop ; One-cycle delay - - -
bnz D_LOOP ; IF not THEN repeat - - -

; --- - -
decfsz COUNT1,f ; Dec 100’s loop count - -
bra DELAY_1MS ; & repeat until zero - -

; Decrement K -- -
decfsz K,f ; -
bra DELAY_100MS; Rept 100ms delay WHILE K>0 -

; ---
FINI return

The actual coding simply copies the parameter from the Working register into
File h’031’ before entering the following delineated coding, which is identical to
Program 6.3 and gives a single 100 ms delay. On completion of this fixed delay,
K is decremented in situ and the delay block repeated until K reaches zero. Thus
the 100 ms block is repeated K times.

Because K is tested for zero after the 100 ms delay is executed4 an initial value
of K = 0 will be treated as K = 256, giving a delay range of 0.1–25.6 s. Testing
before the loop5 would give a range 0–25.5 s. Again the actual time calculation is
approximate, as we have ignored instructions in the outer loops.

As WREG is needed to set up COUNT1 and time the inner 1 ms loop, it cannot
be used directly to hold K during the subroutine. In fact, if the caller had known
that File h’031’ was used by the subroutine to hold K then it could have been passed

4Known to C programmers as a DO-WHILE loop.
5Known to C programmers as a WHILE loop.

172 The Essential PIC18® Microcontroller

Program 6.5 An alternative K × 100 ms delay subroutine
; **
; * FUNCTION : Delays for around K x 100 ms @ 4MHz *
; * EXAMPLE : K = 100, delays 10 seconds *
; * RESOURCE : DELAY_100MS called *
; * ENTRY : K in W, range 1 - 256 *
; * EXIT : Delay *
; * ENVIRONMENT : W, Status flags and File h’030’ altered *
; **
K equ h’030’ ; Temporary storage for K

DELAY_K100MS
movwf K ; Put K away in a File

; Task 1: DO 100 ms delay-------------------------------------
DK_LOOP call DELAY_100MS

; Task 2: Decrement K---

decfsz K,f ; Decrement K

; Task 3: WHILE K > 0---
bra DK_LOOP ; REPEAT WHILE K > 0

return

directly through this File. However, the less the caller has to know about the ‘in-
nards’ of its subroutines the better it will be, on the basis that a subroutine should
disturb its environment as little as possible. DELAY_K100MS is not very good in
this respect, using two Files for its internal use and altering both WREG and Status
flags.

Notice that the directive #define is used in this program to give N its substitute
value, rather than equ. Either works to inform the assembler that the defined symbol
is to be replaced by d’249’. However, #define is more suggestive of the symbol
substitution than equ which is normally used to name a File or bit in a File—see
also p. 267.

As an example of what could go wrong, Program 6.5 shows an implementation
of the task list but calling the 100 ms block as the existing Program 6.3 subroutine;
that is, a nested subroutine. Here File h’030’ is used as a store for K oblivious to the
fact that this File is also used by subroutine DELAY_100MS as a loop counter. The
effect of this interaction is to make K zero on return from DELAY_100MS, which
when decremented will always give a non-zero outcome. Thus the delay is infinite
and the system locks up! Simply changing K equ h’030’ to K equ h’031’
fixes the problem; but if another member of the team with responsibility for the
DELAY_100MS subroutine alters its internal storage map without communicating
this to other team members, then catastrophe may occur! Thus even though each
subroutine would have been passed when tested on its own, certain combinations of
calling sequences could cause failure. We will return to this problem later.

6 Subroutines and Modules 173

Fig. 6.8 The 7-segment display

Incidentally, the call instruction in this program could be replaced by rcall,
assuming that DELAY_100MS is nearby. However, note that the Fast option is not
available to this instruction.

Program 6.4 is still void, in that no data was returned to the caller on exit. For
our next example we will code a non-void subroutine that will activate a decimal
readout. Many numeric electronic displays are based on a selective activation of
seven segments in the manner shown in Fig. 6.8. These segments are typically im-
plemented using light-emitting diodes (see Fig. 11.19 on p. 371) or electrodes in a
liquid-crystal cell.

The system view of our subroutine is shown in Fig. 6.8(a). Here the input signal
is a 4-bit binary code representing the ten decimal digits as b’0000–1001’ in the
Working register. The output, also in WREG, is the corresponding 7-segment code
to activate the digit as listed in Table 6.2. This code assumes that a segment is
lit/opaque on a binary 1 and is dark/clear on a binary 0. Depending on the physical
connections used, the opposite polarity is possible.

Most MPU/MCUs deal with look-up tables by storing the codes as part of the
program memory and copying the N th byte out of the table as the mapping function.
In the base- and most of the mid-range PIC MCU families, the Harvard structure
makes code in the Program store inaccessible as data.6 In these cases look-up tables
are implemented as an array of retlw instructions; each returning a constant byte
in the Working register. This approach is shown in Table 6.2. In this example bit 7
has arbitrarily made logic 0; but in practice this could be used for other purposes;
such as to activate the decimal point.

In developing a coding based on this table structure, the mechanism for ele-
ment N extraction is to execute the N th retlw instruction. This will place the

6But see Program 15.5 in The Quintessential PIC® Microcontroller, Springer, 2nd ed. 2005 for an
exception.

174 The Essential PIC18® Microcontroller

Table 6.2 The 7-segment
look-up table showing byte
[N] being extracted

PC Table [i] Display

+0 retlw b’00111111’ ;

+2 retlw b’00000110’ ;

+4 retlw b’01011011’ ;

+6 retlw b’01001111’ ;

+8 retlw b’01100110’ ;

+10 retlw b’01101101’ ; = Table[6]

N �⇒ +12 retlw b’01111101’ ;

+14 retlw b’00000111’ ;

+16 retlw b’01111111’ ;

+18 retlw b’01101111’ ;

instruction literal in the Working register and then do a normal return from sub-
routine back to the caller. As each instruction occupies two bytes in the Program
store, then the value of N will need to be doubled to act as an offset to the entry
value of the PC. In the example shown, if N is six, then the sixth retlw, located at

PC + (2 × 6), is executed; returning with the code b’01111000’ for in WREG.
The coding shown in Program 6.6 implements this selection mechanism by sim-

ply doubling N (by adding the contents of WREG to itself) and then adding this
to the lower byte of the Program Counter; that is, PCL in File h’FF9’. As the PC is
already pointing to the first retlw instruction, after the addition it then points to
the N th retlw, and this is the exit point from the subroutine.

The code in Program 6.6 takes no account of the possibility that the datum in
WREG is greater than h’09’. Of course it shouldn’t be, but robust code should cope
with all contingencies, even if they technically cannot occur. This is especially true
if the code module is to be reusable for general-purpose applications. What would
happen if this situation arose and how could you add to the code to gracefully return
an error code, say −1, in this eventuality?

This approach of adding a byte number in WREG to the low byte of the Pro-
gram Counter (PCL) to select one of N Return instructions is deceptively simple.
Although it works in most situations where the table is small, for the unwary pro-
grammer, it can cause seemingly unpredictable system crashes. The problem arises,
as altering PCL with the instruction addwf PCL,w only alters the lower eight bits
of the 21-bit Program Counter. If the addition should cause overflow, then the net
effect is to effectively move the Program Counter proper backwards! For instance,
if the subroutine of Program 6.6 happened to be located at h’001F8’ (that is, the
label SVN_SEG was h’001F8’) and if the contents of WREG happened to be h’04’

6 Subroutines and Modules 175

Program 6.6 The software 7-segment decoder
; **
; * FUNCTION : Returns byte[N] in table *
; * FUNCTION : where N is the contents of WREG *
; * EXAMPLE : IF WREG = 06 THEN returns code b’01111101’*
; * ENTRY : N range 00 - 09 in WREG *
; * EXIT : Table entry N in WREG *
; * ENVIRONMENT: WREG = 2N, Status flags altered *
; **

SVN_SEG addwf WREG,w ; Adds WREG to itself to give 2N
addwf PCL,f ; Add WREG to PCL, giving PC + 2N

; -gfedcba
retlw b’00111111’ ; Code for 0; Returned if N = 0
retlw b’00000110’ ; Code for 1; Returned if N = 1
retlw b’01011011’ ; Code for 2; Returned if N = 2
retlw b’01001111’ ; Code for 3; Returned if N = 3
retlw b’01100110’ ; Code for 4; Returned if N = 4
retlw b’01101101’ ; Code for 5; Returned if N = 5
retlw b’01111101’ ; Code for 6; Returned if N = 6
retlw b’00000111’ ; Code for 7; Returned if N = 7
retlw b’01111111’ ; Code for 8; Returned if N = 8
retlw b’01101111’ ; Code for 9; Returned if N = 9

on entry, then the outcome of the instruction addwf PCL,f would be to leave the
Program Counter at h’(001)F8 + 08 = (001)00’ rather than h’00200’. The instruc-
tion located at h’00108’ (if any) is unlikely to be a Return instruction and so we have
exited a subroutine illegally and left the state of the Stack unbalanced. The exact
position of a subroutine in the Program store is not easy to predict, as the program-
mer is unlikely to know in advance where the subroutine is located in memory; that
is, what value the PC will have at the beginning of the subroutine. Even if he/she
checks the assembler listing file (see Table on p. 247) for the value of SVN_SEG,
this can change if subsequent alterations are made to other parts of the program. It
is possible to devise code to allow this address boundary to be crossed, but at the
expense of complexity—see Example 6.5.

Storing data using a series of retlw instructions is rather inefficient in that a
16-bit instruction is being used to store each 8-bit datum. All enhanced-range family
members have implemented a technique of being able to read a single byte datum
directly from the Program store using the tblrd instruction—see Program 15.6 on
p. 551.

Using the Working register to transfer information to and from a subroutine is
limited to a single byte datum each way. Where several pieces of information of
byte or greater sizes are to be passed, then GPRs must be pressed into service for
this conduit. An example of this is shown in Program 6.7 where a 2-byte datum
labeled DIVIDEND_H:DIVIDEND_L is to be divided by a byte DIVISOR The
outcome is to be a 2-byte Quotient QUOTIENT_H:QUOTIENT_L and a single byte
REMAINDER; as described in Fig. 6.9.

176 The Essential PIC18® Microcontroller

Fig. 6.9 System diagram for the 16 ÷ 8 division subroutine

It is possible to divide by repetitively subtracting the divisor from the divi-
dend/residue and counting until the residue drops below the divisor. Whilst this
is practical for single-byte dividends, such as in Program 5.11 on p. 149; for larger
dividends the execution time becomes very lengthy. For instance, 65,535 ÷ 3 would
require 21,845 subtractions.

A rather more efficient technique is based on an algorithm which uses a com-
bination of shifting and subtraction; as briefly illustrated on p. 11. For our 2-byte
example this only requires a fixed 16 passes through the loop. The task list in this
instance is:

1. Extend Dividend internally to four bytes.
2. DO

(a) Shift 4-byte Dividend left once.
(b) Subtract (Divisor <<16) from Dividend/residue.
(c) Shift borrow (Carry bit) left into Quotient (Quotient × 2).
(d) IF no borrow (C == 1) THEN update the Dividend/residue with the differ-

ence.
(e) Repeat 16 times.

3. Remainder is the residue Dividend shifted right 16 times.

As shifting the Divisor left 16 times (<<16) essentially means aligning it beyond
the 2-byte Dividend, we need to extend the latter by adding an upper byte. Indeed,
as the Dividend will be shifting left during this process, a further overflow byte
needs to be added to give a 4-byte Dividend array. Both these extension bytes will
need to be initialized as zero. Our memory map for our coding with this in mind is
illustrated in Fig. 6.10.

Program 6.7 declares the variables that are passed to and from the subroutine at
the beginning of the main program. Keeping all these global declarations in one part
of the program and using a different File for each overall global variable reduces the
possibility of interaction but at the expense of rather extravagant use of scarce Data
memory resources. Temporary local storage is declared within each subroutine, as
its need will be ‘thrown away’ after the subroutine is terminated. However, interac-
tion can still occur in local storage where nested subroutine structures are used.

The coding follows the task list closely.

DIV_16: Instructions 1–4
The two local (internal) variables used to extend the Dividend; that is DIVIDEND_O
and DIVIDEND_U, are zeroed. The initialization is wrapped up by setting the local
variable COUNT to 16, to act as the loop counter.

6 Subroutines and Modules 177

Fig. 6.10 Memory map for the shift and subtract division subroutine

DIV_LOOP: Instructions 5–9
Inside the shift and subtract loop, the 4-byte Dividend chain is shifted left one place,
as described in Fig. 5.15 on p. 133.

Instructions 10–13
The Divisor byte is subtracted from DIVIDEND_O:DIVIDEND_U; effectively
−(DIVISOR <<16).

Instructions 14 & 15
The 2-byte Quotient is shifted left once with the Carry flag (not borrow) from the
previous subtraction coming in from the right as the new bit 0.

Instructions 16–18
Based on this new bit 0 of the Quotient, if there was no borrow-out (Q0 = 1) then
the difference from the subtraction overwrites the extension bytes of the Dividend;
giving the new residue Dividend.

Instructions 19 & 20
The loop count is decremented and the process repeated a total of 16 times before
breaking out.

Instructions 21 & 22
The final residue Dividend shifted right 16 places is the Remainder. Copying the
Upper byte of the residue chain to REMAINDER effectively implements this >>16
operation.

In order to use this subroutine, the caller puts the Divisor into File h’060’
and the two Dividend bytes DIVIDEND_H and DIVIDEND_L respectively into
File h’062:61’. On return, the 16-bit QUOTIENT:H and QUOTIENT_L can be read
at File h’064:63’ respectively. The Remainder is accessed at File h’065’.

As an example, consider that the bytes located at File h’043:2’ are to be divided
by the byte at File h’046’.

178 The Essential PIC18® Microcontroller

movff h’042’,DIVIDEND_L ; Get low byte of Dividend
movff h’043’,DIVIDEND_H ; and high byte in situ
movff h’046’,DIVISOR ; Get Divisor in place
call DIV_16 ; Go to it!
; On return the Quotient now in File h’064:63’
; and Remainder in File h’065’

Program 6.7 The 16 ÷ 8 division subroutine
; Global declarations
DIVISOR equ h’060’ ; On entry the Divisor is here
DIVIDEND_L equ h’061’ ; and the Dividend low byte is here
DIVIDEND_H equ h’062’ ; Dividend high byte
QUOTIENT_L equ h’063’ ; The Quotient is built up here
QUOTIENT_H equ h’064’
REMAINDER equ h’065’ ; The Remainder on exit

; ***
; * FUNCTION : Divides a 2-byte Dividend by a 1-byte Divisor *
; * FUNCTION : Giving a 2-byte Quotient and 1-byte Remainder *
; * EXAMPLE : Dividend = h’FFFF’ (65,535); Divisor = h’0A’ (10) *
; * EXAMPLE : Quotient <- h’1999’ (6553); Remainder <- h’05’ *
; * ENTRY : DIVISOR, File h’060’; DIVIDEND_L, File h’061’ *
; * ENTRY : DIVIDEND_H, File h’062’ *
; * EXIT : QUOTIENT_L, File h’063’; QUOTIENT_H, File h’064’ *
; * EXIT : REMAINDER, File h’065’ *
; * ENVIR’MENT: COUNT, DIVIDEND_U, DIVIDEND_O (Files h’070 -- 72’)*
; * ENVIR’MENT: and W, STATUS altered *
; ***
; Local declarations
COUNT equ h’070’ ; Holds the Quotient bit count
DIVIDEND_U equ h’071’ ; Overflow byte for shifted Dividend
DIVIDEND_O equ h’072’ ; Holds any overflow from Dividend

DIV_16 movlw d’16’ ; Sixteen times around the loop
movwf COUNT ; Zero the Bit count
clrf DIVIDEND_U ; Zero the Upper Dividend byte
clrf DIVIDEND_O ; Zero the Overflow byte

; Shift 4-byte Dividend left one place ----------------------------
DIV_LOOP bcf STATUS,C ; In any case shift Dividend left

rlcf DIVIDEND_L,f
rlcf DIVIDEND_H,f; All 32 bits
rlcf DIVIDEND_U,f
rlcf DIVIDEND_O,f

; Subtract Divisor << 16 from Upper byte of Dividend --------------
movf DIVISOR,w ; Get Subtrahend
subwf DIVIDEND_U,w; Dividend High - Subtrahend
btfss STATUS,C ; Skip if no Borrow
decf DIVIDEND_O,f; ELSE take away 1 from Overflow byte

; Shift the borrow into the 2-byte Quotient -----------------------
rlcf QUOTIENT_L,f; Shift Borrow into Quotient
rlcf QUOTIENT_H,f

; Update the Dividend/residue if no borrow ------------------------
btfsc QUOTIENT_L,0; Skip IF this bit is a 1
movwf DIVIDEND_U ; ELSE update Dividend Upper byte in W

clrf DIVIDEND_O ; Always zero the overflow Dividend
; Loop housekeeping ---

decfsz COUNT,f ; Record one more bit
bra DIV_LOOP ; Repeat 16 times in all

; The remainder is the High byte in the Dividend ------------------
REMAIN movff DIVIDEND_U,REMAINDER

return ; Return to caller

6 Subroutines and Modules 179

Fig. 6.11 A more detailed view of the Hardware stack; peeking into cell 2

For more advanced programming structures, such as multi-tasking and real-time
operating systems (RTOS), the Hardware stack in the PIC18 core has been signif-
icantly enhanced compared to previous families. Figure 6.11 shows how the Hard-
ware stack integrates with the STKPTR (STacK PoinTeR) and triplet Top Of Stack
TOSU:TOSH:TOSL SFRs; collectively known as TOS. At any instant the contents of
the TOS registers reflect the 21-bit datum in the cell pointed-to by the Stack Pointer.
Changing the TOS will effectively alter the contents of this stack cell, allowing the
software both to examine and optionally change the value of a return address or
other data previously pushed into the Hardware stack. By moving the StacK Pointer
up and down, a range of stack-located data can be accessed; for instance, to set up a
table of subroutine (or interrupt) return addresses.

This increased flexibility comes at a price. The possibility of the Hardware stack
overflowing (full) or underflowing in certain circumstances is increased. In earlier
families an over/underflowing stack causes the Stack Pointer to wrap around, and
overwrite previously stored return addresses, causing catastrophic failure. In the
PIC18 Hardware stack, this situation can be trapped.

Figure 6.12 shows that as well as the five Stack Pointer bits SP[4:0], STKPTR
also holds two status bits which signal this error situation. STKFUL (STacK FULl)
will be set to 1 whenever the Stack Pointer (SP) reaches 31. In a similar manner,
STKUNF (StacK UNderFlow) will be set whenever SP decrements to cell 0. The
precise action that takes place whenever a stack over/underflow occurs depends on
the state of the STVREN7 (STack oVer/underflow Reset ENable) Configuration fuse
bit—see Appendix B. Essentially these Configuration fuses are set or cleared when
the software is blasted into the Program store and enable the designer to setup a
series of options, such as what should happen when there is a stack malfunction.

STVREN ON (= 1)—default
In this situation:

7Confusingly, in some devices, including the PIC18F1220, this is called STVR.

180 The Essential PIC18® Microcontroller

Fig. 6.12 The enhanced-range STacK PoinTeR register

• A push (e.g. from a Call type instruction) into cell 31 will set STKFUL and copy
the Program Counter into the stack and then will reset the MCU. This is equiva-
lent to bringing the Master CLeaR (MCLR) pin low, as described on p. 323, and
the SFRs will be initialized into their Reset state. In the case of STKPTR, bits
SP[4:0] will be cleared; effectively resetting the stack. However, STKFUL will
remain set to 1.

• When the Stack Pointer is pointing to cell 1, any further pop (e.g. from a Return
type instruction) will set STKUNF and reset the MCU as above.

STVREN OFF (= 0)

• When the stack overflows, STKFUL will be set. Any subsequent pushes of the PC
will not overwrite this data, and thus newer data will be lost. The Stack Pointer
will remain at 31.

• When the stack underflows, STKUNF will be set and the next pop will return a
value of zero to the PC. Effectively, this will cause the program to restart from its
Reset vector. This is not the same as a reset, as the state of the various SFRs will
not be changed.

In all cases the STKUNF and STKFUL bits can only be subsequently cleared by
software; e.g. bcf STKPTR,7. A Power-On Reset (POR) will also clear the Stack
status bits.

As the Stack Pointer component of STKPTR is readable and writeable (R/W)
it can be moved up or down using normal instructions. For instance, movlw 5,
addwf STKPTR,f will move the Stack Pointer up five places. The contents
of the newly targeted cell can then be examined through the TOS registers, and
changed if desired. The disadvantage of this approach is that it doesn’t activate the
over/underflow detection mechanism. Also in some cases, such as multi-precision
arithmetic, altering the Status flags can be an issue.

6 Subroutines and Modules 181

Fig. 6.13 Illustrating the push and pop instructions

Apart from the Call and Return instructions, the PIC18 instruction set includes
the two instructions push and pull, that are specifically designed to alter the Stack
Pointer without causing a jump to or return from a subroutine.

push 00000000000000101
This instruction, shown in Fig. 6.13(a) increments the Stack Pointer and then copies
the 21-bit contents of the PC (which is already pointing to the instruction following
push) into the stack, which is then accessible through TOS and can be changed.
This is similar to call, but without overwriting the PC with a destination address.
Of course, the original contents of this Hardware cell will be destroyed by the Push
action, and if this is a problem incf STKPTR,f can be used as a substitute (but
this latter alter Status flags).

pop 00000000000000110
As shown in Fig. 6.13(b), pop decrements the SP, and the TOS value now changes
to reflect the value previously pushed into the stack. A series of pop instructions
can be used to move the SP back up if desired, and clrf STKPTR will effectively
reset it to the bottom of the stack.

Neither push nor pull instruction affects the STKFUL and STKOVF flags nor
any Status bits.

As an example, consider that we wish to code a subroutine to convert a 16-bit
natural binary word in File h’061:60 to five BCD digits, located in the array:

UNITS File h’048’ TENS File h’049’ HUNDS File h’04A’ THOUS File h’04B’

T’THOUS File h’04C’

For instance; h’FFFF’ � 06 05 05 03 05.
The simplest way to convert binary to decimal is to repetitively divide by ten,

with the series of remainders giving the BCD digits; units first (Horner’s method).
In our instance 65,535 ÷ 10 � 6553r5; ÷10 � 655r3; ÷10 � 65r5; ÷10 � 6r5;
÷10 � 0r6.

Now we already have a 16 ÷ 8 subroutine in Program 6.7 which our new subrou-
tine can call. If we wish to use, say, FSR0 as a pointer to our BCD array, then all we

182 The Essential PIC18® Microcontroller

Program 6.8 16-bit binary to BCD conversion
; **
; * FUNCTION : Converts a 16-bit binary word to 5-digit BCD *
; * EXAMPLE : b’1111 1111 1111 1111’ -> 06 05 05 03 05 *
; * ENTRY : 2-byte binary number in DIVIDEND_H:DIVIDEND_L *
; * EXIT : 5 BCD digits in File h’048 -- 04C’ Units first *
; * RESOURCES : Subroutine DIV_16. *
; * ENVIR’MENT: DIVISOR, DIVIDEND:4, QUOTIENT:2, W, S’S altered*
; **

; First save FSR0 in stack -------------------------------------
BIN_2_BCD push ; Move Stack Pointer up one

movf FSR0L,w ; Push FSR0 into Stack
movwf TOSL
movf FSR0H,w
movwf TOSH

; Divide binary word by ten five times; giving decimal digits --
lfsr 0,h’048’ ; Point to a BCD array

M_LOOP call DIV_16 ; Divide by ten
movff REMAINDER,POSTINC0 ; Put the Remainder in the array
movff QUOTIENT_L,DIVIDEND_L ; Set up the next Dividend
movff QUOTIENT_H,DIVIDEND_H
movlw h’4C’ ; Check for h’4D’
cpfsgt FSR0L ; Compare with Low byte of FSR0
bra M_LOOP ; IF not yet there THEN repeat

; Restore entry state of FSR0 -----------------------------------
movff TOSH,FSR0H ; Get back out the entry value
movff TOSL,FSR0L
pop ; Backup to the caller’s return address

return ; ELSE done

need to do is initialize this to File h’048’, and in a loop call our ÷10 subroutine five
times, putting the return remainder in our array with automatically incrementation,
and using the return quotient as the new dividend.

One problem remains. Although the enhanced-range family is richly endowed
with File Pointer registers compared to previous families (three 12-bit as com-
pared to one 8-bit FSR); nevertheless they are in great demand and unless enough
care is used, our subroutine may be called from another routine which also uses
FSR0. Using a Fast Call/Return will automatically save and retrieve WREG, STA-
TUS and BSR, but any other common resources need to be ‘manually’ stashed away
if necessary. In our case, we could reserve two fixed GPR Files for this task. How-
ever, this is not foolproof, as a nested subroutine or interrupt service routine may
inadvertently overwrite this when also saving its local value of FSR0. A better
way of making transparent use of FSR0 is to push a copy of it into the Hard-
ware stack before the call to BIN_2_BCD and then pop it out of the stack after
return.

On entry to our subroutine listed in Program 6.8, instruction 1 moves the Stack
Pointer up one cell (and also superfluously copies PC + 2 into this cell). The fol-
lowing four instructions simply copy the low- and high-bytes of FSR0 into TOSL

6 Subroutines and Modules 183

Fig. 6.14 A view of the stack with MPLAB SIM on arrival at subroutine DIV_16

and TOSH respectively via WREG.8 This overwrites the contents of this cell. In
Fig. 6.14 cell 2 is shown holding this original value, which in this instance is h’120’.
Of course, should other nested subroutines also use FSR0 and save it in the same
way, then the new copy will be further up the stack each time this is done. Thus,
within the capacity of the stack, there will not be a problem with corruption.

Our program is now free to initialize FSR0 to File h’048’ and then call DIV_16
with a Divisor of ten. On return, the two Quotient bytes are copied as the new
Dividend and the Remainder copied into memory with the FSR0 used as a Post-
Incrementing pointer. When this pointer exceeds h’04C’ the process is complete. On
return from the subroutine DIV_16 the Stack pointer will be pointing to the cell
holding the original value of FSR0 (cell 2 in the diagram) and these two bytes are
then copied back into FSR0H:FSR0L. Finally the Stack Pointer is popped back down
a cell to point to the caller’s address before returning from subroutine BIN_2_BCD
(cell 1 in the screenshot holds the caller’s address h’00014’.

Although this example only saved FSR0, the principle can be extended for other
Files; GPRs as well as SFRs—see Example 6.7. Where the Fast Call/Return mech-
anism cannot be used; for instance with interrupts active or more than one nested
subroutine, the Working register, Status and Bank Select Registers can be pushed
and popped to/from the stack.

Although the Hardware stack can be used as described to preserve system infor-
mation (or context), as well as passing parameters back and forth between caller
and subroutine (see also Example 6.7), its use in this regard is really rather limited.
This is only partly to do with its restricted size, but also the overhead of continually
moving the Stack pointer up and down to access these data.

As an alternative it is possible to simulate a stack-like structure in normal Data
memory, using a spare File Select Register as a Pseudo Stack Pointer (PSP). In the
examples given in this chapter, FSR2 is used in this regard. If we allocate the block
of Files h’0A0–0FF’ for our Software stack, then that gives us 96 bytes of storage.

8The instruction movff should not be used with the TOS or PC registers as destination as corrup-
tion may occur if interrupts are in use, but they can be used as source data.

184 The Essential PIC18® Microcontroller

Fig. 6.15 The Software stack from the perspective of subroutine DIV_16S

To set up this stack, all that needs to be done is to initialize FSR2 at the start of the
program code following the Reset vector; lfsr 2,h’0A0’ in the code fragment
of p. 185.

To illustrate this concept, consider a stack-oriented version of the division sub-
routine of Program 6.7. We are going to use the stack structure, shown in Fig. 6.15,
to both pass the Divisor and Dividend to the subroutine and also preserve the Work-
ing and Status register states. On return the Quotient and Remainder will be avail-
able to the caller in memory on the stack. The code fragment following shows how
this is done. For the purposes of this example we have assumed that prior to the
call the Divisor is located in File h’020’ and Dividend in File h’022:21’. On return the
Quotient is to be put into File h’029:28’ and Remainder in File h’02A’.

(a) Make a copy of the Status and WREG registers using the movff instruction,
with the destination pointing into the Software stack, using FSR2 with Post-
increment Indirect addressing. The movff instruction does not change any Sta-
tus flags. Effectively this moves the PSP down the stack (up in address).

(b) In an identical manner, copy the Divisor and Dividend (two bytes) into the stack
frame, automatically advancing FSR2.

(c) Call the subroutine, with the two variables passed in the frame.
(d) On return the PSP will be restored to the Top Of Frame (TOF). On this basis, us-

ing the Working register as an offset to FSR2 (see p. 107) both Quotient bytes at

6 Subroutines and Modules 185

TOF + 7:6 and Remainder at TOF + 8 are copied to their destination. Finally the
two system variables at the Top Of Frame (TOF and TOF + 1 are copied across.

; Global variables

DIVISOR equ h’020’ ; Divisor found here
DIVIDEND_L equ h’021’ ; 2-byte Dividend
DIVIDEND_H equ h’022’
QUOTIENT_L equ h’028’ ; 2-byte Quotient
QUOTIENT_H equ h’029’ ; to be put here
REMAINDER equ h’02A’ ; & Remainder to put here

; In the beginning set up Top Of Stack
MAIN lfsr 2,h’0A0’ ; Reset value of PSP (FSR2)
;
;
; Some time later when ready to call subroutine
; (a) -------------------------------------

movff STATUS,POSTINC2 ; Copy STATUS into S’stack
movff WREG,POSTINC2 ; Copy WREG into S’stack

; (b) -------------------------------------
movff DIVISOR,POSTINC2 ; Copy Divisor into S’stack
movff DIVIDEND_L,POSTINC2; Copy the 2-byte Dividend
movff DIVIDEND_H,POSTINC2; into Software stack

; (c) -------------------------------------
call DIV_16S ; Go and DO the division

; (d) -------------------------------------
movlw 6 ; Point to QUOTIENT_H (TOF+6)
movff PLUSW2,QUOTIENT_H ; Copy byte out of frame
incf WREG,f ; Point to QUOTIENT_L
movff PLUSW2,QUOTIENT_L ; Copy byte out of frame
incf WREG,f ; Point to REMAINDER
movff PLUSW2,REMAINDER

; Restore WREG & STATUS without affecting any Status flags --
movf PREINC2,f ; Move PSP up one (TOF+1)
movff POSTDEC2,WREG ; Copy Working reg out; PSP-
movff INDF2,STATUS ; & lastly return Status (TOF)

Coding of the DIV_16 subroutine is given in Program 6.9. This uses the same
processes as Program 6.7, but the variables are accessed relative to the PSP. On
entry, FSR2 is incrementally moved towards the Bottom Of Frame all the while
initializing the two short-term variables and the three local variables (shown shaded)
that will eventually be returned to caller.

When the intialization has been completed, the PSP will be pointing to the first
new location beyond the frame, labeled in Fig. 6.15 as BOF. In this diagram, all
variables are labeled relative to this point. For instance, to decrement the temporary

186 The Essential PIC18® Microcontroller

Program 6.9 16 ÷ 8 division subroutine using a Software stack
; **
; * FUNCTION : Divides a 2-byte Dividend by a 1-byte Divisor *
; * FUNCTION : Giving a 2-byte Quotient and 1-byte Remainder *
; * EXAMPLE : Dividend = h’FFFF’ (65,535); Divisor = h’0A’ (10)*
; * EXAMPLE : Quotient <- h’1999’ (6553); Remainder <- h’05’ *
; * ENTRY : DIVISOR @ BOF-8, DIVIDEND_L @ BOF-7 *
; * ENTRY : DIVIDEND_H @ BOF-6 *
; * EXIT : QUOTIENT_L @ BOF-3; QUOTIENT_H @ BOF-4 *
; * EXIT : REMAINDER @ BOF-2 *
; * ENVIR’MENT: PSP is FSR2 *
; **
DIV_16S movlw d’16’ ; Set up loop count to 16

movwf POSTINC2 ; As PSP-5
clrf POSTINC2 ; QUOTIENT_H = 00 (PSP-4)
clrf POSTINC2 ; QUOTIENT_L = 00 (PSP-3)
clrf POSTINC2 ; DIVIDEND_U = 00 (PSP-2)
clrf POSTINC2 ; DIVIDEND_O = 00 (PSP-1)

; Shift 3-byte Dividend left one place ----------------------------
DIV_LOOP bcf STATUS,C ; In any case shift Dividend left

movlw -7 ; Prepare to point to DIVIDEND_L
rlcf PLUSW2,f ; All four bytes
movlw -6
rlcf PLUSW2,f ; Making sure not to disturb
movlw -2 ; the Carry flag
rlcf PLUSW2,f
movlw -1
rlcf PLUSW2,f

; Subtract Divisor << 16 from Upper byte of Dividend --------------
movlw -8 ; Prepare to get Divisor
movf PLUSW2,w ; into W (Subtrahend)
movf POSTDEC2,f ; Move PSP up one
movf POSTDEC2,f ; and to point to DIVIDEND_U
subwf INDF2,w ; Dividend Upper - Subtrahend
movf PREINC2,f ; Point to Overflow Dividend byte
btfss STATUS,C ; Skip if no Borrow
decf INDF2,f ; ELSE subtract 1 from Overflow byte

; Shift the borrow into the 2-byte Quotient -----------------------
movf POSTDEC2,f ; Move down two places
movf POSTDEC2,f ; to get to low byte of Quotient
rlcf POSTDEC2,f ; Shift Borrow into Quotient Low
rlcf POSTINC2,f ; and then into Quotient High

; Update the Dividend/residue if no borrow ------------------------
btfsc POSTINC2,0 ; Skip IF bit Q0 is a 0 (Borrow-in)
movwf INDF2 ; ELSE update Dividend Upper byte
clrf PREINC2 ; Always zero the overflow Dividend
movf PREINC2,f ; Return to BOF location

; Loop housekeeping ---
movlw -5 ; Prepare to point to Loop Count
decfsz PLUSW2,f ; Record one more bit
bra DIV_LOOP ; Repeat 16 times in all

; The remainder is the Upper byte in the Dividend -----------------
REMAIN movf FSRL2,w ; Move down ten places

addlw -d’10’ ; Add ten to low byte of FSR2
movwf FSR2
btfss STATUS,C ; Skip IF no Borrow
decf FSRH2,f ; ELSE return borrow to High FSR2

return ; Return with data in S’stack

6 Subroutines and Modules 187

Fig. 6.16 A view into the Data store after a run with h’FFFF’ ÷ 0A’ (65,535 ÷ 10)

variable COUNT, an address of BOF + 5 will have to be accessed. There are three
ways of doing this, all of which are used in the coding.

• Put an offset in WREG and use this with the Plus W Indirect address mode—see
p. 107. In our example, movlw 5; incf PLUSW2,f. This technique is also
used to access the four Dividend bytes when shifting the chain left once. The
Carry flag is not altered between accesses.

• Use Automatic Increment and Decrement Indirect address modes to move FSR2
up and down. If it is not intended to alter any values, just increment or decrement
FSR2 then the instruction movf PREINC2,f or similar will simply copy a da-
tum onto itself, but change FSR2 according to the address mode used. This latter
technique is used in the coding prior to shifting the borrow-out into the Quotient.

As this approach involves actually changing the PSR, the programmer needs to
keep track of its value and problems can occur when Branch and Skip instructions
are used, as these can conditionally jump over instructions modifying PSP.

• A constant offset can be added to or subtracted from FSR2, remembering that this
register is really two single-byte SFRs; FSRH2 and FSRL2.

In our coding this technique is used to subtract ten from the value of FSR2 to
move the PSP back to the Top Of Frame position, prior to returning to the caller.
This rollup effectively cleans up the frame, allowing the same GPRs to be reused
later whenever a new subroutine is called which also makes use of the Software
stack. Of course before this, any data required by the caller must be collected and
set into its final resting place, as previously described.

Figure 6.16 shows the Data store after execution with an initial value for
DIVIDEND:2 of h’FFFF’ and for DIVISOR of h’0A’ (65,535 ÷ 10). The outcome
h’1999’ (6553) is in the Software stack along with the remainder of h’05’. Both vari-
ables have also been copied into QUOTIENT:2 and REMAINDER.

Program 6.9 requires 40 instructions as compared to 22 in Program 6.7. Its exe-
cution time of 478 cycles also compares unfavorably with 282 cycles. However, its
transparency gives superior reusability and robustness. Furthermore, a fully trans-
parent function is re-entrant; that is can call itself. These attributes are valued for
high-level language compilers, which nearly always use stack-oriented implemen-
tations at assembly-level. In larger assembly-coded systems, a Software stack model
is likely to be more economical in its use of scarce data memory, as after a frame has

188 The Essential PIC18® Microcontroller

been cleaned up, such memory can safely be reused. However, programs running on
PIC MCUs are often not very complex and the comparatively small Program mem-
ory may restrict the use of this relatively extravagant technique. Where real-time
execution time is critical the additional burden of stack handling is unlikely to be
worthwhile.

To facilitate high-level compiler design (see Fig. 9.1 on p. 277) and to increase
the code efficiency of high-level language script, many of the newer PIC18 family
members (not the PIC18F1220) provide an optional extension, adding eight instruc-
tions and a new address mode to the core instruction set. This option is controlled by
the XINST fuse, which can be set when the code is blasted into the Program store—
as described on p. 316. Normally the processor defaults to disabling this extension.

Although the Extended instruction set are designed primarily for optimizing
high-level language compilers, it is possible to use them for general assembly-level
coding. For reference they are briefly reviewed here.

addfsr 11101000 ii LLLLLL
Augments the 2-byte File Select Register i with a 6-bit literal (0–31); for instance,
addfsr 0,6 (add six to FSR0). Unlike the similar process at the end of Pro-
gram 6.9, neither status flags nor the contents of WREG are altered. This makes this
instruction useful when moving the PSP in the middle of a multi-byte arithmetic
process.

subfsr 11101001 ii LLLLLL
The subtractive counterpart of addfsr. For instance, subfsr 2,d’10’ sub-
tracts ten from the 2-byte FSR2; potentially replacing the five penultimate instruc-
tions in Program 6.9.

addunlk 1110100011 LLLLLL
At the end of a stack-based function, the PSP has to be restored to its entry value
and then execution returned to the caller. This process is called unlinking. The ADD
UNLinK instruction adds a 6-bit literal to FSR2 and then executes a Return; that is
it combines the two processes into one for stacks that grow downwards from the
entry PSP—see Fig. 6.20.

subunlk 1110100111 LLLLLL
This subtractive counterpart to addulnk is used for stacks that grow upwards; as
in Fig. 6.15. For instance, to unlink Program 6.9 we could have subunlk d’10’;
replacing the last six instructions!

movsf 110010110 LLLLLLLs

1111 dddddddddddd
This variant of movff specifies the source File as a 7-bit literal offset to the pointer
FSR2. Thus, movsf [8],WREG copies the byte at the effective address FSR2 + 8
(i.e. eight higher than the cell pointed to by FSR2) to the Working register. This
means that FSR2 does not have to be altered to access data in the stack. Like movff,
the destination should not be any of the PC, TOS or INTCON registers—see Pro-
gram 6.16 for an example.

6 Subroutines and Modules 189

movss 111010111 LLLLLLLs

1111 XXXXX LLLLLLLd

This instruction is similar to movsf but both source and destination are pin-pointed
as an offset from FSR2. Thus movss [6],[2] copies the byte from cell six above
FSR2 into cell two above FSR2.

pushl 11111010 LLLLLLLL
Copies the specified 8-bit literal into wherever FSR2 is pointing to and then decre-
ments FSR2. For instance, pushl 6 sets the pointed to cell to six and then moves
the pointer down one.

callw 0000000000010100
This version of call generates the destination address of the target subroutine as
PCLATU:PCLATH:WREG. By storing an array of goto instructions, up to 64 sub-
routines (remember that a goto instruction occupies four bytes in the Program
store) can be accessed as an indexed array, with the Working register holding the
index. For instance, if PCLATU = h’00’, PCLATH = h’20’ and WREG = h’08’, then
callw will save the PC on the Hardware stack in the normal way and then jump
to the instruction at h’002008’, which will normally (but not necessarily so) be a go
to the start of an associated subroutine. This subroutine is terminated by a Return
instruction in the normal way, but note that there is no Fast option.

As well as adding the eight listed instructions, this Extended mode also enables
a new kind of Indirect address mode, known as Indexed Literal Offset. This re-
interprets any address in Access RAM (see p. 81) in the range h’000–05F’ as a lit-
eral to be offset from FSR2. For instance, if FSR2 = h’040’, then clrf [h’12’]
will actually clear File h’052’, where the [] brackets indicate Indirect—see Pro-
gram 6.16. The instruction clrf h’12’ is no longer permitted if the Extended
instruction set is enabled. However, if the programmer really wants to clear the ab-
solute location File h’012’ then there are two ways to do this. This high-jacking of
Absolute to Indexed Literal Offset address modes is only implemented if the a-bit
is 0 (see p. 81). Normally the programmer does not have to explicitly specify Access
as against Banking addressing, as the assembler will take care of the setting of this
bit. However, if the BSR is h’00’ (as it is on a Power-on Reset) then the instruction
clrf h’012’,1 will use the Banking mode to clear File h’(0)12’. Alternatively,
if FSR2 is zeroed then File h’012’ is the target. This re-interpretation does not apply
to locations above File h’05F’ in the Access bank.

Examples

Example 6.1 Write a subroutine to give a fixed 208 µs delay. Assume a 4 MHz
processor clock rate.

Solution For a short time period like this, the code outlined in Program 6.1 provides
adequate delay. With a 4 MHz clock, one cycle is 1 µs and thus we require 208

190 The Essential PIC18® Microcontroller

cycles. From p. 166 we have:

4 + 4 × N = 208 cycles,

N = 51.

Thus replacing N by d’51’ will give the required delay. What value of N would
you use if a 20 MHz crystal were used?

Example 6.2 At the other end of the spectrum write a subroutine to give a delay of
one minute.

Solution Sixty seconds can be implemented as 240 × 250 ms. Our solution Pro-
gram 6.10 closely follows the coding in the triple-loop Program 6.4 which carries
out a K × 100 ms delay. The maximum value of K is 255, which would only give
25.5 s, but we can increase the middle loop to 250 ms and thus give increments of
1
4 s. If we now use an outer loop with a 240 count, we have our 60 s delay.

Comments in the listing give the full delay calculation, which totals 59.941206 s,
accurate to approximately 0.1%. Once again the routine can be padded out with nop

Program 6.10 A 1-min delay program
; ***
; * FUNCTION: Delays for approx a minute for a 4 MHz XTAL *
; * ENTRY : None *
; * EXIT : Status & W altered, Files h’030:31’ zero *
; ***
; Local variables
COUNT1 equ h’030’ ; Counter at File h’030’
COUNT2 equ h’031’ ; and File h’031’

DELAY_1_MIN movlw d’240’ ; Put 240 as the MS count, 1~
movwf COUNT2 ; 1~

; Outer loop (250ms ---
DELAY_250MS movlw d’250’ ; Put 250 as mid count, 240*1~ -

movwf COUNT1 ; for a 250ms delay, 240*1~ -
; -
; Mid loop (1ms) -- -
DELAY_1MS movlw d’249’ ; 250*240~ - -
; - -
; Inner loop -- - -
D_LOOP addlw -1 ; 249*250*240~ - - -

nop ; 249*250*240~ - - -
bnz D_LOOP ;[2*(249-1]+1*250*240)~ - - -

; --- - -
decfsz COUNT1,f ; (250+1)*240~ - -
goto DELAY_1MS ; 2*(250-1)+1*240~ - -

; --- -
decfsz COUNT2,f ; 240+1~ -
goto DELAY_250MS; 2*(240-1)+1~ -

; ---
return ; 2~

6 Subroutines and Modules 191

instructions. Each nop after the first decfsz adds 250 × 240 = 60,000 cycles; so
one will change the shortfall to an excess of 1206 cycles in 60,000,000 cycles, or
better than +0.002%.

Example 6.3 Write a subroutine to evaluate the square root of a 16-bit integer lo-
cated in File h’027:26’ and return the 8-bit outcome in the Working register.

Solution The crudest way of doing this is to try every possible integer k from 1
upwards, generating k2 by multiplication and checking that the outcome is no more
than Number. An equivalent but (perhaps) slightly more sophisticated approach is
based on subtracting the series 1, 3, 5, 7, 9, 11, . . . from Number until underflow
occurs. Counting the number of subtractions gives the nearest square root. This
series comes from the relationship:

k2 =
k∑

I=0

(2 × I) + 1.

Fig. 6.17 Finding the square root of an integer by repetitive subtraction

192 The Essential PIC18® Microcontroller

On this basis a possible structure for this function is:

1. Zero the loop count.
2. Set variable I (the magic number) to 1.
3. DO forever:

(a) Take I from Number.
(b) IF the outcome drops below zero THEN BREAK out.
(c) ELSE increment the loop count.
(d) Add 2 to I.

4. Return loop count as
√

Number.

Program 6.11 Coding the square root subroutine
; Global declarations --
WREG equ h’FE8’ ; Working register
NUM_L equ h’026’ ; Number low byte
NUM_H equ h’027’ ; Number high byte

; **
; * FUNCTION : Calculates the square root of a 16-bit integer *
; * EXAMPLE : Number = h’FFFF’ (65,535), Root = h’FF’ (d’255’) *
; * ENTRY : Number in File h’027:26’ *
; * EXIT : Root in W and in COUNT. *
; * ENVIR’MENT: Files h’037:35’ and Status register altered *
; **

; Local declarations ---
COUNT equ h’035’ ; The loop count
I_L equ h’036’ ; Magic number low
I_H equ h’037’ ; Magic number high

; Task 1: Zero loop count --
SQR_ROOT clrf COUNT

; Task 2: Set magic number I to one ------------------------------
clrf I_L
clrf I_H
incf I_L,f

; Task 3: DO ---
; Task 3(a): Number - I --------------------------------------

SQR_LOOP movf I_L,w ; Get Low byte magic number
subwf NUM_L,f ; Subtract from Low byte Number
movf I_H,w ; Get Hi byte magic number and
subwfb NUM_H,f ; subtract with borrow from Hi byte

; Task 3(b): IF underflow THEN exit --------------------------
bnc SQR_END ; No Carry is Borrow. IF true terminate

; Task 3(c): ELSE increment loop Count -----------------------
incf COUNT,f

; Task 3(d): Add two to the magic number I:2 -----------------
movlw 2 ; Add two to Low byte of I
addwf I_L,f
clrf WREG ; Zero Working register
addwfc I_H ; and add Carry bit to upper byte I
bra SQR_LOOP ; and do another subtract and test

; Task 4: Return loop count as the square root -------------------
SQR_END movf COUNT,w ; Copy into WREG

return ; and return to caller

6 Subroutines and Modules 193

An example giving
√

65 = 8 is given in Fig. 6.17(a) using this series approach.
A flowchart visualizing the task list is also given in Fig. 6.17(b). The coding in Pro-
gram 6.11 follows the task list closely. The maximum value of the loop count is
h’FF’, as

√
65535 ≈ 255. Thus a single byte at File h’035’ is reserved for this local

variable. Similarly the maximum possible value of the magic number is 511 (h’1FF’)
and so the two registers File h’037:36’ are reserved for this local variable. This of
course means that Task 3(a) entails a double-byte subtraction. By zeroing the Work-
ing register (which does not affect the C flag) and using the subwfb instruction,
any borrow-out will be subtracted from the high byte of the ever decreasing Number.
If a borrow is generated from this high-byte subtraction then the outcome is under
zero and the loop is exited using the Conditional bnc instruction (a borrow-out is
signaled by no Carry). Otherwise COUNT is incremented and I augmented by two
and the process repeated.

Actually the loop Count is always half of (I less one), so COUNT is not really
required. Instead, on return the 16-bit value I can be shifted once right. This divides
by 2 and by throwing away the one that pops out into the Carry flag, effectively
subtracts one—I is always odd and so its least significant bit is always 1. Try coding
this alternative arrangement.

Example 6.4 Example 6.3 used several GPR Files to hold local variables. Repeat
the coding using the Hardware stack to give an equivalent transparent subroutine
with a minimal environmental impact.

Solution In implementing a function of this nature, the Hardware stack has to make
room for both variables passed to the subroutine and for temporary storage of local
variables. All this is in addition to its normal automatic storage of the return address.
The organization of the Hardware stack used to support these three roles is shown
in Fig. 6.18. Pre call, both bytes of the Number to be rooted are pushed into a single
stack cell—which can hold up to 21 bits. The precall sequence will be something
like:

Fig. 6.18 Organizing the
Hardware stack to implement
a transparent square-root
subroutine

194 The Essential PIC18® Microcontroller

Program 6.12 Coding the transparent square-root subroutine
; **
; * FUNCTION : Calculates the square root of a 16-bit integer *
; * EXAMPLE : Number = h’2710’ (10,000), Root = h’64’ (d’100’) *
; * ENTRY : Number in STKPTR-1 *
; * EXIT : Root in W *
; * ENVIR’MENT: TOS altered. Four additional Hardware stack cells*
; **
; Task 1: Zero loop count --
SQR_ROOT push ; Move STKPTR up one to cell +1

swapf STATUS,w ; Use swapf twice to
swapf WREG,w ; get entry Status unchanged into W
movwf TOSL ; and into the stack
clrf TOSH ; Zero COUNT

; Task 2: Set magic number I:2 to 0001 ---------------------------
push ; STKPTR++ up one to cell +2
clrf TOSL ; I:2 <- 0001
incf TOSL,f
clrf TOSH

; Task 3: DO ---
; Task 3(a): NUMBER:2 - I:2 ----------------------------------

SQR_LOOP movf TOSL,w ; Get Low byte magic number I_L
pop ; Move down to point to NUMBER:2
pop ; by moving STKPTR
pop ; down three to cell -1
subwf TOSL,f ; Subtract from NUMBER_L
bc SQR_NEXT ; Skip IF no Borrow
decf TOSH,f ; ELSE take one away from NUMBER_H and
bnc SQR_END ; IF borrow (underflows) THEN terminate

SQR_NEXT incf STKPTR,f ; Now go and get Hi byte I_H
incf STKPTR,f ; STKPTR++ to cell +1
incf STKPTR,f ; STKPTR++ to cell +2
movf TOSH,w ; Get I_H into WREG & go back down to
pop ; point to NUMBER:2
pop ; STKPTR-- to cell 0
pop ; STKPTR-- to cell -1
subwf TOSH,f ; and subtract I_H from NUMBER_H

; Task 3(b): IF underflow THEN exit --------------------------
bnc SQR_END ; No Carry is Borrow-out.

; Task 3(c): ELSE increment loop count -----------------------
incf STKPTR,f ; Now go up to point to loop Count
incf STKPTR,f ; STKPTR++ to cell +1
incf TOSH,f ; and increment COUNT

; Task 3(d): Add two to the magic number ---------------------
incf STKPTR,f ; Now point to I:2
movlw 2 ; Add two to low byte
addwf TOSL,f
clrf WREG ; Zero Working reg
addwfc TOSH ; and add Carry bit to upper byte I
bra SQR_LOOP ; and do another subtract

; Task 4: Return loop count as the square root -------------------
SQR_END movlw 2 ; Move STKPTR up two

addwf STKPTR,f ; to point to loop Count in cell +1
movf TOSH,w ; Copy into W (is answer)
movff TOSL,STATUS ; Get Status register back
pop ; Back to the caller’s address (cell 0)
return ; and return to caller

6 Subroutines and Modules 195

push ; Ensure STKPTR is pointing to valid cell
movf NUM_L,w ; Copy low byte Number into bits cell[7:0]
movwf TOSL ; via TOSL
movf NUM_H,w ; and high byte into bits cell[15:8]
movwf TOSH ; via TOSH
call SQR_ROOT ; Go and do square root of Number
pop ; Clean up stack & the square root is in W

The listing of our modified subroutine shown in Program 6.12 is based on the
listing of Program 6.11. In particular the Task list items line up. The only differ-
ence is the movement of STKPTR up and down to gain admission to the data in the
appropriate stack cell. The pop instruction is used to adjust STKPTR towards the
bottom of the stack (upwards in the diagram). Whilst push will move the Stack
Pointer towards the top of the stack (downwards in the diagram) it will overwrite
the cell’s contents with the 21-bit Program Counter. Where this is a problem, ei-
ther the incf instruction is used, or sometimes a constant is added to STKPTR.
With these latter techniques, care must be taken, as the Status flags and in the last
case the Working register, will be altered. In particular, once the lower bytes I_L
and NUMBER_L have been added, any borrow-out is handled immediately, as the
C flag will be altered in the process of accessing I_H. All these problems make the
use of a Software stack a more attractive proposition for anything beyond saving
registers!

In our listing the entry state of STATUS is also saved in the stack, as part of
Task 1. This is not as straightforward as might be expected. Copying it to the Work-
ing register using the movf instruction will alter the Z flag. movff cannot be used
with a TOS register as destination. Instead, the rather obscure use of swapf will
copy a nybble switched over version into the Working register without any sta-
tus change. Swapping it again rights the switch and it can then be saved into the
stack.

The final Task 4 moves COUNT into the Working register to pass back as the
square root. The STKPTR is then manoeuvred into position to allow a return to the
caller.

Example 6.5 The 7-segment decoder subroutine of Program 6.6 has several flaws,
the major of which being the possibility that when the offset in the Working register
(×2) is added to PCL, an overflow may occur, and the final value of the 21-bit
Program Counter will not reflect one of the tabulated retlw instructions. This is
a fatal error in that the program execution will navigate away from the subroutine
with little chance of ever legitimately returning to the caller.

It is possible to make this type of look-up table more robust by adding the offset
(doubled to reflect the 2-byte nature of the retlw instruction) to not only PCL but
also PCLATH and PCLATU. Show how this could be done for a look-up table to
display the hexadecimal digits 0–9 and A, b, C, d, E and F.

Solution A working solution is shown in Program 6.13. The structure of the actual
table of retlw instructions is similar, but with six additional entries and the label
TABLE_7 attached to the first of these instructions. The objective of the preliminary

196 The Essential PIC18® Microcontroller

Program 6.13 A robust hexadecimal 7-segment look-up table
; **
; * FUNCTION : Returns byte[N] in table *
; * FUNCTION : where N is the contents of W *
; * EXAMPLE : IF W = 06 THEN returns code b’01111101’ *
; * ENTRY : N range 00 - 09 in W *
; * EXIT : Table entry N in W *
; * ENVIRONMENT: W = 2N, Status flags altered *
; **

SVN_SEG andlw b’00001111’ ; Remove any erroneous upper nybble
addwf WREG,w ; Adds W to itself to give 2N
addlw LOW TABLE_7 ; Add onto the lo byte Table address
movwf TEMP ; and store away
movlw HIGH TABLE_7 ; The High byte of the Table address
movwf PCLATH ; Into PCLATH
clrf WREG ; Add zero plus
addwfc PCLATH,f ; any carry
movlw UPPER TABLE_7 ; Now the Upper Table address
movwf PCLATU ; into PCLATU
clrf WREG ; Zero WREG
addwfc PCLATU,f ; and add any carry to PCLATH
movf TEMP,w ; Get the saved PCL from above
movwf PCL ; and update the whole array

; -------------- xgfedcba --------------------------------------
TABLE_7 retlw b’00111111’ ; Code for 0; Returned if N = 0

retlw b’00000110’ ; Code for 1; Returned if N = 1
retlw b’01011011’ ; Code for 2; Returned if N = 2
retlw b’01001111’ ; Code for 3; Returned if N = 3
retlw b’01100110’ ; Code for 4; Returned if N = 4
retlw b’01101101’ ; Code for 5; Returned if N = 5
retlw b’01111101’ ; Code for 6; Returned if N = 6
retlw b’00000111’ ; Code for 7; Returned if N = 7
retlw b’01111111’ ; Code for 8; Returned if N = 8
retlw b’01101111’ ; Code for 9; Returned if N = 9
retlw b’01110111’ ; Code for A; Returned if N = 10
retlw b’01111100’ ; Code for b; Returned if N = 11
retlw b’00111001’ ; Code for C; Returned if N = 12
retlw b’01011110’ ; Code for d; Returned if N = 13
retlw b’01111001’ ; Code for E; Returned if N = 14
retlw b’01110001’ ; Code for F; Returned if N = 15

; --

routine is to double the entry offset in the Working register and then add this on to
the address TABLE_7, putting the outcome in the complete 21-bit PC. As there is
exactly 16 entries in the table, ANDing WREG with h’0F’ (b’00001111’) removes
any incorrect value above 15, to increase the security of the subroutine.

To dismember the 3-byte address TABLE_7, the Microchip assembler has the
three directives upper, high and low. If TABLE_7 where, say, h’0001F8’, then
the instruction addlw low TABLE_7will add the low byte (h’F8’ in our instance)

6 Subroutines and Modules 197

to WREG. Similarly, addlw high TABLE_7 adds bits 15–8 of TABLE_7 (h’01’
in our case) to the Working register, whilst addlw upper TABLE_7 adds bits
20–16.

Once the offset × 2 in WREG is added to TABLE_7[7:0], it is stored away
in a Temporary File. PCLATH is then updated with TABLE_7[15:8] and any
carry-out from this first addition added. Finally, PCLATU is overwritten with TA-
BLE_7[20:16] plus any previous carry-out. To get all this into the program
counter, the routine copies the low byte of this addition from TEMP and then the
act of copying this into PCL will at the same time copy PCLATH:PCLATU into the
entire PC—as described in Fig. 4.4 on p. 75.9 At this point in the program, the PC
is now set to TABLE_7+ WREG × 2. The next instruction to be executed will be
the appropriate retlw.

Although our resultant program is robust and can cope with tables up to 256 en-
tries (Program 6.6 can only handle 128 entries), nevertheless there are much more
efficient techniques of accessing tables of constants in the Program store—see Pro-
gram 15.6 on p. 551. How might you extend the program to cope with up to 65,536
entries—assuming a Program store of sufficient capacity?

Example 6.6 A certain vending machine has to display the message “insert coin
for cola” using a single 7-segment display, with a 400 ms delay between characters.
Show how this could be done, assuming that the display is connected to Port B,
which has been configured as an output, and the unit is clocked at 4 MHz.

Solution There are several solutions to this problem. The one adopted in Pro-
gram 6.14 is based on a table giving the code for each character in turn as it appears
in the message; duplicating when necessary and assuming no Space character.

If the last table entry is a special character; in our case all zeros or NUL, then the
driving subroutine can interpret this as End Of String.

The driving subroutine PUT_STR simply uses a Count, passed to WREG prior
to calling the look-up table STR_INSERT_COIN. Depending on the Count, ele-
ment N will be extracted from the table. On return, the byte in the Working register
is tested for zero. If this is true, then COUNT is zeroed and the process repeated from
character 0. Otherwise, the returned character code is copied into Port B and sub-
routine DELAY_K100MS (see Program 6.4) is called with a parameter of 4 to give
the required delay.

Using an End-Of-String character is a common technique employed in string
handling, as it allows the same driving function to be used irrespective of the string

9Note that movff cannot be used to do this copy operation into the PCL in one, as the PC, TOS
and INTCON registers are forbidden as destination for this instruction.

198 The Essential PIC18® Microcontroller

Program 6.14 Displaying a 7-segment coded character string
; **
; * FUNCTION : Sends out all characters from string table *
; * FUNCTION : terminated by NUL, to Port B at 400ms rate *
; * ENTRY : None *
; * EXIT : String displayed *
; * RESOURCE : Subroutines STR_INSERT_COIN, DELAY_K100MS *
; * ENVIR’MENT: Byte COUNT, COUNT1, K, WREG & Status altered *
; **
PUT_STR clrf COUNT ; Start character number at zero

PUT_LOOP movf COUNT,w ; Test number
call STR_INSERT_COIN ; Convert it
tstfsz WREG ; Skip IF returns with NUL char
bra NEXT ; ELSE display digit
bra PUT_STR ; Otherwise start all over again

NEXT movwf PORTB ; Send it out
movlw 4 ; Do 400ms delay
call DELAY_K100MS ; Delay
incf COUNT,f ; Next number
bra PUT_LOOP ; ELSE start again

return

; **
; * FUNCTION : Returns byte[N] in table *
; * FUNCTION : where N is the contents of W *
; * EXAMPLE : IF W = 06 THEN returns code b’00111001’ *
; * ENTRY : N range 00 - 17 in W *
; * EXIT : Table entry N in W *
; * ENVIRONMENT: Status flags altered *
; **
STR_INSERT_COIN

addwf WREG,w ; Double offset
addwf PCL,f ; and add to PC

; xgfedcba
STRING retlw b’00000110’ ; Code for I ; Returned if N = 0

retlw b’00110111’ ; Code for N ; Returned if N = 1
retlw b’01101101’ ; Code for S ; Returned if N = 2
retlw b’01111001’ ; Code for E ; Returned if N = 3
retlw b’00110001’ ; Code for r ; Returned if N = 4
retlw b’01110000’ ; Code for t ; Returned if N = 5
retlw b’00111001’ ; Code for C ; Returned if N = 6
retlw b’00111111’ ; Code for O ; Returned if N = 7
retlw b’00000110’ ; Code for I ; Returned if N = 8
retlw b’00110111’ ; Code for N ; Returned if N = 9
retlw b’01110001’ ; Code for F ; Returned if N = 10
retlw b’00111111’ ; Code for O ; Returned if N = 11
retlw b’00110001’ ; Code for r ; Returned if N = 12
retlw b’00111001’ ; Code for C ; Returned if N = 13
retlw b’00111111’ ; Code for O ; Returned if N = 14
retlw b’00111000’ ; Code for L ; Returned if N = 15
retlw b’01110111’ ; Code for A ; Returned if N = 16
retlw b’00000000’ ; Code for NUL ; Returned if N = 17

length—up to 255 characters in our case. However, there are other ways of dealing
with problems of this nature; can you think of any alternatives? Of course, we could
improve the robustness of the look-up table as described in Program 6.13.

6 Subroutines and Modules 199

Example 6.7 Design and code a transparent subroutine based on a Software stack,
that will accept a 7-bit datum in the Working register and return an 8-bit odd one’s
parity version also in the Working register. Assume that FSR2 has been initialized
to act as the Pseudo Stack Pointer.

Fig. 6.19 Software stack for the odd one’s parity subroutine

Program 6.15 Coding a transparent odd one’s parity subroutine
; **
; * FUNCTION : Modifies a 7-bit datum to give 1’s parity *
; * EXAMPLE : Datum = 01010101 -> 11010101 *
; * ENTRY : 7-bit Datum in WREG *
; * EXIT : 8-bit 1’s parity datum in WREG *
; * ENVIR’MENT : FSR2 used as PSP. Fully transparent *
; **

movff WREG,POSTINC2 ; Copy Datum on stack
clrf POSTINC2 ; 1’s Count zeroed

PARITY_LOOP
bcf STATUS,C ; Shift Datum
rlcf WREG,f ; once left into Carry
bnc PARITY_NEXT ; Skip IF zero popped out
movf POSTDEC2,f ; PSP-- points to 1’s Count
incf POSTINC2,f ; Increment 1’s Count; PSP++

PARITY_NEXT
tstfsz WREG ; Check residue from shifted datum
bra PARITY_LOOP ; IF not zero THEN DO another shift

; Check one’s count and if even (bit 0 == 0) THEN make bit 7 = 1
movf POSTDEC2,f ; PSP-- points to 1’s Count
btfsc INDF2,0 ; Test bit 0 of 1’s Count
bra PARITY_FINI ; IF == 1 THEN finished
movf POSTDEC2,f ; PSP-- points to copy Datum
bsf POSTINC2,7 ; Set bit 7 to give odd 1’s parity

; & PSP++
PARITY_FINI

movf POSTDEC2,f ; PSP-- points to Datum
movff POSTDEC2,WREG ; Copy into WREG and PSP-- moves

return ; back to return value

200 The Essential PIC18® Microcontroller

Solution Our subroutine needs to implement the following tasklist:

1. Count the number of ones in the initial 7-bit Datum.
2. If even (that is bit 0 of the Count is 0) then set bit 7 to one.

The Software stack structure for this subroutine is shown in Fig 6.19. As the
Datum is to be passed back and forth through the Working register, nothing needs
to be copied into the stack prior to the call. In the subroutine three cells are opened
as a Frame to hold the pre-call Status, the one’s count initialized to zero and a copy
of the Datum from the Working register for later possible modification.

The body of the routine simply shifts the entry Datum in the Working register
inside a loop, counting any ones and breaking out when the residue is zero. Based
on the state of bit 0 of this tally, bit 7 of the Datum in the Stack is set and then
this byte copied back into the Working register. Finally the stack is unlinked by
positioning the Pseudo Stack Pointer, in the guise of FSR2, to its entry point and
returning.

Example 6.8 Using the Extended Instruction set detailed on p. 188, show how Pro-
gram 6.15 can be more efficiently coded.

Solution Most of the new instructions and the Indexed Literal Offset address mode
work better with a grow-down Software structure. That is the PSP is decremented
as data is pushed out into the stack. This paradigm is shown in Fig. 6.20, which is
basically an ‘upside down’ version of Fig. 6.19.

Based on the illustrated structure, the subroutine listed in Program 6.16 is similar
to Program 6.15 but FSR2 at the low address of the Frame after the initialization
phase. Cell data is accessed using Indexed Literal addressing. Thus bsf [2],7
will set bit 7 of the byte two cells above the Frame bottom; that is FSR2 + 2. As the
Frame is three bytes deep, the final addulnk 03 instruction rolls up (cleans) the
Frame and returns to the caller.

In processors with the option of an Extended instruction set, the XINST fuse must
be set and the assembler notified that this set is to be used. Thus in the preamble we
need something like this:

Fig. 6.20 Grow-down Software stack for the odd one’s parity subroutine

6 Subroutines and Modules 201

Program 6.16 Using the Extended instruction set to code a transparent odd one’s parity
subroutine
; **
; * FUNCTION : Modifies a 7-bit datum to give 1’s parity *
; * EXAMPLE : Datum = 01010101 -> 11010101 *
; * ENTRY : 7-bit Datum in WREG *
; * EXIT : 8-bit 1’s parity datum in WREG *
; * RESOURCES : Uses Extended instruction set *
; * ENVIR’MENT : FSR2 used as PSP. Fully transparent *
; **
PARITY movff STATUS,POSTDEC2 ; Save Status on S’ware stack

movff WREG,POSTDEC2 ; Copy Datum on stack
pushl 0 ; 1’s Count zeroed

PARITY_LOOP
bcf STATUS,C ; Shift Datum
rlcf WREG,f ; once left into Carry
bnc PARITY_NEXT ; Skip IF zero popped out
incf [1],f ; Increment 1’s Count

PARITY_NEXT
tstfsz WREG ; Check residue from shifted datum
bra PARITY_LOOP ; IF not zero THEN DO another shift

; Check one’s count and if even (bit 0 == 0) THEN make bit 7 = 1
btfsc [1],0 ; Test bit 0 of 1’s Count
bra PARITY_FINI ; IF == 1 THEN finished
bsf [2],7 ; Set bit 7 to give odd 1’s parity

PARITY_FINI
movsf [2],WREG ; Returned value in WREG
movsf [3],STATUS ; Copy Status into STATUS
addulnk 3 ; Unlink stack

config XINST = ON ; XINST option active
list ep = PIC18F4520 ; Use 18F4520 Extended Processor
org 0 ; Start main code at h’00000’

MAIN lfsr 2,h’05F’ ; Initial PSP is File h’05F’
.... ; More code

More details of these assembler directives are given in Chap. 8.

Self-Assessment Questions

6.1 A certain student has coded his 1 ms delay subroutine of Program 6.1 thus:

DELAY_1MS movlw d’249’ ; Set up loop
D_LOOP addlw -1 ; Decrement count

nop ; Put in extra cycle
bnz DELAY_1MS ; Repeat unless zero
return

What will be the outcome?

202 The Essential PIC18® Microcontroller

6.2 Create a subroutine that will read Port B every hour and copy its value into
File h’044’. You can base it on a 60-minute version of Program 6.10. Say why
this may not be a good use of the PIC MCU’s resources.

6.3 In the same manner as Program 6.14 write a subroutine to display once when
called, the string “calibrate”, using upper- and lower-case glyphs as necessary,
at a rate of 250 ms per character. You may assume a clock rate of 8 MHz.

6.4 Program 6.7 showed how a 16-bit Dividend could be divided by an 8-bit
Divisor to give a 16-bit integer Quotient and an 8-bit Remainder. Extend
this coding to give a 24-bit Quotient comprizing 16-bit integer and 8-bit
fraction. For instance 100 ÷ 40 = 2.5 or in binary 0000000001100100 ÷
00101000 = 0000000000000010.10000000. You will need to deal with a vari-
able QUOTIENT_F to hold the fractional byte and will of course do 24 shift
and subtract operations.

6.5 Repeat the division example of Program 6.9, but this time using the Extended
instruction set available to the PIC18F4520 processor. For an efficient im-
plementation replace the diagram of Fig. 6.15 by the push-down stack of
Fig. 6.21.

Fig. 6.21 A push-down Software stack structure for the Extended instruction-set division program

6 Subroutines and Modules 203

6.6 Readings of the state of a mechanical switch can be erratic, as the contacts
will bounce for several milliseconds when closed; thus giving a series of 1s
and 0s. Similar considerations apply to electronic devices such as phototran-
sistors when passing through a shadow. Although this problem can be fixed
with hardware, it is usually more cost effective to use a software solution.

Devise a subroutine that will return with the stable state of a switch con-
nected to Port B pinRB7 as bit 7 of the Working register. Stability is defined
as 5000 (h’1388’) reads all giving the same value. The other bits of WREG on
return are undefined.

6.7 An analog-to-digital converter is connected to Port B. Repeat SAQ 6.6, but this
time defining stability as 1000 identical reads, and returning with the stable
digitized analog voltage in WREG.

6.8 The subroutine in SAQ 6.7 returns the stable value of a noisy digitized signal,
assuming 1000 identical values. Using this subroutine, code a main routine
that will generate how this stable reading differs from a preceding value pre-
viously stored in location File h’040’. Each bit that differs is to be logic 1.
Generate the position of the rightmost change bit in File h’041’; with a zero
denoting no difference and 1 through 8 for bits 0 through 7 respectively.

6.9 The subroutine of SAQ 6.7 will not return a value when relatively high-
frequency noise is present on the analog signal, as the resulting digital jitter
will ensure that 1000 identical readings rarely occur. As an alternative, noise
reduction can be obtained by taking the average of multiple readings. If the
noise is random then n readings will give a noise improvement of

√
n. De-

vise a subroutine that will read Port B 256 times and return the 8-bit rounded
average in WREG; which will give an increase in signal to noise ratio of 16.

6.10 The circuit diagram of Fig. 6.22 shows a 7-bit pseudo-random number gen-
erator (PRNG) based on a shift register with an Exclusive-OR gate feedback.
Devise a subroutine to send these 127 binary random numbers to Port B as a
single burst. An initial non-zero value for the PRN is to be passed to the sub-
routine in the Working register. For instance, if this seed value were 01, then
the first 32 7-bit hexadecimal values (with bit 7 = 0) are:

02 04 08 10 20 41 03 06 0C 18 30 61 42 05 0A 14
28 51 23 47 0F 1E 3C 79 72 64 48 11 22 45 0B 16 ...

What would happen if the initial value of the random number was zero?

Fig. 6.22 A 7-bit
pseudo-random number
generator

204 The Essential PIC18® Microcontroller

6.11 Mathematically to convert from Celsius to Fahrenheit we have:

F = C × 9

5
+ 32.

Write a transparent subroutine where the temperature is passed via the Work-
ing register, ranging from 0◦C through 100◦C, with the Fahrenheit equivalent
being returned in the same location. Make use of the DIV_16S subroutine of
Program 6.9 for your transparent division.

Chapter 7
Interrupt Handling

The subroutines discussed in Chap. 6 are predictable events in that they are called
up whenever the program dictates. Real-time situations, defined as where the pro-
cessor interacts in concert with external physical events, are not as simple as this.
Very often something happens beyond the core CPU which necessitates prompt ac-
tion from the processor. The vast majority of controllers have the capability to deal
with a range of such events that disrupt their smooth running. In the case of a micro-
controller, requests for service may come from an internal peripheral device, such
as a timer overflowing, or from the outside world from a source entirely external to
the device. At the very least, on an external reset (a type of outside hardware event)
the MCU must be able to get (vector) to the first instruction of the main program.
In the same manner an external service request, or interrupt, when answered must
lead to the start of the special subroutine, known as an interrupt service routine or
interrupt handler.

Although PIC MCU devices have different mixes of internal peripherals; such
as analog, serial and timer ports, the response to interrupt requests are handled in
the same manner. In this chapter we will concentrate on how the enhanced-range
family deals with such requests, and in particular to those external to the device.
The particular circumstances of how and why various internal peripheral modules
generate interrupts will be discussed as appropriate in Part III.

After reading this chapter you will:

• Be aware of the need for interrupt handling.
• Appreciate the concept of a vector table as a jumping-off point for Reset, Com-

patible, Low- and High-priority interrupt events.
• Follow the sequence of events when the PIC microcontroller recognizes an inter-

rupt request in both Compatible and Priority modes.
• Understand the principle of latency.
• Recognize the function of the global interrupt enable masks in empowering

groups of requests.
• Understand the operation of the local interrupt mask, flag and priority triplet bits

as appropriate to the various sources of interrupts.
• Be able to write a simple interrupt handler according to the principles:

S. Katzen, The Essential PIC18® Microcontroller,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-229-2_7, © Springer-Verlag London Limited 2010

205

206 The Essential PIC18® Microcontroller

Fig. 7.1 Detecting and measuring an external event

– Context switching.
– Determination of interrupt source.
– Core process.
– Return via the retfie instruction.

A simple example of a time-sensitive situation is shown in Fig. 7.1. Here we wish
to measure the elapsed time between the R-points of an electrocardiogram (EKG)1

signal, which by definition is an external real-time event. The time resolution is
to be 0.1 ms and the maximum peak-to-peak duration is likely to be no more than
1.5 seconds. In order to measure this time, a free-running 16-bit counter clocked at
10 kHz can be used as the time base. As we shall see in Chap. 13, all enhanced-range
PIC MCUs have several internal 16-bit counters. Here we will assume that the state
of the count can be read at any time from the appropriate Files. If the count at the
last R-point is stored in two spare GPRs, then subtraction of the count at the current
R-point will give the required beat-to-beat duration.

The next problem is how to detect the signal peak, as by definition the patient’s
heart is not synchronized to the MCU! One technique is to continually read the ECG
signal and perform a peak-detection algorithm to determine the R-point. Now this
polling technique will have to be carried out 10,000 times each second in order to
keep to the specified resolution. Taking a nominal human heart rate of 60 beats per
minute, 99.99% of the time no peak will be detected. Essentially, this means that the
processor will spend the vast majority of its processing power just looking out for
one event in 10,000.

The alternative approach is to use external hardware whose sole task is to find the
peak signal. That peak-picking hardware could be an analog circuit or even a MCU

1From the German Electrocardiogram; ECG in UK.

7 Interrupt Handling 207

with an analog-to-digital converter dedicated to this one task—see Example 14.2
on p. 527. Whatever the implementation, the peak-picker sends a signal to the main
processor when an R-point has been detected. This signal interrupts the MCU,
which must drop whatever it is doing and read the counter within 100 µs, if a counter
tick is not to be missed.

In the situation where external processes happen in their own good time and are
in no way synchronized to the processor, there has to be some way for certain events
to interrupt the background process and direct it to attend to their immediate need.
Polling a series of external events is adequate where nothing much happens quickly
outside and/or there are few parameters to monitor and little processing to do. The
possibility of missing anything important can be reduced by increasing the polling
rate, but there comes a time when the processor does little else but sample peripheral
data. This resource burnout is especially a problem when there are many signals to
poll in a short period of time.

The downside of interrupt-driven real-time monitoring is additional hardware
complexity and the greater intricacy of the hardware—software interaction. If you
are confused, consider the telephone system. It would be possible to have a tele-
phone network where the subscriber would pick up the phone every, say, 5 minutes
and ask “Is there anyone there?” Apart from the bother (processing overhead) of
doing this,2 the caller might get bored and hang up. You could reduce the chance
of this happening by increasing the polling rate to, say, once per minute. But you
would then end up spending all your time on the phone and, depending on how
popular you are, getting only a few hits a day. That is, 99% of your effort would be
wasted.

This is obviously ridiculous, and in practice an interrupt-driven technique is used
so that you only respond when the buzzer sounds. This is highly efficient, but at the
cost of a lot more complexity for the phone company, as the signaling side of the
system can be more demanding than the speech side. There is another problem too,
in that you (cf. the processor) have no idea when the phone will ring. And it surely
will be at the most inconvenient time. Thus you have to (unless you have an iron
will) break off what you are doing at the drop of a hat. For instance, if you happen
to be in the middle of solving a problem in your head you should save your partial
results before responding, so, when finished, you can return to where you left off.

Microcontrollers can respond to interrupt requests from a wide range of sources,
either physically outside the chip or from the various internal ports and peripheral
devices supported by that particular family member. For instance, our PIC18F1220
has 12 separate sources of interrupts originating from these modules, plus three
from outside via pins labeled INT0, INT1 and INT2—pins 8, 9 and 17 in Fig. 4.1
on p. 71. These are shared with bits 0, 1 and 2 of Port B; that is RB0, RB1 and
RB2 respectively. The programmer can choose to disable the complete interrupt
system (which is the Power-on Reset default) or enable/disable each of these sources
individually, as well as prioritize most of them. Because the response to an interrupt

2It would of course make it easier just to ignore the phone!

208 The Essential PIC18® Microcontroller

request is essentially the same, no matter whence it arises, we will in this chapter
refer mainly to these external, or Hardware, interrupts.

Keeping in mind the randomness of an external event, the response of any pro-
cessor to an interrupt request will normally be something like:

1. Finishing the current instruction.
2. Automatically saving, at the very least, the state of the Program Counter (PC)—

which is needed to get back. Some processors, such as the enhanced-range PIC
MCUs, also automatically save the Status register and other internal registers at
this point.

3. Entering the appropriate interrupt service routine.
4. Executing the defined task.
5. Restoring the processor state and returning to the point in the background pro-

gram from where control was first transferred.

Essentially, signaling an interrupt causes the PIC MCU to drop whatever it is
doing, save its position in the interrupted background program on the Hardware
stack and go to a special subroutine known as an interrupt service routine (ISR).
This foreground program is basically just a subroutine entered at the behest of an
external happening.

The minutiae of the response to an interrupt request varies somewhat from pro-
cessor to processor. In the case of the PIC18 family, this depends slightly on which
one of two interrupt modes the processor is configured for. These modes are:

Compatible mode; IPEN = 0
This is the default Power-on Reset state where bit 7 of the RCON (Reset CONtrol)
register is 0—see Fig. 10.14 on p. 325. All sources of interrupt service requests have
an individual local mask bit, but cannot be prioritized. Provided that the processor
is not already in an interrupt service routine, execution will be transferred to the
instruction located at h’00008’; known as the Default interrupt vector.

Priority mode; IPEN = 1
By setting RCON[7] to 1, all sources of interrupt requests, apart from that from the
INT0 pin, can be configured as either High- or Low-priority.

If an enabled source requests service, then the response of the processor depends
on its priority designation.

• If the request is High-priority, then provided that the processor is not already
executing a High-priority interrupt service routine, execution will be transferred
to the instruction at the High-Priority interrupt vector at h’00008’. This is the
same location used by the default Compatible mode for its interrupt vector.

• If the request is tagged as Low-priority, then provided that the processor is not
already executing either a High- or Low-priority interrupt service routine; execu-
tion will be transferred to the instruction located at the Low-Priority interrupt
vector at h’00018’.

7 Interrupt Handling 209

Fig. 7.2 The PIC18F1220 MCU’s interrupt logic in the default Compatible mode

In looking at these modes in more detail, we will begin with the default Com-
patible mode. This name comes from its compatibility with the mid-range PIC16
family interrupt architecture. To understand the logic behind this structure, shown
in Fig. 7.2, we need to briefly consider the evolution of interrupt handling in 8-bit
PIC MCU families.

The base-range family has no interrupt handling facilities and thus these devices
are restricted to polling in their interaction with the outside world. The rapid inter-

210 The Essential PIC18® Microcontroller

action of a processor to external events happening outside its control is a measure
of its caliber. With this in mind, when Microchip introduced the mid-range PIC16
family, they included an interrupt system capable of handling service requests from
up to four sources; namely an external voltage edge on the INT pin, a change of
state on the top four Port B pins, an overflow from the 8-bit Timer 0 and from one
device-specific module. For instance, the now obsolete PIC16C71 could generate
a service request when its Digital to Analog Converter (DAC) module completed
its conversion and similarly, the superseded PIC16C84 originated an interrupt when
the write-to action on its non-volatile Data EEPROM was complete. Each source of
interrupt set a bit in the INTerrupt CONtrol register (INTCON) to signal (or flag) the
various requests. For instance, a rising edge on the INT pin set bit INTF. Each of
these flag bits had an associated mask bit; INTE in our instance, which allowed the
programmer to control what sources were permitted to request an interrupt. Finally,
the General Interrupt Enable (GIE) bit when 0 disabled the complete interrupt logic,
which was the situation after a Power-on Reset.

All these mask (enable) and flag bits were located in the INTCON register. How-
ever, this 8-bit register had no room for the one additional peripheral device’s in-
terrupt flag, which had to be placed elsewhere; usually in the peripheral’s control
register.

Later and current members of the family added additional peripheral modules, all
of which can generate one or more interrupts. For instance, the 18-pin PIC16F627A
has seven additional peripheral modules, besides the three core services. As an evo-
lution of the early structure, these additional flag and mask bits are all located in one
or more Peripheral Interrupt (PIR) and Peripheral Interrupt Enable (PIE) registers.
These form their own logic group, with a separate overall PEripheral (group) Inter-
rupt Enable (PEIE) bit in INTCON[6]; replacing the specific single peripheral enable
bit in the early family members. This PIC16 logic structure is shown in Fig. 7.6 in
my The Quintessential PIC® Microcontroller, and it would be useful to compare
this Fig. 7.2.

The Compatible mode interrupt request logic shows the ten sources of interrupt
from the PIC18F1220’s complement of peripheral modules as a single group, which
can enabled/disabled as an entity with the PEIE bit in INTCON[6]. Each peripheral’s
service request sets its interrupt flag in one of the two Peripheral Interrupt Flag (PIR)
registers and this is ANDed with a corresponding local mask bit in the like Periph-
eral Interrupt Enable (PIE) register—see Fig. 7.5. For instance, when the Timer 2
module overflows, it sets its interrupt flag TMR2IF in PIR1[1]. If the TMR2IE bit in
PIE1[1] has been previously set, then this request will cause the output of the group
OR gate to go logic 1. If the group mask bit PEIE in INTCON[6] is also 1 then this
event will initiate an interrupt response—as described in Fig. 7.3.

All the Hardware interrupts, from pins INT0, INT1 and INT2 and that from
Port B and Timer 0 are handled as core interrupts, with interrupt and mask bits in
the three (increased from one) INTerrupt CONtrol registers. As well as holding the
global, group and five local core mask bits and interrupt flags, these control regis-
ters allow the software to set which edge at the INTerrupt pins set their associated
interrupt flag. For instance, if INTEDG1 is 1 (its Power-on Reset state) then a rising

7 Interrupt Handling 211

Fig. 7.3 Responding to an interrupt request in Compatible mode

edge on pin INT1 will set the INT1IF flag in INTCON3[0]. These registers also
hold the Priority bits for the core interrupt sources. Like the Peripheral interrupt
group, unmasked requests are OR’ed for onward transmission to the interrupt logic.

All mask bits are logic 0 after a Power-on Reset; that is all sources of interrupt
are disabled. However, the software is still able to poll the relevant interrupt flags,
as they continue to be set as appropriate to their monitor function.

What happens when one (or more) of the fifteen unmasked interrupt flags are set?
The Compatible mode response is illustrated in Fig. 7.3 and in more detail here:

1. The processor checks once during each instruction (Q4 in Fig. 4.5 on p. 76) for
an interrupt request from an enabled source. Even if this request is active, the
instruction continues to completion; that is, execution does not break part way
through the instruction, even in a multi-cycle or 2-word instruction.

2. If there is no valid request, the PIC MCU simply continues on to the next instruc-
tion and the process is repeated.

3. If there is a valid enabled request, then the next three instruction cycles are in-
volved in moving execution to the instruction located in the Interrupt vector
h’00008’. This comprises a cycle to allow the instruction at the top of the pipeline
to be executed3 plus two more dummy cycles to flush the Pipeline; after which
the instruction in the Interrupt vector is ready to be executed. This 3- to 4-cycle

3Alternatively, this could be the final cycle of a 2-cycle and/or 2-word instruction.

212 The Essential PIC18® Microcontroller

delay from the instant of the external signal to the INTn pin and beginning the
execution of the first instruction of the ISR is known as latency. It is impossible
to be more precise due to the time-random nature of the external request sig-
nal, which can occur anywhere in the instruction cycle. Requests from internal
peripheral modules have a similar 3-cycle latency.

4. During this latency period the PIC MCU does four things:
(a) The complete interrupt system is disabled, to ensure that once an interrupt

response is in train, any further interrupt requests are locked out. This is
done by clearing bit 7 of the INTerrupt CONtrol register INTCON, which is
labeled in Fig. 7.2 as General Interrupt Enable (GIE). GIE is an example of an
interrupt mask, as it is able to mask out interrupt activity. After a Power-on
Reset, GIE is clear; so by default interrupt activity is disabled.

(b) The state of the 21-bit Program Counter is pushed into the Hardware stack, in
exactly the same manner as for a call instruction—see Fig. 6.3 on p. 162.
As for subroutines, this is to allow the processor to return to the interrupted
background program after the interrupt service routine has terminated. As
the enhanced-range PIC MCUs have a 31-deep Hardware stack, subroutines
nested to depth of 30 can be called from an ISR—assuming that this stack is
not used for anything else.

(c) Simultaneously, a copy of the Working, Status and Bank Select registers are
saved on the Fast stack—as described on p. 167. This context can be re-
trieved if the Fast bit in the retfie instruction is 1, as described on p. 165;
i.e. retfie 1.

As the 3-cell Fast stack is (unfortunately) identical to that used for Fast
subroutines and it is always overwritten when an interrupt response is un-
derway. Unlike subroutine Fast calls, this is not optional. Thus Fast subrou-
tine calls should not be made at any point in the background program in an
interrupt-enabled system. They can be called from an ISR, provided that a
Fast retfie is not used.

(d) The first instruction of the ISR is always in location h’00008’ in the Program
store (see Fig. 4.3 on p. 73) for Compatible mode interrupts. This final step
of the sequence is to change the PC to this instruction address, known as the
Default interrupt vector. The first instruction of the ISR is here, but usually
this will be a goto, or sometimes a bra, to the interrupt handling software
elsewhere in Program memory—see Program 7.1.

5. Like a subroutine, an ISR must be terminated by a Return instruction. However,
in this case not only has the PC to be pulled back out of the Hardware stack
to move execution back to the interrupted program but the GIE bit in the INT-
CON register must be set to re-enable the interrupt capability. This counteracts
the clearing of this bit in 4(a) above, on entry to the ISR. The Return instruction
relevant to this situation is retfie (RETurn From Interrupt and Enable)—see
Table 6.1 on p. 164. Thus on re-entry to the background program, any pend-
ing or future interrupts can be serviced. As pointed out above, like the ordinary
return instruction, a Fast option is available to restore the entry WREG, STA-
TUS and BSR register states; provided that no Fast calls to subroutines are made
in the body of the ISR.

7 Interrupt Handling 213

Apart from the two additional Hardware interrupt pins, the major enhancement
in the PIC18 interrupt capability from the predecessor PIC16 family, is the optional
provision to prioritize interrupts. This option is exercised by setting the IPEN bit in
RCON[7] to 1—see Fig. 10.14 on p. 325. In the Compatible mode, once the proces-
sor enters an interrupt service routine any subsequent interrupt from another source
will be locked out, until the terminating retfie instruction sets the GIE switch
bit—see Fig. 7.3. Whilst this is fine in most cases, there are situations where some
sources requesting service need particularly urgent attention compared to others.
For instance, in our ECG monitoring system of Fig. 7.1, if the processor does not
respond within 100 µs then when it does get round to reading the timer, this will not
reflect the proper R-point instant. If one of the other interrupt services deals with,
say, sending a message to a remote terminal via a slow serial link; then this rela-
tively inconsequential process should not be allowed to hog the attention of the core
at the expense of a time-critical process. In such situations the more critical request
should be allowed to interrupt another lesser-important service.

In the Priority mode, the program can set the priority of each interrupt individ-
ually as either High or Low. We see from Fig. 7.4 that as before, each source of
service request sets its own interrupt flag, which is ANDed with its local enable bit.
Compared with the Compatible mode of Fig. 7.2, this logic is duplicated, with one
array of AND gates generating a composite High-priority request and the other a
Low-priority request. Each gate in the former case ANDs with an associated prior-
ity bit, and the latter with the inverse priority bit. In the case of the Peripheral group,
these priority bits are held in the two Interrupt Priority registers, IPR1 and IPR2,
as shown in Fig. 7.5. These correspond to the PIR1:PIR2 and PIE1:PIE2 registers,
which hold the interrupt flags and enable bits respectively.

As an example, shown in Fig. 7.5, are the two AND gates corresponding to
Timer 1. When overflow occurs in this peripheral module, the TMR1IF in PIR1[0]
is set. If the software has previously set the linked TMR1IE bit in PIE1[0], then a
potential service request is generated. Depending on the state of TMP1IP in IPR1[0],
this will be either Low-priority (TMR1IP = 0) or High-priority (TMR1IP = 1). On a
Power-on Reset all priority bits are 0 and thus interrupts default to Low-priority.

High-priority interrupts are enabled as a group with enable bit GIEH, which
shared with GIE as bit INTCON[7]—as shown in Fig. 7.2. Likewise, GIEL can mask
out Low-Priority interrupts, and this is shared with PEIE in INTCON[6]. Masking
out High-priority interrupts (GIEH = 0) also disables all Low-priority interrupts.

Core interrupts have their priority bits in INTCON2 and INTCON3, as shown in
Fig. 7.2, but otherwise function in the same way. The one exception is the Hardware
interrupt requested from pin INT0, which is always High-priority.

Comparing the flow charts of Fig. 7.6 and Fig. 7.3, we see that the response to
an enabled interrupt request is similar to the Compatible mode; with the following
major differences:

1. High-priority interrupts picking up their first ISR instruction at the High-Priority
vector at h’00008’ (the same as the Default vector in the Compatible mode) can
interrupt a Low-Priority ISR already in progress. No interrupt can muscle in on
a High-Priority ISR.

214 The Essential PIC18® Microcontroller

Fig. 7.4 The PIC18F1220 MCU’s interrupt logic in Priority mode

2. Low-Priority interrupts pick up their first ISR instruction at the Low-Priority
vector at h’00018’. A Low-Priority interrupt will be locked out if a High-Priority
ISR is in progress, as the GIEH bit will be zero in this instance.

Both High- and Low-Priority interrupts automatically save the 21-bit PC in the
Hardware stack; so an interrupted Low-Priority ISR can be resumed when the High-
Priority ISR has been completed. However, the WREG, STATUS and BSR registers
are saved in the same Fast stack, and thus if a mixture of High- and Low-Priority
interrupts are used in a system, only the former should use a fast retfie to re-

7 Interrupt Handling 215

Fig. 7.5 Peripheral group Interrupt, Enable and Priority registers for the PIC18F1220; showing
the logic for the Timer 1 module as an example

store these registers. Using a retfie 1 to terminate a Low-Priority ISR will risk
corruption from a possible High-Priority interrupt.

In all interrupt modes, the raw unglobally masked request signal can be used
to awaken the processor if it is in a power-down or Sleep state. As we will see
in Chap. 10, the current consumption of the device can be considerably reduced to
typically less than 1 µA if processing is stopped and the PIC MCU is put in a state of
suspended animation. For instance, monitoring the temperature profile at the bottom

216 The Essential PIC18® Microcontroller

Fig. 7.6 Responding to an interrupt request in Priority mode

of a lake over a period of a year at one-hour intervals using a battery-powered data
logger requires processing for a tiny proportion of the time. Placing the PIC MCU in
this power-down mode after each sample has been taken and stored will reduce the
necessary battery capacity. The sleep instruction initiates this mode. An interrupt
from an outside source, in this case a low-power hourly oscillator, is used to wake
the PIC MCU up. As we see from Figs. 7.2 and 7.4, this awakening is independent
of the setting of any of the Global mask bits located in INTCON[7:6].

In all cases, an interrupt request is initiated when a peripheral module or external
device causes its associated interrupt flag to be set. For instance, if Timer 3 over-
flows, it will automatically set TMR3IF—that is PIR2[1]. This will happen, even if
the TMR3IE mask bit is 0. In virtually all cases, once an interrupt flag is set, it will
remain 1 until cleared by the program. For this reason, it is vital that before exiting
an interrupt service routine that the initiating interrupt flag is cleared before return-
ing; e.g. bcf PIR2,TMR3IF. Failure to do so would mean that on return from the
ISR another request will immediately be made . . . ad infinitum!

To illustrate the software aspects of interrupt handling, consider an absolutely
bare bones example. In order to count customers coming into a small shop, a low-
power laser light beam/photocell is placed across the entry door; as shown in
Fig. 7.7. When the shopper breaks the beam, the resulting pulse requests
service from the monitoring microcontroller, which is away in its main background

7 Interrupt Handling 217

Fig. 7.7 Monitoring
customers entering the shop

routine doing something else; maybe handling the communication link between the
point of sale (POS) terminal and the main inventory computer.

From the software point of view we specify that each time the customer enters
the shop a GPR called TALLY is incremented. Of course customers will also be
leaving, but if the entrance is relatively narrow we can divide the number of breaks
by two to get the actual number of bodies. This will limit the customer count, but we
can easily increase the total by using extra GPR Files. We assume that the system is
reset at the beginning of business each day, so we are not expecting a customer base
greater than 126.

In keeping with the minimalistic character of this example, we will assume that
the interrupt system remains in the Power-on Reset default Compatible mode, so we
can use the Default interrupt vector h’00008’ and ignore prioritization issues.

Program 7.1 shows the two vectors at the top of the listing. As specified
by the directive org 00000 (see p. 245) at location h’00000’, which is where
the PIC MCU resets, is the instruction goto MAIN. Similarly, the instruction
goto PERS_COUNT actions a switch to the routine located at PERS_COUNT,
should the Program Counter alight at location h’00008’. Thus if the PIC MCU re-
sponds to an interrupt, we have the sequence interrupt � h’00008’ � PERS_COUNT.

The Main program itself simply zeroes the customer Tally and sets both the
INT0IF and GIE mask bits to enable external Hardware interrupts via pinINT0.
As we can see from Fig. 4.1 on p. 71, INT0 is shared with bit 0 of Port B (pinRB0)
which also doubles as an analog input to the analog to digital converter module
(pinAN4). As all PIC MCUs default to analog input, the ADC’s control register
ADCON1 is set to configure this pin as a digital input—see Fig. 14.12 on p. 510.

The following endless loop represents a skeleton of the processor’s background
tasks. Normally an embedded system’s software will be structured as a DO-
FOREVER loop, with calls outside to subroutines and dislocations to interrupt ser-
vice routines.

Interrupts happen randomly as viewed by the software and thus, unless masked
out, may happen at any part of the background software, including in the middle
of a subroutine or even with a High-priority request when executing a Low-priority
ISR. An ISR foreground routine uses the internal SFR registers in the same way
as any other software, so conflict over such resources will exist. For instance, the

218 The Essential PIC18® Microcontroller

Program 7.1 People counting
ADCON1 equ h’FC1’
INTCON equ h’FF2’ ; The INTerrupt CONtrol reg in which
INT0IF equ 1 ; bit1 is the Hardware interrupt0 flag
INT0IE equ 4 ; and bit4 is the associated mask bit
GIE equ 7 ; and bit7 is the Global mask bit

TALLY equ h’020’ ; Keeps tally of passing customers
; Reset vector --

org 00000 ; Resets to h’00000’ in Program store
goto MAIN ; Go to start of background routine

; Interrupt vector --
org h’00008’ ; Goes to h’00008’ if interrupt accepted
goto PERS_COUNT ; Go to start of foreground ISR

; Background program starts by initialization ------------------
MAIN movlw b’11111111’ ; Make ports all digital

movwf ADCON1 ; rather than default analog!

bsf INTCON,INT0IE; Enable Hardware interrupts
bsf INTCON,GIE ; Enable interrupt system overall
clrf TALLY ; Zero the customer count

; Main endless loop ---
M_LOOP ; Do this

; Do that
; Do the other

bra M_LOOP ; and repeat

; ---

; ***
; * FUNCTION : ISR increments TALLY on entry *
; * ENTRY : None *
; * EXIT : TALLY incremented *
; * ENVIR’MENT: Transparent if Compatibility or High-priority *
; ***
PERS_COUNT

bcf INTCON,INT0IF; Clear the INT0 Interrupt flag
; ==

incf TALLY,f ; Record one more event
; ==

retfie 1 ; Restore WREG, STATUS & BSR & return

background program could be testing the contents of a File when an interrupt oc-
curs. The Skip or Conditional Branch instruction which follows the test could be
dependent on, say, the state of the Zero flag in the Status register. However, the ISR
will in all probability alter Z and thus on return the background program will exe-
cute this instruction, oblivious of the fact that execution has been transferred in the
interregnum. Any change to Z would cause an erroneous branch in the background
program. Trying to debug this sort of problem is virtually impossible because the
effect of such an interrupt is sporadic, as the particular bug depends on the interrupt

7 Interrupt Handling 219

occurring at just this wrong time and wrong place—something it may do perhaps
once a week—and thus is difficult to reproduce.

Apart from Status register problems, the Working register is almost certain to be
altered in an ISR. Where an ISR alters the current Data store bank the consequences
can be even more serious. For instance, if BSR is set to h’04’ when an interrupt
occurs, and is changed to, say, h’01’ in the ISR, then any further Banked access by the
unsuspecting background program will be in Bank 1 rather than Bank 4. Again this
aftermath will appear to happen sporadically; depending where exactly the interrupt
occurs. For this reason, the Status, Working and Bank Select registers are always
automatically saved in the Fast stack before entry to the ISR—as shown in Figs. 7.3
and 7.6 and on p. 167.

If SFRs besides STATUS, WREG and BSR are altered in the foreground routine,
then they can be manually saved. Typically this will be done by pushing into the
Hardware or Software stack, as illustrated in Program 6.8 on p. 182 and the code
fragment on p. 185 or by using fixed locations in memory.4 However this is done,
this process is known as saving the context. Due to the capricious nature of an
interrupt, all ISRs need to be super transparent; in the same manner as transparent
subroutines discussed in the last chapter.

With this in mind, in general an ISR is normally divided into three phases.

Context Switching
A copy is made of the contents of any SFR that the ISR is going to alter, unless only
used by this ISR. If necessary, the same can be done for shared GPRs not being used
to pass data between the background software.

In our example, no SFRs are altered beyond the three automatically saved, and
the ISR is not servicing a Low-priority request in the Priority mode. The GPR
TALLY is altered (incremented) deliberately to record a person breaking the beam.
TALLY is an example of a global variable, which can be used by both the back-
ground and foreground programs, and is used to pass information back from the ISR.

Our example’s simplicity is partly because we have assumed that service re-
quests can only come from one source; that is from a Hardware interrupt at pin
INT0. Where requests can originate from several origins, the ISR will firstly have
to determine whence it came from before saving the appropriate context. This is
done by testing each of the appropriate interrupt flags in turn. Thus in a system
where an interrupt can be requested from Timer 1 as well as from pinINT0 we
would have something like:

btfsc INTCON,1 ; Check INT0IF for Hardware interrupt
goto EXTERNAL_0 ; IF set THEN go to INT0 handler

btfsc PIR1,0 ; Check TMR1IF Timer1 interrupt flag
goto TIMER1_ISR ; IF PIR1[0] set, go to TMR1 handler

....

4See Program 7.1 in my Quintessential PIC® Microcontroller for an example of the latter tech-
nique.

220 The Essential PIC18® Microcontroller

Core Function
This is where the processing is done. In our example, all that is done is to increment
TALLY. After which the active interrupt flag INT0IF in INTCON[1] must be cleared.
If this is not done, then on return to the background program another interrupt re-
quest will immediately be set in train.

In the more general case with several request origins, there will be an interrupt
handler for each source. Each will follow on from its specific context switching
routine. Only the interrupt flag specific to the handler will need to be cleared, so
that on return any pending requests can then be serviced.

As a general rule an absolute minimum of processing should be done in any han-
dler routine. This reduces the possibility of interaction with process resources and
especially when there are multiple sources of interrupts, facilitates a real-time re-
sponse. It also helps in debugging which is notoriously difficult in this random-like
environment.

Restoring the Context
The exit process first pulls out any saved registers. This reinstates the state of these
Files to their entry value.

Finally, the exit instruction retfie automatically sets the appropriate Global
Interrupt Enable mask bits in INTCON[7:6] to re-enable the interrupt system. Execu-
tion then returns to the background software. In our example, GIE is set and as we
are using the Fast version retfie 1, the context is concurrently restored.

Where multiple interrupt handlers are coded, it is usual to exit via a single
retfie rather then using multiple exit points. Generally both subroutines and
interrupt functions should be structured with only one entry and one exit point

Even with transparency, issues can arise with shared data. In particular, in deal-
ing with events where multiple-precision data are monitored and changed by both
background and foreground routines. Consider as an example a real-time clock
(RTC) which updates four Files holding time in the 4-byte multiple-precision for-
mat HOURS:MINUTES:SECONDS:JIFFY, where the JIFFY byte holds tenths
of seconds; see Example 7.3. We assume an external 10 Hz oscillator interrupts the
PIC MCU ten times per second, and the ISR updates the time-array.

Consider now that this RTC is part of a central heating controller. At
09:00:00:00 hours the water pump is to be toggled from on to off by the back-
ground program. One day this has been done and the time is now 09:59:59:09.
The background program, which spends most of its time just looking at the
time, reads the hours as 09. Getting interested, it is just going to read the Min-
utes variable when the Jiffy oscillator ‘ticks’. The MCU is interrupted and the
RTC now is updated to 10:00:00:00. On return the background program now
reads in succession 00, 00, 00. Thinking that it is now 09:00:00:00 it tog-
gles the pump on and thereafter the on and off periods are interchanged indefi-
nitely!

Of course it is bad design practice to use a toggle action; instead the pump should
be switched off at 9 am rather than toggled. At least in this latter case the harm done

7 Interrupt Handling 221

Fig. 7.8 Monitoring the teeth integrity of a belt drive

would be time limited. In general, the interrupt handler should be disabled by clear-
ing the appropriate mask where such multiple-precision data manipulation routines
are being executed in the background. Any interrupts occurring during this time
will be acknowledged when the mask is subsequently set, although events could be
missed if the masked-out period is too long.

For our final example, let us consider an interrupt-driven system which makes
use of the Priority-mode interrupt configuration. Mechanical power is frequently
transmitted using a drive belt. This is typically structured as an integral body and
teeth urethane cast. This is reinforced with spiraled cord and a yarn of carbon fiber.

In order to give warning of a missing tooth, it is proposed that a light
source/photocell generate a pulse with each passing tooth. A 10 kHz oscillator is
to be used to allow a processor to calculate the inter-tooth period with a resolution
of 0.1 ms. As can be seen from Fig. 7.8, it is proposed to use the conditioned tooth
signal to create an interrupt at the INT1 pin; whilst in parallel, the timing oscillator
creates an interrupt at INT2 every 100 µs. A buzzer will be connected to Port A’s
pin RA0 to sound the alarm. In practice there will likely be a serial communication
link to send a status report to a remote location. Some typical real-world signals
can be seen in Fig. 7.9. The rather noisy output from the photocell is shown in the
bottom trace, with the cleaned up tooth signal of the top waveform being input to
the INT1 pin.

The system software is to be partitioned into three routines. The Main or back-
ground routine and two ISRs implementing the foreground code.

222 The Essential PIC18® Microcontroller

Fig. 7.9 An oscillogram showing the raw and conditioned tooth pulse train

Routine MAIN sets up the parallel ports and interrupt system. This is followed by
an endless loop, looking for an absent tooth. The algorithm used in the implemention
of this loop is to set a variable ALARM_COUNT to 255 whenever the comparison is
true; that is the measured period is too long. Each time the Alarm routine is entered
with this variable non-zero then the sounder is activated for 1 ms. Thus after an
over-long period is detected, the sounder will activate. Should no more incidents be
detected, then the alarm will cease after this variable decrements to zero; for not less
than 255 ms.

High-priority function JIFFY is entered on each ‘tick’ of the 10 kHz timing
oscillator connected to INT2. Each instance of this ISR results in an increment of
the 2-byte variable TIMER_H:TIMER_L. That is TIMER:2 is incremented every
100 µs.

Low-priority function TOOTH is entered on each passing tooth.
This routine reads the 2-byte Timer count and uses this to generate a new moving

average. TIMER:2 is then zeroed. Both this average and current period count are
used by the background routine to conditionally activate an alarm situation.

The routine below shows the vector table actioning a jump to these three func-
tions. The PIC MCU will reset to the instruction at h’00000’ in the Program store on
a Power-on Reset, and as shown, execution will then go to the beginning of the rou-
tine labeled MAIN. Likewise, a High-priority interrupt (the oscillator connected to
pinINT2) will vector via h’00008’ and hence to the ISR JIFFY. The Low-priority
ISR TOOTH (belt photocell connected to pinINT1) is entered via a Branch from the
vector at h’00018’.

7 Interrupt Handling 223

; The three vectors ----------------------------
org h’00000’ ; Reset vector
bra MAIN ; Go to the background software

org h’00008’ ; Interrupt on oscillator
bra JIFFY ; Go and execute the High-

priority ISR

org h’00018’ ; Interrupt on passing tooth
bra TOOTH ; Go and execute the Low-

priority ISR

The executable code (less the vector table and various equates) is shown in Pro-
gram 7.2. Looking at each routine in more detail, we have:

The Background Routine
The task list for the MAIN routine is:

1. Ensure that the parallel port pins are set-up as digital (MCU defaults to analog
inputs on Power-on Reset) so that pinsRB1, RB2 can be used for the interrupt
inputs and pinRA0 can be used as an output to drive the digital alarm device.

2. As we are going to use the Priority interrupt mode, bit IPEN in RCON[7] needs to
be set to 1.

3. Both the INT1 and INT2 Hardware interrupts need to be locally enabled by
setting the INT1IE and INT2IE Enable mask bits in INTCON3[3:4] respectively.

4. The former interrupt should be set as Low-priority by clearing its INT1IP bit in
INTCON3[6] (its default Power-on Reset value anyway) and setting INT2IP in INT-
CON3[7].

5. Globally both High- and Low-priority interrupts will need to be enabled by setting
bits GIEH and GIEL in INTCON[7:6] respectively.

6. With the interrupt system set-up to respond to Low-priority INT1 and High-priority
INT2 interrupts, the remainder of the background software will be an endless
loop comparing the latest Period reading with the running average.
a. FOREVER DO:
b. Compare 0.75 × Period > EMA?
c. IF TRUE THEN sound alarm for nominally 0.25 s,

where EMA represents the Exponential Moving Average of all the antecedent inter-
tooth period timings and Period is the last recorded tooth-tooth period. If a tooth is
missing, then this Period reading will be somewhat larger than the running average.
Using a 3

4 factor gives some margin for a de-accelerating belt and timing jitter.
The coding itself copies the Period data PERIOD_H

F h’073’
PERIOD_L

F h’072’

into two Temporary locations TEMP_H
F h’021’

TEMP_L
F h’020’

and then generates 1
4

of the Period by shifting this copy twice right—lines 27 through 34. Subtracting this
from the original PERIOD:2 data gives the 3

4 fraction in TEMP:2.
Subtracting this modified Period from the top two Exponential Moving Average

bytes will not give a borrow-out (carry is 1) if EMA:2 ≥ TEMP:2 and this actions

224 The Essential PIC18® Microcontroller

Program 7.2 Belt-drive monitor software
; ***
; * This is the start of the background Main routine *
; ***
; First initialize the hardware --------------------------------
MAIN movlw b’11111111’ ; Make ports all digital

movwf ADCON1 ; rather than analog
bcf TRISA,0 ; With RA0 an Output
bcf PORTA,0 ; Starting with the alarm off

; Now initialize the interrupt system --------------------------
bsf RCON,IPEN ; Select Priority mode
bsf INTCON3,INT1IE ; Enable Hardware interrupt 1
bsf INTCON3,INT2IE ; Enable Hardware interrupt 2
bcf INTCON3,INT1IP ; INT1 interrupts Low-priority
bsf INTCON3,INT2IP ; INT2 interrupts High-priority
bsf INTCON,GIEH ; Enable Hi-priority int
bsf INTCON,GIEL ; and Lo-priority int system

clrf PERIOD_L ; Zero the initial PERIOD:2
clrf PERIOD_H
clrf TIMER_L ; and Time count
clrf TIMER_H
clrf EMA_DEC ; and Exponential Moving Average
clrf EMA_L
clrf EMA_H

; This is the endless loop checking the Timer period isn’t less
; than 0.75 of the tooth period running average ---------------
; First generate 0.75 x PERIOD --------------------------------
MAIN_LOOP movff PERIOD_H,TEMP_H; Copy PERIOD:2 to TEMP:2

movff PERIOD_L,TEMP_L

bcf STATUS,C ; Now >> 2 to give
rrcf TEMP_H,f
rrcf TEMP_L,f
bcf STATUS,C
rrcf TEMP_H,f
rrcf TEMP_L,f ; PERIOD/4

movf TEMP_L,w ; Subtract from PERIOD
subwf PERIOD_L,w
movwf TEMP_L
movf TEMP_H,w
subwfb PERIOD_H,w
movwf TEMP_H ; to give PERIOD*3/4 in TEMP:2

; Now compare (EMA:2 - 3/4*PERIOD:2) < ? ----------------------
movf TEMP_L,w ; EMA:2 - (0.75*PERIOD:2)
subwf EMA_L,w ; First subtract low bytes
movf TEMP_H,w ; THEN high bytes
subwfb EMA_H,w
bc ALARM ; IF no Borrow THEN DO Alarm ELSE
setf ALARM_COUNT ; reset Alarm loop C’nt to 255

ALARM tstfsz ALARM_COUNT ; IF Alarm C’nt 0, turn off sound
bra SOUND ; ELSE sound the alarm

bcf PORTA,0 ; Turn off the sounder
bra MAIN_LOOP ; and repeat the loop

(continued on the next page)

7 Interrupt Handling 225

Program 7.2 (Continued)
SOUND bsf PORTA,0 ; Turn on the sounder

decf ALARM_COUNT,f ; One more beep
call DELAY_1MS ; for a millisecond
bra MAIN_LOOP ; and repeat the loop

; ***
; * FUNCTION : INT2 ISR increments TIMER:2 on entry *
; * ENTRY : None *
; * EXIT : TIMER:2 incremented *
; * ENVIR’MENT: Transparent High-priority *
; ***

JIFFY infsnz TIMER_L,f ; Increment TIMER:2
incf TIMER_H,f
bcf INTCON3,INT2IF ; and reset interrupt flag
retfie 1

; ***
; * FUNCTION : INT1 ISR updates Exponential Moving Average *
; * ENTRY : TIMER:2, EMA:3 *
; * EXIT : EMA:3, PERIOD:2 updated. TIMER:2 cleared *
; * ENVIR’MENT: Transparent Low-priority *
; ***
TOOTH push

movwf TOSL ; Save WREG in the Hardware stack
swapf STATUS,w ; Copy Status not changing any flag
movwf TOSH ; and push into stack

; Now clear update PERIOD:2 and clear the TIMER:2 counter -----
movff TIMER_L,PERIOD_L; Make a copy
movff TIMER_H,PERIOD_H
clrf TIMER_L ; Before clearing the Timer count
clrf TIMER_H

; Now update the 3-byte EMA -----------------------------------
movf EMA_L,w ; Prepare to subtract
subwf EMA_DEC,f ; EMA/256 from EMA
movf EMA_H,w ; to give
subwfb EMA_L,f ; EMA = (255/256)*EMA
clrf WREG
subwfb EMA_H,f
movf PERIOD_L,w ; Now add Y/256
addwf EMA_DEC,f ; to give
movf PERIOD_H,w
addwfc EMA_L,f
clrf WREG
addwfc EMA_H ; EMA(n) = (255/256)EMA(n-1) + Y(n)/256

; Now reset the interrupt flag and restore the context ========
bcf INTCON3,INT1IF
swapf TOSH,w ; Retrieve entry value of STATUS
movwf STATUS
movff TOSL,WREG ; and entry Working register
pop
retfie

a jump into the Alarm routine. If there is a borrow-out then the loop count vari-
able ALARM_COUNT is set to h’FF’ before entering the Alarm routine—lines 41
through 47.

226 The Essential PIC18® Microcontroller

The Alarm routine itself tests ALARM_COUNT. If this is zero, then pinRA0 is
set low, which turns the sounder off and the endless main routine repeated. Other-
wise, ALARM_COUNT is decremented and pinRA0 set high to activate the sounder.
A 1 ms delay (see Program 6.1 on p. 166) ensures that where ALARM_COUNT is
not set to h’FF’ on entry, then the alarm will continue to be sounded for 256 × 1 ms
(actually a little longer, due to the surrounding code and interrupts) as the loop count
decrements.

The Jiffy Interrupt Service Routine
This INT2 ISR entered on each cycle of the 10 kHz is rather elementary. All that is
done is to increment the Timer TIMER_H

F h’071’
TIMER_L

F h’070’
. As this variable

is read and then zeroed in the TOOTH ISR, its reading at that point will be the inter-
tooth period in 100 µs jiffies.

The High-priority status of this handler means that the Fast stack retains its in-
tegrity, as it can’t be interrupted by a Low-priority interrupt. Thus returning with a
Fast retfie is all that has to be done to preserve the context. As in all ISRs, the
interrupt flag (here INT2IF) must be cleared before this return.

The Tooth Interrupt Service Routine
The core task for the TOOTH ISR is to use the inter-tooth tally originating from
the JIFFY ISR to update a running average, which will in turn be used by the
background routine to compare with the inter-tooth period and inform the Alarm
code. As the belt speed will vary with time, an average that will take into account
historical data whose weight diminishes with age and with a low RAM storage and
processing overhead is required.

In this example an Exponential Moving Average (EMA) is computed to give the
baseline period. This is based on the relationship:

EMAn = αEMAn−1 + (1 − α)Sn

where EMAn is the new computed moving average, EMAn−1 the value on entry
and Sn the new Timer reading (i.e. entry inter-tooth period) and α a small constant
smoothing factor.

In our coding of Program 7.2 we have used α = 1
256 , giving

EMAn = 255

256
EMAn−1 + 1

256
Sn.

That is, each new Period sample Sn contributes 1
256 of its value to the grand ensem-

ble; the latter having lost the same fraction of its value.
This type of evolving or moving average is termed exponential, as an event oc-

curring in the past will have an exponentially decaying influence on the overall
outcome. In our coding, a sample taken 256 readings ago will contribute about 37%
(1

exp) of its initial effect on the outcome. As the belt speeds up or slows down, the

EMA will track such changes with a time constant of 256 inter-tooth spans. Fig-
ure 7.10 shows an actual experiment based on a step Period reading of 16.384 ms.
After four time constants (1024 samples) the EMA has stabilized to its steady-state
value.

7 Interrupt Handling 227

Fig. 7.10 Response to a step change of 16,384 in the tooth-tooth period

Turning to the ISR code itself. As the High-priority JIFFY ISR can interrupt
this routine and alter the Fast stack, the context needs to be explicitly saved. This is
done in lines 7 through 10 by first saving the Working and then Status registers in
TOSH:TOSL in the pre-Pushed Hardware stack. Actually a swapf is used instead
of movf to avoid altering the Z flag—see p. 195. When the context is restored at
the end of the routine in line 31, swapf is again used to retrieve STATUS. The two
Swaps in series cancel, leaving the exit status unchanged.

After the context has been saved, the setting of the TIMER_H:TIMER_L pair is
copied into PERIOD_H:PERIOD_L. This is the Period data used to update the run-
ning average and also (multiplied by 3

4) by the background routine in its comparison
process. After this, TIMER:2 is cleared (lines 14 & 15), ready for on-going incre-
mentation in the JIFFY ISR, which as High-priority, can interrupt this Low-priority
handler.

The Exponential Moving Average is stored as a 3-byte array, with the LS byte
EMA_DEC being treated as fractional (right of the decimal, or more correctly, bi-
nary point) EMA_H

F h’062’
EMA_L

F h’061’
EMA_DEC

F h’60’
. In order to create

the fraction 255
256EMA, the low byte EMA_L is subtracted from EMA_DEC and the high

byte EMA_H from the resulting EMA_L byte, with the borrow-out being taken from
EMA_H. Effectively this subtracts EMA:3 slid right a byte (÷256) from the origi-
nal value, giving 255

256EMA:3. By adding PERIOD_L to EMA_DEC and PERIOD_H
to EMA_L with a carry-out to EMA_H; effectively PERIOD:2 slid right one byte
(i.e. PERIOD:2

256) has been added to the EMA. This process gives the new EMA, and
clearing INT1IF followed by restoration of the context completes the routine.

228 The Essential PIC18® Microcontroller

In conclusion, ISRs are similar to subroutines, but keep in mind the following
points:

• The ISR should be terminated by retfie instead of return.
• Any SPRs altered in the ISR should be saved on entry and retrieved on exit if they

are also used elsewhere. If the ISR is High-priority, or there is only one ISR in the
code, then a Fast retfie will automatically preserve WREG, STATUS and BSR.
The exception is where such an ISR calls a Fast subroutine, as this overwrites the
Fast stack.

• Parameters cannot be passed to and from the ISR via the Working register. In-
stead, global variables (data in known memory locations) should be used as re-
quired or via a stack.

• ISRs should be as short as possible, with minimal functionality. This helps in
debugging, and helps ensure that other events are not missed.

• Where multiple-byte data objects are being processed by an ISR, consideration
should be given to disabling the interrupt system (by clearing the appropriate
global masks) during any background access.

Examples

Example 7.1 Consider a conveyor belt in a pea-canning factory. As part of the au-
tomatic packing system, a photocell generates a single short pulse for each passing
can, in the manner of Fig. 7.7. After each batch of 24 cans, a nominal 1 ms pulse

is to be generated using Port A’s pin 0 (RA0) and this triggers the packing
mechanism’s electronics.

Solution The software is shown in Program 7.3. The Reset vector at h’00000’ ac-
tions a transfer to the Main background routine. The MCU powers up in the default
Compatible mode with its interrupt vector at h’00008’ and this causes the code to
jump to the foreground ISR labeled CAN_COUNT.

As interrupts are automatically disabled on a Power-on Reset, the various Files
and ports are normally set to their initial value at the beginning of the background
program before interrupts are enabled. This eliminates the possibility of servicing
an interrupt before the initialization code has been completed. The initialization
schedule is:

1. Clearing bit 0 of Port A will ensure that pinRA0 starts low after Reset.
2. All parallel port pins are configured as analog inputs on Reset. To change Port A

bit 0 to an output, the associated bit in the TRISA SFR must be cleared. In ad-
dition, setting the ADC module’s CONtrol register 1 to all 1s makes all parallel
port pins digital—see Fig. 14.12 on p. 510.

3. GPR File EVENT recording the photocell pulse count and BATCH; which is set
to non-zero in the ISR whenever a batch of 24 cans has passed, are both zeroed.

4. Setting the Global Interrupt Enable mask bit now enables the interrupt system
and specifically setting INT0IE enables interrupts from the INT0 pin.

7 Interrupt Handling 229

Program 7.3 Program for the pea-canning packer
EVENT equ h’060’ ; Keeps count of cans of peas
BATCH equ h’061’ ; Signals when a 24 can lot passes
; --

org h’00000’ ; Power-on Resets here
bra MAIN ; Go to start of background routine

; --
org h’00008’ ; The Default Interrupt vector
bra CAN_COUNT ; Go to start of foreground ISR

; --

; ***
; * This is the start of the executable code, *
; * beginning with the main or background routine *
; ***
; First initialize the hardware, Variables and Interrupt INT0 --
MAIN movlw b’11111111’ ; Make ports all digital

movwf ADCON1 ; rather than analog
bcf TRISA,0 ; With RA0 an Output
bcf PORTA,0 ; Starting with the alarm off
clrf BATCH ; Zero the Batch signal
clrf EVENT ; and the can count
bsf INTCON,GIE ; Enable ALL interrupts
bsf INTCON,INT0IE ; Enable external INT0 interrupts

; WHILE Batch signal is zero DO nothing -----------------------
M_LOOP tstfsz BATCH ; Check BATCH == 0?

bra M_GO ; Skip out IF not
bra M_LOOP ; ELSE try again

; Pulse on the 24th can (BATCH set to non-zero ----------------
M_GO clrf BATCH ; Zero the Batch signal

bsf PORTA,0 ; Bring line RA0 high
call DELAY_1MS ; Wait for one millisecond
bcf PORTA,0 ; and go low again
bra M_LOOP ; DO forever

; ***
; * FUNCTION : INT0 ISR increments EVENT and IF >= 24 THEN *
; * FUNCTION : zeroes EVENT and makes BATCH non zero *
; * ENTRY : EVENT:1, BATCH:1 *
; * EXIT : EVENT:1 and BATCH:1 updated *
; * ENVIR’MENT: Transparent Compatible mode *
; ***
CAN_COUNT

incf EVENT,f ; Record one more event
movlw d’23’ ; Check for 24 events (a batch)
cpfsgt EVENT ; > 23? Yes THEN skip
bra CAN_EXIT ; ELSE finished

clrf EVENT ; Yes, so zero can count and tell
incf BATCH,f ; the world that 24 cans have passed

; ===
CAN_EXIT

bcf INTCON,INT0IF ; Clear the Hardware Interrupt flag
retfie 1 ; & return with context to background

The core of the main background routine simply repetitively checks the contents
of BATCH. This is normally zero, but the foreground ISR sets this whenever each
batch of 24 cans have passed. When this is the case BATCH is zeroed and RA0 is

230 The Essential PIC18® Microcontroller

brought high and a 1 ms delay subroutine called.5 RA0 is dropped low and the loop
is then repeated.

When an interrupt occurs, as triggered by a can breaking a beam, then execu-
tion will be transferred to the ISR, that is, Interrupt � h′0008′ → CAN_COUNT. The
functional sector of this handler simply increments the datum EVENT. By compar-
ing this with the constant 23, the program determines when the Event tally rises
above this value. When this occurs, BATCH is incremented to signal the background
program that 24 cans have passed and EVENT is zeroed to give a modulo-24 count.

Example 7.2 In a food processing factory, cans of baked beans on a conveyer belt
continually pass through a tunnel oven, as shown at the top of Fig. 7.11, where the
contents are sterilized. Photocell detectors are used to sense cans, both entering and
leaving the oven. The output of the sensors are logic 1 when the beam is broken.

You are asked to design an interrupt-driven interface for this system, combining
the two signals to activate the PIC MCU’s one INT0 input. You may assume that the
INT1 and INT2 pins are in use for other non-interrupt duties. A buzzer connected
to Port B’s pin RB7 is to be sounded if the number of tins in the oven exceeds four,
indicating that a jam has occurred.

Solution The hardware aspect of this example presents two problems. The first of
these involves distinguishing which cell, IN or OUT, generates a request. In Fig. 7.11
each cell clocks an associated D flip flop when the beam is broken. As the D input is
permanently tied to logic 1, the clocked flip flop output goes to logic 1. ORing both
of these interrupt flags together generates a falling edge at the INT0 pin if any beam
is broken.

Both the IN and OUT external flags can be read at Port A pins RA0 and RA1, and
this allows the ISR software to distinguish between the two events (can-in and can-
out). The appropriate flag can then be reset by toggling the appropriate flip flop reset,
using two further port lines RA2 and RA3 for Cancel_in and Cancel_out
respectively.

To show how this operates, consider a can has just broken the Out cell beam, as
shown in the diagram. The following sequence occurs.

1. The resulting pulse clocks the OUT flag.
2. The flip flop goes high, which in turn brings pin RA1 high and via the OR gate

pin INT0/RB0. This requests a Hardware interrupt.
3. When the PIC MCU transfers to the interrupt handler it checks the state of both

flip flops by testing pins RA1 and RA2. In this case it finds RA1 high and in
software pulses pin RA3 low.

4. This resets the OUT flip flop and hence cancels the interrupt request from this
source.

5Of course the delay subroutine can be interrupted, which will randomly slightly lengthen the
delay. In time-critical situations interrupts should be disabled before calling the delay subroutine
and re-enabled on return.

7 Interrupt Handling 231

Fig. 7.11 Oven safety hardware

One problem remains: If one event follows another before the ISR software has
time to reset the appropriate external flip flop, that second event will be missed,
as the OR gate will hold INT0 low. In this situation no further edge can occur
and the interrupt system will be permanently disabled! This can be circumvented
in software by polling both external flags before exiting the ISR and taking the
appropriate action if either pin is still high.

The interrupt service routine for this hardware configuration is given in Pro-
gram 7.4. The meat of the code simply checks each of the external flip flops in
turn. Depending on the state of these flip flops, one of three pathways through the
code is followed:

1. If pin RA0 is high then a can has broken the IN beam and one is added to the
Event counter, kept in a GPR File labeled EVENT. The external IN flip flop is
reset. If the total is greater than four, the buzzer is turned on by bringing RB0
low, otherwise it is turned off. Repeat check.

2. If pin RA1 is high then a can has broken the OUT beam and one is taken away
from the Event counter. This time the external OUT flip flop is reset. Again the
total is checked against the boundary of four and the buzzer set to its appropriate
state. Repeat check.

232 The Essential PIC18® Microcontroller

Program 7.4 Foreground ISR for oven safety
; ***
; * FUNCTION : INT0 ISR increments EVENT for an IN can *
; * FUNCTION : Decrements for an OUT can & alarms IF > 4 *
; * ENTRY : EVENT:1 *
; * EXIT : EVENT:1 *
; * ENVIR’MENT: Transparent Compatible mode *
; ***
OVEN btfsc PORTA,0 ; Check, IN signal?

bra IN ; IF non zero, a can has just gone in
btfsc PORTA,1 ; Check for OUT signal
bra OUT ; IF non zero, a can has just gone out

; ==
; The exit point

bcf INTCON,INT0IF ; Clear the Hardware interrupt flag
retfie 1 ; and return to interrupted background

; ==
; The ISR core
IN incf EVENT,f ; Record a can gone in (count up)

bcf PORTA,2 ; Clear external IN flag
bsf PORTA,2 ; by pulsing its reset
bra ALARM ; and check for alarm situation

OUT decf EVENT,f ; Record a can gone out (count down)
bcf PORTA,3 ; Clear external OUT flag
bsf PORTA,3 ; by pulsing its reset

ALARM movlw 4 ; Is Can count > 4?
cpfsgt EVENT ; Skip IF less than
bra BUZ_OFF ; ELSE OK, turn the buzzer off

bsf PORTB,7 ; Turn buzzer alarm on
bra OVEN ; and repeat poll of cells flags

BUZ_OFF
bcf PORTB,7 ; Turn buzzer off
bra OVEN ; and repeat poll of cell flags

3. If neither flip flop is set then the ISR exits after resetting the internal INT0IF flag
and doing a Fast return to restore the context.

This sequence is repeated whenever actions 1 or 2 have been completed. This en-
sures that the situation where both beams are broken simultaneously or within a
short time frame, will be properly serviced.

The main background program is not shown here. It will be similar to that of
Program 7.3 in that the various ports will be set up, the Event counter File cleared
and interrupts enabled. It is likely that this background program will be in charge
of sounding the alarm and other consequential tasks rather than implementing this
as part of the ISR, in keeping with the philosophy of reducing the size of the fore-
ground code. In a practical system the background program would probably drive a
numeric display showing the aggregate of cans (four was a ridiculous value, chosen
for illustrative purposes only) in the oven. Also some means of resetting to a non-

7 Interrupt Handling 233

zero value after a jam and some sign in the (erroneous) event of a subzero count
being computed must be facilitated.

Example 7.3 On p. 213 a central heating real-time clock was discussed. Write an
ISR to add one onto the array of Files holding the four time bytes in a 24-hour time
representation, on each 0.1 s interrupt. Each byte location is to hold two binary-
coded decimal (BCD) digits; for instance BCD 40 in the File labeled MINUTES is
represented as b’0100 0000’. This packed binary-coded decimal format is described
on p. 116.

Solution Each time the PIC MCU enters the ISR, one Jiffy must be added to the
array of bytes HOURS:MINUTES:SECONDS:JIFFY. The base of each byte count
differs in that JIFFY rolls over at a count of ten (i.e., modulo-10), SECONDS and
MINUTES have a modulo-60 count and HOURS is modulo-24. Based on this sce-
nario we have as a task list

1. Add one onto the JIFFY count.
2. IF this gives 10 THEN zero JIFFY and add one onto the SECONDS count; ELSE

goto EXIT.
3. IF this gives 60 THEN zero SECONDS and add one onto the MINUTES count;

ELSE goto EXIT.
4. IF this gives 60 THEN zero MINUTES and add one onto the HOURS count; ELSE

goto EXIT.
5. IF this gives 24 THEN zero HOURS.
6. EXIT

The example specified that the datum format should be packed BCD. Thus,
59 minutes should be stored as b’0101 1001’ or h’59’. This means that the incre-
mentation process has to preserve this BCD format. Subroutine BCD_INC shown
in Program 7.5 uses the daw instruction to correct the standard binary incrementa-
tion. Also the FSR0 pointer is decremented ready to deal with the next datum in the
chain.

Based on this subroutine, coding for this task list is given in Program 7.6. As
File Select Register 0 is used in the ISR, both of the bytes FSR0H:FSR0L need to
be pushed out into the Hardware stack on entry and popped back on exit. The Fast
stack still holds the basic context.

Program 7.5 Incrementing a packed-BCD byte with maximum value of 99
; **
; * FUNCTION: Adds onto packed BCD byte, maximum value 98 *
; * ENTRY : FSR0 points to byte *
; * EXIT : BCD byte incremented; W and STATUS altered *
; * EXIT : FSR0 decremented *
; **
BCD_INC incf INDF0,w ; BCD + 1 in W

daw ; Correct it to BCD
movwf POSTDEC0 ; Restored and FSR0 decremented

BCD_EXIT return

234 The Essential PIC18® Microcontroller

Program 7.6 Coding the real-time clock ISR
HOURS equ h’020’ ; Space for the 2-digit Hour count
MINUTES equ h’021’ ; Space for the 2-digit Minute count
SECONDS equ h’022’ ; Space for the 2-digit Seconds count
JIFFY equ h’023’ ; Space for the 0.1s predivision

; ***
; * FUNCTION : INT0 ISR BCD increments 0.1s time chain *
; * ENTRY : JIFFY:SECONDS:MINUTES:HOURS bytes *
; * EXIT : JIFFY:SECONDS:MINUTES:HOURS plus one *
; * RESOURCE : Subroutine BCD_INC *
; * ENVIR’MENT: Transparent Compatible mode *
; ***
; First save context ===
RTC push

movf FSR0L,w ; Copy FSR0 into Hardware stack
movwf TOSL
movf FSR0H,w
movwf TOSH

; The core code ==
lfsr 0,SECONDS ; Initialize FSR0 to Seconds count

; Task1 --
incf JIFFY,f ; Add one onto Jiffy count

; Task2 Jiffy handling ---
movlw d’9’ ; Compare to ten (>9)
cpfsgt JIFFY ; Skip IF Yes
bra EXIT ; ELSE finished

clrf JIFFY ; Clear Jiffy count

; Task 3 Seconds handling --------------------------------------
call BCD_INC ; BCD Increment pointed-to byte
movlw h’59’ ; Compare with 0101 1001 (59 BCD)
cpfsgt SECONDS ; Skip IF > 59
bra EXIT ; ELSE finished

clrf SECONDS ; Clear Seconds count

; Task 4 Minutes handling -------------------------------------
call BCD_INC ; BCD Increment pointed-to byte
movlw h’59’ ; Compare with 0101 1001 (59 BCD)
cpfsgt MINUTES ; Skip IF > 59
bra EXIT ; ELSE finished

clrf MINUTES ; Clear Minutes count

; Task 5 Hours handling ---------------------------------------
call BCD_INC ; BCD Increment pointed-to byte
movlw h’23’ ; Compare with 0010 0011 (23 BCD)
cpfsgt HOURS ; Skip if > 23
bra EXIT ; ELSE finished

clrf HOURS ; ELSE zero Hours count

(continued on the next page)

7 Interrupt Handling 235

Program 7.6 (Continued)
; Task6 Restore context and exit ==============================
EXIT bcf INTCON,INT0IF ; Clear the Hardware INT0 flag

movff TOSL,FSR0L ; Retrieve FRS0
movff TOSH,FSR0H
pop ; Restore SP and restore
retfie 1 ; core regs & return from interrupt

The core of the ISR is sectioned as shown to follow the task list. After each
incrementation, the datum is compared with the base literal. If greater than, then the
datum is zeroed and the next datum incremented.

Example 7.4 A certain vending machine channels coins of various denominations
past one of six microswitches connected to Port B. Any coin will close one switch
and pull the appropriate pin low, as shown in Fig. 7.12.

Fig. 7.12 Coin entry for a vending machine

Write the foreground ISR so that the appropriate quantity is added to a GPR File
called MONEY. You can assume that the background routine has set up the INTCON
register to enable Hardware interrupts via the RB0/INT0 pin.

Solution As shown in Program 7.7 each switch is tested in turn. Any pin which
is low reflects a logic 0 in the corresponding Port B bit. With the coin mechanism
outlined, only one switch will be closed at any time, so the scanning need not exit
after a successful find.

236 The Essential PIC18® Microcontroller

Program 7.7 Interrupt handler for the vending machine
VEND movf MONEY,w ; Get current money tally

btfss PORTB,7 ; Check for $2
addlw d’200’ ; IF 0 THEN add 200

btfss PORTB,6 ; Check for $1
addlw d’100’ ; IF 0 THEN add 100

btfss PORTB,5 ; Check for 25c
addlw d’25’ ; IF 0 THEN add 25

btfss PORTB,4 ; Check for 10c
addlw d’10’ ; IF 0 THEN add 10

btfss PORTB,3 ; Check for 5c
addlw 5 ; IF 0 THEN add 5

btfss PORTB,2 ; Check for 1c
addlw 1 ; IF 0 THEN add 1

movwf MONEY ; Return sum to File MONEY

; The exit point ===
bcf INTCON,INT0IF ; Clear the Hardware interrupt flag
retfie 1 ; & return with context to background

Self-Assessment Questions

7.1 Rewrite Program 7.3 to deal with a packing quantity of one gross (144). The
can count is to be kept in packed BCD (Hundreds and Tens:Units) which can
be used by the background software to display the can tally.

7.2 What changes to Example 7.2 would you have to make to allow for a maximum
value in the oven of 1000?

7.3 Based on Fig. 7.1, adapt the software of Program 7.2 to compute a 2-byte Dif-
ference variable, as well as a 256-sample time constant EMA, on each cardiac
beat. As well as updating these variables, the R-point ISR is to set a GPR la-
beled EVENT to a non-zero value, to signal the background routine that a new
reading is available. The background endless loop is to call a subroutine labeled
VAR only on each new value of DIFFERENCE:2 and zero EVENT. The alarm
is to be sounded for the duration of each Event in which the EMA period is less
than 3

4 of the new Period reading.
7.4 The speed of a rotating shaft can be measured by using a coded disk to gener-

ate a pulse on each angular advance of 10◦, which can be used to interrupt a
PIC MCU. If the top speed is 20,000 revolutions per minute, what is the abso-
lute maximum duration of the ISR in this worst-case situation to avoid missing
pulses? You may assume a crystal frequency of 4 MHz.

7.5 An electronic tape measure determines distance by pulsing an ultrasonic trans-
mitter and detecting the time it takes for the echo to return. The hardware for
this echo sounder is shown in Fig. 7.13 and makes use of the INT1 and INT2
Hardware interrupts.

The maximum range is specified to be 2.5 m with a reading resolution
of 1 cm. The speed of sound in air is 344 m/s at 20◦C, which gives a go-return

7 Interrupt Handling 237

Fig. 7.13 Echo sounding
hardware

ping time for one cm of 58 µs. Using a 17.2 kHz oscillator as a time base gives
one interrupt per 58 µs; that is, a Jiffy per centimeter.

Based on this hardware, the software must implement the following task list:

• Background routine
1. Zero Jiffy count and New flag.
2. Pulse the sounder for 1 ms.
3. Wait until Receive flag is non-zero.
4. Call subroutine DISPLAY.
5. Repeat forever.

• Foreground routine.
1. IF oscillator THEN increment Jiffy count.
2. IF receiver THEN set Receive flag to non-zero to tell background program

that the Jiffy count is the final value.
3. Repeat until neither interrupt is active.
4. Return from ISR.

Code the foreground ISR tasked as above, using a GPR labeled NEW as a flag,
to tell the background program that the echo has returned and to read the GPR
COUNT as the required Jiffy tally in centimeters. The background Main program
should call a subroutine to handle the display task, which you do not have to
code. Assume that both the Compatible default interrupt mode is used.

7.6 It is proposed to increase the range of the digital echo sounder to 10 m and res-
olution to 1 mm. What change in the hardware and software would be required?

238 The Essential PIC18® Microcontroller

7.7 The system in SAQ 7.6 has been built and tested. However, readings seem to
shift slowly with time. Drift is suspected but the oscillator has been proven to be
stable. Thinking laterally, one student wonders if the speed of sound varies with
atmospheric conditions. After some research the student arrives at the formula
for temperature dependence as

Vt = V0

√
1 + �t

273

where V0 is the propagation velocity at 20◦C and Vt is the velocity at a temper-
ature of t . How much change in temperature �t will there be to cause an error
of 1 mm with the sounder measuring at its maximum range?

Chapter 8
Assembly Language Code Building Tools

We have now been writing programs with abandon since Chap. 3. For clarity these
listings have been written in a human-readable form. Thus instructions have been
represented as a short mnemonic, such as return instead of b’0000 0000 0001
0010’; the Files similarly have names, such as INTCON; lines have been labeled and
comments attached. Such symbolic representations are only for human consump-
tion. The MCU knows nothing beyond the binary codes making up operation codes
and data, such as shown on p. 46.

With the help of the device’s instruction set (see p. 66), it is possible to translate
by hand from the human-readable symbolic form to machine-readable binary. This
is not particularly difficult for a device such as a PIC MCU that has a reduced set
of instructions (RISC) and few address modes. However, it is slow and tedious,
especially where programs of a significant length are being coded. Furthermore, it
is error prone and difficult to maintain whenever there are changes to be made.

Computers are good at doing boring things quickly and accurately; and translat-
ing from symbolic to machine code definitely falls into this category. Here we will
briefly look at some software packages that aid in this machine-level translation
process. In the following chapter we will look at a high-level language alternative.

After reading this chapter you will:

• Know what assembly-level language is and how it relates to machine code.
• Appreciate the advantages of a symbolic representation over machine-readable

code.
• Be aware of the function of the assembler.
• Understand the difference between absolute and relocatable assembly; including

the role of a linker.
• Appreciate the process involved in translating and locating an assembly-level lan-

guage program to absolute machine code.
• Understand the structure of a machine-code file and the role of the loader pro-

gram.
• Be aware of the role of a simulator.
• Appreciate the use of the integrated development environment to automate the

interaction of the various software tools needed to convert source code into a
programmed MCU device.

S. Katzen, The Essential PIC18® Microcontroller,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-229-2_8, © Springer-Verlag London Limited 2010

239

240 The Essential PIC18® Microcontroller

Fig. 8.1 Conversion from assembly-level source code to machine code

The essence of the assembly-level conversion process is shown in Fig. 8.1. Here
the program is prepared by the tame human in symbolic form, digested by the com-
puter and output in machine-readable form. Of course, this simple statement belies
a rather more complex process, and we want to examine this in just enough detail to
help you in writing your programs.

In general, the various translator and utility computer packages are written and
sold by many software companies, and thus the actual details and procedures dif-
fer somewhat between the various commercial products. In the specific case of PIC
MCU devices, Microchip Technology, Inc. as a matter of policy, has always pro-
vided their assembly-level software tools free of charge; a large factor in their popu-
larity. For this reason, commercial low-level software for the PIC MCU is relatively
rare and what there is usually conforms to the Microchip syntax. For this reason we
will illustrate this chapter with the Microchip suite of computer-aided code building
tools.

Using the computer to aid in translating code from more user-friendly forms
(known as source code) to machine-friendly binary code (known as object code or
machine code) and loading this into memory began in the late 1940s for mainframe
computers. At the very least it permitted the use of higher-order number bases, such
as hexadecimal.1 In this base the code fragment of Fig. 8.1 becomes:

2A20
5020
0007
6E20
0012

A hexadecimal loader will translate this into binary and put the code in designated
memory locations. This loader might be part of the software in your PIC-MCU
programmer. Hexadecimal coding has little to commend it, except that the number
of keystrokes is reduced; but there are more keys and it is slightly easier to spot
certain types of errors.

As a minimum, a symbolic translator, or assembler,2 is required for serious pro-
gramming. This allows the programmer to use mnemonics for the instructions and
internal registers; with names for constants, variables and addresses. The symbolic

1Actually base-8 (octal) was the popular choice for several decades.
2The name is very old; it refers to the task of translating and assembling together the various
modules making up a program.

8 Assembly Language Code Building Tools 241

language used in the source code is known as assembly language. Unlike high-level
languages, such as C or PASCAL, assembly language has a one-to-one relationship
with the generated machine code; i.e., one line of source code produces one instruc-
tion. As an example, Program 8.1 shows a slightly modified version of Program 6.11
on p. 192. This subroutine computes the square root of a 16-bit variable called NUM,
which has been allocated two bytes in the Data store, and returns the 8-bit integer
square root in the Working register.

Giving names to addresses and constants is especially valuable for longer pro-
grams, which typically comprise several thousand lines of code. Together with the
use of comments, this makes code easier to debug, develop and maintain. For in-
stance, in most of our programs up to now we have had statements such as:

STATUS equ h’FD8’ ; Status register is File h’FD8’
C equ 0 ; in which the Carry flag is bit 0

The pseudo instruction equ is a simple example of an assembler directive. A di-
rective does not generate code, like a processor instruction; rather, it is a command
giving information from the programmer to the assembler concerning its operation.
In this case, stating that whenever the name STATUS is encountered in an instruction
operand field, it is replaced by the number h’FD8’ and that the name C is likewise is
to be replaced by the number 0.

The equ directive is best suited to listing names of the SFRs and bits within. As
these are fixed for a given member of the PIC MCU family, and therefore are not
unique to any particular program, Microchip provide .inc files for each device.
These can be included in user programs as a Header file.3 For instance, Table 8.1
shows part of the file p18f1220.inc.

In Program 8.1 the directive #include4 has been used to ‘inject’ the names of
the SFR register set into the program. In addition to saving the programmer having
to type in a set of equ directives for each SFR used in a program, any subsequent
change in the processor, say from a PIC18F1220 to a PIC18F4520, can be simply
realized by changing the Header file; to p18f4520.inc in our instance. We will
use this technique from now on. Although we have used #include to insert a
Header file, it may be used to insert any relevant type of file, such as a subroutine;
for example, see Program 12.8 on p. 407.

The header file of Table 8.1 also includes a few useful definitions. For instance,
the name FAST is equated to 1, and thus the instruction call FAST can be used
as a more readable equivalent to call 1.

In Chap. 4 we explicitly specified a variable as residing either in Access or
Banked RAM. In the former case the a-bit is 0 and in the latter 1—see Fig. 3.5
on p. 50. For instance, in Program 5.4 on p. 116 movf AUGEND_H,w,0 as
File h’021’ is in Access storage. We can now use the substitution movf AU-
GEND_H,w,ACCESS which makes more sense. During translation the assembler

3Of course you can make your own version with additional information.
4Plain include also works but is not recommended by Microchip.

242 The Essential PIC18® Microcontroller

Program 8.1 Absolute assembly-level code for our square-root module
; Global declarations

#include "p18f1220.inc" ; Header file
cblock h’060’ ; Begin block of variables @ File h’060’
NUM:2 ; Hi-byte is in NUM+1. Lo byte is in NUM
endc ; End of block

; Dummy Main loop --
MAIN movlw h’10’ ; Set up integer h’2710’

movwf NUM ; decimal 10,000
movlw h’27’ ; as a test
movwf NUM+1
call SQR_ROOT ; Call the subroutine SQR_ROOT
sleep ; Stop computing

; End of MAIN --

; **
; * FUNCTION : Calculates the square root of a 16-bit integer *
; * EXAMPLE : Number = h’FFFF’ (65,535), Root = h’FF’ (d’255’) *
; * ENTRY : Number in File h’026:27’ *
; * EXIT : Root in W and in COUNT. *
; * ENVIR’MENT: Files h’35--037’ and Status register altered *
; **
; Local declarations

cblock ; Block of variables
I:2, COUNT:1 ; 2-byte magic number, 1-byte loop Count
endc

org h’00200’ ; Code begins @ h’00200’ in Program store

; Task 1: Zero loop count --
SQR_ROOT clrf COUNT

; Task 2: Set magic number I:2 to one ----------------------------
clrf I+1
clrf I
incf I,f

; Task 3: DO ---
; Task 3(a): Number - I --
SQR_LOOP movf I,w ; Get low byte magic number

subwf NUM,f ; Subtract from low byte Number
movf I+1,w ; Get hi byte magic number &
subwfb NUM+1,f ; subtract with borrow from hi byte

; Task 3(b): IF underflow THEN exit ------------------------------
bnc SQR_END ; No Carry is Borrow. IF true terminate

; Task 3(c): ELSE increment loop Count ---------------------------
incf COUNT,f

; Task 3(d): Add two to the magic number I:2 ---------------------
movlw 2 ; Add two to low byte I
addwf I,f
clrf WREG ; Zero Working reg
addwfc I+1,f ; and add Carry bit to upper byte I
bra SQR_LOOP ; and do another subtract and test

; Task 4: Return loop count as the square root -------------------
SQR_END movf COUNT,w ; Copy into WREG

return ; and return to caller
end

8 Assembly Language Code Building Tools 243

Table 8.1 Part of Microchip’s file p18f1220.inc

LIST
; Standard Header File, Version 1.0 Microchip Technology, Inc.

NOLIST

; This header file defines configurations, registers, and other
; useful bits of information for the PIC18F1220 microcontroller.
; These names match the data sheets as closely as possible.

;==
; 18Fxxx Family EQUates
;==

FSR0 EQU 0
FSR1 EQU 1
FSR2 EQU 2

FAST EQU 1

W EQU 0
A EQU 0
ACCESS EQU 0
BANKED EQU 1

;===
;
; Register Definitions
;
;===

;----- Register Files --
TOSU EQU H’0FFF’
TOSH EQU H’0FFE’
TOSL EQU H’0FFD’
STKPTR EQU H’0FFC’
PCLATU EQU H’0FFB’
PCLATH EQU H’0FFA’
PCL EQU H’0FF9’
TBLPTRU EQU H’0FF8’
TBLPTRH EQU H’0FF7’
TBLPTRL EQU H’0FF6’
TABLAT EQU H’0FF5’
PRODH EQU H’0FF4’
PRODL EQU H’0FF3’
INTCON EQU H’0FF2’
INTCON2 EQU H’0FF1’
INTCON3 EQU H’0FF0’

(continued on the next page)

244 The Essential PIC18® Microcontroller

Table 8.1 (Continued)

;----- INTCON Bits ---
GIE EQU H’0007’
GIEH EQU H’0007’
PEIE EQU H’0006’
GIEL EQU H’0006’
TMR0IE EQU H’0005’
INT0IE EQU H’0004’
RBIE EQU H’0003’
TMR0IF EQU H’0002’
INT0IF EQU H’0001’
RBIF EQU H’0000’

;----- STATUS Bits ---
N EQU H’0004’
OV EQU H’0003’
Z EQU H’0002’
DC EQU H’0001’
C EQU H’0000’

will silently replace ACCESS by ,0.5 Actually the assembler is perfectly capable
of working out which mode to use, so since Chap. 5 we have left out this explicit
notation; simply writing in this instance movf AUGEND_H,w we have left out this
explicit notation. However, if desired we could override this automatic selection.
Thus movf AUGEND_H,w,BANKED would use BSR to generate AUGEND_H’s
address, and if BSR = 00 then this would be equivalent.

GPR variables specific to the program, like NUM in Program 8.1, still have to be
explicitly named. Thus in Program 6.11 on p. 192 we have:

NUM_L equ h’026’ ; Number Low byte
NUM_H equ h’027’ ; Number High byte

Such names and locations are of course unique to the program rather then any spe-
cific device. Program 8.1 uses the alternative directive pair cblock-endc, which
lets the assembler take over the job of allocating variables to specific Files, within
given constraints. Sandwiched inside these directives are listed the names of the
variables and how many bytes each occupies. In our example we have:

cblock h’060’ ; Begin block of variables at File h’060’
NUM:2 ; Reserve two bytes for NUM

endc ; End of block

where the following colon-delimited number specifies the number of bytes to be
reserved for that name. Individual bytes within the variable can subsequently be

5The replacement is dumb, for movf AUGEND_H,w,w would do the same job!

8 Assembly Language Code Building Tools 245

accessed by using the arithmetic + operator; for instance, with a 3-byte variable
SUM:3, byte 1 is SUM, byte 2 is SUM+1 and byte 3 is SUM+2.

The first code block in Program 8.1 is directed to begin at File h’060’ by the pro-
grammer. In any subsequent cblock this specification can be omitted, in which
case the new variables simply follow on. Thus I:2 is located at File h’063:62’ and
COUNT:1 at File h’064’. This approach is much more flexible than the program-
mer allocating locations by hand, as whenever modules are altered or new elements
added, the address allocations are automatically altered. In addition, changing any
specific code block location, say from File h’060’ to File h’020’, will automatically
alter the complete program variable set to the new range of locations.

A third way of naming entities is to use the #define directive. For example:

#define h’F81’,7 BUZZER

enables us to use the string bsf BUZZER instead of bs fh’F81’,7 to turn on a
Buzzer connected to pin 7 of Port B (File h’F81’).

For illustrative purposes the programmer has asked the assembler to place the
subroutine beginning at location h’00200’ in the Program store. This is done using
the org directive—see also Program 7.1 on p. 218. Effectively the program label
SQR_ROOT has been given the value h’00200’.

The last line of Program 8.1 is the end directive. This command tells the assem-
bler to ignore any following text; that is, to cease translation.

Of course symbolic translators demand more computing power than simple hex-
adecimal loaders, especially in the area of memory and backup store. Prior to the
introduction of personal computers in the late 1970s, either mainframe, minicom-
puters or special-purpose MPU/MCU development systems were required to imple-
ment the assembly process. Such implementations were inevitably expensive and
inhibited the use of such computer aids, and hand-assembled coding was relatively
common.

Translation software essentially implements two tasks:

• conversion of the various instruction mnemonics and labels to their machine-code
equivalents;

• allocation of the instructions and data to the appropriate memory location.

Most programs running on 8-bit PIC MCUs are adequately handled by an ab-
solute assembler. To clarify the process, we will take our program through from
the creation of the source file to the final absolute machine-code file—as outlined in
Fig. 8.2. We will examine relocatable assemblers later on.

Editing
Initially the source file must be created using a text editor. A text editor differs
from a word processor in that no embedded control codes, giving formatting and
other information, are inserted. For instance, there is no line wrapping; if you want

246 The Essential PIC18® Microcontroller

Fig. 8.2 Absolute
assembly-level code
translation

a new line then you hit the [ENT] key. Most operating systems come with a simple
text editor; for example, notepad for Microsoft’s Windows. Third-party products
are also available and most word processors have a text mode which can double as
a program editor. Microchip-compatible assembly-level source file names have the
extension .src.

The format of a typical line of source code looks like:

8 Assembly Language Code Building Tools 247

With the exception of comment or label-only lines, all lines must contain an in-
struction (either executable by the MCU or a directive) and any relevant operand or
operands. Any label must begin in column 1, otherwise the first character must be a
space or a tab to indicate no label. A label can be up to 32 alphanumeric, underline
or question mark characters, with the proviso that the first character be a letter or
underscore. Labels are usually case sensitive. A line label names the Program store
address of the first following executable instruction. A space, colon or even new line
should separate a label from the following instruction or directive.

An optional comment is delineated by a semicolon, and whole-line comments
are permitted—see lines 14–23 of Program 8.1. Comments are ignored by the as-
sembler and are there solely for human-readable documentation. Such notes should
be copious and should explain what the program is doing, and not simply repeat the
instruction. For instance:

movf I+1,w ; Move I+1 into WREG

is a waste of energy:

movf I+1,w ; Get high byte of magic number

is rather more worthwhile. Not, or doing so only minimally, commenting source
code is a frequent failing. A poorly documented program is difficult to debug and
subsequently to alter or extend. The latter is sometimes known as program mainte-
nance.

Space should separate the instruction from any operand. Where there are two
operands, the source and destination fields are delineated by a comma. In instruc-
tions where the destination can be the Working register or the addressed File, the
predefined names w or f should appear in the destination fields or numbers 0 or 1
respectively. The assembler will default to destination File if this is omitted and not
always warn the programmer!

Assembling
The assembler program will scan the source file, checking for syntax errors. If there
are no such errors, the process goes on to translate to absolute object code; which
is basically machine code with information concerning the locations in which it is
to be placed in program memory. Syntax errors include such things as referring to
labels that don’t exist or instructions that are not recognized. The output will include
an error file giving any such faux pas. If there are no syntax errors, a listing file and
machine-code file are generated.

Listing
The listing file shown in Table 8.2 reproduces the original source code, with the
addition of the hexadecimal location of each instruction and its code. The file also
provides a symbol table enumerating all symbols/labels defined in the program;
for instance, NUM is listed as File h’060’. The memory usage map gives a graphical
representation of program memory usage.

This file has only documentation value and is not executable by the processor.

248 The Essential PIC18® Microcontroller

Table 8.2 The listing file root.lst

MPASM 5.20 PROG8_1_10.ASM 9-8-2008 18:32:26 PAGE 1

LOC OBJECT CODE LINE SOURCE TEXT
VALUE

01 ; Global declarations
02 #include "p18f1220.inc" ; Header file
01 LIST
02 ; P18F1220.INC Standard Header File, Microchip Technology, Inc.
04 LIST
03 cblock h’060’ ; Begin block of variables @ File h’060’

00060 04 NUM:2 ; Hi-byte is in NUM+1. Lo byte is in NUM
05 endc ; End of block
06
07 ; Dummy Main loop --

000 0E10 08 MAIN movlw h’10’ ; Set up integer h’2710’
002 6E60 09 movwf NUM ; decimal 10,000
004 0E27 10 movlw h’27’ ; as a test
006 6E61 11 movwf NUM+1
008 EC00

F001 12 call SQR_ROOT ; Call the subroutine SQR_ROOT
00C 0003 13 sleep ; Stop computing

14 ; End of MAIN --
15
16 ; **
17 ; * FUNCTION : Calculates the square root of a 16-bit integer *
18 ; * EXAMPLE : Number = h’FFFF’ (65,535), Root = h’FF’ (d’255’) *
19 ; * ENTRY : Number in File h’026:27’ *
20 ; * EXIT : Root in W and in COUNT. *
21 ; * ENVIR’MENT: Files h’035--37’ and Status register altered *
22 ; **
23 ; Local declarations
24 cblock ; Block of variables

0000062 25 I:2, COUNT:1 ; 2-byte magic number, 1-byte loop Count
26 endc
27

200 28 org h’00200’ ; Code begins @ h’00200’ in Program store
29
30 ; Task 1: Zero loop count --

200 6A64 31 SQR_ROOT clrf COUNT
32
33 ; Task 2: Set magic number I:2 to one ----------------------------

202 6A63 34 clrf I+1
204 6A62 35 clrf I
206 2A62 36 incf I,f

37
38 ; Task 3: DO ---
39 ; Task 3(a): Number - I --

208 5062 40 SQR_LOOP movf I,w ; Get low byte magic number
20A 5E60 41 subwf NUM,f ; Subtract from low byte Number
20C 5063 42 movf I+1,w ; Get hi byte magic number &
20E 5A61 43 subwfb NUM+1,f ; subtract with borrow from hi byte

44
45 ; Task 3(b): IF underflow THEN exit ------------------------------

210 E306 46 bnc SQR_END ; No Carry is Borrow. IF true terminate
47
48 ; Task 3(c): ELSE increment loop Count ---------------------------

212 2A64 49 incf COUNT,f
51 ; Task 3(d): Add two to the magic number I:2 ---------------------

214 0E02 52 movlw 2 ; Add two to low byte I
216 2662 53 addwf I,f
218 6AE8 54 clrf WREG ; Zero Working reg

(continued on the next page)

8 Assembly Language Code Building Tools 249

Table 8.2 (Continued)

21A 2263 55 addwfc I+1,f ; and add Carry bit to upper byte I
21C D7F5 56 bra SQR_LOOP ; and do another subtract and test

57
58 ; Task 4: Return loop count as the square root -------------------

21E 5064 59 SQR_END movf COUNT,w ; Copy into WREG
220 0012 60 return ; and return to caller

61
62 end

SYMBOL TABLE
LABEL VALUE

C 00000000
COUNT 00000064
I 00000062
MAIN 00000000
NUM 00000060
SQR_END 0000021E
SQR_LOOP 00000208
SQR_ROOT 00000200
STATUS 00000FD8
__18F1220 00000001

MEMORY USAGE MAP (’X’ = Used, ’-’ = Unused)

0000 : XXXXXXXXXXXXXX-- ---------------- ---------------- ----------------
0200 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XX-------------- ----------------

All other memory blocks unused.

Program Memory Bytes Used: 48
Program Memory Bytes Free: 4048

Errors : 0
Warnings : 0 reported, 0 suppressed
Messages : 0 reported, 0 suppressed

Executable Code
The concluding outcome of any translation process is the object file, sometimes
known as the machine-code file. Once the specified code is in situ in the Program
store, it may be run as the executable program.

As can be seen in Table 8.3, such files consist essentially of lines of hexadecimal
digits representing the binary machine code, each preceded by the address of the
first byte location of the line. This file can be used by the PIC MCU programmer to
put the code into Program ROM memory at the correct place. Because the location
of each code byte is explicitly specified, this type of file is known as absolute ob-
ject code. The software component of the PIC MCU programming hardware (see
Fig. 16.4 on p. 580), reading, deciphering and placing this code in Program memory
is sometimes called an absolute loader.

In the MPU/MCU world there are many different formats in common use. Al-
though most of these de facto standards are manufacturer-specific, in the main they
can be used for any brand of microcontroller. The format of the machine-code file
shown here is known as INHX32 for INtel HeX 32-bit address. There are other sim-

250 The Essential PIC18® Microcontroller

ilar Intel formats limited to 16-bit address fields. Figure 8.3 shows two of these lines
from root.hex in more detail.

The loader recognizes that a record follows when the character : is received.
This colon is followed by a 2-digit hexadecimal number representing the number
of machine-code bytes in the record; h’10’ = d’16’ in the case of the line shown
in Fig. 8.3(b). The next four hexadecimal digits represent the lower 16 bits of the
Program store address in which the first byte of the following data is to be located—
h’0200’ in our example. The following 2-digit number is h’00’ for a normal Code
record and h’01’ for the end-of-file record—see the last line of Table 8.3.

The core of the record is the machine code, with each instruction taking two
2-digit hexadecimal bytes ordered low:high byte. The loader reads this lower byte
first (e.g. h’64’) and then ‘tacks on’ the upper byte (e.g. h’6A’) giving a 16-bit in-
struction word; e.g. h’646A’ for clrf h’6A’.6

The final byte is known as a checksum. The checksum is calculated as the 2’s
complement of the sum of all preceding bytes in the record; that is, −sum; ignor-

Table 8.3 The absolute 8-bit Intel INHX32 object-code file root.hex

:020000040000FA
:0E000000100E606E270E616E00EC01F0030022
:10020000646A636A626A622A6250605E6350615A1D
:1002100006E3642A020E6226E86A6322F5D7645078
:020220001200CA
:00000001FF

Fig. 8.3 Structure of INHEX32 records

6Locating the multibyte code in memory in the Intel way, formatted low:high byte, is known as
little-endian (working up from low to high address, the low byte end comes first) whereas the
high-endian arrangement is favored by, amongst others, Motorola/Freescale.

8 Assembly Language Code Building Tools 251

Table 8.4 The error file

Warning[207] ROOT.ASM 56 : Found label after column 1. (br)
Error[122] ROOT.ASM 56 : Illegal opcode (SQR_LOOP)

ing any overflow. As a check-up on transmission accuracy, the loader adds up all
received bytes including this checksum for each record. This received count should
give zero if no download error has occurred.

Machine-code formats, such as INHX32 (there are several types, such as Mo-
torola), were originally developed for microprocessors with a maximum of 64 kbyte
Program store. For processors with larger stores, and therefore needing address
fields more than 16 bits, the INHX32 format uses a Linear Address record line.
Figure 8.4(a) shows such a line, coded 04. A record of this type carries a complete
32-bit address, with an upper capacity capable of servicing a 4 Gbyte Program store!
At the time of writing (autumn 2008) the maximum store size is 128 kbyte; for in-
stance, the PIC18F6722, with an address range spanning h’0 0000–1 FFFF’. All code
records following a Linear address record keep this address word as an offset until
a new Linear address record is read. For an example with a higher address segment
than illustrated here, see p. 317.

Assemblers are very particular that the syntax is correct. If there are syntax er-
rors7 then an error file will be generated. For instance, if line 56 was mistakenly
entered as:

br SQR_LOOP

then the error file of Table 8.4 would be generated.
The assembler does not recognize br as an instruction or directive mnemonic

and erroneously assumes that it is a label mistakenly not beginning in column 1.
On this basis it assumes that SQR_LOOP is an instruction/directive mnemonic and
again does not recognize it.

Most assemblers allow the programmer to define a sequence of processor in-
structions as a macro instruction. Such macro instructions can subsequently be
used in a similar manner to native instructions. For example, the following code de-
fines a macro instruction called Delay_1ms8 that implements a 1 ms delay when
executed on a PIC MCU running with a 4 MHz crystal. The directive pair macro-
endm is used to enclose the sequence of native instructions which will be substituted

7If the assembler announces that there are no errors then there is a tendency to think that the
program will work. Unfortunately a lack of syntax errors in no way guarantees that the program
will do anything of the sort!
8I have capitalized the first letter of all macro instructions to distinguish them from native instruc-
tions.

252 The Essential PIC18® Microcontroller

when the mnemonic Delay_1ms is used anywhere in the subsequent program. The
mnemonic will be replaced by the assembler with the defined code. Note that this
will be in-line code, unlike calling up a subroutine.

Delay_1ms macro
local LOOP

movlw d’250’ ; Count from 250
LOOP addlw -1 ; Decrement

nop ; Extra delay
bnz LOOP ; Repeat unless zero

endm

Where labels are used within the body of the macro, they should be declared using
the local directive. This means that any conflict with labels outside the macro or
where a macro instruction is evoked more than once, is avoided.

This example is unusual in that the ‘instruction’ did not have any operands. Like
native instructions, macros can have one or more operands. To see how this is done,
consider a macro instruction called Movlf for MOVe byte Literal to File. As there
is no one native instruction to copy (move) a constant into a File in one go, this will
involve more than one native instruction. The definition of Movlf is:

Movlf macro LITERAL,DESTINATION ; Dummy operand names

push ; Save WREG & STATUS
movwf TOSL ; First WREG
swapf STATUS,w ; Then STATUS
swapf WREG,f
movwf TOSH

movlw LITERAL ; Put constant in WREG
movwf DESTINATION ; and copy into File

movf TOSL,w ; Restore WREG
movff TOSH,STATUS ; and STATUS
pop

endm

For instance, if the programmer wished to initialize File h’020’ to, say, h’55’ then the
invocation would be Movlf h’55’,h’020’.

To make Movlf transparent, both WREG and STATUS are saved in the Hardware
stack before moving the literal into the former and then to the specified File. These
previous values are restored before completion.

Our example involved two comma separated dummy operands, but in general a
macro can be of any arbitrary complexity involving many such declared parameters.
Macro names should not be the same as for a real instruction; even from a different

8 Assembly Language Code Building Tools 253

family. Microchip have available a large number of macros implementing arithmetic
operations such as 16-bit × 16-bit and 32-bit × 32-bit multiplication. However, ex-
tensive use of macros can make programs difficult to debug, especially when an
apparently simple macro instruction hides a number of side effects which alter GPR
and SFR File contents and flags. These can be reduced by transparency techniques,
such as illustrated in this example, but not always entirely eliminated. For instance,
a frequent source of error is to precede a macro instruction with a Skip instruction,
intending to go around it on some condition. As the macro instruction is in fact a
structure of several native instructions, this skip will actually be into the middle of
the macro—with dire consequences.

Macro definitions, whether commercial or/and in-house, may be collected to-
gether as a single file and included in the user program using the include direc-
tive. Thus if your file is called mymacros.mac then the line at the beginning of
your program

#include "mymacros.mac"

will allow access by the programmer to all macro definitions in the file. Any macros
defined in the included file but not used, will have no effect on the final machine
code.

The process outlined up to here is known as absolute assembly. Here the source
code is in a single file (maybe plus some included files) and the assembler places
the resulting machine code in known (i.e., absolute) locations in the Program store.
Where many modules are involved, often written by different people or/and coming
from outside sources and libraries, some means must be found to link the appropriate
modules together to give the final single absolute executable machine-code file. For
example, you may have to call up one of the modules that Fred is busy writing at
the moment. You do not know exactly where in memory this module will reside or
where its variables are stored, until the project is nearing its conclusion. What can
you do? You should be able to call module FRED and refer to its component objects
without knowing exactly what address they will be allocated.

The process used to facilitate this is shown in Fig. 8.4. Central to this modular
tie-up is the object linker program, which satisfies such external cross-references
between the modules. Each module’s source-code file needs to have been translated
into relocatable object code prior to the linkage. ‘Relocatable’ means that its final
location and various addresses of external labels have yet to be determined. This
translation is done by a relocatable assembler. Unlike absolute assembly, it is the
linker that determines where the machine code is to be located in memory, rather
than the human programmer; although absolute locations, say of the Ports, can still
be specified and the programmer will give guidance.

Treating the linker as a type of task builder, its main functions are:

• To concatenate code and data from the various input module streams.
• To allocate values to symbolic labels which have not been given explicit fixed

values by the programmer using equ and similar directives.
• To generate the absolute machine-code executable file together with any symbol,

listing and link-time error files.

254 The Essential PIC18® Microcontroller

Fig. 8.4 Relocatable
assembly-level code
Translation

8 Assembly Language Code Building Tools 255

Table 8.5 The rms.lkr linker command file

// File: rms.lkr
// Simple linker script for the PIC18F1220 Created 19/09/2008

// Architecture of target device
CODEPAGE NAME=vectors START=0x0 END=0x29 PROTECTED
CODEPAGE NAME=page START=0x2A END=0xFFF

ACCESSBANK NAME=scratch START=0x0 END=0x3F
ACCESSBANK NAME=accessram START=0x40 END=0x7f
DATABANK NAME=gpr0 START=0x80 END=0xFF
ACCESSBANK NAME=sfr START=0xF80 END=0xFFF PROTECTED

SECTION NAME=STARTUP ROM=vectors // Reset & Int vectors
SECTION NAME=PROGRAM ROM=page // ROM program text
SECTION NAME=AUTO RAM=scratch // Used for temporary vars
SECTION NAME=STATIC_ACS RAM=accessram // Used for Global vars
SECTION NAME=STATIC RAM=gpr0 // Vars stored in Bank0

In relocatable strategy, instructions and data are separated out into streams,
which are located in Program and Data stores as directed by the programmer. In
order to allow the linker to do this job, it must have knowledge of the memory
architecture of the target processor; basically where the array of general-purpose
register Files start and end, where the vectors reside in program memory and where
the code begins and ends. These may be subdivided as directed by the programmer
with regard to the resources available to the hardware. For instance, foreground and
background code could be placed in separate areas of the Program store. In the case
of Microchip’s mplink.exe linker this information is supplied in the form of a
linker command file.

A simple example of such a command file for a PIC18F1220 is given in Table 8.5.
Four directives are used in the file.9

CODEPAGE
The codepage directive is used for code in the Program store. Here these direc-
tives are used to define two regions, one for the Reset and Interrupt vectors in be-
tween h’0000’ and h’0029’ called vectors, and the other called page to be used
for executable code from h’0002A’ through h’0FFF’. Notice the use of the prefix
0x to denote the hexadecimal base. This is the notation used in the C language.
The vector domain has the attribute PROTECTED, which tells the linker to keep
away from this area of memory when allocating space for code unless explicitly
commanded to in the program. Microchip recommend that this region be specified
oversize to accommodate some limited startup code; for instance, context saving for
Low-priority handling when High-priority interrupts are also in use. For this reason
this area of the Program store ends at 0x0029 and executable code can begin at
0x002A.

9Only a basic range is given here. Microchip’s MPASM™ Assembler Users Guide with the
MPLINK™ Object Linker and MPLIB™ gives a full list of linker directives.

256 The Essential PIC18® Microcontroller

DATABANK
This is similar to codepage but is used for variable data in RAM where Direct-
Banked addressing is to be used. In the script above, Bank 0 is declared to be this
type.

ACCESSBANK
This directive is used where the programmer wants the assembler to use Access-
Direct addressing for variables in this area of RAM. Here the Access regions of the
Data store is split into three streams.

1. Between 0x000 and 0x03F is going to be used as an area to store local tempo-
rary variables whose storage is ephemeral; that is can be reused for each module.

2. Between 0x040 and 0x07F completes the lower Access region and will be used
for variables which will last for the program run.

3. Between 0xF80 and 0xFFF is where the SFRs are located with the attribute
of PROTECTED. This area is specified for completeness, as SFRs are absolute
locations and as such will be given fixed addresses in the program; as defined in
the header file p18f1220.inc.

SECTION
This linker directive allows the programmer to specify which of the defined memory
areas a named stream of source code or data is to be placed. Table 8.5 names two
code and three data logical sections.

1. STARTUP will be used by the programmer to store the three vector goto or
bra instructions—see p. 257. The source code assembler directive code with
the appropriate label tells the linker into which stream any following code is to
be placed; for example, see Program 8.2.

2. PROGRAM is where the core instruction codes will be streamed.
3. AUTO is where temporary variables will be directed. This resource will be

reusable with each module able to overlay previously RAM memory. The assem-
bler source code directive access_ovr (ACCESS uninitialized data OVeRlaid)
steers data into this region of RAM.

4. STATIC_ACS is for storage in Access RAM that will persist for the entire pro-
gram. The assembler directive udata_acs (Uninitialized DATA ACceSs) al-
lows space to be reserved for labels in the Access general-purpose register array.

5. STATIC_0 is a stream for storage in Bank 0 used for permanent data storage.
The assembler directive udata (Uninitialized DATA) allows space to be re-
served for labels in non-Access (i.e. Banked) RAM areas.

As many code sections from any codepage and data sections for any databank
can be created as appropriate. For instance, all subroutines may be placed together
in program memory by modifying the linker script file thus:

SECTION NAME=PROGRAM ROM=page // ROM code space
SECTION NAME=SUBROUTINES ROM=page // ROM subroutine stream

In the particular case of the STARTUP stream, the three vectors are not consec-
utive. To cope with this disjointed code, an entry within a named stream can be
explicitly located. For instance:

8 Assembly Language Code Building Tools 257

; The three vectors ----------------------------
STARTUP code ; Reset vector at beginning of stream

bra MAIN ; Go to the background software

STARTUP code 0x0008 ; High-priority vector at h’00008’
bra HIGH_ISR ; Go and execute the High-priority ISR

STARTUP code 0x0018 ; Low-priority vector at h’00018’
bra LOW_ISR ; Go and execute the Low-priority ISR

This should be compared to the similar absolute assembly equivalent on p. 223.
To illustrate the principle of linking we will implement the mathematical function√
NUM_12 + NUM_22, known as root mean square. There are three teams working

on this problem.10 Tasks have been allocated by the project manager (a fourth per-
son?) as follows:

1. The main function which sequences the steps:
(a) Square signed byte NUM_1.
(b) Square signed byte NUM_2.
(c) Add NUM_12 + NUM_22.
(d) Square root item (c).

2. Design of a subroutine to square a signed byte number in the Working register to
give a double-byte outcome in two GPRs.

3. Design of a subroutine to evaluate the square root of a double-byte sum and
return it in WREG.

The process based on this decomposition of the task is shown diagrammatically in
Fig. 8.5.

The main function is shown in Program 8.2. The program commences with the
Reset bra MAIN instruction and is located in the STARTUP code stream. From the
MAIN label onwards, code is located in the PROGRAM code stream using the direc-
tive PROGRAM code. We see from the map file output by the linker in Table 8.6
that MAIN is located at 0x002A (the first location in the PROGRAM stream).

Fig. 8.5 Linking three source files to implement a root mean square program

10Obviously this is a ridiculously simple problem for teamwork, but it illustrates the principle in a
manageable space.

258 The Essential PIC18® Microcontroller

Program 8.2 The main relocatable source file main.asm
include "p18f1220.inc"
extern SQR_ROOT, SQR, SQUARE

; --
STATIC udata ; Permanent data in Bank 0 RAM
NUM_1 res 1 ; The first number
NUM_2 res 1 ; The second number
SUM res 2 ; Two bytes HI:LO for the sum
RMS res 1 ; One byte for the outcome
; --
STARTUP code

bra MAIN ; The Reset vector

PROGRAM code

MAIN movf NUM_1,w ; Get Number 1
call SQR ; Square it
movff SQUARE,SUM ; Get lower byte to Sum_L
movff SQUARE+1,SUM+1 ; Get high byte to Sum_H
movwf SUM+1 ; Is the high byte of Sum

movf NUM_2,w ; Now get Number 2
call SQR ; Square it
movf SQUARE,w ; Get lower byte
addwf SUM,f ; Add to the low byte of sum
movf SQUARE+1,w ; Get upper byte and add
addwfc SUM+1,f ; with carry to the hi byte of sum

call SQR_ROOT ; Work out the square root
movwf RMS ; Is the root mean square

sleep
global SUM
end

The main routine uses four variables located in data stream STATIC. These
are placed in uninitialized Bank 0 RAM with the directives udata and res (RE-
Serve). A single GPR File is reserved for each of the two input variables NUM_1
and NUM_2, respectively. Two bytes are reserved for SUM, which is used to hold the
sum NUM_1+ NUM_2. As this is to be the input for the subroutine SQR_ROOT, it
is declared global at the end of the file. This means that the location is public;
that is, additional files that are linked together can use the label SUM by declaring
it extern (i.e., external to the file). Variables not declared thus are ‘hidden’ from
the outside world, i.e., are private (or local) variables. In this manner the directive
extern at the head of Program 8.2 allows the main routine to call the subroutines
SQR_ROOT and SQR without knowing in advance where they are. In the same way
the variable SQUARE is used by subroutine SQR to return the square of the byte sent
to it in WREG. Space for this is reserved in a GPR File in subroutine SQR and its
exact location in the Data store is not known by main.asm but will be allocated
later by the linker. From the map file of Table 8.6 it is finally located in File 0x083:82
(high:low byte).

The main body of the code follows the task list enumerated above. The value
NUM_12 is placed in Files SUM+1:SUM to which the computed NUM_22 is added.
The outcome is then used as input to subroutine SQR_ROOT to return the root-mean

8 Assembly Language Code Building Tools 259

Program 8.3 The relocatable source file sqr.asm
include "p18f1220.inc"

; **
; * FUNCTION: Squares one signed byte to give a 2-byte result*
; * EXAMPLE : X = h’10’ (16), SQUARE = h’0100’ (256) *
; * ENTRY : X in WREG *
; * EXIT : Global SQUARE:2 *
; **

STATIC_ACS udata_acs ; Global data in Access RAM
SQUARE res 2 ; High:Low byte of square
; --
AUTO access_ovr ; Auto (temporary) data
X_NUM res 1 ; One place for X_NUM
; --

PROGRAM code

; Task 1: Make byte in WREG positive and copy into X_NUM -------
SQR btfsc WREG,7 ; Skip IF sign bit is positive

negf WREG ; ELSE Negate to make it positive
movwf X_NUM ; and copy as second operand

; Task 2: Multiply to give WREG^2 in PROD_H:PROD_L--------------
mulwf X_NUM ; Multiply

; Task 3: Return 2-byte product in SQUARE:2
movff PRODL,SQUARE ; Low byte of WREG^2
movff PRODH,SQUARE+1 ; High byte of WREG^2

return ; Finished

global SQUARE, SQR
end

square byte in WREG. Finally this is copied to the File named RMS, for which a
single byte has been reserved in the STATIC Data stream.

The subroutine sqr.asm of Program 8.3 returns a 2-byte square of the signed
datum passed in WREG. As by definition the outcome will always be positive
and the mulwf instruction only deals with unsigned operands, the subroutine first
checks the sign bit of WREG and if negative, 2’s complements (negf) it. Copy-
ing it into memory at X_NUM and then multiplying gives X_NUM2. X_NUM is put
into the data stream AUTO with the directive access_ovr to indicate to the linker
that these Files in Access RAM can be reused by other modules. In the map file
of Table 8.6 we see that X_NUM has been allocated File 0x000 as has I; a variable
in subroutine SQR_ROOT—see Program 8.3. This will make more efficient use of
available data memory. Variables that are only alive within the subroutine that they
are declared in are known in the C language as automatic, as their space is automati-
cally reallocated as needed. The situation where variable space is preserved is known
as static. Global variables, such as SQUARE, are always static. In this case the vari-
able SQUARE is created by reserving two bytes using the udata_acs directive in
the STATIC_ACS stream. It is also published using the global directive, as is
the name of the subroutine. The 2-byte outcome in the SFRs PRODH:PRODL are
copied into global SQUARE:2 from which they can be seen by the caller routine

260 The Essential PIC18® Microcontroller

Program 8.4 The relocatable source file root.asm
include "p18f1220.inc"
extern SUM ; The 2-byte number Hi:Lo

; ***
; * FUNCTION : Calculated the square root of a 16-bit integer *
; * EXAMPLE : Number = h’FFFF’ (65,535), Root = h’FF’ (d’255’)*
; * ENTRY : Number in Global SUM:2 *
; * EXIT : Root in WREG *
; * ENVIR’MENT: Overlay I:2, COUNT:1 and STATUS altered *
; ***

AUTO access_ovr ; Auto (temporary) variables in Acc RAM
I res 2 ; Magic number hi:lo (two bytes)
COUNT res 1 ; Loop count (one byte)
; --

PROGRAM code

SQR_ROOT clrf COUNT ; Task 1: Zero loop count

clrf I ; Task 2: Set magic number I to one
incf I
clrf I+1

SQR_LOOP movf I,w ; Task 3(a): Number - I
subwf SUM,f ; Subtract lo byte I from lo byte Num
movf I+1,w ; Get high byte magic number
subwfb SUM+1,f ; Subtract with Borrow high bytes

btfss STATUS,C ; IF No Borrow THEN continue
bra SQR_END ; ELSE the process is complete

incf COUNT,f ; Task 3(c): ELSE inc loop count

movf I,w ; Task 3(d): Add 2 to the magic number
addlw 2
btfsc STATUS,C ; IF no carry THEN done
incf I+1,f ; ELSE add carry to upper byte I

movwf I
goto SQR_LOOP

SQR_END movf COUNT,w ; Task 4: Return loop count as the root
return

global SQR_ROOT

MAIN. Another possibility would have been to leave the datum in these SFRs, which
as absolute locations are by definition global. However, this makes the subroutine a
little less flexible for other applications.

The final source file of the trio is the subroutine coded in Program 8.4. This
is virtually identical to the absolute equivalent described in Program 8.1. Com-

8 Assembly Language Code Building Tools 261

Table 8.6 Part of the output linker map file rms.map

MPLINK 4.20, Linker
Linker Map File - Created Sat Sep 27 19:59:54 2008

Section Info
Section Type Address Location Size(Bytes)

--------- --------- --------- --------- ---------
STARTUP code 0x000000 program 0x000002
PROGRAM code 0x00002a program 0x00005e
.cinit romdata 0x000088 program 0x000002

AUTO udata 0x000000 data 0x000003
STATIC_ACS udata 0x000040 data 0x000002

STATIC udata 0x000080 data 0x000005

Program Memory Usage
Start End

--------- ---------
0x000000 0x000001
0x00002a 0x000089

98 out of 4096 program addresses used, memory utilization is 2%

Symbols - Sorted by Name
Name Address Location Storage File

--------- --------- --------- --------- ---------
MAIN 0x00002a program static main.asm
SQR 0x000076 program extern sqr.asm

SQR_END 0x000072 program static root.asm
SQR_LOOP 0x000056 program static root.asm
SQR_ROOT 0x00004e program extern root.asm

COUNT 0x000002 data static root.asm
I 0x000000 data static root.asm

NUM_1 0x000080 data static main.asm
NUM_2 0x000081 data static main.asm
RMS 0x000084 data static main.asm

SQUARE 0x000040 data extern sqr.asm
SUM 0x000082 data extern main.asm

X_NUM 0x000000 data static sqr.asm

paring the two, the org directive has been replaced by PROGRAM code and
cblock by AUTO access_ovr for the automatic local data in Access RAM.
The data is passed to the subroutine SQR_ROOT via the external 2-byte global vari-
able SUM, space for which has been allocated in main.asm. The subroutine name
SQR_ROOT is published as global to make it visible to main.asm.

Like all source files, root.asm makes use of SPRs such as STATUS. For this
reason the file p18f1220.inc has been included at the head of each of the source
files. Because this file comprises a set of equ directives (see Table 8.1), the names
thus published are absolute and are not allocated or changed in any way by the
linker. Thus the linker map of Table 8.6 does not list such fixed symbols. They are,
however, enumerated in the listing file produced by the linker.

262 The Essential PIC18® Microcontroller

Table 8.7 The resulting absolute object file rms.hex in INHX32 format

:020000040000FA
:0200000014D01A
:06002A0080513BEC00F0E8
:100030004050826F4150836F81513BEC00F0405043
:1000400082274150832327EC00F0846F0300026A6B
:10005000006A002A016A0050825F0150835BD8A0C9
:1000600008D0022A0050020FD8B0012A006E2BEFF0
:1000700000F002501200E8BEE86C006E0002F3CF00
:0800800040F0F4CF41F0120042
:02008800000076
:00000001FF

In order to link the three source files together, the linker program must be given
a command line listing the names of the input object files output by the relocatable
assembler, the linker command file and the names of the output map and machine
code file. In the case of our example this was:

mplink "rms.lkr""main.o""root.o""sqr.o"
/m"rms.map" /o"rms.hex"

which names the output map file rms.map and the absolute machine-code file
rms.hex.

For documentation purposes the linker generates a composite listing file, similar
(but more comprehensive) to that of Table 8.2 and an optional map file. The map
file of Table 8.6 shows two lists. The first displays information for each section.
This includes its name, type, start address, whether the section resides in program
(code) or data memory (data) and its size in bytes. The Program Memory Usage
table shows that 98 bytes of program memory are used, including the two bytes of
the Reset vector bra instruction—or around 2.4% of the possible total.

The second table shows information about the symbols in the composite program.
Each symbol’s location in either the Program or Data store is given together with
the source file where it is defined. Global symbols are noted as extern. Local vari-
ables are all labeled static (not to be confused with the Data stream STATIC),
including automatic reusable variables such as X_NUM and I, both at File 0x000.

The full map file also includes a table of symbols sorted by address.
The final outcome, shown in Table 8.7, is a normal executable machine code file.

The format of this file is described for Table 8.3 and can be loaded into absolute
program memory and run in the normal way.

Developing, testing and debugging software requires a large number of software
tools, many of which we have discussed earlier, such as an editor, assembler and
linker. In practice there are many other packages such as high-level language com-
pilers (see Chap. 9), simulators and in-circuit debuggers; shown diagrammatically
in Fig. 8.6. Setting up these tools and interacting on an individual basis can be quite

8 Assembly Language Code Building Tools 263

Fig. 8.6 Code building and testing tools

complex, especially where products from differing manufacturers are involved. In
this latter case, ensuring compatibility between the various intermediate file formats
can be a nightmare.

Many software houses designing code development tools provide a graphical
environment which integrates and sequences the process in a logical and easy to
use manner. Of relevance to the PIC MCU family, Microchip Technology provides
a Microsoft Windows-based Integrated Development Environment (IDE) called
MPLAB®, which brings all compatible code development tools under one roof. Like
all Microchip software tools (except C compilers) the MPLAB IDE is supplied free
of charge.

MPLAB integrates Microchip-compatible tools to form a complete software de-
velopment environment. Among its features are:

• A project manager which groups the specific files related to a project; for instance,
source, object, simulator, listing and hex files.

• An editor to create source files and linker script files.
• An assembler, linker and librarian to translate source code and create libraries of

code, which can be used with the linker.
• A simulator to model the instruction execution and I/O on the code development

computer—see Fig. 8.8.
• A downloader to work in conjunction with device programmers via the PC’s serial

or USB ports—see Fig. 16.4 on p. 580.

264 The Essential PIC18® Microcontroller

• Software to emulate PIC MCUs in real time in the target hardware. This is ac-
complished by driving an In-Circuit Emulator (ICE) or Debugger (ICD)11 via the
PC’s serial or USB port, controlling or replacing the target processor.

The Microchip manual MPLAB® IDE User’s Guide gives a MPLAB IDE tutorial
and reference details, which are beyond the scope of this book. However, for illus-
trative purposes two screen shots taken during the development of our previous ex-
ample linking main.asm, sqr.asm and root.asm are reproduced in Figs. 8.7
and 8.8.

Figure 8.7 shows the window displaying the Project file rms.mcw after the set-
up wizard. The three source files, which have already been created using the edi-
tor, are specified. Also the name of the linker script file rms.lkr, which has also
been previously created and saved. The resulting machine code file will be called
rms.hex.

Once the project specified in this manner, the sequence of operations, namely:

1. Assemble main.asm to give main.o.
2. Assemble sqr.asm to give sqr.o.
3. Assemble root.asm to give root.o.
4. Use rms.lkr to link together object files 1, 2 and 3.
5. If no syntax errors, create the absolute executable file of Table 8.7.

can be initiated by choosing from the Project menu (top fourth left in Fig. 8.8)
Make Project. If there are syntax errors an Error window will appear listing
errors. Double clicking on any specific error will bring up the relevant Source-code
window with the cursor set to the line in question. The Output window charts the
progress of the Make process, and will display any Linker errors.

Once the program has been successfully made, it may be simulated. Here the PC
models the PIC MCU’s instruction set and peripheral ports and allows the user to

Fig. 8.7 MPLAB® Project
window, showing files
selected to assemble, link and
simulate Program 8.4

11This is a hardware ‘pod’ that replaces the PIC MCU in the target circuit and allows the PC to
take over the running of the system—see Fig. 16.6 on p. 582.

8 Assembly Language Code Building Tools 265

Fig. 8.8 MPLAB screen shot showing the programs selected in Fig. 8.7 being simulated

reset the (simulated) PIC MCU, set break points, single step or run continuously
and even inject fake signals into I/O pins. During this process, user-selected File
registers or the whole of data memory can be monitored, as can execution time.
Of course, simulated execution time by the PC will be several orders of magnitude
slower than a real PIC MCU.

A simulation can be actioned via the Debugger menu. This brings up the De-
bugger toolbar, top right of Fig. 8.8. This allows the operator to:

• Reset the virtual processor by clicking on the icon.

• Run and pause the simulation at top speed.

• Continuously execute; i.e. animate , at a rate of several steps per second.
• Single step in three modes; one instruction being simulated on a single click.

– Step-in steps through all code, including subroutines.
– Stop-over runs through subroutines at top speed.

– Step-out runs down to the end of the stepped subroutine at full speed.

Figure 8.8 shows the end result of a simulation of our root-mean square exam-
ple. As well as windows showing the three source files, a Watch window has been
opened using the View menu. This allows the operator to add any named GPRs,

266 The Essential PIC18® Microcontroller

such as NUM_1, the value of which can be displayed in binary, signed or unsigned
decimal or hexadecimal in bit, single, double or triple byte format. These values are
updated as the simulation proceeds in a Single-step or Animate mode. If top speed
is used, the Watch window is updated when the simulation is paused or stops at a
breakpoint.

Also shown in the diagram is the Stop-watch window. This indicates that the
program took 179 cycles to execute with initial values for NUM_1 and NUM_2 of
−5 and 8, respectively. With a simulated 20 MHz crystal, execution time is shown
as 35.8 µs. As expected

√−52 + 82 = 9.
As the simulation proceeds, the currently executed instruction is marked by a ⇒

in the left pane of the relevant Source-code window. In Fig. 8.8, this is pointing to

the final sleep instruction and overlays the breakpoint symbol. Breakpoints
can be set or cleared by right-clicking on the relevant instructions. Each click of the

icon will run the simulation at top speed to the next breakpoint.
Simulation will not catch all problems, especially those involving complex hard-

ware/software interaction. However, the vast majority of problems are caused by
purely software design faults, and simulation is a fast and convenient technique for
testing and debugging such code.

Debugging should always, at a first iteration, try largest and smallest values of
variables. However, in real-world length programs, correct operation is by no means
guaranteed by this test for all possible combinations and sequences of input.

Finally, we review some general information specific to Microchip-compactible
assemblers as an aid to reading programs in the rest of the book:

• Number representation.
– Hexadecimal: Denoted by a leading h with the number delineated by quotes;

e.g. h’41’ or a following h; e.g. 41h, or a 0x prefix; e.g. 0x41. The as-
sembler normally defaults to this base so some programs show no hexadecimal
indicators. However, it is better not to rely on the default behavior.

– Binary: Denoted by a leading b with a quote delimited number; e.g.
b’01000001’.

– Decimal: Denoted by a leading d with a quote delineated number; e.g. d’65’
or a leading period prefix; .65 in our example.

– 2’s complement Sign is indicated by appending a negative sign; e.g. -d’60’
or -h’3C’; which is the same as h’C4’.

– ASCII: Denoted by a quote delimited character; e.g. ’?’.
• Label arithmetic.

– Current position: $; e.g. goto $+2.
– Addition: +; e.g. goto LOOP+6.
– Subtraction: -; e.g. goto LOOP-8.
– Multiplication: *; e.g. subwf LAST*2.
– Division: /; e.g. subwf LAST/2.

8 Assembly Language Code Building Tools 267

• Directives.
– org: Places the following code in program memory starting from the specified

address; e.g. org h’00100’. If no org is used, the default reset point is
h’00000’. Can only be used for absolute assembly.

– code: Counterpart to org for relocatable assembly. The actual address of the
code stream is defined in the linker’s command file. More than one code stream
may be defined in the linker script file and in this case its name appears in the
label field; for instance, SUBROUTINES code. An absolute address can be
appended in the same manner as org.

– equ: Associates a value with a symbol; e.g. PORTB equ h’F81. The
#define directive may be used instead; #define PORTB h’F81’.

– cblock-endc: Used in absolute assembly to allocate program variables in
data memory; e.g.:

cblock h’020’
FRED ; One byte at h’020’ for FRED
JIM:2 ; Two bytes at h’021:22’ for JIM
ARRAY:10 ; Ten bytes for ARRAY at h’023 - 02C’
endc

The address is optional after the first cblock use.
– udata: Counterpart to cblock for relocatable assembler where the datas-

tream specifies Banked RAM. The start address for data memory streams are
in the linker’s script file. There may be more than one Data stream defined in
this script file in which case its name is published in the label field; e.g.:

SCRATCHPAD udata ; Uninitialized data stream
FRED res 1 ; Reserve one byte for FRED
JIM res 2 ; Reserve two bytes for JIM
ARRAY res 10 ; Reserve ten bytes for ARRAY

– udata_acs: is the equivalent to udata where the data stream is targeted to
Access RAM.

– udata_ovr: OVeRlay Uninitialized DATA is similar to udata but the linker
tries to reuse Files for the specified named variables. Used for data streams in
Banked RAM.

– access_ovr: ACCESS OVeRlay data is similar to udata_ovr but used
where the uninitialized data is in Access RAM.

– res: Used with a udata type directive to REServe one or more bytes for a
variable in a Data stream.

– extern: Allows the named variables which are defined outside the current
file, to be used in the current file and subsequently resolved by the linker.

– global: Publishes the named variables that have been defined (i.e., space
reserved) in the file and that are to be made visible to other files through the
linker.

– macro-endm: Used to allow the specified enclosed sequence of instructions
to be replaced by a new macro instruction; e.g.:

268 The Essential PIC18® Microcontroller

Addlf macro N,datum
movf datum,w
addlw N
movwf datum

endm

adds the literal N to the specified File datum; e.g. to add five to File h’020’ the
programmer can use the invocation Addlf 5,h’020’.

– #include: Used to include the specified file at this point; for instance,
#include "myfile.asm". Plain include is identical.

– end: Normally the last line of an assembly-level source file. Tells the assem-
bler to ignore anything following.

Examples

Example 8.1 The following routine effectively exchanges the byte contents of W
and a File F without needing an additional intermediate File.

xorwf F,f ; [File] <- WREG^F
xorwf F,w ; WREG <- WREG^(WREG^F) = 0^F = F
xorwf F,f ; [File] <- F^WREG^F = 0^WREG = WREG

where ^ denotes eXclusive-OR.
Wrap the given code within a macro to generate a new instruction Exgwf F

where F is the designated File; e.g. Exgwf h’020’.

Solution Wrapping the code inside a macro gives:

Exgwf macro FILE

xorwf FILE,f
xorwf FILE,w
xorwf FILE,f

endm

Note that this macro instruction will not affect the C flag and will activate the Z flag
according to the datum that was in the Working register at entry.

Example 8.2 The mulwf instruction multiplies the unsigned byte in WREG with
that in the target File, putting the unsigned outcome in PRODH:PRODL—see p. 122.
Based on this instruction, design a macro called Mulwfs which will implement a
multiplication of two RAM-based signed operands.

Solution Program 5.6 on p. 124 gives a routine to implement this task. Wrapping
this into a macro gives:

8 Assembly Language Code Building Tools 269

Mulffs macro FILE1,FILE2

movf FILE1,w ; Get Number 1 from memory into WREG
mulwf FILE2 ; Multiply with Number 2

btfsc FILE2,7 ; Test Number 2’s sign bit, skip if +ve
subwf PRODH,f ; ELSE take away Number 1 from PRODH

movf FILE2,w ; Now get Number 2 into WREG
btfsc FILE1,7 ; Test Number 1’s sign bit, skip if +ve
subwf PRODH,f ; ELSE take away Number 2 from PRODH

endm

A typical usage of this macro would be Mulffs h’020’,h’060’ to multiply
the signed bytes in File h’020’ and File h’060’. The 16-bit signed Product will be in
PRODH:PRODL.

Example 8.3 Write a macro that will create a delay of nominally 100 µs indepen-
dent of the clock speed, over the range 1 to 40 MHz. The user program must declare
the frequency used in the target hardware by defining the constant CLOCK. For in-
stance, #define CLOCK d’20’ where the hardware is clocked at 20 MHz.

Solution The macro code below uses a down count of the Working register with
each loop taking four instruction cycles. At the top frequency of 40 MHz, each
cycle takes 0.1 µs. This gives a total requirement of 1000 cycles, or 250 loops. At
the bottom 250

40 gives 6.25 loop passes. We can only do integer label arithmetic so
the constant (6 × CLOCK) + CLOCK

4 gives the closest approximation for our loop
count. The CLOCK

4 factor gives an approximation for the 0.25 fraction of a loop pass.
For instance, at 20 MHz the constant loaded into WREG will be 125, and this will
give 500 cycles at 0.2 µs in total as it decrements to zero.

Delay_100us macro
local DLOOP

; 4K~ delay in total = 6.25 * CLOCK us
movlw (CLOCK*6) + CLOCK/4); Delay parameter K 1~

DLOOP addlw -1 ; Decrement K~
nop ; K~
bnz DLOOP ; until zero 2K-1~

endm

The macro label is qualified with the local directive to ensure that each time a
macro is used it does not inject DLOOP into the assembler’s symbol table. If not so
qualified, then an Address label duplicated assembler syntax error will
occur.

Example 8.4 Macros may be nested; that is, a macro may use other macros in its
definition. For example, consider a macro to create a clock-independent nominal

270 The Essential PIC18® Microcontroller

1 ms delay. Assuming that the macro Delay_100us of Example 8.3 has already
been defined, write a suitable macro definition.

Solution One possible solution is:

Delay_1ms macro
local DLOOP

push ; Open up location for 100us count
movlw d’10’ ; Initialize counter to ten
movwf TOSL

DLOOP Delay_100us ; 100us delay
decfsz TOSL,f ; One more time
bra DLOOP ; until zero (ten times)
pop ; Restore Hardware stack

endm

Our macro definition simply runs the Delay_100usmacro ten times inside a loop.
As this macro already uses the Working register, the loop counter needs to be located
in memory. This can be a temporary GPR File but to reduce side effects a better way
is to use a Hardware stack cell. In this case the Stack Pointer is moved to the next
cell and TOSL initialized to ten and then decremented to zero after each 100 µs
delay. The Stack Pointer is then moved back.

Side effects are a hazard in using macro instructions, especially if the macro
has been designed by someone else and hidden in an Include file. At the very least
assume that W and STATUS are altered, unless known otherwise. Altering banks in
a macro is also potentially hazardous. A better solution would have been to make
macro Delay_100us transparent—for instance, see p. 252. In this case WREG
could have been used in Delay_1ms.

The real delay will be slightly longer than 1000 µs, due to the overhead of the
loop instructions. An actual run at 10 MHz gave 1005.2 µs.

Example 8.5 When using a relocatable assembler, the programmer will not know
in advance whether variables declared extern, that is defined in another external
module, have been assigned to Access or Banked RAM. At link time (see Fig. 8.5)
the generated code will use Access- or Banked-Direct addressing as appropriate.
However, if the latter, it will not automatically set up the Bank Select Register ac-
cordingly. Thus if a variable VAR_2 has been assigned to a stream in Bank 5; the
programmer needs to set up BSR to h’05’; i.e. movlb 5.

In the case of our exemplar PIC18F1220 there is no problem, as only Bank 0 is
implemented and BSR is cleared to h’00’ or Power-on Reset, and thus never needs
modified. However, using a processor such as the PIC18F4520 with five banks,
presents a seemingly insuperable problems in dealing with relocatable variables.
Not only will the programmer of a module not know the bank assignment of a par-
ticular external variable, but also this can change as a project develops!

8 Assembly Language Code Building Tools 271

To get around this problem, Microchip-compatible assemblers provide the
banksel (BANK SELect) directive. This automatically keeps track of the loca-
tion of the named variable and issues code to target the appropriate bank. Show how
this directive should be used when storing the decimal literals 1, 10, 100 in three
GPRs called var_0, var_1 and var_2, respectively. To use this mechanism,
the banksel directive should be placed in the source code whenever an external
variable is referenced.

Solution A possible sequence of instructions is shown below. The directive issues
the appropriate movlb instructions as appropriate before the following instruction.

movlw 1 ; The first literal
banksel VAR_0 ; Change to the appropriate bank
movwf VAR_0 ; Do it

movlw d’10’ ; Literal ten
banksel VAR_1 ; Change to the appropriate bank
movwf VAR_1 ; Do it

movlw d’100’ ; Literal hundred
banksel VAR_2 ; Change to the appropriate bank
movwf VAR_2 ; Do it

Assuming that VAR_0 is in Access RAM, VAR_1 is in Bank 2 and VAR_2 is in
Bank 5, the resulting listing file for this fragment of code is:

002A 0E01 MOVLW 0x1 7: MAIN movlw 1
002C 0100 MOVLB 0 8: banksel VAR_0
002E 6E40 MOVWF 0x40, ACCESS 9: movwf VAR_0

10:
0030 0E0A MOVLW 0xa 11: movlw d’10’
0032 0102 MOVLB 0x2 12: banksel VAR_1
0034 6F00 MOVWF 0, BANKED 13: movwf VAR_1

14:
0036 0E64 MOVLW 0x64 15: movlw d’100
0038 0105 MOVLB 0x5 16: banksel VAR_2
003A 6F00 MOVWF 0, BANKED 17: movwf VAR_2

Notice that using banksel to identify a variable that is in Access RAM generates a
movlb 0 instruction, even though the following movwf instruction correctly uses
Access-Direct addressing!

Self-Assessment Questions

8.1 Both macros and subroutines inject a series of instructions into the source
code. Compare and contrast the two techniques in assembly-level program
coding.

272 The Essential PIC18® Microcontroller

8.2 Design a macro of the form Cpfl_gt file,literal,destn to jump to
a destn label if the datum in file is greater than literal. For instance,
Cpfl_gt h’20’,d’80’,NEXT will cause execution to transfer to the in-
struction labeled NEXT if the contents of File h’020’ is greater than 80.

8.3 Code a macro of the form Lsldp file_h,file_l that will do a double-
precision logic shift left on file_h:file_l. A zero is to be shifted in
from the right and the leftmost bit will end up in the Carry flag. For instance,
Lsldp h’021’,h’020’ will shift the 16 bits in File h’021:20’ once left,
with b0 zero.

8.4 Example 8.3 developed a clock-speed independent 100 µs delay macro. Re-
engineer the coding to give a fully transparent version.

8.5 A certain electromechanical counter requires a 100 ms pulse (counting rate
of 10 per second) to advance. Based on the transparent clock-independent
Delay_100us macro above, design a transparent 100 ms macro called
Delay_100ms.

8.6 The following routine based on the macro instruction Movlf of p. 252 does
not work as intended. COUNT is altered seemingly at random and not consis-
tently with the desired literal 32. Why is this?

movf COUNT,f ; Test COUNT for zero
btfsc STATUS,Z ; IF not Zero THEN skip
Movlf d’32’,COUNT ; ELSE re-initialize it to 32

8.7 The banksel approach to selecting a bank is inefficient in that an extra
movlb instruction is issued even if the PIC MCU is already in the correct
bank or in Access RAM. Consider how in a time- or space-critical subroutine
this inefficiency can be avoided.

8.8 The PIC24 and dsPIC30/33 16-bit family cores have an array of 16×16 Work-
ing registers; as shown in Fig. 8.9. For instance the instruction to copy a 16-bit
datum word located in File h’0020 to W8 would be mov h’0020,W8. De-
sign a macro called Movfwi FILE,WI (MOVe File to Working register i)
instruction. You can assume that the simulated array is located in Access mem-

Fig. 8.9 Working register array

8 Assembly Language Code Building Tools 273

ory, with W0 at File h’001:000’. The parameter FILE indicates the lower byte
of the datum address.

8.9 Figure 8.9 shows the cblock directive reserving 32 bytes of Access RAM
for the array of Working registers. Based on Table 8.5, add a new stream for
the pseudo Working register array into the same area of Access RAM, suitable
for a relocatable assembly process with the udata_acs directive.

8.10 A programmer with expertise in the Freescale (Motorola) 68HC05 MCU has
been converted to the PIC18 MCU family and wishes to design macros to
simulate, amongst others, the following 68HC05 instructions. Note that the
Accumulator register in the 68HC05 family is the equivalent to the Working
register of the PIC MCU.

lda memory
LoaD Accumulator with data from memory.

lda #data
LoaD Accumulator with literal data.

sta memory
STore Accumulator data into memory.

tst memory
TeST memory for zero

tsta
TeST Accumulator for zero

Code suitable macros. Why do you think this approach might not be such a
good idea?

Chapter 9
High-Level Language

All the programs we have written in the last six chapters have been in symbolic
assembly language. Whilst assembly-level software is a quantum step up from pure
machine-level code (see p. 240) nevertheless there is still a one-to-one relationship
between machine and assembly-level instructions. This means that the programmer
is forced to think in terms of the MCU’s internal structure—that is, of registers and
memory—rather than in terms of the problem algorithm. Although most assemblers
have a macro facility, whereby several machine-level instructions can be grouped to
form pseudo high-level instructions, this is only tinkering with the difficulty. What
is this difficulty with machine-oriented language? In order to improve the effective-
ness, quality and reusability of a program, the coding language should be mostly
independent of the underlying processor’s architecture and should have a syntax
more oriented to problem solving.

We are not going to attempt to teach a high-level language in a single short chap-
ter. However, after completing this chapter you will:

• Understand the need for a high-level language.
• Appreciate the advantages of using a high-level language.
• Understand the problems of using a high-level language for embedded microcon-

troller applications.
• Be able to write a short program in C targeted to a PIC18 MCU.

The difficulty in coding large programs in a computer’s native language was clearly
appreciated within a few years of the introduction of commercial systems. Apart
from anything else, computers became obsolete with monotonous regularity, and
programs needed to be rewritten for each model introduction. Large applications
programs, even at that time, required many thousands of lines of code. Programmers
were as rare as hen’s teeth and worth their weight in gold. It was quickly deduced
that for computers to be a commercial success, a means had to be found to preserve
the investment in scarce programmers’ time. In developing a universal language,
independent of the host hardware, the opportunity would be taken to allow the pro-
grammer to express the code in a more natural syntax related to problem-solving
rather than in terms of memory, registers and flags.

S. Katzen, The Essential PIC18® Microcontroller,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-229-2_9, © Springer-Verlag London Limited 2010

275

276 The Essential PIC18® Microcontroller

Of course, there are many different classes of problem tasks which have to be
coded, so a large number of languages have been developed since.1 Amongst the
first were Fortran (FORmula TRANslation) and COBOL (COmmon Business Ori-
ented Language) in the early 1950s. The former has a syntax that is oriented to
scientific problems and the latter to business applications. Despite being around for
over 50 years, the inertia of the many millions of lines of code written has made
sure that many applications which were written in these antique languages are still
in use. Other popular languages include Algol (ALGOrithmic Language), BASIC,
Pascal, Modula, Ada, C, C++, C# and Java—the latter four forming a related family.

Although writing programs in a high-level language may be easier and more
productive for the programmer; the process of translation from the high-level source
code to the target machine code is rather more complex than the assembly process
described in Chap. 8. The translation package for this purpose is called a compiler
and the process, compilation; as shown in Fig. 9.2.

The complexity and cost of a compiler was acceptable on the relatively power-
ful and extremely expensive mainframe computers of that time. However, until the
mid-1980s the use of high-level languages as source code was virtually unknown
for microprocessor-controlled circuitry. In the last two decades the easy availability
of relatively powerful and cheap personal computers and workstations, capable of
running compilers, together with the growing power of MPU/MCU hardware and fi-
nancial importance of this market, is such that the great majority of software written
for such targets is now in a high-level language.

If you are going to code a task in a high-level language to run in a system with
an embedded MCU; for instance, a washing-machine controller, then the process is
roughly as follows.

1. Take the problem specification and break it up into a series of modules, each with
a well-defined task and set of input and output data.

2. Devise a coding to implement the task for each module.
3. Create a source file using an editor in the appropriate high-level syntax.
4. Compile the source file to its assembly-level equivalent.
5. Assemble and link to the machine-code file.
6. Download the machine code to the target’s program memory.
7. Execute, test and debug.

This is virtually identical to the process outlined in Fig. 8.4 on p. 254, but with
the extra step of compilation. Some compilers go directly from the source file to
the machine-code file; however, the extra flexibility of going through the assembly-
level phase, as shown in Fig. 9.1, is nearly universal when embedded MPU/MCU
circuitry is targeted.

The choice of a high-level language for embedded targets is crucial. Of major
importance is the size of the machine code generated by a high-level language im-
plementation, as compared with the equivalent assembly-level solution. Most em-

1A popular definition of a computer scientist is one who, when presented with a problem to solve,
invents a new language instead!

9 High-Level Language 277

Fig. 9.1 Conversion from high-level source code to machine code

bedded MCU circuitry is ‘lean and mean’, such as the remote controller for your
television. Lean translates to physically limited and mean maps to low processing
power and memory capacity—and cost! Most low-cost MCUs have a low-capability
processor with a few hundred bytes of RAM and a few tens of kilobytes of ROM
Program store at best. Thus to be of any use, the high-level language and the com-
piler must generate code that, if not as efficient as assembly-level (low-level), at
least is in the same ball park.2

By far the most common high-level language used to source code for embedded
MPU/MCU circuitry is C. Historically C was developed as a language for writing
operating systems. At its simplest level, an operating system (OS) is a program
which makes the detailed hardware operation of the computer’s terminals, such as
keyboard and disk organization, invisible to the operator. As such, the writer of an
OS must be able to poke about the various registers and memory of the computer’s
peripherals and easily integrate with assembly-level driver routines. As conventional
high-level languages and their compilers were profligate with resources, depending
on a rich and fast environment, assembly language was mandatory up to the early
1970s, giving intimate machine contact and tight fast code. However, the sheer size
of such a project means that it is likely to be a team effort, with all the difficulties in
integrating the code and foibles of several people. A great deal of self-discipline and
skill is demanded of such personnel, as is attention to documentation. Even with all
this, the final result cannot be easily transplanted to machines with other processors,
needing a nearly complete rewrite.

2In the author’s experience a code size increase factor of ×1.25 · · · × 2.5 is typical.

278 The Essential PIC18® Microcontroller

Fig. 9.2 Pyramid view of the steps leading to an executable program

In 1969 Ken Thompson—an employee at Bell Laboratories—developed the first
version of the UNIX3 operating system. This was written in assembler language
for a DEC PDP7 minicomputer. In an attempt to promote the use of this operating
system (OS) within the company, some work was done in rewriting UNIX in a high-
level language. The language CPL (Combined Programming Language) had been
developed jointly by Cambridge and London universities in the mid-1960s, and had
some useful attributes for this area of work. BCPL (Basic CPL) was a somewhat
less complex but more efficient variant designed as a compiler-writing tool in the
late 1960s. The language B (after the first letter in BCPL) was developed for the task
of rewriting UNIX for the DEC PDP11 and was essentially BCPL with a different
syntax.

Both BCPL and B only used one type of object, the natural size machine word—
16 bits for the PDP-11. This typeless structure led to difficulties in dealing with
individual bytes and floating-point computation. C (the second letter of BCPL) was
developed in 1972 to address this problem, by creating a range of objects of both
integer and floating-point types. This enhanced its portability and flexibility. UNIX
was reworked in C during the summer of 1973. It comprised around 10,000 lines

3Originally called UNICS, for UNIplexed operating and Computing System, based on MULTICS
(Multiplexed operating and Computing System) an operating system developed in the early 1960s
at MIT.

9 High-Level Language 279

of high-level code and 1000 lines at assembly level, and occupied some 30% more
storage than the original version.

Although C has been closely associated with UNIX, over the intervening years it
has escaped to appear in compilers running under virtually every known OS, from
mainframe CPUs down to single-chip MCUs. Furthermore, although originally a
systems programming language, it is now used to write applications programs rang-
ing from Computer Aided Design (CAD) packages down to the intelligence behind
smart egg-timers!

For over 10 years the official definition was the first edition of The C Program-
ming Language, written by the language’s originators Brian W. Kernighan and Den-
nis M. Ritchie. It is a tribute to the power and simplicity of the language that over
the years it has survived virtually intact, resisting the tendency to split into dialects
and new versions. In 1983 the American National Standards Institute (ANSI) estab-
lished the X3J11 committee to provide a modern and comprehensive definition of
C to reflect the enhanced role of this language. The resulting definition, known as
Standard or ANSI C, was finally approved during 1990 by the International Stan-
dards Organisation (ISO).

Apart from its use as the language of choice for embedded MPU/MCU circuits,
C (together with its C++ and Java object-oriented offspring) is without doubt the
most popular general-purpose programming language at the time of writing. It has
been called by its detractors a high-level assembler. However, this closeness of C to
assembly-level code, together with the ability to mix code based on both levels in
the one program, is of particular benefit for embedded targets.

The main advantages of the use of high-level language as source code for em-
bedded targets are:

• It is more productive, in the sense that it takes around the same time to write,
test and debug a line of code irrespective of language. By definition, a line of
high-level code is equivalent to several lines of assembly code.

• Syntax is more oriented to human problem-solving. This improves productivity
and accuracy, and makes the code easier to document, debug, maintain and adapt
to changing circumstances.

• Programs are easier to port to different hardware platforms, although they are
rarely 100% portable. Thus they are likely to have a longer productive life, being
relatively immune to hardware developments.

• As such code is more or less hardware-independent, the customer base is con-
siderably larger. This gives an economic impetus to produce extensive support
libraries of standard functions, such as mathematical and communication mod-
ules, which can be reused in many projects.

Of course there are disadvantages as well, specifically when code is being pro-
duced to run in poorly resourced MCU-based circuitry.

• The code produced is less space-efficient and often runs more slowly than native
assembly code.

• A compiler is much more expensive than an assembler. A professional product
can cost several hundred pounds/dollars.

280 The Essential PIC18® Microcontroller

Program 9.1 A simple function coded in C

1: unsigned int sqr_root(unsigned long number)
2: {
3: unsigned int count = 0;
4: unsigned long i = 1;
5: while(number >= i)
6: {
7: number = number - i;
8: i = i + 2;
9: count++;
10: }
11: return count;
12: }

• Debugging can be difficult, as the actual code executed by the target processor
is the generated assembler code. The processor does not execute high-level code
directly.

Program 9.1 is an example of a C function (a function is the counterpart to a
subroutine) that evaluates the square root of a 16-bit number using the same process
outlined in Fig 6.17 on p. 191. Essentially, the task list to be implemented is:

1. Subtract a series of integers i from the number, beginning at 1, and incrementing
in steps of 2 while keeping a count.

2. When the residue drops below i then the count of subtractions is the nearest
square root of the number.

In the implementation number is the 16-bit integer passed to the function, which
computes and returns the 8-bit integer count, as defined in the task list. Let us
dissect it line by line. Each line is labeled with its number. This is for clarity in our
discussion and is not part of the program.
Line 1: This line names the function (subroutine) sqr_root. It declares that it

returns an unsigned integer; which in the compiler used to illustrate this book,
is a single byte. It expects an unsigned long integer (a 16-bit unsigned object)
to be passed to it, to be used in the body of the function. This is to be named
number.

Line 2: A left brace { means begin. All begins must be matched by an end, which
is designated by a right brace }. It is good practice to indent each begin from
the immediately preceding line(s). This makes it easier to ensure each begin is
paired with an end. However, the compiler is oblivious of the style the program-
mer uses. In this case line 12 is the corresponding end brace. Between lines 2
and 12 defines the body of the function sqr_root().

Line 3: There are two variables that are local to our function. The first is named
and typed (defined) in this line. Thus count is of type unsigned int. In C
all objects have to be defined before they are used. This tells the compiler what
properties the named variable has; for example, its size (8 bits), to allocate stor-
age and its arithmetic properties (unsigned). At the same time count is given

9 High-Level Language 281

an initial value of zero. The complete statement is terminated by a semicolon,
as are all statements in C.

Line 4: In this statement, variable i is defined as being an unsigned long
int. This tells the compiler that this is to be treated as a 16-bit integer with
unsigned attributes. The initial value of this variable is to be 1; that is 0x0001.
Giving a local variable an initial value is optional. If not done, its value is not
specified.

Line 5: In evaluating count we need to repeat the same subtract and increment
process as long as the residue of number is greater or equal to the ever grow-
ing i. This is the purpose of the while construction introduced in this line. The
general form of this loop construct is:

while(true)
{
do this;
do that;
do the other;
}

The body of the loop, i.e., the set of statements that appears between the fol-
lowing left and right braces of lines 6 and 10, is continually executed as long
as the expression in the brackets evaluates as non-zero. Anything non-zero is
considered true by C. This test is done before each pass through the body. In
our case the expression number >= i, i.e. (number ≥ i), is evaluated. If
true, then number is updated by subtracting i, which is then augmented by 2
and count incremented. Eventually number >= i computes to false when
number drops below i and then execution breaks out of the loop to the state-
ment following the closing brace at line 11.

Line 6: The opening brace defining the while body. Notice that for style it is
indented.

Line 7: The expression to the right of the = operator is evaluated to number -
i and the outcome assigned to the left variable number; that is number is
updated from its original value less i. Both variables are double-byte, and so
the arithmetic is done accordingly—Table 9.1 instructions at locations h’001A–
0021’. If one of the right-side variables was single-byte, then it would automati-
cally be extended to 16-bits.

Line 8: The value of i is augmented by adding two and assigning it back to i
at the left side of the expression. An alternative statement uses the expression
i += 2;.

Line 9: The value of count is incremented using the ++ operator. This is equiva-
lent to the statement count = count + 1;4

Line 10: The end brace for the while body. Again note how the opening (line 6)
and closing braces line up. The compiler does not give a hoot about style; this is
solely for human readability and to reduce the possibility of errors.

4The ++ operator has given the name C++ to the next development of the C language.

282 The Essential PIC18® Microcontroller

Line 11: The return instruction passes one parameter back to the caller; in this
case the final value of count. The compiler will check that the size of this
parameter matches the prefix of the function header in line 1, that is unsigned
int. This returned parameter is the value of the function, i.e., the function can
be used as a variable in the same way as any other. If the function is called by
another function, then its returned value can be assigned by the caller to a normal
variable. For instance:

root = sqr_root(100);
would give the returned value 10 to the caller’s variable root—see Fig. 9.3.

Line 12: The closing brace for function sqr_root().
We see from Fig. 9.1 that the output from the compiler is assembly-level code,

which can then be assembled and linked with other modules5 in the normal way. To
illustrate this process, Table 9.1(a) shows the assembly-level code generated when
the C code of Program 9.1 is passed through the Custom Computer Services (CCS),
Inc cross-C compiler Version 4.6 This is a low-cost C compiler (≈$200) that can be
integrated with MPLAB; see Fig. 9.3.7 This listing file shows each line of C source
code as a comment together with the resulting assembly-level code.

It is instructive to look at how the compiler has translated this program.

unsigned int count = 0
The CCS compiler reserves a single byte for an int object. Table 9.1(b) shows
the variable sqr_root.count (count in function sqr_root()) stored in
File h’009’. To zero this GPR, the compiler has generated a clrf instruction:

clrf h’009’ ; Clear count

unsigned long i = 1;
Two bytes at File h’00B:0A are reserved for this 2-byte long object sqr_root_i.
To set these GPRs to h’0001’, the literal h’01’ is first copied into the low byte i in
File h’00A’ and the high byte in i+1 is cleared:

movlw 01 ; Constant one
movwf h’00A’ ; Low byte of i is 01
clrf h’00B’ ; High byte of i is 00

while(number >= i){
The while loop is implemented by comparing the double-byte variable number
to the like-sized variable i. If the former is not greater or equal to the latter then
execution will break out of the loop to the exit return statement.

5Some of which can be functions hand-coded in native assembly-level language for efficiency, and
from libraries supplied with the compiler or bought in.
6See http://www.ccsinfo.com/picc.shtm.
7MPLAB V. 8 comes with a free CCS compiler for the base-family range of devices.

9 High-Level Language 283

Table 9.1 Resulting assembly-level CCS compiler output after linking

CCS PCH C Compiler, Version 4.066, 42523 11-Oct-08 13:40

Filename: sqrt.lst

ROM used: 98 bytes (2%)
Largest free fragment is 3998

RAM used: 6 (2%) at main() level
11 (4%) worst case

Stack: 1 locations

*
0000: GOTO MAIN
.................... #include <18f1220.h>
.................... // Standard Header file for the PIC18F1220 device
.................... #device PIC18F1220
.................... #list
....................
....................
.................... unsigned int sqr_root(unsigned long number)
.................... {
.................... unsigned int count = 0;
0004: CLRF count
.................... unsigned long i = 1;
0006: MOVLW 01
0008: MOVWF i
000A: CLRF i+1
.................... while(number>=i)
.................... {
000C: MOVF i+1,W
000E: SUBWF number+1,W
0010: BNC 002E
0012: BNZ 001A
0014: MOVF i,W
0016: SUBWF number,W
0018: BNC 002E
.................... number = number - i;
001A: MOVF i,W
001C: SUBWF number,F
001E: MOVF i+1,W
0020: SUBWFB number+1,F
.................... i = i + 2;
0022: MOVLW 02
0024: ADDWF i,F
0026: MOVLW 00
0028: ADDWFC i+1,F
.................... count++;
002A: INCF count,F
.................... }
002C: BRA 000C
.................... return count;
002E: MOVFF count,01
....................
.................... }
0032: RETLW 00

(a): Assembly-level code listing file generated by the CCS compiler.

(continued on the next page)

The compiler has passed the caller’s parameter, listed in Table 9.1(b) as
sqr_root.number, in File h’008:07’. The 2-byte comparison is coded in two
stages. Initially the high bytes are subtracted (number+1) - (i+1). If there is

284 The Essential PIC18® Microcontroller

Table 9.1 (Continued)

000 @SCRATCH
001 @SCRATCH
001 _RETURN_
002 @SCRATCH
003 @SCRATCH
004 @SCRATCH
006 MAIN.root
007-008 sqr_root.number
009 sqr_root.count
00A-00B sqr_root.i

ROM Allocation:
0004 sqr_root
0034 MAIN
0034 @cinit

Compiler Settings:
Processor: PIC18F1220
Pointer Size: 16
ADC Range: 0-255
Opt Level: 9
Short,Int,Long: UNSIGNED: 1,8,16
Float,Double: 32,32

(b): Partial symbol file.

:020000040000FA
:100000001AEF00F0096A010E0A6E0B6A0B50085CC9
:100010000EE303E10A50075C0AE30A50075E0B5047
:10002000085A020E0A26000E0B22092AEFD709C031
:1000300001F0000CF86AD09EEA6AE96AC29CC29E8E
:10004000C150800B7F09C16E086A650E076EDADF4A
:1000500001C006F0086A660E076ED4DF01C006F024
:0200600003009B
:020000040030CA
:0E00000000CF0E1E0080810003C003E003400D
:00000001FF
;PIC18F1220

(c): Executable Intel machine code file.

a borrow-out (C is 0) then number < i and execution breaks out of the loop at
the instruction at h’0002E’; i.e. bnc 002E. If these high bytes are then not equal
then number > i and the following statement is entered. Where both tests are
false, then the high bytes are the same and the low bytes subtracted NUMBER - i.
A borrow-out in this situation signals that number < i and the while loop is ex-
ited to the return statement at h’0002E’. Otherwise (number >= i) is true and
the first statement in the loop at h’0001A’ is then executed.

9 High-Level Language 285

movf h’00B’ ; Get the high byte of i
subwf h’008’ ; Subtract from the high byte of number
bnc BREAK ; IF borrow THEN number < i and BREAK
bnz NEXT ; IF not equal THEN CONTINUE
movf h’00A’ ; Equal so try the low bytes to give
subwf h’007’ ; number - i
bnc BREAK ; IF borrow THEN number < i and BREAK

NEXT

number = number - i;
This is implemented as a double-byte subtraction thus:

movf h’00A’,w ; Get low byte i
subwf h’007’,f ; Subtract from number gives new number
movwf h’00B’,w ; Get high byte i+1
subwfb h’008’,f ; Subtract from number+1 gives new number+1

Many C programmers use the alternative statement number -= i; which
states number augmented by i.

i = i + 2;
Two is added onto the low byte of i and any carry-out to the high byte:

movlw h’02’ ; Two into WREG
addwf h’00A’,f ; Added onto the low byte of i
movlw 0 ; Clear WREG and
addwfc h’00B’,f ; is added with any carry-out to high byte

Alternatively i += 2;.

count++;
Now increment the single byte in File h’009’.

incf h’009’,f ; Increment count

In more complicated expressions the placement of the ++ Increment operator
(and the analogous -- operator) before or after the object can affect the outcome.
Where it appears before, such as in:

number = ++n - i;

then the value of n is first incremented before i is subtracted from it. In the follow-
ing case:

286 The Essential PIC18® Microcontroller

number = n++ - i;

i is subtracted from n and only then is n incremented.
In our example the logic of the program is unaffected if the operator is pre- or

post-incremented. However, the compiler in the latter case adds an extra instruction
to bring n down into the Working register before it is incremented in situ as it thinks
that some computation involving the original value of n is to be performed.

}
The while loop is repeated by going back to the loop test, which is located starting
at h’0000C’.

bra h’0000C’ ; Repeat While loop

return count;
At the end of a function returning an int object the CCS compiler places the byte
in the fixed GPR File h’0001’. This is listed in Table 9.1(b) as the system generated
symbol _RETURN_. Thus this code fragment simply copies the byte in File h’009’,
i.e. sqr_root.count, into the return location.

BREAK
movff h’009’,h’001’ ; Copy count to _RETURN_ and come back
retlw 0 ; with an error code of 00 (success)

The final machine code file is shown in Table 9.1(b) for a total length of only
24 bytes. This compares with 17 bytes in Program 6.11 on p. 192.

Every C program must at the very least have a main() function. main() is a
little unique in that it alone sets up a known state in which the core ‘useful’ code
will run from Reset. A C program typically comprises many functions, but only
main() will set up the starting environment.

As an example, consider the dummy main() function listed in Program 9.2.
We are assuming that this is part of Program 9.1 and calls sqr_root() twice. In
both cases the 1-byte variable root is assigned the returned integer value. In both
instances this will be ten.

If we look at the assembly-level code generated in Table 9.2 we see that before
the main code proper several SPRs are initialized.

Program 9.2 A main() function calling sqr_root() twice

void main(void)
{
unsigned int root;
root = sqr_root(101);
root = sqr_root(102);
}

9 High-Level Language 287

Table 9.2 Resulting assembly-level CCS compiler output after linking

.................... void main(void)

.................... {
0034: CLRF TBLPTRU
0036: BCF RCON.IPEN
0038: CLRF FSR0H
003A: CLRF FSR0L
003C: BCF ADCON0.VCFG0
003E: BCF ADCON0.VCFG1
0040: MOVF ADCON1,W
0042: ANDLW 80
0044: IORLW 7F
0046: MOVWF ADCON1
.................... int root;
.................... root = sqr_root(101);
0048: CLRF number+1
004A: MOVLW 65
004C: MOVWF number
004E: RCALL 0004
0050: MOVFF 01,root
.................... root = sqr_root(102);
0054: CLRF number+1
0056: MOVLW 66
0058: MOVWF number
005A: RCALL 0004
005C: MOVFF 01,root
.................... }
0060: SLEEP

clrf TBLPTRU
This zeros the upper byte of the 3-byte register TBLPTRU used to point into the
program store when reading and writing data during program execution. This is
normally clear on reset, but it is possible that it may have been altered by another
program previously run and the processor not reset. The use of the TABeL PoinTeR
is described in Fig. 15.4 on p. 550.

bcf RCON,IPEN
Clearing this bit sets the interrupt mode to Compatible; as shown in Fig. 7.2 on
p. 209. Again this is the default reset mode but may have been altered since the last
reset. As we see in Program 9.3, the CCS directive #device HIGH_INTS=TRUE
is used to set IPEN to 1 on startup.

As indicated in this program, individual functions can be designated High prior-
ity.

clrf FSR0H:clrf FSR0L
Initializes FSR0 to zero.

bcf ADCON0,VFG0:bcf ADCON0,VFG1
This initializes the Analog to Digital Convertor (ADC) module to use internal
power-supply voltages for reference—see Fig. 14.12 on p. 510.

288 The Essential PIC18® Microcontroller

movf ADCON1,w:andlw b’10000000’:iorlw b’011111111’:

movwf ADCON1
Effectively this sets to 1 all bits in ADCON1 and thus by default all Port A and Port B
pins are set to be digital—see Fig. 14.12 on p. 510.

Once this environment is set up, the ‘useful’ code simply initializes the variable
number, which we already know is located in File h’008:07’, to the appropriate
constant and calls (rcall) the subroutine/function sqr_root(). On return the
content of the return location h’001’ is simply copied to the location of the variable
main.root at h’006’—see Table 9.1(b). Specifically the main() function is ter-
minated by the sleep instruction—see p. 318. Normally a function is terminated
by a return to the caller function. If a function is only called once or is very short, the
CCS compiler will usually implement such an orphan function using in-line code.
This is why Program 9.2 called sqr_root() twice; to illustrate function calling.
The directives #INLINE and #SEPARATE can be used to request that a following
function be implemented as an in-line or separate subroutine.

If a function does not return a value, then the return type is indicated as void. No
parameters are sent to main() and thus the passed parameter field is also annotated
as void. Thus the function header in Program 9.2 is void main(void). If it is

Fig. 9.3 Simulating our example program in MPLAB Version 8

9 High-Level Language 289

written as plain main(), the CCS compiler will complain, but will nevertheless
generate the correct code.

C-level programs can be compiled and simulated in the IDE environment of Mi-
crochip’s MPLAB—see p. 264. The screen shot of Fig. 9.3 shows windows into
both the C-level source code (top right) and the resulting assembly-level code (left).
The program can be optionally stepped in either window, depending on which is ac-
tive. The execution arrow ⇒ appears in both windows in tandem in the appropriate
place. The Watch window shows the state of the three C objects visible in the func-
tion sqr_root(); namely number, count and i. root is defined inside the
main() function and is therefore invisible outside that function. In the snapshot in
the Watch window, as execution is in sqr_root(), this variable is designated as
Out of Scope. When execution returns to main() the value of its local variable
root will be displayed, but that of the others will then be out of scope. Variables
defined outside any function will be global and accessible from anywhere.

In the screenshot variables are shown in decimal. Any base as appropriate can be
chosen by right clicking the variable’s entry and choosing [Properties]. The
screen shot shows the situation where number has reached 76, with i now 11; that
is 101 − 1 − 3 − 5 − 7 − 9 = 76. At the end of the simulation count reached 10,
with i at 21.

Actually we can generate the square root by ignoring count and simply shift-
ing i right once and ignoring the carry-out (effectively −1). In C this shift-right
operation is implemented using the >> n operator, where n is the number of
places. Thus in our example, we could terminate the sqr_root() function by
return (i >> 1);.

Using C to implement source code gives the programmer access to structures,
operators and library functions appropriate to a modern high-level language. Nev-
ertheless, to be of use in a microcontroller environment it is necessary to permit the
programmer to easily access specified locations in the Data store and individual bits
within. In this manner Special-Purpose Registers, such as the parallel ports, may
be initialized, monitored and controlled in order to allow the processor to interact
with its peripheral modules and the outside world. It is possible to do this using
standard C operators. However, many compilers targeted to microprocessors and
microcontrollers have non standard extensions to facilitate this ‘bit twiddling’. As
we are using the CCS product as the exemplar for this text, we will use the syntax
appropriate to this compiler.

As an example, consider a routine that is to continually pulse Port A pin 0 (that
is pin RA0 or named pin_A0 in the CCS compiler’s terminology) as long as pin 7
of Port B (RB7 or pin_B7) is high—see p. 137. To do this we must tell the com-
piler that Port A and Port B is really an descriptor for the contents of File h’F80’ and
File h’F81’ respectively. That is, we must create a pointer to the addresses 0xF80
and 0xF81; using the C language’s hexadecimal prefix 0x.8 In standard C we can do
this by using a cast thus:

8Decimal is the default base in C but beware, because a leading zero is interpreted as octal; e.g.,
026 is octal 26 (which is decimal 2 × 8 + 6 = 22).

290 The Essential PIC18® Microcontroller

A cast operator gives an object of one type the properties of another kind.
For instance, to promote an 8-bit object var to a 16-bit equivalent we have
(long)var. In this case the cast (* unsigned int) gives the constant
0xF80 the characteristics of a pointer to the byte9 at File h’F80’; that is an address.

The leftmost * operator means “contents of”. Therefore the complete definition
reads “The name PORTA means the contents of File h’F80’”. The object PORTA can
henceforth be used as a normal global int unsigned variable.

This is how our example might be coded in standard C.

#define PORTA *(unsigned int *)0xF80
#define PORTB *(unsigned int *)0xF81

while(PORTB & 0x80) /* Isolate bit7; is it non-zero?*/
{
PORTA = PORTA | 0x01; /* IOR with 00000001; RA0 -> hi */
PORTA = PORTA & 0xF7; /* AND with 11111110; RA0 -> lo */
}

The routine above ANDs (&) Port B with b’10000000’ to determine if bit 7 is set,
which if so will give a non-zero (true) outcome—see p. 126. If this is the case, the
body of the while loop will be executed. This body uses Inclusive-OR (|) to set
a bit in Port A (see p. 127) and AND to clear a bit in Port A. As we see from the
following assembly-level code generated by the CCS Version 4 compiler, this has
been interpreted as a single-bit set or cleared respectively, and correctly uses the
btfss, bcf and bsf instructions.

If several bits had been tested set or cleared then the appropriate ior and and
instructions would have been used.

WHILE_LOOP
btfss h’F81’,7 ; Test bit7 of Port B
bra NEXT ; IF 0 THEN break out of loop

bsf h’F80’,0 ; Pin RA0 high
bcf h’F80’,0 ; Pin RA0 low
bra WHILE_LOOP ; Go again

NEXT

This executable code is the same as a hand-coded assembly version.10

9Some compilers either use an unsigned short int or unsigned char to hold an 8-bit
datum.
10Many compilers are unable to distinguish between single bits which use efficient ‘bit twiddling’
instructions and use the less efficient logic instructions; for instance, Version 2 of this compiler.

9 High-Level Language 291

In the specific case of the CCS compiler, the non-standard directive #byte can
be used to name the contents of a fixed Data store address; e.g. #byte INTCON =
0xFF2 assigns the contents of File h’FF2’ the name INTCON. In a similar man-
ner, an individual bit can be named in the CCS compiler using the #bit di-
rective. For instance, #bit INT0IF = 0xFF2.1 names bit 1 of File h’FF2’.
Alternatively, if INTCON has already been named as above, #bit INT0IF =
INTCON.1 does the same thing. Such defined objects can only have the value 0
and 1.11 Thus the statement INT0IF = 0; will clear bit 1 of the INTCON File.

Using this CCS syntax gives us the equivalent code:

#byte PORTA = 0xF80 /* Port A is File h’F80’ */
#byte PORTB = 0xF81 /* Port B is File h’F81’ */
#bit RA0 = PORTA.0 /* Bit 0 of File h’F80’ now named RA0 */
#bit RB7 = PORTB.7 /* Bit 7 of File h’F81’ now named RB7 */

while(RB7)
{
RA0 = 1; /* Pin RA0 high */
RA0 = 0; /* Pin RA0 low */
}

which generates exactly the same executable code as our rather more long-winded
standard C version. Moreover, where a compiler has a special notation like this it
gives a stronger message that efficient ‘bit twiddling’ instructions should be gener-
ated. This is at the expense of portability. We will use this notation from now on.

Functions in the C language fulfill the same purpose as a subroutine at assembly
level.12 In the situation where interrupt-driven code is to be written in C the relevant
function needs to be implemented as an Interrupt Service Routine (ISR). In addition,
the global and local interrupt masks and flags, priority and multiple source service
polling issues need to be addressed.

In order to illustrate the main principles involved in coding a real-time process,
we will repeat Example 7.3 on p. 229 but using a CCS C implementation. As in
the assembly-level solution there are two functions in Program 9.3. The main()
function represents the background routine. Its initial job is to set up the INT-
CON SRF using the CCS built-in function enable_interrupts() function.
enable_interrupts(int_ext) effectively sets the INT0IE mask bit and thus
enables the device to respond to interrupts from the INT0 pin. Similarly, there are
equivalents for all the various sources of interrupts the target device can handle;
for instance, enable_interrupts(int_timer1) to qualify requests from
Timer 1. All these are listed in the appropriate header file for the device.

11A 2-valued object of this kind is sometimes called a Boolean. In the CCS compiler a short
int is a Boolean, but this is unusual.
12The CCS compiler will usually implement a function called from one point only as in-line code.
This is the reason why the function sqr_root() was called from two points from main() in
Program 9.2. The directives #INLINE and #SEPARATE can be used to encourage the compiler
to implement the following function either as in-line code or as a subroutine.

292 The Essential PIC18® Microcontroller

Although it would be possible to map the INTCON register with its various masks
and flags using the byte and bit directives, it is recommended that the built-in
functions be used where available to set up and service peripheral services. This
makes the code more portable between devices and even families.
enable_interrupts(GLOBAL) sets the global mask bit GIE/GIEH. This

activates the overall interrupt system and allows the processor to respond to any
unmasked service requests—in our case an external (hardware) interrupt from
pinINT0/RB0. Figures 7.2 and 7.4 on pp. 209 and 214 detail the arrangements
of the interrupt logic for the default Compatible and Priority modes respectively. As
we have already noted on p. 287, the main() function defaults the interrupt mode
to the former.

Using this approach, the function set_tris_a(0xF7) in Program 9.3 puts
the code b’11111110’ into TRISA, thereby making pinRA0 an output. Function
setup_adc_ports(NO_ANALOGS) makes all pins digital as opposed to the
default analog—see Program 7.1 on p. 218 and Fig. 14.12 on p. 510. However, as
we have seen on p. 287, the CCS compiler already configures these parallel-port
pins as digital I/O in the environmental set up of the main() function. Therefore,
strictly this function call is not needed.

Finally, pinRA0 is initialized as low and global variable Batch zeroed. The first
alpha character of global variables have been capitalized for emphasis, with local
names (there are none in this program) using lower case. The unsigned qualifier
is not needed a this is the CCS compiler’s default for integer objects.

The core of main() is a DO forever loop where the state of Batch is con-
tinually monitored for non-zero (truth) and if this is the case it is reset and RA0
is pulsed high once for 1 ms. The CCS built-in function delay_ms() provides
an easy means of generating precise delays of up to 65,535 ms in this implemen-
tation of the language. To facilitate this the #use delay directive must be used
to tell the compiler what the actual clock frequency is—8 MHz in our case. The
delay_us() and delay_cycles() functions can be used for shorter delays.
For compilers without similar non-standard functions, assembly-level delay subrou-
tines can be used with care! The directives #asm and #endasm can be used to
sandwich such code into the C source file at the appropriate place.

The function can_count() is signaled to the compiler as an interrupt ser-
vice routine using the prefix directive #int_ext, and there are similar directives
for each of the various sources of interrupt request. For instance, #int_timer0
to service a request from TMR0—see Program 13.2 on p. 462. The compiler han-
dles setting up an appropriate interrupt response to handle interrupts from multiple
sources and context saving and retrieval.

As can_count() is an ISR, values are not passed in the normal way, as indi-
cated by the void keyword. Instead, any variable monitored or changed is global.
In our program, both Batch and Event are defined outside a function and are
therefore known to all functions, both foreground and background. Any functions
following the main() function must have a prototype in the program preamble.
This allows the compiler to check if the function definition uses and returns the cor-
rect types of object. In Program 9.3 these types are shown as void. There was no

9 High-Level Language 293

Program 9.3 Program in C for the pea-canning packer
#include <18f1220.h> /* Device specific information */
#use delay (clock=8000000) /* Target to use 8 MHz clock */
#bit RA0 = 0xF80.0 /* RA0 mapped to bit0 of PortA */
void can_count(void); /* Tells compiler function details*/
int Event, Batch; /* Global vars to pass parameters */

void main(void) /* Startup function: background */
{
enable_interrupts(INT_EXT); /* Enable interrupts from INT0 */
enable_interrupts(GLOBAL); /* Enable interrupt system */
set_tris_a(0xFE); /* Set up pin RA0 to Output */
setup_adc_ports(NO_ANALOGS);/* All pins digital */

RA0 = 0; /* Pin RA0 starts low */
Batch=0; /* Batch initialized to zero */
while(1) /* DO forever (1 is always TRUE) */

{
if(Batch) /* DO nothing as long as Batch 0 (FALSE) */

{
Batch = 0; /* Re-zero it */
RA0 = 1; /* and pulse RA0 high for 1ms */
delay_ms(1);
RA0 = 0;
} /* Repeat the while loop */

}
}

/**
* This is the foreground interrupt service routine *
**/

#int_ext /* Make the function an INT0 ISR */
void can_count(void)

{
if(++Event == 24) /* Increment Event count */

{ /* and IF 24 THEN DO */
Event=0; /* Reset Event count and signal */
Batch++; /* background with non-zero Batch */
}

} /* Finish and return */

prototype used in Programs 9.1 and 9.2 as sqrt() was defined before main().
However, traditionally main() is placed as the first function in the list and thus all
other functions subsequently defined should be listed in the preamble in prototype
form.

The kernel of can_count() first increments Event—the ++ appears before
the variable. If this produces a value of 24, then it is zeroed and Batch is incre-
mented to tell the background function that a batch of 24 cans has been recorded.

Compared to the seven instructions of the assembly-level coding ISR of Pro-
gram 7.3 on p. 229, this high-level implementation generates 41 executable instruc-

294 The Essential PIC18® Microcontroller

tions. This is because the C implementation needs to be able to cope with all types
of ISR function. Thus as well as saving the Status and Working registers, all three
double-byte File Select Registers and the PRODH:PRODL pair are also preserved.
In this case there was only one source of enabled interrupt, but the compiler always
sets up a polling routine to check which source requested service. This dispatch
code adds to the overhead.

A table of all standard C operators is given in Appendix C for reference.

Examples

Example 9.1 Write a C function to compute the relationship:

sum=
n∑

k=1

k

For example, if n = 5 then we have sum= 5 + 4 + 3 + 2 + 1.

Solution The function summation() implementing our relationship
∑n

k=1 k is
listed in Program 9.4. A single 8-bit variable (unsigned int) is passed to the
function by the caller to represent the upper limit of the series index. Locally it
will be known as n. When the 16-bit (unsigned long int) series summation
has been evaluated, it is returned to the caller as the effective value of the function.
Thus a typical call might be something like arg = summation(26);. The script
unsigned long int sqr_root(unsigned int) will need to appear in
the preamble before main() to declare that function summation() will return
an unsigned long int value and one unsigned int object will be passed
to it.

The body of summation() after defining and zeroing the unsigned long
int variable sum, consists of a while loop adding a decrementing n to sum as
long as it remains above zero; i.e. (n>0) is true. In adding an 8-bit to a 16-bit

Program 9.4 Calculating the sum of all integers to n
unsigned long summation(unsigned int n)

{
unsigned long sum = 0;
while(n>0)

{
sum = sum + n;
--n;
}

return sum;
}

9 High-Level Language 295

object, C will automatically extend the former to 16 bits before the addition. This
16-bit outcome to the right of the assignment = is given to the left variable sum. In
general in mixed type arithmetic, the lesser types are promoted to the greatest.

The Decrement operator -- can be pre- (as shown) or post- (i.e. n--;) in this
case as order is irrelevant. Actually, most C programmers would incorporate this
action into the while test expression thus while(--n.0). In this case it is im-
portant to pre-decrement before the test; whose outcome will be either true or false.

Example 9.2 On p. 250 we implemented a root mean square program to evalu-
ate the mathematical relationship

√
NUM_12 + NUM_22. Write a C function to im-

plement this relationship, where the two signed 8-bit objects num_1, num_2 are
passed to the function which returns the 8-bit value rms.

Solution The solution shown in Program 9.5 uses the internal unsigned long
16-bit variable sum to hold the addition of the two squared signed 8-bit variables.
The squaring operation is simply implemented using the C multiplication operator *
rather than coding a squaring function of the manner of Program 8.3 on p. 259.
However, the programmer needs to force the compiler to do its arithmetic in 16-bit
precision to match the 16-bit sum. This is done by casting one of each of the multi-
plication operands thus (signed long). The function developed in Program 9.1
is used to generate the square root of the 16-bit sum object and is called from line 6
of the function variance() with the return value being assigned to the variable
rms as part of the call. In compiling the source code using the CCS C compiler, 110
machine-level instructions are needed to implement this problem. This compares to
48 instructions for the assembly-code version of Chap. 8. This gives an code factor
of 2.29.

Program 9.5 Generating the root-mean-square value of two variables
unsigned int variance(signed int num_1, signed int num_2)

{
unsigned long sum;
unsigned int rms;
sum = (signed long)num_1*num_1 + (signed long)num_2*num_2;
rms = sqr_root(sum);
return rms;
}

Example 9.3 A K-type thermocouple is characterized by the equation:

t = 7.550162 + 0.0738326 × v + 2.8121386 × 10−7v2

where t is the temperature difference across the thermocouple in degrees Celsius
and v is the generated emf spanning the range 0–52,398 µV. This is represented by
a 14-bit unsigned binary number, for a temperature range of 0–1300◦C. Write a C
function which will take as its input parameter a 14-bit output from an analog to

296 The Essential PIC18® Microcontroller

digital converter and return the rounded-up integer temperature in Celsius measured
by the thermocouple.

Solution Our function, named thermocouple() in line 1 of Program 9.6, takes
one unsigned long integer (16-bit) parameter, named emf, and returns a similar 16-
bit value. The internal variable temperature is defined in line 3 to be a floating-
point object13 to cope with the complex fractional mathematics of line 6. Because
we are told that only the 14 lower bits of emf have any meaning, line 5 ANDs
the 16-bit object with h’3FFF’ (0x3FFF) to clear the upper two bits. Finally, an
unsigned long (cast) version of the float object temperature + 0.5 is
made and returned in line 8. The 0.5 offset gives rounding to the nearest integer up
or downwards.

Program 9.6 Linearizing a K-type thermocouple
unsigned long thermocouple(unsigned long emf)

{
float temperature;
unsigned long outcome;
emf = emf & 0x3FFF; /* Clear upper two bits */
temperature = 7.550162+0.073832605*emf+2.8121386e-7*emf*emf;
outcome = (unsigned long)(temperature + 0.5);
return outcome;
}

The resulting executable code running on a enhanced-range core takes 324 pro-
gram words; that is, around 1

3 of the Program store’s capacity of a PIC18F1220
device! Because of the size penalty of using floating-point objects, fixed-point (in-
teger) arithmetic is used wherever possible in embedded microcontroller implemen-
tations.

Example 9.4 Write a function that will shift each bit in a specified RAM address
passed to the function, out of pinRA0 in turn, working right to left. As each bit is
presented in turn to RA0, pinRA1 is pulsed to tell the outside world that a
new bit is ready.

Solution The code given in Program 9.7 specifies a parameter of type pointer-to
an unsigned int. The pointer-to operator * can also be read as “contents-of”;
that is the contents of address is an unsigned int. In either case, the variable
address is a File address. Subsequently, the contents of this File can be accessed
by prefixing the variable address with a * contents-of operator; as in line 16. As

13Having a mantissa and exponent of the form m × 10e . The CCS compiler uses a 32-bit repre-
sentation (signed 24-bit mantissa with an offset 127 8-bit mantissa) giving a potential range of
approximately −1.5 × 10−45 to +3.3 × 1038.

9 High-Level Language 297

Program 9.7 A simple serial data transmitter
#byte PORTA = 0xF80 /* Port A is File h’F80’ */
#bit SER_OUT = PORTA.0 /* in which pin0 is named */
#bit CLOCK = PORTA.1 /* and pin1 is named */

/* Returns nothing and accepts a File address (pointer) */
void put_char(unsigned int *address)
{
int i; /* Loop count */
for(i=0; i<8; i++) /* DO eight times */

{
if(*address & 0x01)

{SER_OUT = 1;} /* IF Datum bit0 is 1, RA0 <- hi*/
else

{SER_OUT = 0;} /* ELSE make RA0 low */
CLOCK = 1; /* Pulse pin RA1 high */
CLOCK = 0; /* and then low */
*address= *address >> 1; /* Shift Datum right one place */
}

}

an example, if the caller wanted to transmit the datum byte in File h’020’ then the
function call put_char(0x020); would give the variable address the value
h’020’.

The core of the function uses a For loop to shift the contents of address (i.e.
*address) right one place eight times using the >> Shift Right C operator. Before
each shift, pinRA0 (named SER_OUT) is either set or cleared, depending on the
state of bit 0 of the datum in address using a if-else decision structure. This
bit is isolated by ANDing with b’00000001’; that is, *address & 0x01. In either
case pinRA1 (named CLOCK) is pulsed. The resulting code shown in Program 9.7
implements a simple synchronous serial communications link—see Chap. 12.

Example 9.5 Arrays of identically sized objects can be defined in C using the nota-
tion fred[n], where fred is the name of the array (actually the address of the first
element) and n is the nth element. For instance, the object declared as unsigned
int fred[16]; will be allocated 16 Files in the Data store by the compiler.

It is possible to give each element of an array an initial value; e.g. for
svn_seg[10]:

unsigned int svn_seg[10] = {0x3f, 0x06, 0x5b, 0x4f, 0x66,
0x6d, 0x7d, 0x07, 0x7f, 0x6f};

defines an array of ten bytes initialized with the 7-segment patterns described in
Fig. 6.8 on p. 173.

These ten values for svn_seg[0] through svn_seg[9] will be placed in ten
consecutive Files. Most PIC MCUs have a severely limited Data store capacity and,
as in this example, where the values will not be subsequently changed, it makes
more sense to place these ten constants in Program ROM as a table of data—as will

298 The Essential PIC18® Microcontroller

Fig. 9.4 The active-low die patterns

be described in Chap. 15. The tblrd instruction can then be used to read out the
pointed-to byte. In this compiler, this can be done by qualifying the array with the
keyword const; giving the definition:

unsigned int const svn_seg[10] = {0x3f, 0x06, 0x5b, 0x4f, 0x66,
0x6d, 0x7d, 0x07, 0x7f, 0x6f};

Using the techniques outlined here, write a program to implement an electronic
die, with seven LEDs connected to the top seven pins of Port B—as shown in
Fig. 9.4(a). The main routine is simply going to increment a global integer as rapidly
as possible. The throw switch is connected to the INT0/RB0 pin and when it pulses,
the program is to transfer to an interrupt service function—see Program 9.3. This
ISR is to display one of six die patterns and after 10 s blank out the display to save
battery life. Running the PIC MCU using a Watch crystal frequency of 32,768 Hz
also reduces the energy requirements—as illustrated in Fig. 10.3 on p. 309.

Solution The LED patterns are listed as a global array const array[6] of six
patterns in Program 9.8, following the tabulation of Fig. 9.4(b). The patterns listed
in the array are shifted left one place compared to the truth table, to align with the
top seven bits in Port B.

The main routine simply increments the byte variable throw and continually
resets the count to zero when it goes beyond five to give a modulo-6 count; that is
0,1,2,3,4,5,0,

The CCS version 4 compiler generates six instructions for the endless loop in
main() and this gives an incrementation rate of about 1000 per second at the stated
clock frequency. This effectively gives a random selection when the outside human
throws the switch connected to the INT0 pin and thus causes an interrupt. In any
case such a switch will mechanically bounce giving multiple interrupts and adding
to the apparent randomness.

9 High-Level Language 299

Program 9.8 The electronic die
#include <16f84.h>
#use delay (clock=32768)
#byte PORTB = 0xFE1

void die(void);
unsigned int const array[6] = {0x7e, 0xec, 0x6c, 0xc8, 0x48, 0x80};
unsigned int throw;

main()
{
set_tris_b{0x01}; /* All PortB pins ex RB0 Output*/
setup_adc_ports(NO_ANALOGS); /* All pins digital */
enable_interrupts(INT_EXT); /* INT1IE set to 1 */
enable_interrupts(GLOBAL); /* GIE set to 1 */

while(1) /* Forever DO */
{
PORTB = 0; /* LEDs off */
if(++throw > 5) {throw=0;} /* Increment modulo-6 */
}

}

#int_ext /* Hardware ISR */
void die(void)

{
PORTB = array[throw]; /* Display nth element pattern */
delay_ms(10000); /* for 10,000 ms */
}

The ISR function die() copies the nth element of our array of constants to
Port B and then delays 10 s before returning to the background function. As Port B
is cleared in main(), the display will then be blanked. This helps keep the battery
drain down to a minimum.

Example 9.6 In Figure 7.2 on p. 224 we saw how the integrity of the teeth on a
drive belt could be monitored. Repeat the coding, this time using C, with the same
approach as this assembly-level implementation.

Solution As in the assembly-level solution, the coding in Program 9.9 is structured
as three functions, with two interrupt service and a background routine. Essentially
on each 10 kHz High-priority interrupt at INT2 the 2-byte variable Timer is incre-
mented. A tooth pulse interrupting at INT1 copies this as the inter-tooth period and
updates the moving average. The background routine monitors these variables and
activates the alarm if the period significantly exceeds this average.

jiffy()
This handles the 10 kHz pulse train from the timing oscillator. The associated direc-
tive int_ext2 HIGH designates the following function as a High-priority INT2
ISR. As we saw on p. 287, the interrupt logic defaults to Compatible mode. The
directive in the program preamble #device high_ints=true sets up the in-
terrupt mode to Priority; i.e. IPEN = 1.

300 The Essential PIC18® Microcontroller

Program 9.9 Belt-drive monitor software
#include <18f1220.h>
#device HIGH_INTS=TRUE /* Set Priority int mode */
#use delay (clock=4M)
#bit ALARM = 0xF80.0

/* Function declarations */
void jiffy(void);
void tooth(void);

/* Global variables */
unsigned long int Timer=0, Period = 0;
unsigned long long int EMA256 = 0;

void main(void)
{
unsigned long int temp;
enable_interrupts(INT_EXT1);
enable_interrupts(INT_EXT2);
enable_interrupts(GLOBAL);
set_tris_a(0xFE);
setup_adc_ports(NO_ANALOGS);

ALARM = 0;

while(1)
{
temp = (Period/4)*3; /* temp = Period*3/4 */
if(temp > (EMA256>>8)) /* Period too long? */

{
ALARM=1; /* IF yes THEN alarm */
delay_ms(256); /* sounded for 0.25s */
}

else
{ALARM=0;} /* IF not THEN no alarm */

}
}

#int_ext1 /* Low priority INT1 ISR */
void tooth(void)
{
Period = Timer; /* Count is the new period */
Timer = 0; /* Reset the time count */
EMA256 = (EMA256 - (EMA256>>8)) + Period;
}

#int_ext2 HIGH /* High priority INT2 ISR */
void jiffy(void)
{Timer++;} /* Record a new 100us tick */

9 High-Level Language 301

The core of the ISR simply increments the long int global variable Timer,
recording another 100 µs clock tick.

tooth()
This Low-priority INT1 ISR does three things.

1. Updates the 16-bit global variable Period with the contents of Timer giving
the inter-tooth period in 100 µs increments.

2. The global variable Timer is zeroed to initialize the next inter-tooth count.
3. The Exponential Moving Average period is updated. In the assembly-level im-

plementation the relationship:

EMAn = 255

256
EMAn−1 + 1

256
Periodn

was implemented. To cope with fractional period quantities the 2-byte EMA_H:
EMA_L variable was extended with an additional byte EMA_DEC to hold any
fractions. In our C coding, rather than using a floating-point object we use the
equivalent relationship:

256× EMAn = 255× EMAn−1 + Periodn.

This allows us to use a 32-bit integer (fixed-point) representation holding
256× EMA, which we call EMA256 in the program. The CCS compiler has a
non-standard type specifier int32 or long long int to designate a 32-bit
variable. In our statement implementing this relationship

EMA256 = (EMA256 - (EMA256>>8)) - Period;

we have shifted right eight times to implement the 1
256 fraction. Subtraction

gives the required fraction 255
256 . This shift-right operation is in parenthesis

(-(EMA256>>8)) to ensure that this operation is carried out first before the
subtraction; as we see from Appendix C that subtraction has a higher precedence
than shifting. The statement EMA256 - EMA256>>8; actually gives zero!

main()
The background routine core is an endless while loop generating a reduced dura-
tion of 3

4Period. Here the division ÷4 is carried out first to prevent the possibility
of overflow of the 16-bit arithmetic.

If our reduced period is greater than the running average (which is EMA256
256) then

the alarm is sounded for 256 ms as specified.

Self-Assessment Questions

9.1 Driving the die of Example 9.5 requires seven parallel port lines and a particular
electronic game needs to drive two die displays. By inspection of the patterns
of Fig. 9.4, how could you reduce the requirement to four bits per die?

302 The Essential PIC18® Microcontroller

9.2 As part of an electronic game, a function is to be written to return the next
pseudo random number in the 127 sequence defined by the generator configu-
ration of Fig. 6.22 on p. 203. The current number is to be passed to the function
and the next number in the sequence returned. Assume that this passed datum
is non-zero.

How could you modify the function to send the entire sequence of random
numbers out of Port B beginning with the passed number?

9.3 A PIC MCU-based digital thermometer is to display temperatures between 0◦C
and 100◦C. To be able to market the device to USA the thermometer is to have
the option to display the temperature in degrees Fahrenheit. Write a function
for a PIC-MCU based thermometer that is to convert Celsius integers to the
equivalent Fahrenheit integer. The input is to be an unsigned int byte rep-
resenting Celsius and the return Fahrenheit is also to be an unsigned int
datum. The relationship is:

fahrenheit= (celsius× 9)/5 + 32

and 16-bit arithmetic should be forced to avoid overrange errors.
9.4 A cold-weather indicator in an automobile dashboard display comprises three

LEDs, which are connected to the lower three bits of Port A. Bit 2 of this loca-
tion is connected to the red LED, which is to light if the Fahrenheit temperature
is less than 34. Bit 1 is the yellow LED for temperatures below 40◦F, and bit 0
is the green LED. You may assume that the appropriate port pins have already
been set as outputs and that a LED is illuminated when the driving pin is low.
Write a function, whose input is ◦F, that activates the appropriate LED.

Chapter 10
The Real World

Up to this point we have mainly concentrated on how the software has interacted
with the processor’s internal registers and data memory. Now, as a prelude to how
the MCU relates to its internal peripheral devices and hence monitors and controls
its external environment, i.e. the real world outside its pins, we need to look at
external support issues, such as power requirements, clocking and resetting.

After reading this chapter you will:

• Be familiar with the permitted range of power supply, brown-out and input/output
voltages.

• Distinguish between quiescent and dynamic power dissipation and recognize that
the latter is directly proportional to both frequency and to the square of the supply
voltage.

• Understand the nuances of the various reset processes.
• Understand the basics of the integral clock oscillators.
• Be aware of how the Run, Sleep and Idle modes are configured, invoked and

exited, and their effect on the processor.
• Know how the PIC MCU’s option configuration can be set-up.

As a prelude to our discussion on real-world issues, Fig. 10.1 shows the archi-
tecture of the PIC18F4420 and 18F4520 MCUs, which we are going to use as one
of our exemplars for most of the rest of the book. Apart from the latter’s larger Pro-
gram and Data stores, the two devices are identical and so we will concentrate on
the latter. The PIC18F2420 and 2520 MCUs are corresponding 28-pin variants and
therefore support a somewhat truncated inventory of peripherals. We will refer to
these four devices as the PIC18FXX20 series.

Except for issues relating to memory capacity, the core of these processors are
very similar in all enhanced-range devices. Their instruction set described in Chap. 5
are identical. In comparing the PIC18F1220 of Fig. 4.1 on p. 71 to Fig. 10.1 we see
that the main difference is in the latter’s more extensive set of peripheral modules;
which we will be describing in the following chapters. Of course, even 40 pins is
not enough to go round and give each peripheral its own separate I/O connection
to the outside world. Thus the majority of pins are a shared resource. For instance,

S. Katzen, The Essential PIC18® Microcontroller,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-229-2_10, © Springer-Verlag London Limited 2010

305

306 The Essential PIC18® Microcontroller

Fig. 10.1 Architecture of the PIC18F4420/4520 devices

10 The Real World 307

Fig. 10.2 Pinout of the 64-pin PIC18F6410 MCU

pinRA3 is bit 3 of Port A but can also be used as ANalog channel 3 AN3 or even as
an external positive reference voltage input Vref+ for the analog-to-digital converter
module. PIC MCUs with smaller form factors, such as the 18-pin PIC18F12201 can
still support a rich set of peripheral modules, but in such cases pin sharing is more
extensive, with a consequently greater restriction on what can be used in any given
application. Using a fully internal clock oscillator and foregoing the external Master
CLear (MCLR) will save precious pin resources.

The mid-range family have members with form factors down to six pins. Obvi-
ously low-cost options like this come with severe penalties! Conversely, the PIC18
family supports devices with 64-, 80- and 100-pin packages; e.g. see Fig. 10.2. Gen-
erally these support additional functions requiring an outlet to the outside world.
For instance, the PIC18F8410 80-pin version of the PIC18F6410 has a 20-wire Ad-
dress/Data bus to support an external Program memory of up to 220 = 1 Mbyte ca-
pacity. Other resources, such as LCD-segment drivers (e.g. the 80-pin PIC18F8490),
USB (e.g. the 80-pin PIC18F86J50) and Ethernet (e.g. 100-pin PIC18F96J60) are
usually to be found in devices with larger form factors.

1The PIC18F1320 is identical but with double the Program store size at 2 kwords.

308 The Essential PIC18® Microcontroller

Table 10.1 Power supply operating current for the PIC18FXX20

Oscillator Run @ 5 V Run @ 2 V Idle @ 5 V Idle @ 2 V

40 MHz 23 mA – 9.1 mA –

4 MHz 2.6 mA 0.74 mA 0.9 mA 0.25 mA

32 kHz 90 µa 15 µA 9.8 µA 3.1 µA

Sleep @ 25◦C 40 nA 20 nA – –

Sleep @ 85◦C 1.7 µA 0.6 µA – –

All members of the PIC MCU family will operate typically with a supply volt-
age VDD of nominally 5 V. The standard PIC18F family members can run up to
40 MHz over the range 4.2–5.5 V. Most devices have a low-voltage variant. For in-
stance, the PIC18LFXX20 have an operating range down to 2 V. However, below
VDD = 4.2 V the maximum frequency reduces linearly to only 4 MHz at 2 V. The
PIC18FXXK range (e.g. the PIC18F25K20) can even go down to VDD = 1.8 V. With
a VDD of 3.6 V in this family, a top speed of 64 MHz is possible. However, below
3 V the maximum frequency is reduced to 20 MHz.

To the outside world, the electrical characteristics of a PIC MCU are similar to
that of any other electronic digital circuit. In terms of voltages, a pin configured to
be an output which has been set to the Low state by the PIC MCU will normally be
no more than VOL = 0.6 V if sinking (accepting) a current up to 8.5 mA, over the
temperature range −40◦C to +85◦C. A pin set to the High state by the PIC MCU
can source (supply) up to 3 mA and not drop more than 0.7 V below the supply;
e.g., a VOH of 4.3 V with a 5 V supply.

A port pin configured to be an input will generally (with a few exceptions) recog-
nise a voltage less than 15% (20% for Schmitt trigger buffered inputs) of the supply
voltage as being a Low-state input; for instance, VIL = 0.75 V for a 5 V supply. An
input pin will normally2 recognise a voltage more than 25% plus 0.8 V of the supply
(80% for Schmitt trigger inputs) as being in the High state; for instance, VIH = 2 V
for a 5 V supply—see Fig. 11.5 on p. 344.

Table 10.1 shows the supply current for the PIC18F/LFXX20 series over a range
of clocking and supply voltages. Unless otherwise indicated, values are typical at
an operating temperature of 25◦C. Normal industrial devices (indicated by an -I
suffix to the part number) have a working temperature range of −40◦C to +85◦C.
Extended devices (-E) can operate up to +125◦C.

Many microcontroller applications are battery powered and in such situations
power consumption is critical. In general, power efficiency considerations are im-
portant and as these bare figures from the data sheet show a variation range of more
than a million, it is important that the factors influencing current consumption be
understood. Most of the newer PIC16 and PIC18 family members are described by
Microchip as part of the nanoWatt™ range.

2The main exceptions are oscillator I/O and RC[4:3] pins.

10 The Real World 309

Fig. 10.3 Typical supply current versus clocking frequency

From Table 10.1 we see that supply current is radically related to the clocking
frequency as well as operating supply voltage. These relationships are more clearly
seen in the graphs of Fig. 10.3. Clearly power dissipation VDD × IDD is directly
proportional to operating frequency. For instance, 100 times more current is required
at 10 MHz as compared to 100 kHz.

To see why this is so, consider a switch charging and discharging a capacitive
load C, as in Fig. 10.4. The switch is implemented by a transistor and the load is due
to the stray capacitance of the connection to the next transistor and its input gate.
RS represents the on-resistance of the switching transistor.

When the switch opens, the capacitance charges up exponentially to V volts with
a time constant τ = CRL. In steady state 1

2 CV 2 joules of energy is stored. Energy is
dissipated in the load by this charging current as follows:

Initial charging current (Vc = 0): io = V/RL

Instantaneous current: ic = ioe
− t

τ

Instantaneous power in RL: i2
c RL = i2

o RLe
−2 t

τ = (V 2/RL)e
−2 t

τ

310 The Essential PIC18® Microcontroller

Fig. 10.4 Equivalent output circuit, where C represents both intrinsic and external load capaci-
tance

Total energy dissipated in RL: E = V 2/RL

∫ ∞

0
e−2 t

τ dt

= V 2/RL

∣∣∣∣−τ

2
e−2 t

τ

∣∣∣∣
∞

0

= V 2/RL

(
τ

2

)
= 1

2
CV 2

Thus in going high, 1
2 CV 2 joules are dissipated in the load resistance (irrespective

of its value RL!) and 1
2 CV 2 joules are stored in the capacitor’s electric field. On

discharge, this stored energy is dissipated in RS//RL (once again irrespective of
value). The energy dissipated in one switching cycle thus CV 2 joules. The total
power is this figure multiplied by the number of cycles per second (CV 2f), plus
any quiescent dissipation due to leakage through the switches.

The preceding relationship CV 2f shows that dissipated power is proportional to
frequency for any given supply voltage. Furthermore, it is proportional to the square
of the supply voltage, so halving VDD from 5 V to 2.5 V should quarter the power
dissipation VDD × IDD.3

The dynamic power dissipation derived above should be added to that due to the
quiescent current the device consumes when the clocking rate has dropped to zero.
From the lower two rows of Table 10.1 this base or Power-Down current, listed in
data sheets as IPD, is typically less than 1 µA. These figures assume that peripheral
modules that (sometimes optionally) have their own private clock oscillator, such as
the Watchdog timer, and any Brown-out reset circuitry are disabled.

3This is why most current microprocessors used as the PC’s CPU, such as the Intel Pentium IV, are
powered at under 3 V rather than the standard 5 V of older devices.

10 The Real World 311

Table 10.2 Oscillator operation modes

LP crystal Low Power for frequencies up to 200 kHz OSC1:OSC2

XT crystal Crystal (XTAL) between 200 kHz and 4 MHz OSC1:OSC2

HS crystal High Speed for frequencies above 4 MHz OSC1:OSC2

HSPLL Uses a Phase Locked Loop to give ×4 frequencies OSC1:OSC2

RC Resistor-Capacitor at OSC1. OSC2 is CLocK Out OSC1:OSC2

RCIO As above but OSC2 is RA6 for I/O OSC1

INTIO1 Internal clock with OSC2 as CLKO. OSC1 is RA7 OSC2

INTIO2 As above with OSC1:OSC2 as RA7:RA6

EC External Clock into OSC1 with OSC2 as CLKO OSC1:OSC2

ECIO As above with OSC2 as RA6 OSC1

Of course, not clocking the processor is rather unproductive, in that nothing hap-
pens! However, many embedded systems only need a processing capability on a
sporadic basis, and it would be advantageous to be able to put the processor in a
standby mode when no action is required. For instance, a MCU-based radio teleme-
try transducer at the bottom of a lake may need to measure the temperature only
once an hour and have a battery life of a year. Microchip gives an example of a
PIC18LF8722 powered by a 2450 Lithium cell with a VDD of 3 V and a clock rate of
1 MHz. With its real-time calendar/clock (RTC) module running continuously and
active 600 ms in every minute (99% powered-down) the battery life is 9+ years.
With 10% active running the battery life drops to 1 year and running continuously
at 1 MHz yields a one month life.

Microcontrollers generally facilitate the provision of a master clock to sequence
the fetch and execute process and the various peripheral modules, by providing in-
ternal oscillator electronics. When optionally augmented with external timing ele-
ments, this provides the Primary clock source.

The first PIC MCU family allowed quartz crystals or ceramic resonators to be
used across the OSC1 and OSC2 pins to generate oscillation frequencies up to
20 MHz, giving up to five million instructions per second (MPIS) execution—see
Fig. 4.5 on p. 76. For low-cost implementations, an external resistor and capacitor
could be used at the OSC1 pin or even a completely external oscillator into this
pin. Newer PIC16 devices increased the number of options; for instance, in low
pin-count members, removing the need for external components entirely.

Table 10.2 shows the ten clock options for our PIC18 exemplars. These have
been presented as four groups.

External crystal/resonator modes
These four types use either a crystal or ceramic resonator across the OSC1 and
OSC2 pins; as shown in Fig. 10.5(a). We see from Fig. 10.11 that the internal oscil-
lator electronics comprises an inverting amplifier across which user-supplied timing
elements give the desired clock rate. The key differences between the three crys-
tal ranges is the value of the inverting amplifier’s gain and drive. In the LP mode

312 The Essential PIC18® Microcontroller

Fig. 10.5 Clock modes

the gain is lowest and, as we have seen, power consumption is minimized. The
HS mode is used for high frequencies and has the largest current requirement. The
maximum crystal frequency for the standard enhanced-range family is 20 MHz.
A phase-locked loop is available and configured to give a ×4 frequency multipli-
cation. Used with a 10 MHz crystal, a bounding top clocking range of 40 MHz is
available.4

A typical 10 MHz system uses a 10 MHz AT-cut crystal with a C1 of 22 pF and
a C2 of 33 pF. A 32 kHz crystal needs a C1 of 68 pF and a C2 of 100 pF in the
LP mode. Although both capacitors may have the same value, making C2 larger im-
proves the oscillator start-up characteristics. Some crystals in the HS mode may re-
quire a series resistor at the OSC2 pin. Details are given in Microchip’s application
note AN588 PIC16/17 Oscillator Design. Ceramic resonators are less expensive
than crystals but have an inferior frequency accuracy of the order of 0.5%, and tem-
perature stability is poorer. Ceramic resonators may come with integral capacitors
to reduce the part count. Microchip’s application note AN588 gives a comparison
between ceramic resonators and crystals used in this application.

Resistor-Capacitor modes
Using an external resistor and capacitor as timing elements, as shown in Fig. 10.5(b)
& (c), is a low-cost alternative. In the standard RC mode, the OSC2/CLKO pin pro-
vides a buffered output clock signal fosc/4 which can be used to synchronize exter-
nal digital circuits. If this is not required, the RCIO mode releases this pin for use as
pin 6 of Port A; RA6.

4The PIC18FXXK subfamily has a maximum clocking frequency of 64 MHz.

10 The Real World 313

These modes are useful for applications where the clocking rate and stability are
not of importance. The actual rate is dependent on the external resistor R1 and C1,
as well as temperature and supply voltage VDD, in a complex manner. Generally, the
chosen device’s data sheet will give tables and graphs showing typical frequencies
against these variables. For example, the PIC18F452 device will have an average
clocking rate of 1.6 MHz ± 10% for a VDD of 5 V, R1 of 3.3 k�, and C1 of 100 pF
at 25◦C. The frequency peaks at 1.9 MHz for a VDD of 2.7 V under the same condi-
tions. Of course the tolerance and temperature variation of the timing components
and VDD must be considered.

External Clock
It is possible to clock a PIC MCU from an external oscillator up to 40 MHz. This can
be useful if several devices are to be synchronized to the one clock. The oscillator
should have a Low level VIL below 0.2VDD and a High level above 0.8VDD.5 As
shown in Fig. 10.5(d) & (e), the OSC2/CLKO pin can optionally be assigned to
output the instruction cycle clock rate fosc/4 or as RA6.

Internal Clocks
Both our exemplars have a completely internal oscillator block. As can be seen from
Fig. 10.5(f) & (g), using this as the clock source can release both OSC1 and OSC2
pins for use as Port A I/O pins RA7 and RA6 respectively.

The main internal clock oscillator INTOSC runs at 8 MHz. This is calibrated
by the factory with typically ±1% (worst case ±2%) accuracy. This frequency is
temperature sensitive and over the range −40◦C to +85◦C can vary by up to ±10%.
It is possible to tune the frequency slightly, up to ±12%, by writing to the lower five
bits of the OSCTUNE register TUN4:0; as shown in Fig. 10.6.

This 8 MHz clock can be divided to give an alternative range of frequencies;
from 4 MHz down to 31.25 kHz. This is directed by the three IRCF2:0 bits in the
OSCCON register; as shown in Fig. 10.7. Program 11.1 on p. 338 gives an example
where the clocking frequency is set to 4 MHz.

The internal oscillator block also contains a second oscillator, known as INTRC
(INTernal RC oscillator). This runs at a nominal 31 kHz rate (minimum 26.5 kHz,
maximum 36 kHz). This is primarily used as a clock source for the Watchdog and
Power-on timers and as a system clock for Two-Speed Startup or as an emergency
backup the Primary oscillator fails. In the case of the PIC18FXX20 series, INTOSC
and INTRC are separate and therefore tuning the former will not affect the latter. The
INTRC clock can be used as the system clock if the 31.25 kHz IRCF2 : 0 = 000 ratio
is chosen and the INTSRC bit in OSTUNE[7] is 0 (the reset default)—see Fig. 10.11.
In the case of the PIC18F1220/1320 (PIC18F1X20) this division ratio always selects
the INTRC clock rather than INTOSC/256. Also, in this device there is a linkage
between the two oscillators.

5If using a TTL-compatible oscillator, then a pull-up resistor may be needed to ensure a high
enough VIH.

314 The Essential PIC18® Microcontroller

Fig. 10.6 The OSCillator TUNE register

Fig. 10.7 The OScillator CONtrol register

The various clock modes are just one of an extensive range of options and settings
that can be selected at the same time as the software is blasted into the Program
store—see Appendix B. For instance, the XINST fuse in CONFIG4L[6] enables the
Extended instruction set outlined on p. 188. The actual electrical process involved
in this code blasting process is not an issue unless you are designing your own
device programmer. Normally you will use a commercial programmer, such as the
Microchip PICSTART® Plus of Fig. 16.4 on p. 580.

10 The Real World 315

Fig. 10.8 Programming the PIC18 family

For background information, Fig. 10.8(a) shows the High-Voltage Programming
process. This special Program/Verify state is initiated by raising the
Master CLeaR (MCLR) pin to +13 V whilst holding both RB7/PGD and
RB6/PGC pins Low. Subsequently the Programming data may be read in from the
former as synchronized by the incoming clock signal on the latter pin. This data may
be command instructions or machine code. Conversely, the contents of unprotected
Program store may be read out and compared with the original code for correct-
ness. When normal voltages are used at the MCLR pin, RB6 and RB7 can be used as
normal Port B I/O pins.

One of the options available to the designer is to code protect portions of the
Program store. Protection prevents existing code from being read out as a security
precaution where industrial espionage is a problem. CONFIG5L in Appendix B gives
more details.

To obviate the need for a separate power supply, an alternative Low-voltage pro-
gramming (LVP) technique is available. This single-supply mode is especially use-
ful for In-Circuit Serial Programming (ICSP™) where the Program store can be re-
programmed in situ on the circuit board. As shown in Fig. 10.8(b), pinRB5 actions
entry to this state. Initially held Low during reset, when RB5 is brought High, pro-
gramming via RB7 and RB6 can begin. The problem with this mode is that pinRB5
cannot subsequently be used as a normal port pin; that is, it is permanently out of
action.

In either case, pins RB6:7 can also be used for data and clock in a special De-
bug mode, where execution can be monitored and controlled under control of soft-
ware running on a remote terminal. Typically, this will be a PC hosting Microchip’s
MPLAB IDE.

With the PIC MCU in one of these special Programming modes, the Device
programmer has access to the Program store and can burn in the application code.
The Device programmer also has access to certain private Program store locations
from h’30000’ to h’3FFFF’; known as Configuration memory. This area of memory
is beyond the normal executable code space; for instance, h’00000–07FFF’ for the
PIC18F4520 device—see Fig. 15.4 on p. 550. This zone chiefly comprises an array
of Configuration bytes holding the various options, or fuses. These are listed in full

316 The Essential PIC18® Microcontroller

Fig. 10.9 The CONFIG1H fuses defining the PIC18FXX20 series clock options

in Appendix B for the PIC18FXX20 series.6 These are not visible to the software
when the PIC MCU is running normally.

Usually the Configuration fuses are set when the device is programmed. How-
ever, it is possible to alter most of these option bits from within the executable code
using the tblrd and tblwt instructions; as described on p. 553, and thus dynami-
cally alter various options on the fly. These facilities can be optionally disabled—see
CONFIG6H in Appendix B.

Figure 10.9 shows a close up of the CONFIG1H register as an example of a Con-
figuration byte. This configuration register holds option fuses relating to the system
clock. These are:

Primary oscillator mode
Bits CONFIG1H[3:0] set up one of the ten oscillator modes. For instance, to use the
Internal oscillator with the OSC1 and OSC2 released for use as Port A I/O pins, we
need to set the FOSC3:0 fuses to b’1000’.

Fail Safe
The FCMEN fuse enables the Fail Safe clock feature when 1. If the main clock
source fails, the processor is switched to the internal oscillator block and the OSCFIF
(OSCillator Fail Interrupt Flag) of PIR2[7] in Fig. 7.2 on p. 209 is set to optionally
generate an interrupt request. The Watchdog timer is also restarted. This gives a
‘soft landing’ in the event of a catastrophic failure. The default state of this feature
is off.

Internal/External oscillator Switch Over
When power is applied or the processor comes out of a Sleep mode, a crystal-based

6Locations h’3FFFE:F’ are read-only Device registers, holding the part number and hardware ver-
sion details. Eight locations h’20000–20007’ are designated ID, where the user can store code
identification data; such as company and version information.

10 The Real World 317

Fig. 10.10 Configuration menu in the MPLAB IDE

oscillator can take a considerable time to stabilize. Normally when in an appropriate
mode, an OScillator Timer (OST) is used to count 1024 clock cycles before allowing
the oscillator to clock the processor—as shown in Fig. 10.15.

In order to minimize the startup delay, a Two-Speed Startup may be option-
ally enabled by setting the IESO fuse. In this situation the Internal oscillator block
oscillator is used to clock the processor until such time as the Primary oscillator sta-
bilizes; as indicated by the OSTS bit in OSCCON[3]. The default state of this feature
is off.

Most device programmers’ software will allow the operator to set the required
fuses ‘manually’ before beginning the actual Program store burn process; e.g. see
Fig. 10.10. However, it is better to embed this desired fuse state in the program code
to automatically action this every time the device is programmed. As an example,
consider a PIC18F4520 device which is to have the following configuration:

Oscillator in HS mode
CONFIG1H[3:0] = 0010

Watchdog timer off
CONFIG2H[0] = 0

Low-Voltage Programming off
CONFIG4L[2] = 0

Master CLeaR enabled
CONFIG3H[7] = 1

Then the directive

config WDT=OFF, OSC=HS, LVP=OFF, MCLRE=ON

in the assembly-level source file will result in the lines machine code loading the
Configuration registers thus:

318 The Essential PIC18® Microcontroller

:02 0000 04 0030 CA ; Address record base 0030 0000
:03 0001 00 021F1E BD ; CONFIG1H:2L:2H @ h’00300001’+
:02 0005 00 8381 F5 ; CONFIG3H:4L @ h’003000005’ +
:06 0008 00 0FC00FE00F40 E5 ; CONFIG5L:5H:6L:7L:7H

to the INHX32 format described in Fig. 8.4 on p. 254).
The Header file supplied by Microchip for each of their devices, and described in

Table 8.1 on p. 243, has mnemonics for each of the options supported by that device.
These are listed in Appendix B for the PIC18FXX20 series. For instance, to enable
the extended instruction set the incantation XINST = ON needs to be included in
the config list.7

C compilers will have a similar mechanism for programming the Configuration
fuses. For instance, the CCS compiler uses the directive #fuses in the preamble.
For our example this is:

#fuses WDTOFF, HS, NOPROTECT, NOLVP, MCLR

One of the factors to be considered in designing electronic system is energy effi-
ciency. We have already seen that the power dissipated by a digital system is directly
proportional to its switching rate. Thus, a simple strategy is to clock the circuitry
at the lowest possible frequency. For instance, reducing the rate from 40 MHz to
32 kHz at 25◦C with a 5 V supply lowers the power from typically 60 mW to
0.04 mW. Unfortunately, the processing rate falls in tandem, and where this is not
acceptable, the designer must use a more sophisticated approach.

A basic approach is to simply turn off the clock when not required. With no
dynamic (switching) power dissipation, only the quiescent (leakage) current will be
left. From the lower row of Table 10.1, this Power-Down current, listed in data sheets
as IPD, is typically less than 1 µA. These figures assume that peripheral modules that
(sometimes optionally) have their own private clock oscillator, such as the Watchdog
timer, are disabled.

Of course, not clocking the processor is rather unproductive, in that nothing hap-
pens! However, many embedded systems only need a processing capability on a
sporadic basis, and it would be advantageous to be able to put the processor in a
standby mode when no action is required. For instance, a MCU-based radio teleme-
try transducer at the bottom of a lake may need to measure the temperature only
once an hour and have a battery life of a year.

To expedite situations like this, all PIC MCU families feature a Sleep mode,
which effectively turns off the clock oscillators.8 This switch is actioned in software

7Older versions of the assembler required the programmer to specify each Configuration register
when listing the various options. For instance, config config4l, XINST=ON.
8If the Watchdog timer is enabled, the INTRC oscillator continues to operate, as does the Secondary
oscillator if Timer 2 requires it.

10 The Real World 319

using the sleep instruction. Once asleep, the contents of the Data store are retained
provided that the supply voltage remains above 1.5 V (VDR in the data sheet). The
PIC MCU can be awakened either by resetting the device (see p. 323), by an enabled
interrupt request or a Watchdog timer overflow.

When the processor executes a sleep instruction it will clear the PD
(Power Down) bit in the RCON (Reset CONtrol) register (see Fig. 10.14) and the
Primary clock oscillator is turned off. If the Watchdog timer (see p. 455) is enabled
at that time then it will be restarted and will continue to run, as it uses the INTRC
internal oscillator which remains operational in this situation. At this time the TO
(Time Out) flag will be set (i.e., no Time Out). All Files, including the various port
settings, remain unchanged.

In the case of an interrupt-actioned awaking, the relevant interrupt flag needs to
be cleared and the corresponding interrupt mask bit set to enable requests from that
source. If the Global Interrupt Enable mask (GIE/GIEH); see Fig. 7.2 on p. 209) is set
to enable the entire interrupt system, then after the instruction following sleep is
executed, the processor will go to the interrupt service routine as a normal interrupt
response. However, if GIE/GIEH is clear, hence disabling the interrupt response,
then the processor will not vector to the ISR, but will simply execute the instruction
following sleep and continue on as normal. In either case, the programmer should
clear the relevant local interrupt flag following the sleep instruction.

If the interrupt logic is disabled and where an unmasked interrupt occurs and sets
its associated interrupt flag before a sleep instruction is executed, then it is exe-
cuted as a nop (No Operation). In this situation the PD bit will not be cleared, so if
necessary the program can determine after a sleep instruction if the PIC MCU re-
ally did go through a dormant period. The software can also find out if the processor
was awakened by a Watchdog time-out, by checking to see if the TO bit in RCON[3]
has been cleared. Normally in Watchdog-enabled applications, the sleep instruc-
tion is followed by a clrwdt (CLeaR WatchDog Timer) instruction to restart it.
Checking the appropriate interrupt flag in the appropriate INTCON or PIR register
will determine if the source of the awakening was an interrupt. If this local flag is
not cleared, then any subsequent sleep instruction will be implemented as a nop
indefinitely!

Whatever the source of the awakening, if the system is running in one of the
crystal modes, there will be a delay of 1024 clock cycles fosc before processing the
instruction following the sleep breakpoint. This is to ensure that the crystal clock
oscillator has started up and stabilized. This oscillator startup delay, illustrated in
Fig. 10.15, is not implemented if the PIC MCU is using any of the non-crystal
modes, or as we shall see, the secondary or internal oscillator. If the Two-Speed
Startup option is enabled, then on awakening, the internal oscillator will drive the
processor until the crystal oscillator stabilizes. In all cases there will be a short delay
TCSD of not more than 10 µs irrespective of the clock type.

To the base Power-down current IPD given in the data sheet, has to be added the
current drain of any enabled peripheral that can operate without the system clock.
For instance, if the Watchdog timer (which is clocked by the INTRC oscillator) is
running, then for the PIC18FXX20 series at 25◦C the typical incremental current

320 The Essential PIC18® Microcontroller

�IWDT is typically 1.4 µA at 2 V rising to 5.5 µA at 5 V. Corresponding maximum
values are 8 µA and 15 µA respectively at the same temperature. Brown-out Reset,
High/Low Voltage Detect, Timer 1 and the ADC module can each add tens of µA
to the Power-down budget. These values assume the I/O ports are set to input, with
pins tied to either VDD or VSS; usually ground.

Completely turning off the MCU is only appropriate in limited situations. An
alternative strategy is to switch the clock to a lower frequency whenever the reduced
software throughput is appropriate. For instance, it may be adequate to scan various
peripheral modules looking for external activity at 32.78 kHz, and only switch to
20 MHz to handle newly arrived data.

Clock switching was introduced in later PIC16 family members and is available
in all PIC18 family members. To see how this works, consider the structure of the
PIC18FXX20 clock system shown in Fig. 10.11. Here we can identify three clock
sources; any one of which can be chosen to drive the core and peripheral modules.
These are:

Primary oscillator
This is the main oscillator using external timing elements at the OSC1 and OSC2
pins. The high-speed (HS) mode can optionally make use of a Phase Locked Loop
to frequency multiply by four, with a maximum crystal frequency of 10 MHz giving
an equivalent clocking rate of 40 MHz (16 MHz crystal giving a 64 MHz clock for
the PIC18FXXK line).

The appropriate mode is chosen using the FOSC3:0 fuses, as outlined in
Fig. 10.9. This oscillator is disabled when not selected as the processor clock source.

Secondary oscillator
Timer 1 has its own private crystal oscillator at pins T1OSCI and T1OSCO—see
Fig 13.4 on p. 467. Typically this will be a 32.78 (215) kHz watch crystal, but other
LP range values can be used.

Internal Oscillator block
A self-contained internal 8 MHz oscillator INTOSC can be frequency divided down
to give a range of eight clocking frequencies, as shown in Figs. 10.7 and 10.6.
A separate9 nominally 31 kHz INTRC oscillator is used for the Watchdog timer,
Two-Speed Startup and PoWer-on Reset Timer and in the PIC18FXX20, even as
the system clock (if INTSRC (INTernal SourCe) in OSCTUNE[7] is 0; the default
setting).

The PIC18FXX20 series optionally allows the use of the Phase Locked Loop
sourced with the 4 and 8 MHz INTOSC frequencies if PLLEN in OSCTUNE[6] is set
to 1. This gives the option for an internal 16 and 32 MHz internal clock frequency.
The default for this option is off.

The source of the system clock is selected using the SCS1:0 (Select Clock
Source) bits in OSCCON[1:0]; as shown in Fig. 10.7. The setting of these bits defines
three Run modes.

9In some family members, such as the PIC18F1220, INTRC and INTOSC are linked.

10 The Real World 321

F
ig

.1
0.

11
T

he
cl

oc
k

in
fr

as
tr

uc
tu

re
fo

r
th

e
PI

C
18

FX
X

20
se

ri
es

322 The Essential PIC18® Microcontroller

Primary Run mode; SCS1:0 = 00
This is the normal default full-power execution state with the Primary oscillator
used as the system clock.

Where the Primary oscillator is crystal timed, there will be a start-up delay to
allow for frequency stabilization. This will occur when switching from another Run
or Sleep mode or on a Power-on Reset. In such cases the Primary oscillator will
only begin clocking after this delay; as signaled with the OSTS (Oscillator Start-up
Time-out Status) bit in OSCCON[3] going to 1. If the IESO fuse is set to 1, enabling
the Two-Speed Startup, then the Internal oscillator allows processing to start with a
minimal delay.

Secondary Run mode; SCS1:0 = 01
In this situation the Timer 1 oscillator is used to clock the processor. The Primary os-
cillator is switched off and the OSTS bit cleared to reflect this situation. If switching
back to the PRI_RUN mode, the system continues to be clocked by this Secondary
oscillator until the Primary oscillator stabilizes; as signaled by OSTS going to 1.

RC Run mode; SCS1:0 = 10
In the RC_RUN mode,10 the Internal oscillator supplies the system clock. The fre-
quency of this clock can be altered on the fly in the normal way. In devices that have
separate INTOSC and INTRC oscillators (such as the PIC18FXX20) switching to the
latter gives the lowest power consumption at the expense of the poorest frequency
accuracy. In this case INTOSC is switched off.

The Primary oscillator will be switched off, and if switching back to a crys-
tal Primary oscillator, then the same switch-over transition sequence will occur as
detailed for the SEC_RUN mode.

Newer processors have an additional series of Idle power management modes.
These are based on an extension to the behavior of the sleep instruction.

The normal response to this instruction is to disconnect the complete system from
the clocking source, and disable the Primary oscillator. In the case of our exemplar
devices, this legacy behavior is actioned with the IDLEN (IDLe ENable) bit at its
default 0 setting. If IDLEN is set to 1 then when a sleep instruction is executed
the processor core, or CPU, is not clocked. However, the Peripheral modules con-
tinue to be clocked; as selected by the SCS1:0 bits. This gives three Idle modes11

which parallel the Run modes listed above, but are only entered as a result of a
sleep instruction and are exited on an awakening. This behavior is illustrated in
Fig. 10.12.

Primary Idle mode; IDLEN = 1, SCS1:0 = 00
PRI_IDLE is entered from the PRI_RUN mode via a sleep instruction. The Pe-
ripheral modules continue to be clocked from the Primary oscillator selected by the

10The SCS0 bit is don’t care for our exemplar devices, but it is recommended that it should be 0
for compatibility with future device enhancements.
11The PIC24 family extend this approach with Doze modes. These allow peripheral processing at
full speed and core execution at a reduced rate. In addition, each Peripheral module can be opted
out of the Idle modes.

10 The Real World 323

Fig. 10.12 Idle and Sleep modes triggered by the sleep instruction

FOSC3:0 fuses. When a wake-up event occurs, the system returns to the PRI_RUN
mode; i.e. the CPU begins to operate, after a short (10 µs maximum) delay TCSD. As
the Primary oscillator never stops, crystal-mode stabilization delays are avoided.

Secondary Idle mode; IDLEN = 1, SCS1:0 = 01
The CPU is disabled, but the peripherals continue to be clocked with the Timer 1
oscillator. When a wake-up event occurs, the system returns to the SEC_RUN mode
after a delay of TSCD.

RC Idle mode; IDLEN = 1; SCS1:0 = 10
From the RC_RUN mode, the RC_IDLE mode is entered by setting the IDLEN bit
and executing a sleep instruction.

All sequential digital systems must come out of their non-powered or other mal-
functioning state in an orderly manner; as it were, up and running. The PIC18 family
can be powered up or restarted in several different ways.

• Manually by using an external switch connected to the MCLR pin; as shown in
Fig. 10.13(a).

• On application of power; as shown in Fig. 10.15.
• Where the Watchdog timer of Fig. 13.1 on p. 455 times out; due to a software bug

or perhaps a glitch in the power supply.
• When a reset instruction is executed.

324 The Essential PIC18® Microcontroller

• On a stack overflow if the STVREN fuse in CONFIG4L[0] is on (default); as de-
scribed on p. 180.

• Where the power supply of a normally running PIC MCU dips below a threshold;
as shown in Fig. 10.17.

Looking first at the external or manual mechanism. All family members have
the option of re-assigning a parallel port pin to be an active-low MCLR input. For
instance, the PIC18FXX20 uses RE3 and the PIC18F1220 pinRA5. In all cases
MCLR defaults to enabled, and the MCLRE fuse in CONFIG3H[7] must be cleared
to 0 (MCLRE=OFF) to disable this function. In this latter case, MCLR can be used as
an input-only parallel port pin.

Bringing MCLR below 0.2VDD for at least 2 µs will be recognized as a legitimate
reset request, and when the voltage rises above 0.8 VDD the processor will begin ex-
ecuting from the instruction at the Reset vector h’00000’. Using a switch to ground
this pin, in the manner shown in Fig. 10.13(a), realizes a manual reset. The value
<40 k� is the maximum recommended pull-up resistor to ensure that leakage cur-
rent into MCLR of ±5 µA when the switch is open, will not drop the pin voltage
below 0.8VDD. The ≥1000� series resistor gives a measure of protection, by limit-
ing current if a negative-going noise spike breaks down the input protection diodes.

Apart from restarting code execution from the bottom of the Program store,
a MCLR reset will initialize the various SFRs. Whilst many of these will be un-
changed from their pre-reset state, there are important effects. For instance, if MCLR
is used to awaken the processor from its Sleep or Idle states then PD will be 0; pro-
cessor was powered down. If the reset was caused by the Watchdog timing out, then
TO will be 0 (Watchdog Time Out); otherwise these bits will be unchanged. These
status flags are located in the RCON (Reset CONtrol) SFR, as shown in Fig. 10.14.

Fig. 10.13 Externally resetting the PIC MCU

10 The Real World 325

Fig. 10.14 The RCON register for the PIC18 family

Apart from the IPEN bit controlling the Priority interrupt mode (see p. 213) the
RCON register holds information concerning the type and circumstances of the Re-
set event.

The reset instruction is a software instruction that mimics a MCLR event. Al-
though by definition it cannot awaken a sleep induced state; all the SFR are set in
an identical way. For instance, all the parallel ports are set to be inputs; that is, the
TRIS registers are set to 1s. The RI Reset Instruction flag will be cleared in this
event.

Starting a digital engine up from cold is a somewhat more troublesome task than
the warm restart discussed above. Not only does the power supply and maybe os-
cillator need to stabilize, but initialization and synchronization of the various CPU
elements needs to be established.

One solution to our problem is to hold the MCLR pin low for a sufficient time to
allow the PIC MCU to settle down. This approach is shown in Fig. 10.13(b), where
the capacitor holds MCLR low as it charges up while VDD approaches steady state.
The value of capacitor should be chosen so that the time constant CR is several times
greater than that taken by the power supply to stabilize. With the resistance given,
a 2.2 µF capacitor will give a time constant of approximately 100 ms. More details
are given in Microchip’s application notes AN522: Power-up Considerations and
AN607: Power-up Trouble Shooting. The diode ensures that the capacitor rapidly
discharges if the supply voltage falls significantly.

In addition to the External reset initiated at MCLR, all PIC MCUs have a Power-
on Reset (POR). This internal resetting mechanism automatically detects when the
power supply rises beyond 0.7 V; as shown in Fig. 10.15. In this somewhat idealized
situation, VDD rises exponentially to its final values. Once this internal reset signal
is generated, the following sequence of events is triggered.

1. A fixed delay TPWRT (PoWer-on Reset Timer) of nominally 66 ms is generated by
clocking an 11-bit counter with the internal INTRC oscillator. This delay can be
by-passed if the PWRTEN fuse in CONFIG2L[0] is set from its off default value
to 1 (PWRT=ON).

2. If one of the crystal modes is used; on completion of TPWRT a further delay of
1024 Primary clock pulses is launched. This Oscillator Start-up timer comprises

326 The Essential PIC18® Microcontroller

Fig. 10.15 The sequence of events leading to startup when power is applied

a 10-bit counter clocked from the internal crystal oscillator circuit. It ensures that
the main oscillator has started up and is functioning correctly before processing
begins. TOST is dependent on the crystal frequency; for instance, a 32 kHz crystal
will give a base 32 ms delay whilst a 10 MHz configuration gives a base 102 µs
delay.12 This TOST is also activated when changing back to a crystal Primary
run mode from a Sleep or Idle state; again to ensure that the crystal oscillator
restarts and is running normally before processing commences. Using either a
non-crystal mode Primary oscillator or Two-Speed Startup will side-step this
delay.

3. If a HSPLL oscillator mode is used, then a further fixed TPLL of nominally 2 ms
is added to the TOSC period to allow the Phase Locked Loop frequency multiplier
time to stabilize.

4. Whenever a Power-on Reset occurs, the POR bit in RCON[1] is set, so that the
software can determine that this is the origin of the reset action; see Table 10.3.

1232 kHz crystal oscillators have a typical start-up time of 1–2 seconds. Crystal oscillators
≥100 kHz have a typical start-up time of less than 10–20 ms and ceramic resonators are typically
less than 1 ms. Times are voltage dependent.

10 The Real World 327

Fig. 10.16 Starting up a HSPLL mode Primary clocked processor

A POR will also set the BOR flag in RCON[0]. Both these flags should be reset
to 1 in software at the end of the startup routine, so that further resets from these
sources can be distinguished. In addition, the TO and PD flags are deactivated
to 1 to cancel any past Sleep-induced mode or Watchdog time-out indication.

5. At the end of this flurry of activity, illustrated in Fig. 10.16, code execution com-
mences from the Reset vector at h’00000’ in the Program store.

A normally running MCU can malfunction if its power supply falls below its
rated value. This could be due to a momentary blip on VDD when switching in a
large current load or due to battery exhaustion. In either case, the PIC MCU may
operate erratically due to this brown-out.13 This may have serious consequences;
for instance, a dishwasher’s heating element may be turned on with no water in the
reservoir!

From Fig. 10.17 we see that if the Brown-out Reset module (BOR) is enabled,
an internal reset will be generated if VDD falls below the threshold voltage VBOR.14

In our exemplar devices, there are four user-selectable thresholds, as set by the
BORV1:0 fuses and listed in the diagram.

The diagram shows the supply subsequently rising back a little above the thresh-
old trip voltage. Provided that the shaded time is more than 200 µs, the PoWer-on
Reset Timer, if enabled, kicks in for the nominal 66 ms, before the processor comes

13The term is from the same phenomena in the mains supply that causes the lights to dim and give
a brownish hue to the surroundings!
14If the supply falls below 0.7 V, then a Power-on Reset will occur.

328 The Essential PIC18® Microcontroller

Fig. 10.17 A Brown-out reset due to a blip on the power supply

Fig. 10.18 The CONFIG2L configuration register used for Brown-out options

out of reset. Enabling the PoWer-on Reset Timer (the PWRTEN fuse) reduces the
possibility that a slowly rising VDD may give rise to multiple triggers due to noise
on the supply line.

The Brown-out Reset module can be configured to act in four ways; as deter-
mined by the BOREN1:0 fuses and shown in Fig. 10.18.

BOREN1:0 = 00 config BOREN=OFF
Brown-out reset is disabled in all circumstances.

BOREN1:0 = 01 config BOREN=ON
Brown-out reset is enabled and controlled by the SBOREN switch bit in RCON[6].
This mode allows the executing program to determine when and if the Brown-out
Reset module can operate on the fly.

BOREN1:0 = 10 config BOREN=NOSLP
Brown-out reset is enabled, but does not operate when the process is in its Sleep
state.

The BOR module requires current to bias its Fixed Voltage Reference (FVR)
source (a 1.2 V bandgap diode), from which its VBOR threshold is derived. This

10 The Real World 329

Table 10.3 Reset conditions
Reset From

sleep
Execution
starts at

TO PD RI POR BOR

External No h’00000’ 1 U U U U

External Yes h’00000’ 0 U U U U

reset – h’00000’ U U 0 U U

Power-on – h’00000’ 1 1 1 0 0

Brown-out – h’00000’ 1 1 1 U 0

Stack — h’00000’ U U U U U

Watchdog No h’00000’ 0 U U U U

Watchdog Yes PC+2 0 0 U U U

Interrupta Yes PC+2 U 0 U U U

? Not known: U Unchanged
aWhen Globally disabled; otherwise go to relevant interrupt vector

quiescent current �IBOR of ≈40 µA has to be added to the Sleep current budget, and
is large compared to other components; see Table 10.1. It therefore makes sense to
disable it in such circumstances.

BOREN1:0 = 11 config BOREN=SBORDIS
This default state enables the BOR module in all circumstances; that is, disables the
software control of this facility.

Whenever an enabled Brown-out Reset module detects an undervoltage, the BOR
flag in RCON[0] is cleared. However, as a POR event also activates this flag, it is
recommended that both the POR and BOR flags are checked to reliably monitor a
BOR event.

For both a Watchdog timer reset and a globally disabled interrupt event; when the
processor is in its Sleep state, execution simply continues on with the instruction
following the sleep instruction, rather than at the Reset vector. If the interrupt
system is globally enabled, then execution will be from the appropriate interrupt
vector.

Examples

Example 10.1 There are some instances where the device’s internal programmable
BOR trip point levels may be unsuitable for the application. Figure 10.19 shows an
example of external circuitry which resets the device when VDD drops below a value
primarily determined by the zener diode. With the values shown, determine this trip
voltage and the approximate quiescent current taken by the circuit.

Solution The BC477 is a low-current general purpose PNP bipolar transistor with
a current gain better than 100. As shown in the diagram, with a 2.7 V drop across

330 The Essential PIC18® Microcontroller

Fig. 10.19 External Brown-out protection circuit

the zener diode, the transistor is forward biased (base negative with respect to the
emitter) and with the stated current gain will saturate and act as a switch. With
the transistor switch on (conducting), MCLR will be VDD − VCE(sat). The saturated
emitter-collector voltage (drop across the switch) is 0.25 V at 10 mA, and thus the
MCLR pin will be logic high at 4.75 V.

The current through the 81 K� collector resistor is 4.75
81×103 ≈ 60 µA. Taking the

base-emitter forward voltage as 0.7 V, the current through the 33 k� base resistor
is 2.7−0.7

33×103 ≈ 60 µA; which is very much beyond the necessary current to saturate
the transistor. This leaves a considerable margin to allow for a falling value of VDD.
Ignoring this small base current, the current into the zener diode will be 5−2.7

470 ≈
5 mA; which is the stated test current for the BZX79 zener diode.

If VDD should fall to below the zener voltage of 2.7 V plus the 0.7 V required to
forward bias the transistor, that is 3.4 V, then the transistor will turn off and MCLR
will drop low through the 81 k� pull-down collector resistor, and the MCU will
reset.

Example 10.2 A useful enhancement of the circuit shown in Fig. 10.19 would be
the ability to switch it off whenever the MCU enters its Sleep mode. This would
remove the approximately 5 mA standing current from the energy budget.

Show how the circuit of Fig. 10.19 could be modified with a minimum of addi-
tional circuit components.

Solution One possibility would be to use a spare parallel port pin to sink the zener
diode and transistor current in place of a direct connection to ground. In Fig. 10.20,
pinRA0 acts as the current sink. If this pin is configured as an output, and is brought
low (e.g. bsf PORTA,0) then it will take the place of the ground connection.

10 The Real World 331

Fig. 10.20 Switchable external Brown-out protection circuit

A single port pin can sink up to 8.5 mA without the logic level rising above 0.6 V,
then the 60 µA transistor collector current is well within the specification limit.

If RA0 is set high, then the transistor is switched off, as the collector is brought
above the base voltage, and MCLR will be pulled high through the 47 k� resistor.
The zener diode will not conduct and the current will be no more than the 5 µA
MCLR leakage value.

When a PIC MCU is reset, all parallel port pins are automatically configured
as input. In this situation the 47 k� pull-up resistor will turn off the Brown-out
circuitry.

This technique can be used to allow the MCU to powerup and control low-current
support circuitry, such as a radio transmitter, on demand. Higher power devices can
be switched on and off using a buffer transistor. If several parallel port pins are
used concurrently, in order to boost the controlled load, then the absolute maximum
current must not exceed 200 mA or 25 mA into any single pin—see Fig. 11.7 on
p. 346.

Self-Assessment Questions

10.1 In an attempt to reduce the current consumption of the circuit when in reset,
a student has used a 1 M� resistor as a pull-up resistor in the Manual reset
circuit of Fig. 10.13. Why does the PIC MCU not come out of reset?

10.2 The current consumption of a PIC MCU operating in the RC_RUN mode at
4 MHz with a VDD of 5 V, is measured as 1200 µA with no loading at the port
pins. What will be the current consumption if the device were to be clocked at
125 kHz and powered by a 4 V supply?

332 The Essential PIC18® Microcontroller

10.3 A certain 5 V-based design using the INTOSC oscillator at 1 MHz boosts the
execution rate to 8 MHz by altering the IRCF2:0 bits in OSCCON[6:4] (see
Fig. 10.7) from the default b’100’ to b’111’ during a time-critical routine. As
an upgrade to the design, the power-supply has been reduced to 2 V. However,
the processor seems to run correctly for a period and then lock up. Apart from
the change in supply voltage, there have been no other changes. What might
be the problem?

Chapter 11
One Byte at a Time

The ability of the software to activate or monitor the state of pins connected to
circuitry in the outside world is the most fundamental of the various input and output
capabilities provided by a microprocessor or microcontroller. These input/output
pins are generally gathered in groups of up to the size of the internal Data bus. In
the PIC18 MCU family these parallel ports allow up to eight bits of external data
to be directly read into or sent out of the processor core one byte at a time. The total
number of such parallel lines available on any specific family member depends on
the package footprint and on how much shared resources are used. This parallel-pin
budget varies from up to 16 for the 18 pin PIC18F1220 through 36 for the 40-pin
PIC18F4520, to a maximum of 70 for the 80-pin PIC18F8410.

When you have completed this chapter you will:

• Appreciate the function of a parallel input/output (I/O) port.
• Be able to configure an I/O port line.
• Understand the structure of a parallel I/O port and differentiate between a LATch

and PORT register.
• Comprehend how read–modify–write instructions interact with parallel I/O ports.
• Appreciate the electrical and power characteristics of an I/O port.
• Know how to enable internal port pull-up resistors.
• Understand how the function of the Change in Port B interrupt operates.

Conceptually a parallel I/O port can be considered as a File with its contents
visible to and accessible by the outside world. This somewhat simplified view is
represented in Fig. 11.1, which is based on a magnified section of the Data store
shown in Fig. 4.10 on p. 83. Port A bits 7:6 are shown dotted, as their respective
pins RA7:6 are only available for certain fuse selectable oscillator options; see
Fig. 10.9 on p. 316. In the specific case of the 18-pin PIC18F1220, pinRA5 de-
faults to the MCLR function, but can be fuse enabled to act as an input to PORTA[5].
Other devices use different port bits to share with MCLR; for instance, RE3 in the
PIC18FXX20 series. However, in all cases the shared pin can only ever act as a
parallel port input. As we see from Fig. 4.1 on p. 71 and Fig. 10.1 on p. 306,
in practice all device pins are shared between other functions. For instance, RB0

S. Katzen, The Essential PIC18® Microcontroller,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-229-2_11, © Springer-Verlag London Limited 2010

333

334 The Essential PIC18® Microcontroller

Fig. 11.1 A boiled-down view of the enhanced-range parallel Ports A and B

also functions as the INT0 interrupt input. All PIC18 enhanced-range family mem-
bers have at the very least the depicted 16-port lines arranged as two 8-bit parallel
ports.

The 28-pin devices, such as the PIC18F2420/2520 have an additional Port C;
with 40-pin variants, such as the PIC18F4420/4520 pair, adding an 8-bit Port D
and 4-bit Port E (shown grayed out in the diagram). Larger footprint members have
further parallel ports, which are also shared with other facilities. Some of these are
listed in Table 11.1.

Despite the depiction of Fig. 11.1, an I/O port does not behave quite like any other
internal File. For instance, each parallel port bit can be configured individually to
either reflect the electrical state of its associated pin or else drive that pin high or
low to follow the pin’s logic state. That is, each port bit has to be set either to read
the state of its associated pin or be able to write to that pin. Furthermore, we need
to determine how this configuration interferes with the action of software that tries
to alter or read the state of the port.

In Fig. 11.1 each of the parallel ports is shown paired with a TRIS register.
Fig. 4.10 on p. 83 this pairing is seen to be a characteristic of all such ports. Most
microcontrollers label these as Data Direction registers, but Microchip enigmati-
cally use the term TRIS as short for TRI-State, for reasons we will see later in the
chapter. Each bit n in a parallel port has a shadow bit n in its TRIS register, whose

11 One Byte at a Time 335

Table 11.1 Overview of several 28+ pin PIC18 MCU’s parallel I/O provision

Port Size Characteristics

A 5–8 I/O RA4 is often an open-drain output and common with Timer 0’s input

Shared with analog modules

B 8 I/O RB0:2 is shared with Hardware interrupts. Weak pull-up resisters

RB7:4 can generate a Changed interrupt

C 8 I/O 28 pin+ PIC MCUs shared with Serial ports

D 8 I/O 40 pin+ PIC MCUs shared with Parallel Slave port

E 4–8 I/O 40 pin+ PIC MCUs shared with analog modules

F 8 I/O 68 pin PIC18F6310, shared with mixed functions

G 5 I/O 68 pin PIC18F6310, shared with mixed functions

H 8 I/O 80-pin PIC18F8310, shared with external memory address/data

J 8 I/O 80-pin PIC18F8310, shared with external memory control

function is to configure the associated pin either as an input (TRIS[n] is 1) or an
output (TRIS[n] is 0).1

As an example, consider a situation where pin RA0 and pins RB[7:0] are to
be outputs and the rest of Port A are to be inputs. The following code fragment
normally appears at the beginning of the main routine; see Program 11.1.

movlw b’1111110’ ; Pin RA0 = Output
movwf TRISA ; Rest of Port A pins are Inputs
clrf TRISB ; All Port B pins are Outputs

In C we could ape the assembly-level code above; for instance, in our exemplar
CCS C language:

#byte TRISA = 0xF92 /* The TRISA Data Direction register */
#byte TRISB = 0xF93 /* The TRISB Data Direction register */
main()
{
TRISA = 0xFE; /* Pin RA0 = Output, rest are Inputs */
TRISB = 0; /* All PortB are Outputs */

However, some compilers may come with built-in functions to support port set-up
and usage. In the case of the CCS compiler we have the function set_tris_x()
for Port X, giving:

1Aide-mémoire: 0 for Output and 1 for Input.

336 The Essential PIC18® Microcontroller

main()
{
/* Define any variables first */
set_tris_a(0xFE); /* Pin RA0 = Output, rest are Inputs */
set_tris_b(0); /* All PortB are Outputs */

Any reset will set all TRIS bits to 1; that is, after a reset all pins will come on
stream as inputs. The choice of a starting configuration as input is deliberate, as if
a pin were set to output before the software has had a chance to set the port pin to
its initial state, then such a pin will come out of reset with an unpredictable voltage
state. This could activate any driven circuitry in an undesirable manner. For instance,
a latch actuating a switch turning on the heating element of a washing machine may
be triggered before any water is in the tank. Where this kind of catastrophe could
occur, the state of the appropriate port bits should be set to their appropriate initial
value before configuring the TRIS registers.

Once the directional properties of a port’s pins have been set-up, then the soft-
ware can either read from or write to a port in a comparable manner to a normal File
and hence interact with the outside world. Specifically:

• To monitor the state of any pin set as an input, use the btfss or btfsc in-
struction. For instance, btfss PORTA,1 skips if pinRA1 is High (that is, if
PORTA[1] is set to logic 1). Several pins at a time can be read by copying the com-
plete File into W; e.g., movf PORTA,w. If required, the byte could be copied
into a GPR File for further processing; e.g. movff PORTA,h’030’.

• To change the state of any pin set as an output, use the bcf, bsf or btg instruc-
tion. For instance, bcf PORTA,0 will force pinRA0 to its Low state (that is,
PORTA[0] is cleared to logic 0). Several pins at a time can be changed by copying
the contents of a File to the port. For instance, if all Port B’s pins are set as out-
puts, then to bring pinsRB[7:6] to its High state and RB[5:0] Low we have
movlw b’11000000’ : movwf PORTB.

We will look at the electrical characteristics of ports later in the chapter; for instance,
what happens if you read a pin that is set to be an output? First we will illustrate the
usage of parallel ports with two examples.

When the temperature of an oven reaches the set point, a LED is to continually
blink. The LED is connected to pinRA0 and the thermostat switch to pinRB7; as
shown in Fig. 11.2. The thermostat opens when the set temperature is reached or
exceeded and the blink duration in total is to be nominally 200 ms. The processor is
to be a PIC18F1220 running at 4 MHz and using a 5 V supply.

Figure 11.2 shows the hardware implementing the oven display. The LED is
connected to pinRA0 via a current limiting resistor. When RA0 is high the diode
is forward biased and the resulting current generated light. When Ra0 is low no
current flows and the LED is off. Using the typical forward biased junction voltage
drop for a LED of 2 V and an operating current of 20 mA gives a value for the
resistor of 5−2

20×10−3 = 150�.
The thermostat is a bi-metallic switch connected to pinRB7 and with one end

grounded. When below the set temperature the switch is closed then RB7 is low.

11 One Byte at a Time 337

Fig. 11.2 Pulsing an LED when temperature setting reached

With an over-temperature situation, the open switch results in RB7 being pulled
high through the pull-up resistor. The value of this resistor is not critical. If it is
too low then the resulting current through a closed thermostat will be unnecessarily
high and wasteful. Conversely if it is too high, leakage current from RB7 will cause
the pin voltage to drop, even with the thermostat open. Also, very high resistance
values are prone to pickup noise voltages from electro-magnetic interference; for
instance, from the heating elements. A value between nominally 10 and 100 k� is
suitable.

Program 11.1 shows an assembly language implementation of the software. This
listing can be broken-down into three phases.

Initialization
This phase selects appropriate configuration options, sets up the parallel port to act
a digital I/O and sets the two pins as input or output.

• As we don’t require precision timing, the internal oscillator is used as the Primary
clock source, as configured with the OSC = INTIO67 FOSC3:0 fuse setting.
The IRCF2:0 bits in the OSCCON register are set to b’110’ to give the required
4 MHz frequency—see Fig. 10.7 on p. 314.

• The Watchdog timer is disabled.
• Several Ports A and B pins share with the ADC module and on a Power-On Reset

default to analog inputs. To change their function to digital, the ADCON1 register
has to be set to b’11111111’—see Fig. 14.12 on p. 510.

• PinRA0 is configured as an output to drive the LED, by clearing TRISA[0]. All
the other pins default to inputs on a POR.

Switch monitoring
The state of the RB7 pin is monitored by testing bit 7 of PORTB and skipping out if
that bit goes to 1; reflecting pinRB7 going high.

LED pulsing
The LED is controlled by bringing bit 0 of PORTA to logic 0 (pin goes low and the

338 The Essential PIC18® Microcontroller

Program 11.1 Set temperature indication
#include "p18f1220.inc"

; Fuses for INTernal OSCillator with RA6:7 free
config WDT=OFF,OSC=INTIO67 ; and no Watchdog timer
org 0 ; Code starts @ Reset vector

STAT equ 7 ; Thermostat is bit 7 of PORTB
LED equ 0 ; LED is bit 0 of PORTA

; First initialize ports --------------------------------------
MAIN movlw b’01100000’ ; 1st set up the internal oscillator

movwf OSCCON ; to 4MHz
setf ADCON1 ; Make ports digital (default analog)
bcf PORTA,LED ; Start with LED off
bcf TRISA,0 ; Make pin RA0 (LED) an Output

; Now continually monitor thermostat & activate LED if needed -
M_LOOP btfss PORTB,STAT ; Skip IF open (high)

bra M_LOOP ; ELSE try again

; This is the blinking routine --------------------------------
bsf PORTA,LED ; Turn on LED
rcall DELAY_100MS ; for 100ms
bcf PORTA,LED ; and off
rcall DELAY_100MS ; for 100ms
bra M_LOOP ; & go again while thermostat open

LED is off) and logic 1 (pin goes high and the LED is on). The 100 ms subroutine
DELAY_100MS of Program 6.3 on p. 170 is used to create the 100:100 ms cycle
for the flash. After each 200 ms pulse, the thermostat is again checked.

As an alternative, Program 11.2 gives a CCS C coded equivalent. The program
algorithm follows that of the assembly-level equivalent.

Initialization

• The #fuses directive (see p. 318) used with the INTRC_IO parameter specifies
the Primary clock as the INTOSC, with pins RA6 and RA7 free for digital I/O—
see p. 313.

• The set-up_oscillator() function used with the parameter OSC_4MHZ,
configures OSCCON to give the specified 4 MHz clock rate.

• The #fuse parameter NOWDT disables the Watchdog timer (actually allowing
software control—see p. 454).

• The set-up_adc_ports() with the parameter NO_ANALOGS makes all
shared analog/digital pins all digital—see Fig. 14.12 on p. 510.

• The set_tris_a(0xFE); function call sets TRISA to b’11111110’, effec-
tively making pinRA0 an output to drive the LED.

11 One Byte at a Time 339

Program 11.2 Oven monitoring in C
#include <18f1220.h>
#use delay (clock=4000000)
#byte PORTA = 0xF80 /* Port A address */
#byte PORTB = 0xF81 /* Port B address */
#bit LED = PORTA.0 /* LED is connected to RA0 */
#bit STAT = PORTB.7 /* Thermostat is connected to RB7 */

#fuses NOWDT, INTRC_IO

void main(void)
{
set-up_oscillator(OSC_4MHZ); /* Set internal oscillator to 4MHz */
set_tris_a(0xFE); /* Set RA0 to be an output */
set-up_adc_ports(NO_ANALOGS);/* All parallel pins are digital */

while(1) /* DO forever */
{
if(STAT == 0)
{LED=0;} /* Keep LED off as long as RB7 is 0 */
else

{
LED = 1; /* ’stat has opened (RB7 was high) */
delay_ms(100); /* LED on for 100ms */
LED = 0; /* LED off */
delay_ms(100);
}

}
}

Switch monitoring
If the thermostat is closed, the if operand STAT == 0 will be true and the LED
will stay off indefinitely (LED = 0). STAT has been defined as PORTB.7, reflect-
ing the state of pinRB7 and LED as PORTA.0.

Else the LED is turned on (LED = 1) for 100 ms, using the delay_ms()
CCS C function and then off for the same period. After this 200 ms blink, control
is returned to the beginning of the endless loop (while(1)) and the thermostat
checked again.

As a slightly more sophisticated example; consider the situation shown in
Fig. 11.3, where any external peripheral device (maybe a printer) wishes to read
the byte contents of File h’020’ via Port B on request, every time it brings pinRA1
to its Low state. This signal from the peripheral is labeled RFD (Ready For Data).
When the PIC MCU responds some time later, it copies the datum to Port B and
then it pulses pinRA0, which is labeled DAV (Data AVailable), to inform
the peripheral that the datum is now available. On a Power-on Reset, Port B pins are
to be in their Low state and RA0 is to be High.

Signaling in this manner using semaphores, such as RFD and DAV, is known
as handshaking. The term comes from the protocol when beginning and ending
a conversion. Handshaking allows separate non-synchronized devices to converse
with each other without missing data.

Program 11.3 shows how the handshake is implemented in assembly code. As
in Program 11.1, the two parallel ports are set to be all digital, rather than analog.

340 The Essential PIC18® Microcontroller

Fig. 11.3 Outputting data
from Port B using a
handshake transfer

Preceding the port direction configuration code, the initial state of Port A and B
are set-up by writing the appropriate pattern to each port. Once this is done, the
port pins set to output will take on the initial state of RA0 High (corresponding to
bit 0 of PORTA being 1) and pins RB[7:0] Low (corresponding to all PORTB bits
being 0).

After this initialization code, the state of pinRA1 is checked for a Low-state
voltage, which reflects as a 0 in bit 1 of PORTA. When this occurs, the datum in
File h’020’ is copied out to PORTB via the Working register and pinRA0 dropped
Low. A single nop intervenes before it is brought High again, to give an extra cy-
cle’s delay. The specification did not give a duration of the DAV pulse, so in practice
nop would be replaced by a call to a delay subroutine; say, to give a 10 µs delay.

Finally, the state of pinRA1 is again monitored (as imaged in bit PORTA[1]) until
the peripheral brings its RFD line High to indicate that the transaction is over. Of
course, this is a potential hazard; as if the peripheral fails to respond, the PIC MCU
will hang. It would be safer to have a time-out; perhaps if there is no response after
65,536 tries then go to some error handling subroutine.

Program 11.4 gives an equivalent routine using CCS C. This follows a similar
structure, but notice in particular how an input pin is tested using constructions like
while(RFD == 0) {;} which does nothing ({;} is a null statement) as long
as it is true that the pin named RFD is 1. When RFD does go to 0, that is, pinRA1
goes Low, then the loop exits to the next statement.

The built-in function delay_cycles() gives an additional 1-cycle delay, and
it can be replaced by an appropriate delay function if this is not satisfactory; e.g.
delay_us(10) for 10 µs.

These programs may seem rather useless, as the datum in File h’020’ is never set-
up or changed. However, in a real situation the value could be changed if an interrupt
occurs, maybe on a regular basis as dictated by an internal or external timer. This

11 One Byte at a Time 341

Program 11.3 Implementing a parallel port handshake data transfer using assembly-level
code (15 instructions)

include "p18f1220.inc"
config WDT = OFF ; No Watchdog timer
org 0

cblock h’020’
DATUM:1 ; File h’020’
endc

; Initialize ports and set up the pins ------------------------
MAIN setf ADCON1 ; Make ports all digital

clrf PORTB ; Starting value of Port B is all 0s
clrf TRISB ; Port B is all Outputs
bsf PORTA,0 ; Initial state of DAV is 1
movlw b’1111110’ ; Pin RA0 = Output
movwf TRISA ; Rest of pins are Inputs

; Monitor pin RA1 looking for a low voltage -------------------
RFD_YES btfsc PORTA,1 ; Bit 1 of Port A: Is it 0?

bra RFD_YES ; IF not THEN try again

; Copy the requested Datum to Port B --------------------------
movff DATUM,PORTB ; Copy File h’20’ contents to Port B

; Now pulse the DAV pin RA0 low to signal "Here it is" --------
bcf PORTA,0 ; DAV (pin RA0) low
nop ; for a short time
bsf PORTA,0 ; and then high

; Now hang around until the RFD signal goes high ---------------
RFD_NO btfss PORTA,1 ; Skip if RA1 is high

bra RFD_NO ; IF not THEN keep trying

bra RFD_YES ; Repeat forever

could trigger an analog-to-digital converter module, which dumps its outcome in
this holding File. We will be looking at Timer and ADC modules in subsequent
chapters.

In order to fully understand the characteristics of parallel I/O ports we need to
look at its hardware implementation. A somewhat simplified version of a single I/O
port bit n together with its associated Data Direction bit is shown in Fig. 11.4. The
two key elements in this circuit are the Data D flip flop and Data tristate (3-state)
buffer.

• Writing to this port will trigger the Data D flip flop, causing the data on the inter-
nal Data store line to be clocked in and held as long as the MCU is powered—see
Fig. 2.16(c) and (d) on p. 31. For instance:

342 The Essential PIC18® Microcontroller

Program 11.4 Implementing a parallel port handshake data transfer using CCS C code (32
instructions)
#include <18f1220.h>

#byte DATUM = 0x020 /* File 0x20 holds the datum byte */
#byte PORTA = 0xF80 /* Port A address */
#byte PORTB = 0xF81 /* Port B address */
#bit DAV = PORTA.0 /* Pin RA0 is the \DAV line */
#bit RFD = PORTA.1 /* Pin RA1 is the \RFD line */

#fuses NOWDT

void main(void)
{
set-up_adc_ports(NO_ANALOGS);/* All parallel pins are digital */
DAV = 1; /* Start with \DAV line not active */
PORTB = 0; /* Start value of Port B is all 0 */
set_tris_a(0xFE); /* Pin RA0 (\DAV) is Output */
set_tris_b(0); /* All Port B pins are Outputs */

while(TRUE) /* DO forever loop */
{
if(RFD == 1) {;} /* Wait until \RFD goes FALSE (low)*/
else

{
PORTB = DATUM; /* Copy Datum out to Port B */
DAV = 0; /* \DAV (pin RA0) low */
delay_cycles(1); /* For a short time */
DAV = 1; /* and then high */
while(RFD == 0) /* Hang around until \RFD goes low */

{;} /* Null statement means do nothing */
}

}
}

movlw b’11110000’ ; Pattern in Working register
movwf h’F81’ ; Send to Port B (File h’F81’)

will set the top four Data flip flops in Port B to logic 1 and the bottom four to
logic 0.

Setting the port bits will occur irrespective of whether its associated I/O pins
are configured as input or output. However, to pass the flip flop’s state through
to the I/O pin, the TRIS (TRIState) buffer must be enabled. In this situation, as
shown in Fig. 11.6(b), the Data flip flop is directly connected to the outside world.

• Reading from this port enables the Data buffer, causing the state of the staticizer
latch2 to be gated through to the internal Data store line. When the port is idling,
i.e., not being read, the D latch is transparent and its output follows the state

2There is no staticizer latch in the low-range 12-bit family.

11 One Byte at a Time 343

Fig. 11.4 A rudimentary generic I/O port line

of the pin—see Fig. 2.16(a) and (b) on p. 31. When the port is being read, the
D latch clock enable goes High and the data into the 3-state Data buffer is frozen,
effectively holding its state constant while being read; that is, staticizing it. For
instance, to read the state of Port B we have:

movf h’F81’,w ; Read all eight input PortB lines into W

This reading action, shown in Fig. 11.6(a), will occur independently of whether
the associated I/O pin is configured as an input or output.

From Fig. 11.4 we see that a TRIS bit can be read from as well as written to. Al-
though this may be rather useless, consider a programmer wishing to alter pinRB7
to an output; for instance, see p. 406.

bcf h’F93’,7 ; Clear bit 7 of TRISB

344 The Essential PIC18® Microcontroller

Fig. 11.5 Input buffer voltage transfer characteristics; showing the response to a noisy input signal

bcf (Bit Clear File) is an example of a read-modify-write instruction (see p. 121)
whereby the state of TRISB is read into the processor, modified and then written out
to TRISB. To do this, the processor needs to be able to both read from and write to
the File. In fact nearly all write instructions, such as movwf, do a read cycle before
the key write cycle. The exception is the movff instruction which dispenses with
the destination read.

The voltage at the port pin in Fig. 11.4 is buffered from the Capture latch input.
Two types of buffer are used.

(a) The standard TTL digital buffer shown in Fig. 11.5(a) is basically a high-
gain analog amplifier which rapidly saturates if the input voltage rises above
VIL (maximum of 0.15VDD or 0.8 V if VDD > 4.5 V). The minimum VOH is
0.25VDD + 0.8 for VDD < 4.5 V and 2 V otherwise.

This type of buffer is satisfactory for well behaved logic signals; that is, with
fast rise times and low noise. Most3 PIC18 devices use this type of buffer for
Ports A & B.

(b) All ports above Port B use Schmitt trigger buffers. Such buffers have hysteresis
coupled with a snap action. As shown in Fig. 11.5(b), when the input voltage is
rising, the output will not respond until it reaches the upper threshold, which is
around 80% of VDD (4 V for a 5 V supply). Should the input subsequently fall
the output will not respond until it drops below 20% of VDD, or 1 V for a 5 V
supply. This is due to positive feedback around the analog buffer amplifier, and
this also gives a magnified gain, or slew rate, when the response does come.

This snap action lowers the risk of oscillation where the input voltage has a
slow rate of change. The hysteresis gives a better noise immunity. For this reason
RA4, which is shared with the Timer 0 input, always uses a Schmitt buffer to

3Exceptionally, the PIC18F1220 only uses these buffers on Port B.

11 One Byte at a Time 345

Fig. 11.6 Reading from and writing to a port bit with linked I/O pin set to input or output

help avoid Timer 0 counting multiple instances for the one logic cycle. Indeed,
all shared digital functions also use this type of buffer; for instance, the interrupt
inputs INT0, INT1 and INT2 which share with the RB0, RB1 and RB2 pins
respectively.

Because a parallel port may be configured as an input, or output, or a mixture of
both, it is important to know what restrictions are introduced when reading or alter-
ing the state of such special Files. For instance, what would happen if the software
read from a port bit which has been configured as an output? The four possibilities
enumerated in Fig. 11.6 are:

(a) Reading from a port pin set as input (TRIS = 1)

Here the TRIS buffer is disabled and the state of the Data flip flop remains
unchanged. For instance, movf h’F81’,w reads the state of Port B’s input
pins into the Working register.

(b) Writing to a port pin configured as an output (TRIS = 0)

Here the TRIS buffer is enabled and the Data flip flop altered by the processor
writing to the port. The state of this flip flop is imaged at the output pins. For
instance, if all Port B pinsRB[7:0] are set as output, movlw b’10101010’

346 The Essential PIC18® Microcontroller

followed by movwf h’F81’ sets the Port B pins to HLHLHLHL (H = High,
L = Low).

(c) Reading from a port pin configured as an output (TRIS = 0)

In this situation the TRIS buffer is enabled and so the applicable I/O pins
are driven from their associated Data flip flop. Normally, reading port pins set
to output will effectively copy their flip flop and associated pin states into the
CPU.

(d) Writing to a port pin configured as input (TRIS = 1)

In this situation the state of the Data flip flop will be altered in the appro-
priate manner. However, as the TRIS buffer is disabled, any change will not be
reflected at a linked I/O pin until the direction of the port pin is subsequently
changed to output. This ability to set-up the state of a port in a manner invisible
to the outside world was used in Program 11.3 to initialize the parallel ports
after reset and before any pins are set to output. Remembering that on reset, all
ports are set to input; in other words, all TRIS registers are set to b’11111111’.

The basic parallel port structure of Fig. 11.4 is actually that of the PIC16 family.
The structure used in the PIC18 family, shown in Fig. 11.8, has been slightly en-
hanced to avoid one serious failing of this circuit. When the TRIS buffer is enabled
(that is the pin is set to be an output), the voltage actually read is that of the pin.
In a well designed circuit, the pin voltage corresponds to that of the TRIS buffer.
However, if the current sourced or sunk by a pin is too high, then an erroneous logic
level can be sensed.

As an example, consider the situation of Fig. 11.7(a) where a bipolar transistor’s
base is directly connected to a port pin. This will take sufficient current from the
TRIS buffer to drag the pin voltage to ≈0.7 V; the forward conducting voltage of a
typical transistor base-emitter.4 The situation in Fig. 11.7(b) is similar, with current
flowing through the light-emitting diode (LED) into the port pin,5 and the TRIS
buffer will be pulled up to ≈3 V, assuming a conducting LED offset of 2 V.

Fig. 11.7 Sinking and sourcing current

4Typically somewhere between 25 mA and 45 mA (see Example 11.1). Note the 25 mA maximum
rating for any one pin limit!
5Typically around 45–80 mA; see Fig. 11.22.

11 One Byte at a Time 347

In these situations the outcome of reading a port pin set as output is often not the
state of that port bit’s Data flip flop, due to the improper voltage levels. For instance,
btfsc PORTB,7 in purporting to skip if bit 7 of Port B is zero may fail to function
as expected if the linked pin RB7 is sinking or sourcing too much current.

In some cases the effect of overloaded pins can be rather bizarre. Consider the
situation where pinRB6 is to be set high; e.g. bsf PORTB,6. Unfortunately, any
instruction6 that writes to a File will first read the data—see p. 121. In our instance,
all eight bits of Port B will be read, bit 6 will be set to 1 and the modified byte sent
out again. However, overloaded pinRB7 well result in bit 7 being read as 0, and this
is the value sent out. Thus, twiddling bit 6 (maybe to light a LED) also turns off the
transistor!

Unintended interactions can also occur where several changes are made to the
state of port pins in quick succession. In some cases, resistor-capacitor transients
delays may cause misreading of pin voltages. Example 11.5 gives an instance of
this difficult to diagnose phenomena.

To avoid the unintended consequences of badly behaved pin voltages, the PIC18
family port introduced an additional 3-state buffer to enable the processor to read
the state of the port Data bits directly, rather than the pin voltages. This alternative
vision of Portn is named LATn. For instance, LATB at h’F8A’ is the counterpart to
PORTB at h’F81’. Writing to LATn is identical to writing to PORTn. In most cases
reading will give exactly the same results, but using LATn is safer in more extreme
cases.

The majority of ports have TRIS buffers implemented as shown in Fig. 11.9(a)
which uses a series N-channel/P-channel field effect transistor totem-pole structure.

1. When the TRIS flip flop is logic 1 the lower AND gate has a logic 0 output and
the upper OR gate has a logic 1 output. In this situation, both transistors TRN and
TRP are non-conducting and the state of the Data flip flop is isolated from the I/O
pin. The port pin is thus isolated from the linked Data flip flop and is configured
as an input.

2. When the TRIS flip flop is logic 0 then the complement state of the Data flip flop
is gated through to both totem-pole transistors. With D Low, TRN conducts and
TRP is off, giving a Low pin voltage.

3. When the TRIS flip flow is logic 0 and D high, TRP conducts and TRN is off
giving a High pin voltage.

In the latter two states, the pin (normally) follows the state of the Data flip flop, with
current being sourced or sunk through the relatively low resistance active conducting
transistors.

These three states; namely off, low and high, give the buffer its tristate
adjective—see Fig. 2.4 on p. 20. Microchip name their Data Direction registers
TRIS registers from these interface buffers.

As an example, consider the situation where an electromagnetic relay is to be
activated, requiring a 200 mA activation current at 12 V. For currents and voltages

6Except movff.

348 The Essential PIC18® Microcontroller

Fig. 11.8 A simplified generic I/O port line with LAT buffer

of this magnitude we need external buffering. In Fig. 11.9(b) a bipolar transistor
acts as an external switch. If the minimum gain of this transistor is 100, then a
1.8 k� resistor will give a base current of 2 mA, assuming a base-emitter conduction
voltage of 0.7 V and a PIC MCU VOH of at least 4.3 V.

Most PIC16 and PIC18 devices7 implement the TRIS buffer driving pinRA4
shown in Fig. 11.9(c) in a somewhat different manner, in that only the bottom totem-
pole transistor is implemented. As opposed to the 3-state structure of Fig. 11.9(a),
this structure has only two states; that is, active logic 0 and open-circuit. This type
of output is known as open drain (or open-collector)—see Fig. 2.3 on p. 19.

1. When the TRIS flip flop is logic 1 (its reset state) then the AND output is Low
and TRN is off with the output pin high resistance. The buffer is effectively off
and RA4 can be read without any interference from the associated Data flip flop.

7But not the PIC18F1220/1330 device.

11 One Byte at a Time 349

Fig. 11.9 Output driver structures

2. When TRIS flip flop is logic 0, the output transistor conducts when the Data flip
flop is logic 0, giving an active-Low output. When the Data is logic 1, TRN is off
and the output pin floats.

An open-drain output cannot source current; either the load itself must be con-
nected from the output pin to a positive voltage or an external pull-up resistor used
as a load for the on-chip transistor. This is the case in Fig. 11.9(d), where the base
current for the external transistor is derived from the 1.8 k� pull-up resistor when
RA4 is off.

If RA4 is to be used as the Timer 0 input, it is usually configured as an input. If
configured as an output, then in this situation RA4 must be set to logic 1, which will
disable the open-drain transistor and prevent interaction between it and the external
clock input to the Timer. Notice that the input buffer for pinRA4 is always a Schmitt
trigger, to reduce the chance of noise and oscillations being counted by the Timer.

Any pin set-up to be an output has to be able to carry an appropriate current to
activate the driven load. In most situations a port pin configured as an output will
only be required to source or sink a few milliamps of load current. Nevertheless, it
is important to be aware of the limitations of the drive capabilities of port output
pins.

350 The Essential PIC18® Microcontroller

Fig. 11.10 Power dissipation
model

Generally two situations are tabulated in a device’s data sheet.

1. Sink current IOL into a pin when an output is in a Low state should not exceed
+8.5 mA if the Low voltage VOL is not to rise above 0.6 V.

2. Source current IOH out of a pin which is High should not exceed −3 mA if the
High-state voltage is not to drop more than 0.7 V below VDD. The negative cur-
rent denotes source; i.e., out of the device.

Larger currents may be sourced or sunk, as in Fig. 11.7, if degradation of logic
levels are acceptable, subject to an absolute limitation that it must be within the
range ±25 mA for any single I/O pin to avoid damage. Where more than one I/O
pin is involved in driving current, an overall global limit must be observed. The
maximum sunk or sourced from all the ports together should not exceed 200 mA.

Each output pin in sourcing or sinking current will dissipate energy, which ap-
pears in the package as heat. From the simplified model of Fig. 11.10 we see that
there are three components to this dissipation that are modeled as resistors.

1. From the VDD power pin we have a current IDD. However, the current through the
body resistor R1 is less by the source currents from the port pins, giving a V × I

dissipated power of VDD × (IDD − ∑
IOH).

2. The voltage drop across the equivalent resistance R2 between output pins and the
power pin is �V = VDD − VOH. Thus the power dissipated is �V × ∑

IOH.
3. Current sunk into the output pins through R3 to ground via the VSS pin dissipates

VOL × ∑
IOL.

Adding these components gives the formula quoted in the data sheet:

PDIS = VDD ×
(

IDD −
∑

IOH

)
+

∑(
(VDD − VOH) × IOH

) +
∑

(VOL × IOL)

11 One Byte at a Time 351

but note that the output voltages at each pin will differ with different currents. The
figure given in the data sheets for PDIS is 1 W. In all cases the maximum current into
the VDD power pin should not exceed 250 mA and 300 mA out of the VSS pin.

In practice, the equivalent resistance R2 is not linear and varies in a rather com-
plex way; as illustrated in Fig. 11.16. That is, VOH does not drop with current in
a straight line. Data sheets show graphs of this current–voltage relationship; for
instance, see Figs. 11.16 and 11.22. However, a worst-case scenario with large cur-
rents would be to assume that VOH had dropped to zero and VOL had been pulled
up to the supply VDD. In this situation the excess of IDD over

∑
IOH supplying the

CPU and other peripheral modules would be minimal and could be ignored. The
total power dissipated would then be:

PDIS = VDD ×
(∑

IOH +
∑

IOL

)
.

Many applications involve reading the state of arrays of switches. Rather than use
the relatively more expensive single-pole double-throw (SPDT) switch arrangement
of Fig. 11.11(a) to give the two logic states, most switches—for instance, those in the
keypad of Fig. 11.13—are single-pole single-throw (SPST) types. In these situations
an external pull-up resistor is needed to convert the open state to a High-state volt-
age; as shown in Fig. 11.11(b). A similar situation arises when open-drain/collector
electronic devices, such as phototransistors, are to be read by a port. The value of
such pull-up resistors should not be too low, as a large current will flow through the
switch when closed, nor too high, or else noise will be induced by electromagnetic
means from external sources. A good compromise is in the range 10–100 k�.

In order to simplify the interface of such devices, Port B inputs have optional
internal pull-up resistors. These internal resistors are called weak pull-ups, as their
typical equivalent values of around 20 k� is high enough not to interfere with de-
vices being read which have ‘normal’ logic Low and High outputs.

We see from Fig. 11.12 that the internal pull-up resistors (actually a P-channel
FET) are switched in only if RBPU (Register B Pull Up, bit 7) of the Interrupt Con-
trol 2 register is 0. Although all eight pull-ups are qualified by RBPU, those pins
configured as outputs (TRIS[n] = 0) will have the resistor switched off. RBPU re-
sets to 1, and so the pull-up resistors default to being off.

As a typical application of weak pull-ups, consider the problem of reading a
keypad, such as that illustrated in Fig. 11.13(a). In this particular instance there are

Fig. 11.11 Interfacing switches to a port pin

352 The Essential PIC18® Microcontroller

Fig. 11.12 Port B’s weak pull-up resistors controlled by RBPU in INTCON2[7]

12 switches, and rather than use up all these scarce I/O pins it is hardware efficient to
connect these switches in the form of a 4 × 3 matrix, as illustrated in Fig. 11.13(b).
This 2-dimensional array reduces the I/O pin count to 7. Larger keypads show an
even greater efficiency gain, with a 64-contact 8 × 8 keyboard needing only 16 I/O
pins.

Although there are variations on this theme, the topology shown here is typical.
The three columns are read in via RB[7:5], with internal pull-up resistors en-
abled. The four rows connected to RB[3:0] can be individually selected in turn by
driving the appropriate pin Low, thus scanning through the matrix. The sequence
is shown in Fig. 11.13(c). The switch contacts are normally open and, because
of the pull-up resistors, read as logic 1. Should a switch connected to a Low row
line be closed then the appropriate column line will be driven Low. This means
that once the closed key column has been detected the column:row intersection is
known. The 330� protection resistors limit the current through the switch, should
one of the RB[7:5] pins accidentally give a High-state output due to erroneous
software.

In order to tie these concepts together, consider a subroutine to interrogate the
keypad and return either with the key pressed (or at least the first key found if more

11 One Byte at a Time 353

Fig. 11.13 Interfacing to a keypad

than one) or if no key then −1 (i.e., h’FF’). Before looking at the coding, we can
assume that somewhere in the main software Port B has been configured appropri-
ately with the correct input and outputs assigned and that bit RBPU in the INTCON2
register has been cleared. Something like:

include "p18f1220.inc"
MAIN setf ADCON1 ; Make all port pins digital

movlw b’11110000’ ; Make RB[7:4] inputs
movwf TRISB ; RB[3:0] outputs
bcf INTCON2 ;Activate internal pull-ups

The listing of Program 11.5 is based on the task list:

1. Set KEY_COUNT to one.
2. For i = 0 to 3.

• Activate row i.

354 The Essential PIC18® Microcontroller

• For j = 0 to 2.
– Check column j.
– IF zero THEN BREAK to step 4.
– ELSE increment KEY_COUNT.

3. Set KEY_COUNT to −1 if no key found.
4. Return KEY_COUNT.

Basically the sequence of operations is to begin with a count of one; i.e., key[1],
and bring row[0] Low. As each column is checked for a zero, the count kept in the
Working register is incremented. If no closure (that is, a 0) is found, the next row is
tried by shifting the initial test pattern one position.

Program 11.5 Scanning the keypad
; ***
; * FUNCTION: Scans 4x3 keypad & returns with a key identifier*
; * ENTRY : None *
; * EXIT : Key in W [MEM]=10, [0]=11, [SET]=12 *
; * EXIT : Return -1 (h’FF’) if no key detected *
; * ENVIRON : KEY, PATTERN byte vars *
; ***

cblock ; Two global variables
KEY_COUNT:1, PATTERN:1

endc

SCAN_IT clrf KEY_COUNT ; Key 1 is the first key
incf KEY_COUNT,f
movlw b’11111110’ ; The initial scan pattern
movwf PATTERN

SLOOP movff PATTERN,PORTB ; Scan pattern sets row low
movf KEY_COUNT,w ; Get Key count

; Now check each column for a zero
btfss PORTB,5 ; Check column 1
bra GOT_IT ; IF zero THEN found the key!

incf KEY_COUNT,f ; ELSE inc Key
btfss PORTB,6 ; Check column 2
bra GOT_IT ; IF zero THEN found the key!

incf KEY_COUNT,f ; ELSE inc Key again
btfss PORTB,7 ; Check column 3
bra GOT_IT ; IF zero THEN found the key!

incf KEY_COUNT,f ; ELSE inc Key again

; Reach here if no closed key
rlncf PATTERN,f ; Shift scan pattern once <-
btfsc PATTERN,4 ; Check; has the 0 arrived at RB4?
bra SLOOP ; IF not DO another column

; ELSE no key found anywhere
movlw -1 ; Return -1
goto S_EXIT

GOT_IT movf KEY_COUNT,w ; Copy Key count into W
S_EXIT return ; and return

11 One Byte at a Time 355

There are two ways out of the loop.

• If a 0 is found during the scan, the count in W is the desired value and the sub-
routine immediately returns after copying the Key count from memory into W.

• If the row pattern shift results in the sample 0 arriving at bit 4, then the subroutine
returns h’FF’ to tell the caller that no key has been found.

In the real world a subroutine like this would often read in rubbish, due to switch
bounce and possibly noise induced in the connections between keypad and the elec-
tronics. One way of filtering out this unpredictability is shown in the subroutine
of Program 11.6. Here the state of the keypad is interrogated using the SCAN_IT
subroutine of Program 11.5. By keeping the state of the previous reading in Data
memory, any change can be detected. Only if no change occurs over 256 readings
will subroutine GET_IT return with the keypad state. Depending on the quality of
the keypad, ambient noise and processor speed, the outcome can be improved at the
expense of response time by including a short delay in the loop, or by using a 2-byte
stability count to increase the number of readings.

Program 11.7 shows the equivalent coding in CCS C to that in Programs 11.5
& 11.6. This assumes that Port B has already been initialized as follows:

Program 11.6 Noise filtered keypad scanning
; ***
; * FUNCTION: Scans 4x3 keypad and returns with a debounced *
; * FUNCTION: key identifier *
; * ENTRY : None *
; * EXIT : Key in W [MEM]=10, [0]=11, [SET]=12 *
; * EXIT : Return -1 (h’FF’) if no key detected *
; * ENVIRON : COUNT, NEW_KEY, OLD_KEY *
; * RESOURCE: Subroutine SCAN_IT *
; ***

cblock ; Three global variables
COUNT:1, NEW_KEY:1, OLD_KEY:1
endc

GET_IT clrf COUNT ; The no-change count zeroed
GLOOP rcall SCAN_IT ; Raw value returned in W

movwf NEW_KEY ; Is new value
cpfseq OLD_KEY ; New and old the same?
bra NOT_EQUAL ; IF same go to Not Equal

; IF readings are the same THEN
incfsz COUNT,f ; Increment count; IF not
bra GLOOP ; rolled around to 00 repeat
movf OLD_KEY,w ; ELSE thats it!
return ; and return with Key value

; Readings are different, so:
NOT_EQUAL movff NEW_KEY,OLD_KEY ; Make old key = new key

bra GET_IT ; and start all over again

356 The Essential PIC18® Microcontroller

Program 11.7 Scanning the keypad in C
/**
* FUNCTION: Scans 4x3 keypad & returns with a debounced *
* FUNCTION: key identifier *
* ENTRY : None *
* EXIT : key, [MEM] = 10, [0] = 11, [SET] = 12. -1 if none*
* RESOURCE: Function scan_it() *
**/
unsigned int get_it(void)
{
unsigned int count, old_key, new_key;
count = 0;
while(count<255)

{
new_key = scan_it();
if(new_key == old_key)

{ count++;}
else

{
old_key = new_key;
count = 0;
}

}
return (old_key);
}

/**
* FUNCTION: Scans 4x3 keypad & returns with a key identifier*
* ENTRY : None *
* EXIT : key, [MEM] = 10, [0] = 11, [SET] = 12. -1 if none*
**/
unsigned int scan_it(void)
{
unsigned int key, pattern;
key=1; pattern = 0xFE; /* Initial pattern b’01111111’ */
while(key<13)

{
PORT_B = pattern;
if(!COL1) {break;}
key++;
if(!COL2) {break;}
key++;
if(!COL3) {break;}
key++;
pattern = pattern << 1; /* Shift pattern left once */
}

if(key==13) {key = 0xFF;}
return key;
}

11 One Byte at a Time 357

#include <18f1220.h>
#byte PORT_B = 0xF81
#bit COL1 = PORT_B.5 /* Column 1 is RB5 */
#bit COL2 = PORT_B.6 /* Column 2 is RB6 */
#bit COL3 = PORT_B.7 /* Column 3 is RB7 */

unsigned int scan_it(void);
unsigned int get_it(void);
int main()
{
int reading;
set-up_adc_ports(NO_ANALOGS);/* All parallel pins digital */
set_tris_b(0xF0);
port_b_pullups(TRUE);

Notice the use of the function port_b_pullups(TRUE) as an alternative to
setting the RBPU bit in the INTCON2 register.

The logic of the program is very similar to our assembler coding, with a shifting
pattern zeroing each row in turn. The only difference is that the loop is executed a
fixed number of times using a count, rather than testing bit 4 of the test pattern. This
makes the process more transparent, although the latter is more efficient.

To facilitate interfacing switches and keypads, PIC MCU families possess the
ability to detect whenever a variation happens at some Port B inputs. The logic of
this Port B Change feature is shown in Fig. 11.14.

The top four Port B I/O pins have a second D latch in parallel with the main
Capture latch. This main latch is updated every instruction cycle on the first phase
Q1—see Fig. 4.5 on p. 76. The new Capture latch is only updated whenever Port B
(not LATch B) is read, and this occurs on the third phase Q3. When the reading
action is over, the Change latch freezes and captures the pin state as it is at the time
of reading. The outputs of both the Capture and Change latch are Exclusive-ORed
together. As we have seen on p. 14, an XOR gate detects differences between its
two inputs. As the Capture latch is now following the state of the associated pin,
any subsequent variation at this pin input will cause the output of the associated
XOR gate to go to logic 1. Each of the four Port B cells RB[7:4] has a Change
feature and the four XOR gates are ORed to give a composite signal which sets the
RBIF (Register B Interrupt Flag) in the INTCON of Fig. 7.2 on p. 209. If the RBIE
(Register B Interrupt Enable) bit is set to 1, then this is a convenient way of awaking
a PIC MCU slumbering in its Sleep state. If the GIE (General Interrupt Enable)
bit is set as well, an alteration in the top nybble of Port B will cause an interrupt.
Each XOR gate is ANDed with the appropriate TRIS line, so that only bits that are
programmed as an input can contribute to the Change signal.

In the specific case of our keypad of Fig. 11.13, if all the row lines are set to the
Low state, then when any switch is pressed a column line will change state. If RBIE
has been set to enable the Port B Change facility, then when the RBIF flag sets an

358 The Essential PIC18® Microcontroller

Fig. 11.14 The PIC18 Port B Change feature, with detail for RB7

interrupt will occur. The keypad may then be scanned in the ISR to determine which
key has been closed.

Care must be taken in using this facility. For instance, using the lower (non-
Change) part of Port B (e.g., bcf PORTB,0) can affect the Change facility by
forcing all the latches to resample. Remember that instructions that write to memory,
except movff, also do a preliminary read.

Once the PIC MCU has responded to the Change interrupt, the Change signal
setting RBIF should be removed by reading Port B again, which equates the state of
the two D latch arrays. Only then should RBIF be cleared. Failure to do this initial
read will result in this interrupt flag being immediately set again.

As an instance, using the keypad to awaken the PIC MCU with the assumption
that GIE is zero (no interrupt) should be implemented as:

movf PORTB,w ; Read Port B to cancel any difference
bcf INTCON,RBIF ; Clear the Change interrupt flag
bsf INTCON,RBIE ; Enable the Change interrupt enable
sleep ; Go to sleep
; zzzzz
call DELAY ; On wakening let things settle
movwf PORTB,w ; before canceling any difference
bcf INTCON,RBIF ; Clear the Change interrupt flag
bcf INTCON,RBIE ; Disable Change interrupt facility

11 One Byte at a Time 359

As an example, consider the coding of a Port B Change interrupt service routine
for a dishwasher with four front-panel momentary push switches. These switches
are labeled AUTO, ECONO, QUICK and RINSE and are connected as shown in
Fig. 11.15. Whenever the operator wishes to select a wash program, the appropri-
ate switch is depressed. Once the PIC18F1220 senses a change to the switch set-
tings, the software is to transfer its focus to the designated subroutine AUTOMATIC,
ECONOMY, QUICK_RINSE or PRE_RINSE. A buzzer is to be sounded for 0.5 s,
and an LED is to be lit above the appropriate switch and remain illuminated for the
duration of the wash program.

Our background software needs to initialize the processor to:

• Configure all parallel port pins digital.
• Make pins RB[7:4] and RA0 outputs; the rest remaining inputs.
• Switch in the Port B integral pull-up resistors.
• Clear any possible Port B mismatch and clear the associated interrupt flag.
• Enable both the RB and General interrupt functions.

org 0 ; Reset vector
goto MAIN ; Jump to background software

; Background software -------------------------
MAIN setf ADCON1 ; Make all pins digital

movlw b’11110000’
movwf TRISB ; RB7:4 outputs, rest inputs
bcf TRISA,0 ; Make RA0 an Output to Buzzer
bcf INTCON2,NOT_RBPU ; Activate internal pull-ups
bsf INTCON,RBIE ; Enable Change PortB int
movf PORTB,w ; Reset the Change mechanism
bcf INTCON,RBIF ; Clear the interrupt flag and
bsf INTCON,GIE ; the General interrupt system
.... ; Rest of background routine

The code fragment above closely follows the task list above. The only point of
note is the setting up of the Port B Change interrupt system. This is implemented
by setting the RBIE (INTCON[3]) RB-enable mask bit. Resetting the Change logic,
which may be triggered at reset, is accomplished by clearing Port B. clrf is an
example of a read-modify-write instruction (despite the target value being irrelevant)
and the read cycle resets any mismatch condition. It also turns off all LEDs. After
(not before) the RBIF (INTCON[0]) flag can be cleared.

The foreground ISR listed in Program 11.8 is based at the default (Compatible)
interrupt vector at h’00008’. This is entered whenever there are any changes in the
state of the four switches (this is the only kind of interrupt enabled). The core of
this process tests each switch in turn. If a closed switch (logic 0 on the tested Port B
pin) is detected, the associated front panel LED is lit and the buzzer sounded for
500 ms before calling the appropriate wash program subroutine. On return, the ISR
is exited by reading Port B to reset the change logic and turn off the LEDs; resetting
the RBIF flag and returning to the background routine. Using the Fast version of the
retfie instruction automatically returns the context.

360 The Essential PIC18® Microcontroller

Program 11.8 The dishwasher RB-interrupt handler
org h’00008’ ; The Interrupt vector

; Foreground software --
; **
; * FUNCTION: ISR to handle Change Port B interrupts *
; * FUNCTION: Calls subroutine appropriate to closed switch *
; * FUNCTION: Activates buzzer & fitting LED for chosen program*
; * ENTRY : Whenever any switch changes RB[7:4] *
; * EXIT : Change function & LEDs cleared after subroutine *
; * RESOURCE: Subroutines BUZ, AUTOMATIC, ECONOMY, QUICK, RINSE*
; * ENV’MENT: None *
; **
ISR_DISHWASHER

btfsc PORTB,4 ; Check, was it the AUTO switch?
bra TRY_ECONO ; IF not THEN try the ECONO switch

bsf PORTB,0 ; ELSE turn on the A_LED
call BUZ ; Buzz for 500ms
call AUTOMATIC ; Go for it
bra DISH_EXIT ; and exit

TRY_ECONO
btfsc PORTB,5 ; Check, was it the ECONO switch?
bra TRY_QUICK ; IF not THEN try the QUICK switch

bsf PORTB,1 ; ELSE turn on the E_LED
call BUZ ; Buzz for 500ms
call ECONOMY ; Go for it
bra DISH_EXIT ; and exit

TRY_QUICK
btfsc PORTB,6 ; Check, was it the QUICK switch?
bra TRY_RINSE ; IF not THEN try the RINSE switch

bsf PORTB,2 ; ELSE turn on the Q_LED
call BUZ ; Buzz for 500ms
call QUICK ; Go for it
bra DISH_EXIT ; and exit

TRY_RINSE
btfsc PORTB,7 ; Check, was it the RINSE switch?
bra DISH_EXIT ; IF not THEN no switch was set!

bsf PORTB,3 ; ELSE turn on the R_LED
call BUZ ; Buzz for 500ms
call RINSE ; Go for it

; Exit point --
DISH_EXIT

clrf PORTB ; Turns off all LEDS and resets Change B
bcf INTCON,RBIF; Cancel Change PortB flag
retfie FAST ; Return with saved context

; ***
; * FUNCTION: Sounds buzzer (RA0) for 500ms *
; * ENTRY : None *
; * EXIT : Buzzer off *
; * RESOURCE: DELAY_500MS subroutine *
; * ENV’MENT: None *
; ***
BUZ bsf PORTA,0 ; Turn on buzzer

call DELAY_500MS ; For 0.5s
bcf PORTA,0 ; Turn off buzzer
return

11 One Byte at a Time 361

Fig. 11.15 Hardware for the
dishwasher control panel

As the buzzer can be sounded at four possible points in the ISR, it is handled
with a separate subroutine. There is no problem calling a subroutine from an ISR;
which in this respect is no different than nesting subroutines. The 500 ms subroutine
listing is not shown. A modified version of Program 6.10 on p. 190 can be used to
code this task.

Coding the dishwasher control software in C again requires the environment to
be set-up in the background routine, according to our tasklist.

void main(void)
{
set-up_adc_ports(NO_ANALOGS);/* All parallel pins are digital*/
set_tris_a(0xFE); /* RA0 = Output, RA[7:1] Inputs */
set_tris_b(0xF0); /* RB[7:4] Inputs, rest Outputs */
port_b_pullups(TRUE); /* Pullups for switches */
PORT_B = 0; /* Reset Change mechanism */
clear_interrupt(int_RB); /* Clear RBIF flag */
enable_interrupts(int_RB); /* Enable Change_B interrupts */
enable_interrupts(GLOBAL); /* Interrupt system enabled */
/* Rest of background software */

The code fragment above is similar to the assembly-level equivalent.

362 The Essential PIC18® Microcontroller

Program 11.9 Coding the RB-interrupt handler in C
#int_RB
void isr_dishwasher(void)
{

if(!AUTOMAT) {A_LED = 1; buz(); automatic();}
else if(!ECONO) {E_LED=1; buz(); economy();}
else if(!QUIK) {Q_LED=1; buz(); quick();}
else if(!RINS) {R_LED=1; buz(); rinse();}
PORT_B = 0; /* Reset Change mechanism & LEDs */
}

void buz(void)
{
BUZZER = 1;
delay_ms(500);
BUZZER = 0;
}

The foreground function listed in Program 11.9 is designated a Port B change
ISR using the #int_RB qualifier. Each LED and switch has been named (not listed
here) corresponding to a specific bit in Port B. Some of the switch names have
been altered slightly to avoid using the same name as a wash-program function;
e.g. QUICK and quick().

The core of the function is a 4-way if-else tree. Each branch tests one switch
and if the test is true (which because of the ! NOT operator will be the case if the
switch is closed) the associated LED lit, the buzzer function will be called followed
by the appropriate wash-program.

When this string of events is complete, execution will fall through to the end of
the if-else tree. There the Port B change logic and LEDs are cleared by accessing
PORT_B. When the ISR terminates, the RBIF flag is automatically cleared.

Examples

Example 11.1 A 2N3055 NPN bipolar transistor is to be used to activate the field
coils of a small stepper motor. Taking into account the minimum gain of the transis-
tor over the range +85 → −40°C, it has been calculated that the base current must
be at least 10 mA. The transistor is to be controlled from a port pin and the proces-
sor is to be powered with a VDD of 5 V. The 2N3055’s base-emitter voltage can be
assumed to be no more than 0.7 V. What is the maximum value of the base resistor
RB, and, given this value, what will be the worst-case maximum base current?

Solution For currents of this magnitude we can assume that the pin voltage will be
less than 5 V. The data sheet specifies a minimum voltage of 4.3 V (a drop of 0.7 V)
for a IOH of −3 mA, but for currents greater than this we must resort to graphical
techniques.

11 One Byte at a Time 363

Fig. 11.16 Source current against voltage

Figure 11.16 shows the graphical relationship of output source current IOH for a
High-output voltage state VOH. The gray area is bounded by the minimum situation,
which is at +85°C and maximum condition at −40°C.

VOH is also a function of the transistor input base resistor circuit according to
the equation VOH = 0.7 + IOH × RB. This straight line relationship (called a load
line) is shown on the graph from (0,0.7) drawn to intersect the minimum locus at
a current of −10 mA. This crossover is the only point that satisfies both current–
voltage relationships. The slope of the load line �V

�I
is the resistance in k� (as

current is in mA) and measures 280 �. Notice that the High output state has fallen
to 4 V (−10,4.0).

Extending the load line onwards gives the maximum current as the X co-ordinate
of the intersection with the maximum locus, which is approximately 11.5 mA;
not much different. If the current requirement had been larger, then the mini-
mum/maximum currents diverge showing a significant temperature sensitivity. For
instance, a 20 mA minimum base current requires a base resistor of ≈120 � (as-
suming a base voltage of 0.8 V) and the maximum base current would be 28 mA.

364 The Essential PIC18® Microcontroller

Example 11.2 A PIC18F1220 MCU is to be used as a digital comparator where
a parallel-input 8-bit word P is to be compared to a byte datum located in a File
named TRIP. Outputs are to indicate Lower-Than, Equivalent, and Higher-Than.
The comparator is to have an hysteresis of ±1 bit. That is, if previous comparisons
showed P < TRIP then the trigger level is increased to TRIP+1 for equality. Sim-
ilarly, on a downward trajectory the equality level is to be decreased to TRIP− 1.

Datum P is to be input via Port B set-up as input and the lower three Port A pins
give the active-High comparator outputs <, ==, > at RA2, RA1, RA0, respectively.

Solution The task list for such a specification is:

1. Subtract P from LEVEL.
2. IF Equal (EQ when Z = 1) THEN == output active.
3. ELSE IF P Higher than LEVEL (HI when C = 0, Borrow) THEN > output active

AND LEVEL=TRIP-1 unless it is zero, in which case LEVEL=TRIP.
4. ELSE IF P Lower than LEVEL (LO when C = 1, No Borrow) THEN < output

active AND LEVEL=TRIP+1 unless it is h’FF’, in which case LEVEL=TRIP.

The subroutine given in Program 11.10 assumes that the main program has set-
up the port directions accordingly and the fixed value is in TRIP. Initially LEVEL

Program 11.10 A digital comparator with hysteresis
COMP movf PORTB,w ; Get input N

subwf LEVEL,w ; LEVEL - N
btfss STATUS,Z ; Skip if equality
bra CONTINUE ; ELSE IF not THEN try alternative

; This code for equality ---------------------------------------
movlw b’11111010’ ; Make == output logic 1
movwf PORTA ; Other outputs logic 0
bra COMP_END ; and exit

CONTINUE btfsc STATUS,C ; Skip if borrow (N higher than)
bra LO ; ELSE N < LEVEL

; This code if N > LEVEL ---------------------------------------
HI movlw b’11111001’ ; Set > output RA0 to logic 1

movwf PORTA ; Rest to 0
decf TRIP,w ; Copy TRIP-1 to w
btfsc STATUS,C ; Skip if underflows
movwf LEVEL ; ELSE is new comparator level
bra COMP_END ; and exit

; This code when N < LEVEL -------------------------------------
LO movlw b’11111100’ ; Set < output RA2 to low

movwf PORTA ; Rest to 0
incfsz TRIP,w ; Copy TRIP+1 to w. IF not 00
movwf LEVEL ; gives the new comparator level

COMP_END return

11 One Byte at a Time 365

Program 11.11 Coding the digital comparator in C

void compare(int trip)
{
EQ = HI = LO = 0;
if (PORTB == LEVEL) {EQ = 1;}
else if (PORTB > LEVEL)

{
HI = 1;
if(LEVEL > 0) {LEVEL = trip - 1;}
}

else
{
LO = 1;
if(LEVEL < 0xFF) {LEVEL = trip + 1;}
}

}

would have been set to the same value as TRIP but would subsequently vary by
±1 as per the specification—the hysteresis band—unless LEVEL would under- or
over-flow.

Software solutions to traditional hardware functions, such as comparison, have
the advantage of greater flexibility, albeit at the price of a lower data throughput.
Using low-cost ‘computing engines’, such as the PIC MCU, means that relatively
simple functions traditionally implemented by dedicated hardware can be replaced
by embedded processors.

In this instance, flexibility could be replacing the fixed trip level by a variable
datum input via, say, Port C—see SAQ 11.4. Example 12.1 on p. 440 shows how an
external datum can be serially acquired. Alternatively, an analog signal could repre-
sent one or both of the levels in devices with integral A/D converters—see Chap. 14.
In all these situations the hysteresis may advantageously be made a fraction of the
trip voltage, e.g., ± 1

32 , rather than a fixed ±1 bit.
In the case of the C function equivalent coding listed of Program 11.11, the names

EQ, HI and LO have been defined externally as the appropriate bits in Port A. Here
we are assuming that trip is a variable, acquired elsewhere, and passed to the
function. The body of the function does the comparison and actuates the appropriate
pin. If required, the global variable LEVEL is altered in order to shift the trigger
level. If trip is fixed, then it need not be passed to the function and could be a
literal.

Example 11.3 The principle of a stepper motor is shown in Fig. 11.17. In essence
there are four coils, labeled A, B, C, D, which may be selectively energized either
singly or in pairs, to generate a magnetic field in one of eight directions in divi-

366 The Essential PIC18® Microcontroller

Fig. 11.17 The stepper
motor; showing a
north-easterly field

sions of 45°C.8 Thus Coil A alone gives a northerly field, A and B together give a
north-easterly direction, B alone is east, etc. The rotor follows the field as it changes
direction, provided that inertial considerations allow it to keep up during accelera-
tion and de-acceleration.

Write a subroutine originating at h’00050’ in the Program store to advance the
rotor by a passed value of one to 256 steps. Assume that the Port A pins RA[3:0]
are connected respectively to coils A, B, C, D. The rate is to be nominally 100 steps
per second, based on a 10 ms delay, which is to be written to be largely independent
of the crystal frequency. The latter is to be indicated by the programmer by the
constant FREQ, which is the multiple of 1 MHz; e.g., d’4’ for a 4 MHz crystal.

Solution Our first step is to devise a table showing energization patterns for the
eight possible field directions, as shown in Table 11.2.

The coding shown in Program 11.12 comprises three subroutines.

Table 11.2 Energization
pattern for the eight field
directions

Position A B C D Bearing

0 1 0 0 0 ↑
1 1 1 0 0 ↗
2 0 1 0 0 →
3 0 1 1 0 ↘
4 0 0 1 0 ↓
5 0 0 1 1 ↙
6 0 0 0 1 ←
7 1 0 0 1 ↖

8A real stepper motor repeats the coil set several times around the peripheral motor stator giving a
finer mechanical step resolution. Thus, if there are four sets of stator coils the 45°C electrical step
translates to 11.25°C mechanical.

11 One Byte at a Time 367

Program 11.12 Driving a stepper motor
#define FREQ d’40’; Programmer gives value in 1M steps

; 40MHz in our example
; ***
; * FUNCTION: Advances stepper motor 1 -- 256 steps *
; * ENTRY : Step number in STEP *
; * ENTRY : Current field position in POSITION *
; * EXIT : POSITION updated, STEP = -1, W destroyed *
; * RESOURCE: Subroutine PATTERN, DELAY_10MS *
; ***

org h’00050’ ; Begins at h’00050’
MOTOR incf POSITION,w ; Advance field direction

andlw b’0111’ ; Module-8
movwf POSITION ; updated
call PATTERN ; Get the energization pattern
movwf PORTA ; Send to stepper motor
call DELAY_10MS ; Hold off 10ms
decfsz STEP,f ; Decrement step count
bra MOTOR ; until zero
return

; ***
; * FUNCTION: Maps an integer 0 --7 to field pattern *
; * ENTRY : Modulo-8 integer in W *
; * EXIT : Stepper energization pattern in W *
; ***
PATTERN addwf PCL,f ; Increment Program Counter

retlw b’1000’ ; North
retlw b’1100’ ; North east
retlw b’0100’ ; East
retlw b’0110’ ; South east
retlw b’0010’ ; South
retlw b’0011’ ; South west
retlw b’0001’ ; West
retlw b’1001’ ; North west

; ***
; * FUNCTION: Delays 10 ms delay independent of clock freq *
; * ENTRY : Clock frequency in steps of 1MHz in TEMP *
; * EXIT : 10ms delay; DELAY zero, W destroyed *
; ***
DELAY_10MS

movlw FREQ*5 ; The programmers statement x 5
movwf TEMP ; Gives the PIC frequency

; Delay loop 2ms @ f = 1MHz xtal (1 cycle = 4us; x5 gives 10ms)
DLOOP1 movlw d’167’ ; Loop count

movwf DELAY
DLOOP2 decfsz DELAY,f ; (168) * (FREQ*5) * 4us

bra DLOOP2 ; 2*(166) * (FREQ*5) * 4us

decfsz TEMP,f ; Decrement frequency parameter
bra DLOOP1 ; and repeat until zero
return

368 The Essential PIC18® Microcontroller

MOTOR
The main subroutine simply modulo-8 increments the position vector by post-
ANDing with b’00000111’ to give a wrap around from 7 to 0. This vector is then
converted to the appropriate energizing pattern and sent out to the motor after a
nominal 10 ms delay. The process is repeated until the decrementing STEP datum
reaches zero; if initially zero then 256 steps will be actioned.

PATTERN
Returns one of eight energization patterns corresponding to the field vector as listed
in Table 11.2. The mechanism of this look-up table coding has been described in
Program 6.6 on p. 175. As this suite of subroutines originates at h’00050’ in the
Program store, the 8-bit addition to the Program Counter will not result in roll-over
across page boundaries.

DELAY_10MS
This subroutine gives a nominal 10 ms delay independent of the processor crystal
frequency. This is defined by the programmer in the program header as the constant
FREQ which denotes the number of multiples of 1 MHz. For instance, for a 8 MHz
crystal FREQ is set to d’8’ using the #define directive, before the program is
assembled.

The core of the subroutine is a inner loop giving a 2 ms delay (4 µs instruction
cycle) at 1 MHz; that is, 500 × 4 µs. An outer loop multiplies this by the constant
5 × FREQ. The factor ×5 effectively magnifies the inner loop to 10 ms at 1 MHz.
The factor ×FREQ compensates for the actual cycle period, which is inversely pro-
portional to the actual clock frequency.

Example 11.4 A reaction meter is to be designed to act as a crude blood-alcohol
level indicator. The principle of the device is that a buzzer is sounded for 100 ms
when the unseen tester closes his switch. The subject is to respond to the sound by
immediately pressing his/her switch. An 8-LED barograph display is to indicate the
passage of time by progressively lighting a new LED every 50 ms. The number of
lit LEDs at the conclusion of the test is the reaction time in 50 ms steps.

Show how a PIC18F1220 could be configured and design software coded in C to
read the switch and activate the LEDs and buzzer.

Solution The software listed in Program 11.13 is based on the LED array connected
to Port B, the subject’s switch to RA0 and the buzzer to RA2. On reset, as long as
RA0 is high the barograph variable display is updated every 50 ms. When this
display reaches b’00000011’; that is after 100 ms the buzzer is turned off.

Example 11.5 A PIC MCU is to switch in a 24 V 100 mA solenoid switch, as
shown in Fig. 11.18. As this is to operate in a noisy environment, a 220 pF capacitor
is to be placed across the port pin to act as a low-pass filter.

The software is to activate a LED for a short time everytime the solenoid is
activated. A test run on the prototype with the MCU running at 4 MHz executes

11 One Byte at a Time 369

Program 11.13 Measuring reaction time in 50 ms steps
#include <18f1220.h>
#fuses NOWDT, HS
#use delay(clock=20000000) /* 20MHz clock */
#byte PORT_A = 0xF80
#byte PORT_B = 0xF81
#bit BUZZER = PORT_A.2
#bit SUBJECT = PORT_A.0
main()
{
unsigned int display=0; /* Initial LED display pattern */
setup_adc_ports(NO_ANALOGS); /* All port bits are digital */
set_tris_a(0x1B); /* Make RA2 output to buzzer */
set_tris_b(0); /* Port B is output to LEDs */

BUZZER = 1; /* Turn on buzzer */
while(SUBJECT) /* DO as long as switch is == 1 */

{
PORT_B = display; /* Activate LEDs */
delay_ms(50); /* Call 50ms delay */
display = display << 1; /* Create next barograph display*/
display = display | 0x01;/* Feeding in ones */
if(display == 0x03) /* After 2 shifts */

{BUZZER = 0;} /* Turn off the Buzzer */
}

Fig. 11.18 Activating a high-voltage high-current solenoid

correctly. However, the production version gives erratic operation, with the LED
sometimes being illuminated with no solenoid activation. A storage oscilloscope
monitoring pinRB7 indicates a short-lived pulse whenever this malfunction occurs.

370 The Essential PIC18® Microcontroller

The only difference between the prototype and the final version, is the use of a
40 MHz clock in the latter. What is going on?

Solution Although the software is not at fault, it is instructive to examine the frag-
ment operating the solenoid.

bsf PORTB,7 ; Turn on the solenoid
bsf PORTB,0 ; Turn on the LED
call DELAY ; for a short time
bcf PORTB,0 ; and turn it off again
.... ; continue on

The logic of the process is flawless.
Examination of the data sheet gives a transition time at a port pin of 25 ns (10% to

90%) with a load capacitance of 50 pF. The bsf instruction turning on the solenoid
will order pinRB7 to go high on the final quadrature of the machine cycle, as shown
in Fig. 4.5 on p. 76. The next bsf PORTB,0 turning on the LED, as a read-modify-
write instruction, reads the whole of Port B’s contents in phase 1 of the following
instruction cycle. In the following phase 4 this datum byte is sent out again, but this
time with bit 0 logic 0.

At a clock frequency of 4 MHz, each phase lasts 250 ns. However, with a 40 MHz
clock this reduces to 25 ns. In this latter situation the voltage at pinRB7 may not yet
have risen enough to be recognized as a logic 1. Thus the dummy read will sense a 0
at bit 7 and this is the value written out back to pin RB7. This bsf PORTB,0 will
actually change pinRB7 as well as RB0.

The solution is to use LATB instead of PORTB when turning on the LED. An
alternative would be to implement a short delay before activating the LED, or better
still to turn on the LED before the solenoid.

Example 11.6 Despite the increasing use of liquid-crystal alphanumeric readouts,
discrete 7-segment LED displays are commonly used to show multiple numerical
digits. Such readouts are particularly effective in low ambient light situations and
where large displays are needed.

Assuming each display requires eight lines (seven segments plus decimal point)
then a budget of 8 ×n parallel lines are required for an n-digit display. The straight-
forward solution to this problem is shown in Fig. 11.19, where a 3-digit display is
driven from three parallel-in parallel-out registers on a local bus—see Fig. 2.18 on
p. 32. The principle can be extended as required by using the appropriate number of
registers.

The displays shown in the diagram are common cathodes and the appropriate
LED is illuminated when the register output is High, with the source current limited
by the series resistor. In practice some logic circuitry can sink more current into a
Low-state output as compared to sourcing current from a High state, and because
of this, common anode displays are often used with the LEDs, activated on a Low
state. In some larger displays, e.g., 5 cm (2′′), several LEDs may be paralleled or

11 One Byte at a Time 371

F
ig

.1
1.

19
U

si
ng

po
rt

ex
pa

ns
io

n
to

dr
iv

e
th

re
e

7-
se

gm
en

td
is

pl
ay

s

372 The Essential PIC18® Microcontroller

F
ig

.1
1.

20
Sc

an
ni

ng
a

m
ul

tip
le

xe
d

3-
di

gi
t7

-s
eg

m
en

ta
rr

ay

11 One Byte at a Time 373

in series in each segment. In this situation larger voltages and/or currents may be
needed, and suitable drivers used to boost the register outputs.

An alternative approach, shown in Fig. 11.20, is frequently used with LED-based
displays. Instead of using a register for each digit, all readouts are connected in
parallel to the one MCU port. Each readout is enabled in turn for a short time with
the appropriate data from the output port. Provided that the scan rate is greater than
50 per second (preferably greater than 100) the brain’s persistence of vision will
trick the onlooker into visualizing the display as flicker free.9 Of course the current
flowing through the segment must be increased to compensate for the mark:space
ratio, but LEDs are more efficient when pulsed in this manner and the reduction of
series resistance need not be pro rata.

Discuss the pros and cons of these arrangements, with reference to the tradeoff of
software and hardware. Illustrate your answer by displaying the decimal equivalent
of the binary byte in File h’020’. For instance; if the contents of BINARY were h’FF’

then the display should be .

Solution From the software perspective, two main functions can be identified. First,
the binary code in a File called BINARY has to be decomposed into three BCD dig-
its; HUNDREDS, TENS and UNITS. Program 11.14 is a straightforward extension
of Program 5.11 on p. 149 to hundreds.

Once this is done then each BCD digit ranging from 0 to 9 must be converted
to 7-segment code to illuminate the relevant segments to form the appropriate char-
acters. We already have a subroutine to implement this mapping in Program 6.6 on
p. 175.

Based on these subroutines in situ, we have as a task list for software to interact
with the hardware of Fig. 11.19:

1. Convert the binary byte into BCD.
2. DO

(a) Copy contents of HUNDREDS into W and convert to 7-seg.
(b) Copy 7-segment code to Port B.
(c) Pulse RA2.

3. DO
(a) Copy contents of TENS into W and convert to 7-seg.
(b) Copy 7-segment code to Port B.
(c) Pulse RA1.

4. DO
(a) Copy contents of UNITS into W and convert to 7-seg.
(b) Copy 7-segment code to Port B.
(c) Pulse RA0.

The coding implementing this task list is shown in Program 11.15.

9Of course this is how the brain interprets a series of 24 still frames per minute in a movie as a
moving image. Each frame is shown twice using a 2-bladed shutter, giving a flicker rate of 48 per
second.

374 The Essential PIC18® Microcontroller

Program 11.14 8-bit binary to 3-digit BCD conversion
; **
; * FUNCTION: Converts a binary byte in W to three BCD digits*
; * EXAMPLE : Binary = h’FF’ (d’255’), HUNDREDS = h’02’ *
; * EXAMPLE : TENS = h’02’, UNITS = h’05’ *
; * ENTRY : Binary in W *
; * EXIT : HUNDREDS = Hundreds digit, TENS = Tens digit *
; * EXIT : UNITS = Units digit. W holds units *
; **
; First divide by a hundred -----------------------------------
BIN_2_BCD clrf HUNDREDS ; Zero the Hundreds loop count

LOOP100 incf HUNDREDS,f ; Record one hundred subtracted
addlw -d’100’ ; Subtract decimal hundred
bc LOOP100 ; IF no borrow (C==0) THEN DO again
decf HUNDREDS,f ; ELSE compensate for one inc too many
addlw d’100’ ; by adding a hundred to residue

; Next divide by ten --
clrf TENS ; Zero the Tens loop count

LOOP10 incf TENS,f ; Record one ten subtracted
addlw -d’10’ ; Subtract decimal ten
bc LOOP10 ; IF no borrow (C==0) THEN DO again

; Retrieve last remainder for units ---------------------------
decf TENS,f ; Compensate for one inc too many
addlw d’10’ ; by adding ten to residue
movwf UNITS ; which gives the remainder
return ; and return to caller

The interaction of the software to the hardware of Fig. 11.20 is not so straight-
forward as there are no registers to dump the data and run! Instead, data has to be
continuously sent out in sequence with the appropriate display being enabled. If we
use a scan rate of 100 updates each second, then this data should be held for 10 ms
before moving on. Thus we have as our new task list:

1. Convert the binary byte into BCD.
2. DO forever:

(a)
• Copy contents of HUNDREDS into W and convert to 7-segment code.
• Copy 7-segment code to Port B.
• Bring RA2 Low .
• Delay 10 ms.
• Bring RA2 High .

(b)
• Copy contents of TENS into W and convert to 7-segment code.
• Copy 7-segment code to Port B.
• Bring RA1 Low .
• Delay 10 ms.
• Bring RA1 High .

(c)
• Copy contents of UNITS into W and convert to 7-segment code.

11 One Byte at a Time 375

• Copy 7-segment code to Port B.
• Bring RA0 Low .
• Delay 10 ms.
• Bring RA0 High .

The coding in Program 11.16 makes use of the 10 ms delay subroutine illustrated
in Program 11.12 to regulate the scanning rate. Apart from the length of the enabling
pulse, the core of the program is identical to our previous situation. However, the
code must run continually to give the impression of a constant display. This illus-
trates the trade-off between hardware and software. Reducing the hardware has led
to greater loading on the software. Indeed, as illustrated here, the entire existence of
the PIC MCU will be to service the display! However, in practice the situation can
be redeemed somewhat by interrupting the PIC MCU at 10 ms intervals to avoid
the need for time-wasting delay routines. The listing on p. 472 shows how this can
be done, but of course the Timer cannot be used for anything else. Alternatively an
external 100 Hz oscillator can be used in its place, but some of the hardware advan-
tages are then lost. With a 10 ms digit rate, up to ten digits may be handled with
no additional interface hardware and still have a scan rate no worse than 100 per
second.

Another issue that can occur with scanning, is noise introduced by pulsing rel-
atively large currents on a continual basis. This can be a particular problem where

Program 11.15 Displaying the decimal equivalent of a binary byte
; Task 1 --
DISPLAY movf BINARY,w ; Get binary byte

call BIN_2_BCD ; Convert to 3-digit BCD

; Task 2 --
movf HUNDREDS,w ; Get Hundreds nybble
call SVN_SEG ; Convert to 7-segment code
movwf PORTB ; Send out to PortB
bsf PORTA,2 ; Clock into register
bcf PORTA,2

; Task 3 --
movf TENS,w ; Get Tens nybble
call SVN_SEG ; Convert to 7-segment code
movwf PORTB ; Send out to PortB
bsf PORTA,1 ; Clock into register
bcf PORTA,1

; Task 4 --
movf UNITS,w ; Get Units nybble
call SVN_SEG ; Convert to 7-segment code
movwf PORTB ; Send out to PortB
bsf PORTA,0 ; Clock into register
bcf PORTA,0

376 The Essential PIC18® Microcontroller

Program 11.16 Displaying a 3-digit decimal number on a scanning readout
; Task 1 --
DISPLAY movf BINARY,w ; Get binary byte

call BIN_2_BCD ; Convert to 3-digit BCD

; Task 2(a) ---
LOOP movf HUNDREDS,w ; Get Hundreds nybble

call SVN_SEG ; Convert to 7-segment code
movwf PORTB ; Send out to PortB
bcf PORTA,2 ; Enable Hundreds display
call DELAY_10MS ; for 10ms
bsf PORTA,2 ; and turn off

; Task 2(b) ---
movf TENS,w ; Get Tens nybble
call SVN_SEG ; Convert to 7-segment code
movwf PORTB ; Send out to PortB
bcf PORTA,1 ; Enable Tens display
call DELAY_10MS ; for 10ms
bsf PORTA,1 ; and turn off

; Task 2(c) ---
movf UNITS,w ; Get Units nybble
call SVN_SEG ; Convert to 7-segment code
movwf PORTB ; Send out to PortB
bcf PORTA,0 ; Enable Units display
call DELAY_10MS ; for 10ms
bsf PORTA,0 ; and turn off

bra LOOP ; DO forever

analog circuitry is adjacent. Good power-supply decoupling can reduce this problem
to some extent.

Self-Assessment Questions

11.1 Many situations call for more parallel I/O port lines than are available from
one device; especially when other peripheral modules are using the shared I/O
pin budget. One solution to the problem is to use MSI logic; such as decoders
and registers, to expand a single port.10

An alternative approach is to use additional MCUs solely to expand the bus.
Figure 11.21 shows a mooted expander, based on a 40-pin device. This gives
three I/O ports, at the cost to the master of 12 lines. Eight of these implement

10For an example, see my The Quintessential PIC® Microcontroller Fig. 11.12.

11 One Byte at a Time 377

Fig. 11.21 A proposed bus expander

the data pathway and four target the expanded port, data direction and enable
the expander.

Design code that will integrate with this hardware to allow the master de-
vice to set-up the data pathway when the expander is enabled; that is when
RE3 = 1. The actual port is a function of RE2:1.

11.2 Pins RC[1:0] are to be configured as outputs with an initial value of 0 on
Power-on Reset. The following code is designed to clear both flip flops before
changing the port bits to output. On testing, the end result for RC0 is the op-
posite to the desired outcome. Why is this so and can you modify the code to
rectify the situation?

bcf PORTC,0 ; Clear flip flop 0
bcf PORTC,1 ; Clear flip flop 1
movlw b’11111100’ ; Make RC[1:0] outputs
movwf TRISC

11.3 A certain system needs to be able to both activate eight LEDs and to read the
state of up to eight normally-open (N.O.) push switches. It has been proposed
that a single Port B might be able to combine these functions—the former

378 The Essential PIC18® Microcontroller

when set to output, the latter when set to input. Can you devise a suitable
circuit?

11.4 Extend the digital comparator of Example 11.2 to compare two external digital
bytes presented to a 28-pin footprint PIC MCU, with byte P being input at
Port B and Q at Port C.

11.5 In a low-power wireless data logging system, placing the PIC MCU in its
Sleep mode will not affect the current consumption of the radio transmitter.
It is proposed to use a port pin to supply current to the transmitter and in this
way the auxiliary circuitry can be switched on and off as necessary. Discuss.

11.6 The variation of logic 0 output voltage VOL against sink current IOL for the
two extremes of the commercial temperature range is shown in Fig. 11.22.
Using this graphical relationship, determine the maximum value of a series
resistor to ensure that a current of no less than 20 mA will flow through an
LED connected to +5 V, as shown in the diagram, for any temperature. With
this value what will be the current at −40°C? Assume that the conducting
voltage across the LED is a constant 2 V.

Fig. 11.22 Low-level output voltage against sink current

Chapter 12
One Bit at a Time

Parallel data transmission is fast, with a minimum of software overhead. Neverthe-
less, there are many circumstances where its use is inappropriate, either because of
the additional hardware cost of multiple conductors, or more commonly where the
receivers are geographically distant, with the concomitant cost or non-availability of
multiple communication channels and their necessary interface hardware. In such
situations data can be sent one bit at a time and assembled by the remote device into
the original data bytes. In this manner a comparison can be made with the Parallel
port on a PC, commonly used for local peripherals, such as a printer, and the Serial
or USB ports frequently used with a modem to link into the Internet via a single
telephone line.

In this chapter we will examine a range of techniques used to serially transmit
data, both using bespoke shift register circuits and modules using standard commu-
nication protocols. After reading this chapter you will:

• Understand the need for serial transmission.
• Be able to design serial ports and associated software routines to communicate

with standard parallel peripheral devices.
• Be capable of interfacing serial peripheral devices using both the SPI™ and I2C

protocols.
• Appreciate the need for asynchronous serial communication and be able to write

software drivers conforming to this protocol.
• Be able to use the integral Enhanced Universal Synchronous Asynchronous

Receiver-Transmitter module (EUSART) for asynchronous protocols.
• Understand the necessity for buffering long-distance communication circuits.

As an example of serial data communications, consider the smart cards in your
wallet. Each card has an embedded microcontroller, typically 8-bit, giving it its
intelligence. Cost constraints are severe to give a manufacturing price of under $1,
and a large component of this is accounted for by the non-corrosive gold-plated
contacts, via which the microcontroller is powered and clocked when in contact
with the card reader. In order to keep the mechanical precision of the reader low and
hence reliability high, the number of contacts must be minimized and the pad size
maximized.

S. Katzen, The Essential PIC18® Microcontroller,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-229-2_12, © Springer-Verlag London Limited 2010

379

380 The Essential PIC18® Microcontroller

Fig. 12.1 The smart card

The standard arrangement shown in Fig. 12.1 uses contacts to provide the two
power nodes, Reset and Clock, and one line to allow data to be shifted in or out
one bit at a time. Although this is relatively slow, in comparison to the human–
mechanical constraints speed is not an issue. Furthermore, contact between the
reader/automatic teller and the central computer, perhaps several thousands of
miles/kilometers away, will typically be via a single channel telephone line.

Check the parallel 3-digit 7-segment display interface of Fig. 11.19 on p. 371,
which uses both Parallel Ports A and B. Although this is a working circuit, most
of the parallel port budget of an 18-pin footprint device has been used up. Speed is
certainly not a factor here, so a slower mode of data transmission is acceptable.

Consider the serial equivalent shown in Fig. 12.2. Here only two port pins are
used. One labeled SDO (Serial Data Output) outputs the data bit by bit, with the
most significant bit first. The other, labeled SCK (Serial ClocK), is used to clock
the three shift registers at the same time, and hence shift the data left one bit at a
time, in the manner of Fig. 3.8 on p. 59.

Each display has an associated 74HCT164 8-bit shift register1—see Fig. 2.22 on
p. 36. The 74HCT164 has a positive-edge triggered shift input clock C1 and two
serial data inputs ANDed together at 1D. One of these data inputs can be used to
gate the other input, but in our example they are both connected together to give
a single serial input. There is also an active-Low Reset input to clear the register
contents, which are held High in the diagram. If desired, another port line can be
used to drive R.

To change the display, a total of 24 bits will have to be shifted into the register
array. To see how this can be done we will repeat the 7-segment driver routine of
Program 11.15 on p. 375, which converts a binary byte to an array of BCD digits in
HUNDREDS, TENS and UNITS. These are mapped to 7-segment code and then sent
out to each digit 8-bits at a time.

1All data outputs are simultaneously available and thus the 74HCT164 is best described as a serial-
in parallel-out (SIPO) register as well as a SISO shift register.

12 One Bit at a Time 381

Fig. 12.2 Serial interface to a 3-digit 7-segment display

To serialize this process we need to design a subroutine (which we will call
DATA_OUT) to copy each bit of a File to the RA0/SDO pin; beginning with the
leftmost bit. At the same time the RA1/SCK pin is pulsed to clock the data. A task
list for such a subroutine is:

1. Bring SCK to its Low state.
2. COUNT = 8.
3. WHILE COUNT > 0 DO:

(a) Copy most-significant bit of DATA_OUT to SDO.
(b) Shift DATA_OUT left one place.
(c) Pulse SCK .
(d) Decrement COUNT.

Program 12.1 shows two subroutines. The first called DISPLAY is closely akin
to Program 11.15, in that it calls the subroutines BIN_2_BCD and then sends the 7-
segment coded bytes out to the interface registers. In this instance the Hundreds byte
is sent first, as this will eventually be shifted to the far end of the chain, followed by
the Tens and finally the Units byte.

The actual serial transmission is handled by the subroutine SPI_WRITE, which
implements our task list. The state of bit 7 of the datum pre-placed by the caller in
File DATA_OUT is tested and its state used to make the Serial Data Out pin RA0
High or Low. The Serial ClocK pin RA1 is then toggled once to shift the
data into the shift register chain. The data byte is then shifted left and the process
repeated in total eight times, to complete the transaction. This takes a maximum of
87 cycles to complete, depending slightly on the data pattern. A complete update
of the 3-digit display will take around 120 µs with a processor clock of 8 MHz;
excluding the time spent in doing the data conversion.

382 The Essential PIC18® Microcontroller

Program 12.1 Displaying the decimal equivalent of a binary byte using a serial data stream
DISPLAY bcf PORTA,SCK ; Initialize the clock line

movf BINARY,w ; Get binary byte
call BIN_2_BCD ; Convert to 3-digit BCD
movf HUNDREDS,w ; Get HUNDREDS nybble
call SVN_SEG ; Convert to 7-segment code
movwf DATA_OUT ; Copy into the serial register
call SPI_WRITE ; Shift it out

movf TENS,w ; Get Tens nybble
call SVN_SEG ; Convert to 7-segment code
movwf DATA_OUT ; Copy into the serial register
call SPI_WRITE ; Shift it out

movf UNITS,w ; Get Units nybble
call SVN_SEG ; Convert to 7-segment code
movwf DATA_OUT ; Copy into the serial register
call SPI_WRITE ; Shift it out
return

; ***
; * FUNCTION: Clocks out a byte in series, MSB first *
; * ENTRY : Datum in DATA_OUT *
; * EXIT : DATA_OUT unchanged *
; ***
; Task 1 --
SPI_WRITE

bcf PORTA,1 ; Make sure clock starts at Low

; Task 2 --
movlw 8 ; Initialize loop counter to 8
movwf COUNT

; Tasks 3(a)&(b) --
LOOP bcf PORTA,0 ; Zero data bit

btfsc DATA_OUT,7 ; Skip if MSB is 0
bsf PORTA,0 ; ELSE make data bit 1
rlncf DATA_OUT,f ; Shift datum right one place

; Task 3(c) ---
bsf PORTA,1 ; Pulse clock
bcf PORTA,1

; Task 3(d) ---
decfsz COUNT,f ; Decrement count
bra LOOP ; and repeat until zero
return

Program 12.2 shows a possible C implementation of our output subroutine. Func-
tion spi_wrt()2 accepts a data byte and in a loop of eight copies bit 7 out to SDO,

2I have used this name as we shall see, there is a built-in function called spi_write().

12 One Bit at a Time 383

Program 12.2 A C implementation of the SPI_WRITE subroutine
void spi_wrt(datum)
{
int k;
for(k=0;k<8;k++) /* DO eight times */

{
if((datum & 0x80)) {SDO = 1;}
else {SDO = 0;}
SCK = 1; /* Clock the external receiver */
SCK = 0;
datum = datum << 1; /* Shift datum left one place */
}

}

whilst shifting left. The two SPI pins have been previously defined as the appropriate
port pin.

Where a long chain of shift registers is being serviced, speed may be improved a
little if each register has its own data feed but all clocked with the same SCK pin or
sharing the same lines but each with a separate Enable. This latter technique is the
method used in Fig. 12.7.

One problem with our shift register technique is that for the period where shifting
is in process, the data appearing at the port outputs are not valid—for 23 clock pulses
in our example. Of course in this situation the response of the eye to microseconds-
long changes in illumination makes this observation spurious. However, this may
not always be the case and in such instances the shift register may be buffered from
the parallel outputs using an array of D flip flops or latches. These can be loaded
after the shifting process has been completed to give a single update.

Rather than employing a separate buffer register, many devices optimised for
serial data transmission have integral PIPO registers. For example, the 74HCT595
shown in Fig. 12.3, is a latched shift register with integral 8-bit parallel-in parallel-
out (PIPO) register between the shift register and the outside world. A rising edge

on the RCK (Register ClocK) pin transfers the serialized data to the parallel
outputs. The last stage output of the shift register is made available to allow cascad-
ing to any length. In this situation, all RCK pins can be pulsed together to allow the
entire chain to update simultaneously.

One example where rippling of data may be undesirable is where a digital datum
is to be converted to its analog equivalent. In Fig. 12.3 the conversion is carried out
using a National Semiconductor DAC0800. Essentially the analog voltage is a linear
function of the 8-bit digital input varying from −9.96 V for an input of b’00000000’
through +9.96 V for b’11111111’—see Fig. 14.18 on p. 525.

Using a 74HCT595 registered shift register, the digital input does not change
until the new datum is in place and the PIC MCU pulses the RCK Register Clock.
This gives clean changes in the data presented to the DAC and corresponding analog
output.

Data can be input serially in a similar manner using parallel-in serial-out (PISO)
shift registers. The example shown in Fig. 12.4 is a serialized intruder alarm us-

384 The Essential PIC18® Microcontroller

Fig. 12.3 Serially interfacing to a DAC digital-to-analog converter using a 74HCT595 octal shift
register with output register

ing only three lines to connect to eight zones of eight sensors each; a considerable
economy compared to a parallel equivalent.3

Each sensor group is attached to a 74HCT165 8-bit PISO shift register, with the
serial output of the further register feeding the serial input of the next left register.
Once the data has been loaded in, it may be shifted into the SDI (Serial Data In)
Parallel Port A input pin RA1 and assembled in software bit by bit. In the specific
case of the multi-zone intruder alarm, after each eight shifts the assembled byte can
be tested for non-zero and the appropriate action taken.

Also shown in Fig. 12.4 is the single output port used to display any active zone.
As both input SDI and output SDO serial channels share the same shift clock SCK,
then shifting data in will simultaneously clock this serial output port. Conversely,
sending data to the output port will shift data in from the Zone ports. In this example
there is no problem, as microsecond fluctuations in the Zone lamps are of no conse-
quence, and the sequence of operations ends with the output port being loaded with
the earmarked data. Where this interaction is undesirable, then either a latched reg-
ister, such as the 74HCT595, should be used to staticize the display data or separate
serial clock lines could be utilized.

The core serial interface software SPI_READ is the input counterpart of subrou-
tine SPI_WRITE in Program 12.1, and implements the following task list:

3See Fig. 11.12 in my The Quintessential PIC® Microcontroller.

12 One Bit at a Time 385

F
ig

.1
2.

4
Se

ri
al

ly
in

te
rf

ac
in

g
to

a
m

ul
ti-

zo
ne

in
tr

ud
er

al
ar

m

386 The Essential PIC18® Microcontroller

Program 12.3 Input serial byte subroutine
; ***
; * FUNCTION: Clocks in a byte in series, MSB first *
; * ENTRY : None *
; * EXIT : Datum in DATA_IN; COUNT = 0 *
; ***
; Task 1: Bring SCK Low ---------------------------------------
SPI_READ bcf PORTA,SCK ; Make sure clock starts at Low

; Task 2: COUNT=8 ---
movlw 8 ; Initialize loop counter to 8
movwf COUNT

; Task 3: WHILE COUNT>0 DO: -----------------------------------
; Task 3 (a): Pulse SCK ---------------------------------------
SER_IN_LOOP bsf PORTA,SCK

bcf PORTA,SCK

; Task 3(b): Shift datum left ---------------------------------
bcf STATUS,C ; Zero the Carry flag
rlcf DATA_IN,f ; Shift it in and datum once left

; Task 3(c): IF SDI is 1 THEN set bit 0 (rightmost bit) -------
btfsc PORTA,SDI ; Skip if SDI == 0
bsf DATA_IN,0 ; ELSE set bit0 to 1

; Task 3(d): Decrement COUNT and repeat Task3 WHILE>0 ---------
decfsz COUNT,f ; Decrement count
bra SER_IN_LOOP ; and repeat until zero

return

1. Bring SCK to its Low state.
2. COUNT = 8.
3. WHILE COUNT > 0 DO:

(a) Pulse SCK .
(b) Shift DATA_IN left once place.
(c) Copy input state of pin SDI into least-significant bit of DATA_IN.
(d) Decrement COUNT.

This task list is similar to that on p. 381, except that File DATA_IN is shifted
left once and the state of the SDI pin following the clock pulse at pin SCK copied
as the new bit 0. After eight clock-shift-test loops the datum in DATA_IN is the
parallelized byte assembled from the serial input port, with the first bit ending up in
the leftmost significant placeholder in DATA_IN.

The SPI_READ subroutine coded in Program 12.3 is similar to the output sub-
routine SPI_WRITE of Program 12.1. Indeed they may be combined so that data
is shifted out of the specified output data File at the same time as it is shifted in to
the specified input data File. This type of scheme is referred to as full duplex, as

12 One Bit at a Time 387

Program 12.4 A C implementation of a SPI input read
unsigned int spi_read()
{
unsigned int k;
for(k=0;k<8;k++) /* DO eight times */

{
SCK = 1; /* Clock Slave TX bit to SDI */
SCK = 0;
DATA_IN = DATA_IN << 1; /* Shift left one place */
if(SDI)

{DATA_IN = DATA_IN | 0x01;} /* Set bit 0 IF SDI is 1 */
else

{DATA_IN = DATA_IN & 0xFE;} /* ELSE make it a 0 */
}

return data_in; /* Return complete byte */
}

opposed to half duplex where only one direction at a time is possible. A serial link
where data flow can only be in one fixed direction is known as simplex.

The C coding of Program 12.4 follows the same coding strategy as the as-
sembly counterpart. Note how Inclusive-OR’ing with b’0000001’ using the C |
operator is used to set bit 0 of the variable DATA_IN. Similarly AND’ing with
b’11111110’ clears bit 0. Specifically in CCS C the non-standard integral functions
bset(DATA_IN,0) and bclr(DATA_IN,0) can be used to set or clear any bit
in a variable, and when single bits are involved, is often more efficient than using
logic operators.

The serial protocol similar to that described in this example is commonly known
as serial peripheral interface (SPI™).4 Microwire™ is a similar, but not identical,
serial protocol.5 SPI is a sufficiently standardized protocol used by most microcon-
trollers to allow manufacturers to produce a range of peripheral devices specifically
designed to directly interface to this bus without the necessity to add external shift
registers. As an example of this genre, the MAX549A of Fig. 12.5 is a dual digital-
to-analog converter (DAC) which is powered with a VDD of +2.5 V to +5.5 V. Its
operating current is typically 150 µA per DAC at 5 V and either or both DACs can
be shut down to reduce the current drain to less than 1 µs in its Standby mode. Data
can be clocked in at a rate of up to 12.5 MHz. All this functionality is available in
an 8-pin package and should be contrasted with the 20-pin MAX506 of Fig. 14.17
on p. 524, designed for direct parallel port connection.

The simplified functional model of the MAX549A shown in the diagram shows
an integral 16-stage shift register clocked from SCLK and fed data via DIN using
the normal SPI protocol. The additional eight locations are used to store four control
bits, with the following functionality:

4SPI™ is a trademark of Motorola/Freescale, Inc.
5Microwire™ is a trademark of National Semiconductor Corporation.

388 The Essential PIC18® Microcontroller

Fig. 12.5 The MAXIM MAX549A SPI dual 8-bit DAC

A0
Enables the input PIPO register for channel A and which is clocked on a rising edge
at the CE pin.

A1
Enables the input PIPO register for channel B and which is clocked on a rising edge
at the CE pin.

C1
Gates both DAC registers; allowing them to be updated simultaneously by a
on CE.

12 One Bit at a Time 389

C2
When 1 will power down any DAC selected with A0 or/and A1. This disconnects the
reference voltage Vref from the DAC’s resistor network (see Fig. 14.16 on p. 523)
and leaves only a residual current of less than 1 µA to activate the internal registers,
whose contents remain unchanged.

Both DACs have a 2-layer register pipeline isolating them from the shift registers.
The first layer is the In registers, which are gated when A0 or A1 as appropriate
is 1. The data sitting in the first byte of the shift register can then be clocked in by
pulsing CE (pin 3) Low. This change will be stored but will not appear at the input
of the DAC until the next layer of PIPO registers are clocked. These registers are
enabled when C1 is 1 and CE is pulsed. This means that one data byte can be sent
to, say, DACA and then another to DACB. The DAC registers can then be updated
together, resulting in both outputs VoutA and VoutB changing simultaneously—see
Program 12.5. This can even be done when the MAX549A is asleep, as the registers
are not affected by this power-down state. From this discussion we see that each
transition from the PIC MCU takes two 8-bit transfers Control Data followed by

a on the CE pin.
For our example we will send the contents of File h’020’ to Channel A and then

the contents of File h’021’ to Channel B; at that point updating both DAC registers
and hence outputting the analog equivalent of File h’020’ to pin VoutA and File h’021’
to pin VoutB.

Our implementation will involve the transmission of four bytes of information:

1. Control byte 1: b’XXX00X01’
No power down, update Channel A, no output change.

2. Data byte 1:
Contents of File h’020’.

3. Pulse CE.
4. Control byte 2: b’XXX01X10’

No power down, update Channel B, both outputs change.
5. Data byte 2:

Contents of File h’21’.
6. Pulse CE.

The hardware–software interaction is shown in Program 12.5. Four bytes are
transmitted using subroutine SPI_WRITE, with the MAX549A’s CE being pulsed

after each Control Data byte pair. The final process sets C1 High,
which transfers both data bytes to the DAC registers. At the same time the Channel B
In register is updated.

Looking at the three pins on the MAX549A would give a waveform similar to
that of Fig. 12.6 for the transmission of the first Control Data byte pair. During
the transmission CE remains Low, with the data shifting into the MAX549A’s inte-
gral shift register. After the second byte, i.e., the 16th clock pulse, bringing CE High
activates the selected internal registers, executing the instruction.

390 The Essential PIC18® Microcontroller

Program 12.5 Interacting with the MAX549A dual-channel SPI DAC
CE equ 2

; ***
; * FUNCTION: Sends out Channel A & B data in SPI protocol to *
; * FUNCTION: MAX549A simultaneously updating outputs *
; * RESOURCE: Subroutine SPI_WRITE *
; * ENTRY : Channel A in File h’020’, Channel B in File h’021’*
; * EXIT : Both analog outputs updated *
; ***
MAX549A movlw b’00000001’ ; Control byte 1

movwf DATA_OUT ; Put in designated location
call SPI_WRITE ; and send out to MAX549A and get
movff h’020’,DATA_OUT ; ChannelA data to named location
call SPI_WRITE ; and send out to MAX549A
bsf PORTA,CE ; Pulse CE
bcf PORTA,CE

movlw b’00001010’ ; Control byte 2
movwf DATA_OUT ; Put in designated location
call SPI_WRITE ; and send out to MAX549A
movff h’021’,DATA_OUT ; Get ChannelB data to named place
call SPI_WRITE ; and send out to MAX549A
bsf PORTA,CE ; Pulse CE
bcf PORTA,CE
return

Fig. 12.6 SPI waveforms for the MAX549A

The diagram shows transitions on the DIN line from the PIC MCU’s SDO pin,
occurring sometime before the active rising edge on SCK. Sometime is a vague term;
obviously it must occur no later than a minimum time before and be held for
a short time after. The MAX549A data sheet gives the minimum set-up time tDS of
30 ns and hold time tDH of 10 ns. Even at a PIC MCU clock rate of 40 MHz an
instruction cycle takes 100 ns, so timing will not be violated.

By judicious use of the MAX549A’s CE input, several DACs may be connected
to the SCK/SD0 lines, with a serial transmission only being shifted into the device
which has its CE Low. Figure 12.7 shows two MAX549As sharing the one SPI
link, giving four analog output channels in total. Using a 2- to 4-line decoder in
conjunction with RA3:2 would enable up to four MAX549As, with a total budget
of only four port lines.

12 One Bit at a Time 391

Fig. 12.7 Multiple MAX549As on the one SPI circuit

Fig. 12.8 The basic SPI Serial Synchronous Port set to implement SPI. Pinning is shared with
Parallel Port C for 28-pin+ devices

Most mid-range and all extended-range PIC MCUs feature an integral syn-
chronous serial port (SSP) which implements, amongst others, the SPI protocol.
The PIC18 family, in common with later members of the PIC16 range, implement
this protocol using the Master Synchronous Serial Port (MSSP) module.

A somewhat simplified representation of the MSSP module set-up for the SPI
protocol is shown in Fig. 12.8. The heart of the Master Synchronous Serial Port is
the SFR SSPBUF (SSP BUFfer). A datum byte written into this SFR will automat-
ically be transferred into the SSP Shift Register (SSPSR) and shifted out of the
PIC MCU’s dedicated SDO pin. At the same time, eight bits of data will be shifted
in from the SDI pin. When this frantic burst of activity is completed, the new byte
is automatically transferred to SSPBUF, from where it can be read. This transfer is

392 The Essential PIC18® Microcontroller

Fig. 12.9 The MSSP module’s CONtrol and STATus registers as appropriate for the SPI mode

signaled by setting the BF (Buffer Full) flag in the SSPSTAT (SSP STATus) register,
shown in Fig. 12.9. Once SSPBUF is read, BF is automatically cleared.

Apart from parallel ports, in general interface modules are configured and mon-
itored with a set of associated Control and Status registers. In addition, interrupt
mask bits and flags are located either in one or two Peripheral Enable and Interrupt
registers, such as shown in Fig. 7.2 on p. 209. Peripheral control, status and interrupt
registers are normally set-up as part of the startup initialization routine, where paral-
lel ports are configured as input/output. As such modules invariably multiplex their
pins with the parallel ports; even if these latter are not used, such shared pins often
need to be considered in this initialization phase. Pin I/O settings may be automat-
ically overridden if the peripheral module is enabled or may need to be ‘manually’
set-up by the software. Unfortunately the settings are not always obvious and the
data sheet should be consulted for specific information.

Returning to the specific case of the MSSP, Fig. 12.9 shows the SSPCON1 (SSP
CONtrol 1) register and SSPSTAT (SSP STATus) registers set-up for the SPI pro-
tocol and I/O pinning. In connecting to the outside world, four pins need to be
considered.

12 One Bit at a Time 393

RC5/SDO
Bit TRISC[5] must be cleared to 0 to allow this pin to output data.

RC4/SDI
This pin is overridden by the MSSP irrespective of the state of its associated
TRISC[4] bit.

RC3/SCK
When in one of the Master modes, bit TRISC[3] must be cleared to allow this pin to
output the clock signal. Conversely, when in one of the Slave modes, TRISC[3] must
be set to allow this pin to input the clock signal from an external Master.

RA5/SS
In Slave mode b’0100’ this pin should be configured as an input; i.e., TRISA[5]
should be set to 1, in order to allow the external Master to select this device.

On any kind of reset both SSPCON1 and SSPSTAT registers are cleared and the
internal data bit counter is zeroed. In this situation the module is disabled and if the
programmer wishes to use the MSSP then the various control bits6 must be set-up.

SSPEN
Setting SSPCON1[5] to 1 enables the Synchronous Serial port. If disabled the asso-
ciated pins can be used as normal parallel port lines.

SSPM[3:0]
The four SSP Mode switch bits located in SSPCON1[3:0] are used to set the com-
munication protocol and various Master/Slave options. The diagram shows the six
combinations relevant to the SPI protocol.

The four Master submodes only differ in selecting the one of four internal clock-
ing frequencies. Three of these frequencies are derived from the main PIC MCU
oscillator. For example, with a 20 MHz crystal the SCK shift rate can be selected
as 5, 1.25 MHz and 312.5 kHz (200, 800 ns and 3.2 µs). The final selection gives
the shift rate as half the frequency generated by Timer 2 overflowing—see Fig. 13.6
on p. 471. This option is used where slow or variable shift rates are required.

The Slave options use a clock coming from an outside Master driving the SCK
pin. Optionally the SS pin can be used by this external Master device to select one
of several Slaves—see Fig. 12.12.

SSPOV
In a Slave mode this status bit indicates that a new byte has been received before the
previous byte has been read; that is, a byte or bytes have been lost. To zero this bit,
SSPBUF must first be read and then SSPOV cleared in software. The SSP OVerflow
status bit does not operate in a Master mode.

WCOL
When software attempts to write a byte into the SSPBUF before the last byte in

6Some of which are in the Status register due to lack of space!

394 The Essential PIC18® Microcontroller

the SSPSR has been completely shifted out, the action is aborted and the Write
COLlision bit is set. This bit can be tested, and if a collision is confirmed, should be
cleared in software and the process subsequently tried again.

CKP, CKE, SMP
These three bits work in tandem to ensure that the correct clock edges are used to
shift data into and out of the remote receivers and transmitters and that incoming
data is sampled only after stabilization.

In order to illustrate the various possibilities, consider the situation when the
MSSP is set-up as a Master. As a Master device the MSSP has complete control of
the clocking signal at SCK, which is used to clock both the remote Slave transmitter
and receiver shift registers. The Slave receiver shift registers require an active edge
on this clock when the Master data at pinSDO is stable. In addition, Slave transmitter
shift registers need to be clocked so that their data bit is stable when the MSSP reads
it at its SDI pin. An example of this situation is shown in Fig. 12.12, where the PIC
MCU-based Master SPI device can select one of two Slaves. Each enabled Slave
can both transmit and receive data simultaneously. The Slaves can be other PIC
microcontrollers (as shown) or any SPI circuit.

Each byte transmission is broken up into eight clock phases; as shown in
Fig. 12.11. In all situations, the next data bit Dn will be presented at the SDO pin
shortly (in Industrial devices, not more than 50 ns) after the beginning of each clock
phase; see top of diagram. The remote Slave receiver should then be in a position
to clock it mid-phase. Similarly, the remote Slave transmitter should present its data
bit dn to pinSDI in time to be sampled by the Master.

Figure 12.10 is split up into two broad situations. The top two SCK waveforms
are used when the remote transmitters and receivers have opposite active shift clock
edges. As the transmitter is clocked at the beginning of each phase it should be
sampled mid-phase by setting SMP = 0.

CKE:CKP = 0:0
When the remote transmitter is clocked by a rising edge then its data at
SDI should be sampled mid-phase. Such data should be present at least 100 ns
before this point and be held for at least 100 ns afterwards. The remote Slave
receiver clocks in its data from SDO on a falling edge on SCK, also mid-
phase. In standard SPI terminology, this is described as mode 0,1.

CKE:CKP = 0:1
SPI mode 1,1 is similar, but the remote transmitter is clocked by a edge
and the remote receiver by a edge.

Where all remote transmitters and receivers have the same active shift clock
edge, then the bottom waveforms are applicable. As the transmitter is clocked mid-
phase, its data at SDI should be sampled at the end of the clock phase by making
SMP = 1.

CKE:CKP = 1:0
SPI mode 0,0 is used where both Slave transmitters and receivers are clocked

12 One Bit at a Time 395

Fig. 12.10 Clocking data in and out to remote Slave devices

together mid-phase on a edge. By that time the Master data bit Dn will
be stable to be clocked into the remote Slave. The remote Slave’s data should
be ready for sampling by the end of the clock phase.

CKE:CKP = 1:1
SPI mode 1,0 generates a edge mid-phase to trigger both Slave transmit-
ters and receivers.

When the MSSP is being used in one of the Slave modes, the clock comes from
a remote device. As before, any data previously loaded into the SSPBUF will be
clocked out from the SDO pin at the beginning of each clock phase. The CKE and
CKP bits still need to be set according to whether the remote sender’s data is out-
put on a or edge of its clock and on the active edge of a remote re-
ceiver. Also relevant, is if the remote Master has its first Dn bit presented before
or after the first clock pulse. In all such cases the Slave MSSP-configured module
should sample such data as it presented at its SDI pin at the end of each clock
phase; that is, SMP = 0. The reader should refer to the device data sheet for specific
waveforms.

396 The Essential PIC18® Microcontroller

When a PIC MCU is set-up as a Slave SPI device, the SS (Slave Select) pin
can be used by the remote Master to select it for an 8-bit transfer. When SS goes
High, even in the middle of a transmission, the internal bit counter is reset to
zero. Also the SDO pin goes open-circuit, so that another device can take over the
line.

BF, SSPIF
When a complete frame of eight bits has been shifted in and been dumped
into the SSPBUF Buffer register, BF goes to 1 to indicate that a new datum
is ready for collection. This transfer also sets the SSPIF flag in PIR1[3], (see
Fig. 7.2 on p. 209) and this can be used to initiate an interrupt if the compan-
ion SSPIE mask bit in PIE1[3] has been set. If the MSSP has been configured
as a Slave and the PIC MCU is sleeping this can be used to waken the de-
vice. This is possible, as the SCK pin is clocked by the external Master device
and thus the PIC MCU need not be active; that is, the system oscillator can be
off.

Reading the newly arrived datum from SSPBUF automatically clears this Buffer
Full bit. If not read on time, the datum will be lost and the SSPOV flag will be set
to record this. The SSPIF interrupt flag needs to be manually cleared in any polled
or interrupt service routine.

Using Figs. 12.8 and 12.9 as a programmer’s model we can now deduce the
hardware–software interaction task list in order to action a transmission of a byte
and/or receive a new byte:

1. Configure SSP module.

• Set-up RC3/SCK, RC5/SDO as outputs and RC4/SDI, and if appropriate
RA5/SS, as input.

• Set-up Master/Slave mode with appropriate clock source.
• Choose active clock edges with CKP:CKE:SMP.
• Enable the SSP by setting SSPEN.

2. Move datum to SSPBUF to initiate transmission.
3. IF WCOL = 1 THEN reset WCOL and go to item 2.
4. Poll BF for 1.
5. Move RX data from SSPBUF, which also resets BF.

To illustrate this process, consider a subroutine SPI_IN_OUT, which combines
the function of SPI_READ and SPI_WRITE; that is, it transmits the datum in File
DATA_OUT, whilst at the same time returning the consequently received byte to
DATA_IN. Assume that the remote shift registers are all triggered; that is,
SPI mode 0,0.

The implementation of this subroutine depends on setting up the MSSP during
the initialization phase of the main software after a reset. In the following code
fragment we are using the fOSC/4 clock rate Master mode:

12 One Bit at a Time 397

.include "p18f4520.inc"
MAIN movlw b’11010111’ ; RC5/SDO, RC3/SCK outputs

movwf TRISC ; RC4/SDI input
movlw b’11000000’ ; Make CKE and SMP = 1
movwf SSPSTAT
.....
movlw b’00100000’ ; Enable SSP, TX clock idles Low
movwf SSPCON ; SPI Master, Fosc/4 rate

The coding shown in Program 12.6 follows the task list exactly. Data to be trans-
mitted is moved from the designated File to SSPBUF and status bit WCOL checked
to see that it got there. If there is a transmission in progress then the datum is not
stored in SSPBUF and WCOL is set. If this subroutine is the only code to access
the MSSP then this should rarely be the case and in most instances this check is
omitted, but its inclusion makes the system more robust.

Once the transmit datum is in situ, the transmit sequence is immediately initiated,
as shown in Fig. 12.11, and progresses to its conclusion. When the Buffer Full status
flag BF is set, the received datum can be moved out of SSPBUF to its ordained
location. This automatically resets BF.

Apart from a slight reduction in the code length, the advantage of using this hard-
ware is the increase in speed. The actual transmit/receive takes eight SCK cycles,
which in our case is eight instruction cycles. With an fOSC of 40 MHz, the clocking
rate is 10 MHz (that is, a bit rate of 10 million bits per second; commonly written
as 10 Mbit/s or 10 Mbps), giving a total time of 0.8 µs per byte.

Figure 12.11 shows the SPI mode timing for our subroutine. As we have cleared
CKP and set CKE then SCK is idling Low. As soon as SSPBUF is written to, the

Program 12.6 Using the MSSP for SPI data input and output
; **
; * FUNCTION: Transmits and simultaneously receives one byte *
; * FUNCTION: from the SSP using the SPI protocol *
; * ENTRY : Data to be transmitted is in DATA_OUT *
; * EXIT : Data received is in DATA_IN *
; **
SPI_IN_OUT

movff DATA_OUT,SSPBUF ; Get datum for TX into SSPBUF
btfss SSPCON,WCOL ; Did it make it?
bra SPI_IN_OUT_CONT ; IF so THEN continue
bcf SSPCON,WCOL ; ELSE reset WCOL and try again
bra SPI_IN_OUT

SPI_IN_OUT_CONT
btfss SSPSTAT,BF ; Check for Buffer Full
bra SPI_IN_OUT_CONT ; IF not then poll again

movff SSPBUF,DATA_IN ; ELSE get the RX’ed datum put away
return

398 The Essential PIC18® Microcontroller

Fig. 12.11 SSP SPI-mode Master waveforms

MSB of the TX datum appears at SDO. In mid-phase the rising edge clocks this data
into the remote receiver.

With the remote receiver also clocked at mid-phase there is plenty of time for its
data to be presented to the PIC MCU’s SDI. This data is then sampled by the PIC
MCU at the end of each clock phase; that is SMP = 1.

One use of serial transmission is to connect a number of devices together in one
multiprocessor network. For instance, a robot arm may have a MCU controlling
each joint, communicating with a master processor. A simple multidrop circuit of
one Master and two Slave processors is shown in Fig. 12.12.

Fig. 12.12 A multidrop SPI communications network

12 One Bit at a Time 399

In this configuration the Master PIC MCU externally drives the SCK of both
Slaves; thus controlling when and how fast transmission occurs across the network.
Both Slaves are configured in Mode 0100, so that the Slave Select inputs are en-
abled. Thus, if the Master wishes to read a datum from Slave 2, the latter’s SS is
brought Low and the Master clocks the eight bits from Slave 2’s SSPBUF/SSPSR,
into its own SSPBUF/SSPSR. At the same time any data transmitted by the Master
will be received by the Slave.

SPI transactions may be coded in C either by mimicking the assemble-level code
and setting/reading the appropriate registers, or by using built-in functions specific
to the task. The key CCS compiler internal functions used for the SSPort in its SPI
mode are:

setup_spi(spi_master|spi_h_to_l|spi_clk_div_4);
This example function instance configures the SSP as an SPI Master, with clock
polarity rising edge and a ÷4 clock frequency. These scripts, and others such as
spi_slave, spi_sample_at_end and spi_xmit_l_to_h, are part of the
included header file; e.g. 18f4520.h. This function also sets the direction of the
appropriate Port A and Port C pins.

spi_write(value);
This is used to write out the value from the SSP. It checks that the BF flag is set
before returning.

spi_read();
This is virtually identical to spi_write() except that it returns the value read by
the SSP. If a value is passed to this function then it will be clocked out of SDO. For
this instance, spi_read(0x0A); will transmit the byte in the same manner as
subroutine SPI_IN_OUT of Program 12.6.

spi_data_is_in();
This function returns non-zero if a datum has been received over the SPI connection;
that is, if BF is set.

To illustrate this technique, consider our interface to the MAX549A coded in
Program 12.5. In order to do this the SSP needs to be configured using code of the
form:

#include <18f4520.h>
#bit CE = 0xF80.2 /* Port A, bit 2 to MAX549A’s CE */
void MAX549A(unsigned int channel_A, unsigned int channel_B);
main()
{
set_tris_a(0xFB); /* CE = RA2 output */
setup_adc(NO_ANALOGS); /* Ports A & E all digital */
setup_spi(spi_master|spi_l_to_h|spi_clk_div_4);

400 The Essential PIC18® Microcontroller

Program 12.7 Interfacing to the MAX549A in C
void MAX549A(unsigned int channel_A, unsigned int channel_B)
{
spi_write(0x01); /* Send out Control 1 */
spi_write(channel_A); /* Send out Data 1 */
CE=0; CE=1; /* Pulse CE */
spi_write(0x0A); /* Send out Control 2 */
spi_write(channel_B); /* Send out Data 2 */
CE=0; CE=1; /* Pulse CE */
}

in which we are assuming that the MAX549A’s CS is connected to Port A’s RA2
pin; as shown in Fig. 12.7.

The program comprises four spi_write() calls, with CE being pulsed be-
tween Control Data pairs. This function may be called with an evocation some-
thing like MAX549A(data_x, data_y);

Although the SPI protocol is relatively fast, it requires a minimum of three data
lines plus one select line for each duplex Slave device. Apart from the cost; adding a
device to an original design will require some hardware modification. By increasing
the intelligence of the Slave device, it is possible to send both control, address and
data in the one serial stream. The inter-integrated circuit (I2C™) protocol devel-
oped by the Philips/Signetics Corporation (now NXP Semiconductors)7 in the early
1980s embodies this concept and also reduces the interface to only two lines, by
permitting bidirectional transmission—see Fig. 12.13.

SCL
This is the clock line synchronizing data transfer, serving the same function as SCK
in the SPI protocol. SCL is bidirectional, to allow more than one Master to take
control of the bus at different times.

The original I2C specification set an upper limit on shift frequency of 100 kHz;
that is, 100 kbit/s, but the specification was augmented in 1993 by a Fast mode with

Fig. 12.13 Data transfer on the I2C bus

7I2C™ is a trademark of the Philips/NXP Corporation.

12 One Bit at a Time 401

an upper data rate of 400 kbit/s, which is the current de facto standard. In 1998 a
compatible High-Speed mode was added with an upper bit rate of 3.4 Mbit/s.

SDA
This I2C data line allows data flow in either direction. This bidirectionality al-
lows communication from Master to Slave (Master-Write) or from Slave to Mas-
ter (Master-Read). Furthermore it allows the receiver to signal its status back to the
transmitter at the end of each byte.

The I2C protocol is relatively complex and its full specification can be viewed at
the NXP Semiconductors’ web site.8 Before looking at the basic protocol, we need
to examine the SCL and SDA lines in more detail. When no data is being transmitted,
both lines should be High; the Idle condition. A device wishing to seize control of
an idling bus must bring its SDA output Low. This is known as the Start condition.
In order for the would-be Master to be able to pull this line Low, all other devices
hung on the line must have their SDA pins open circuit and the line as a whole
pulled up to the High state through a single external resistor; see Fig. 12.14(a). To
implement this, SDA outputs must be open-collector or open-drain—see Fig. 2.2(b)

Fig. 12.14 Sharing the SCL and SDA bus lines

8www.nxp.com/acrobat/literature/9398/39340011.pdf.

402 The Essential PIC18® Microcontroller

Fig. 12.15 A I2C packet transmission

on p. 19. This means that any device hung on the bus is able to pull its line Low by
outputting a logic 0. SCL is also implemented in this way to permit separate Masters
to clock the network. This Multi-Master I2C bus allows for more than one device to
take over as a Master, but of course not simultaneously. Both bus lines will therefore
need a pull-up resistor in the normal manner.

In addition to generating the Start event, the Master is responsible for generating
the clock signal and also for sending an address code to the other entities on the
bus, to establish communications with one or more Slave devices. Along with this
address, a single bit tells the Slave if the data flow is to be from the Master to the
Slave (Master-Write) or Slave to Master (Master-Read).

Each packet sent between Master and Slave comprises nine bits. Eight of these
are data synchronized by the clock. Changes on SDA must only occur when the
clock line is Low. Data is clocked into the receiver on the following SCK rising edge.
These bytes may represent address or control information from the Master or data
from either Master or Slave. The I2C protocol includes a handshaking mechanism—
see Fig. 11.3 on p. 340. During the ninth clock pulse, the transmitting device releases
the SDA line and the receiving device on the bus acknowledges the data sent by the
transmitter. SDA is held Low by the receiver if the datum has been successfully
acquired, giving an ACK state; as shown in Fig. 12.15. The alternative, where the
receiver either signals a problem or that it doesn’t want any more data, is called a
Not ACKnowledge, or NACK. Normally in this latter situation, the transmitter will
try again for a number of times before giving up.

Rather less drastic, the Slave device can hold the clock line Low. Clock stretch-
ing is useful where the Slave device cannot process incoming data fast enough. The
Master will attempt to send clock pulses until SCL is released by the Slave.

In any situation, it is the responsibility of the Master to terminate the conver-
sion by bringing the SDA line High when the clock line SCK is High; signaling a
Stop condition. Another conversion can be started, if desired with a different Slave,
by the Master sending another Start signal. It is possible for the Master to send
out repeated Starts without first stopping. For instance, a Master may wish to send
(Master-Write) an internal address to an I2C memory device (see Example 12.3)
and then do a Master-Read of the pointed-to data. This requires a change in the
conversation direction, which is done by doing another Start with a new Slave Ad-
dress:Direction packet being sent—see Fig. 12.29. The difference between using
repeated Starts and a Stop condition is that the latter signals other devices that the
Master has relinquished the bus and another device can become a Master on a Multi-
Master bus system.

12 One Bit at a Time 403

In using a PIC MCU to implement the I2C standard in software, a problem arises
in as much as port outputs are not open-drain; that is, the logic 1 output state is not
open-circuit as called for in Fig. 12.14(a). However, it is possible to get around this;
simulating the high impedance state by switching the port line between output and
input. For example, if we wish to use RA2 as the SCL data line, then to pulse SCL
Low and then off/High we have:

bcf PORTA,2 ; Sometime during set-up make RA2 = 0
....
bcf TRISA,2 ; RA2 is output = 0
nop ; Short delay
bsf TRISA,2 ; Float RA2 by making it an input

where the High state is a consequence of the external pull-up resistor and the high
input impedance; as shown in Fig. 12.14(b)ii.

A complete transmission between Master and Slave comprises a packet of
several byte/Acknowledge transfers sandwiched between Start and Stop condi-
tions. To some extent the form of this packet depends on the requirements of
the Slave device; however, all packets conform to the general sequence Slave ad-
dress:Control/Command:Data shown in Fig. 12.15.

The essence of the I2C protocol is the requirement that each type of Slave device
has an address. This address is allocated9 to the manufacturer of the I2C peripheral
and is factory programmed. To allow more than one device of the same kind to share
the same bus, most I2C-compatible devices allow up to four bits of this address
to be set locally by the designer; usually by connecting Slave address pins to the
appropriate logic levels. On receipt of a Start bit, all Slaves on the bus will examine
the first seven bits for their personal address. If there is no match then the rest of the
conversation is ignored until the next Start bit. Bit 8 is a direction bit; R/W is Low
if the Master is to be the transmitter; that is, to Write to the Slave, and High if the
Master wishes to Read from the Slave.

Not all 7-bit addresses are valid. All addresses matching b’0000XXX’ or
b’1111XXX’ are reserved for special situations; leaving 224 valid addresses in to-
tal. For instance, the address b’0000000’ indicates a General Call broadcast to all
Slaves on the bus, rather than to one specific device. Along with the introduction
of a Fast mode, the I2C protocol was extended to permit a 10-bit address. This is
signaled by the reserved address b’11110A9A80’. The following packet is interpreted
as the lower byte of the address A7 . . .A0. For instance, address h’2A3’ would be sent
as b’11110100’ followed by b’10100011’.

After the address byte(s), the next byte is usually treated by the addressed Slave
as a Command/Control word, passing configuration information. For instance, a I2C
memory may require the internal address where the data is to be written to—see
Example 12.3. Bytes following this are usually pure data or a mixture of data and
control bytes.

9By the I2C-bus committee.

404 The Essential PIC18® Microcontroller

Fig. 12.16 The MAXIM MAX518 I2C dual digital to analog converter

In order to illustrate these concepts, we will use the Maxim MAX518 DAC,
shown in Fig. 12.16, as our exemplar. This is the I2C counterpart to the SPI protocol
MAX549, with a 2-layer register pipeline, two channels and a power-down feature.

The MAX518 has a 7-bit Slave address of the form 01011AD1AD0 where AD1
and AD0 should match the logic state of pins 5 and 6, respectively. If we assume
that both pins are connected to GND then the Address byte sent out by the Master

will be . R/W is 0, as this device can only be written to.
The Command byte has three active control bits, and is of the form 000 RST PD

XX A0:

A0
This enables the input PIPO register for Channel 0 if 0 and Channel 1 if 1.

PD
When 1 this control bit will power down both DAC channels, reducing the supply

12 One Bit at a Time 405

Fig. 12.17 Minimum timing relationships for the Fast I2C mode

current to typically 4 µA. The contents of the internal registers remain unchanged
and data may be shifted in and registers updated in this condition. The state infor-
mation is only executed whenever a Stop bit is sent by the Master, at which point
the last transmitted value of PD is acted upon.

RST
All internal registers are cleared irrespective of the following data byte which may
be treated as a dummy byte. Analog outputs go to zero after the Stop condition.

In all cases the Stop condition updates the analog outputs according to the com-
mands and data byte. If there have been several Command:Data byte pairs since the
last Stop then the most recent command and data are reflected in the state and output
of the device.

In order to interface to the MAX518, we will need to design subroutines to send
out a Start condition, a Stop condition and a Master-Write byte. To design the device
driver we need to look more closely at the time relationship between Clock and Data
signals, which generally are more tightly defined than in the SPI protocol.

The MAX518 and most current I2C-compatible devices are designed to the Fast
mode specification and the values given in Fig. 12.17 relate to this 400 kHz clocking
rate. Of particular note is the requirement that the clock SCL should be held High not
less than 0.6 µs (tHD;STA) after the active of SDA to signal a Start condition.
Similarly, a Stop condition requires that the clock be set-up High at least 0.6 µs
(tSU;STO) before the active of SDA. A minimum of 1.3 µs is required with
the bus free (tBUF) in the Idle state between a Stop and a following Start condition.
These requirements allow time for the Slave devices to detect these synchronizing
events without ambiguity.

During a data byte transmission the clock should be Low (tLOW) no less than
1.3 µs and High (tHIGH) no less than 0.6 µs within the 2.5 µs overall duration limita-
tion imposed by the 400 kHz clock rate. Data changes only when the clock is Low,
and any change should be complete no less than 100 ns (tSU;DAT) before the clock
goes High.

Not shown in the diagram is the maximum rise and fall times, which should not
exceed 300 ns with a maximum bus capacitance of 400 pF. To keep within this

406 The Essential PIC18® Microcontroller

transition restriction, the pull-up resistors of Fig. 12.14 should not be more than
1.8 k� with this value of capacitance. With short bus runs and few Slave devices
this value of resistance can be increased by up to a factor of ten, to reduce energy
dissipation.

In implementing the I2C timings, a PIC MCU with a clock frequency above
3.2 MHz, with an execution time of less than 1.25 µs, may need to insert short delays
between actions. For example, a 20 MHz crystal-driven PIC MCU implementing the
instruction pair:

bcf TRISA,SCL
; Drag Clock Low by making pin an output to logic 0

bsf TRISA,SCL
; Float clock into the High state by making pin an input

would give High and Low durations of only 0.2 µs. Short delays are conveniently
implemented using nop (No OPeration) instructions; each taking one instruction
cycle (fOSC/4). For instance, to give a nominally 400 kHz clock at 20 MHz we have:

bcf PORTA,SCL ; Clock Low
nop ; 0.2us
nop ; 0.4us
nop ; 0.6us
nop ; 0.8us
nop ; 1.0us
nop ; 1.2us
bsf PORTA,SCL ; Clock High
nop ; 1.6us
nop ; 1.8us
nop ; 2.0us
nop ; 2.2us
nop ; 2.4us
nop ; 2.6us

Of course slower clock speeds require less nops, but rather than tailor our
subroutines for one particular crystal we will use the assembler macro called
Delay_600, coded in Program 12.8, that will expand to the appropriate number
of nops to give a nominal 600 ns (0.6 µs) delay, depending on the value of the con-
stant XTAL defined by the programmer at the head of the source file. For instance,
to alter the coding of Program 12.9 to suit a 12 MHz crystal system then the one
line #define XTAL d’20’ should be altered to #define XTAL d’12’ and
the program reassembled.

The coding of Program 12.8 makes use of the conditional assembler direc-
tive if-else-endif. This is similar to the C language statement if(true)
{do this;} else {do that;} of p. 297. In our example, if(XTAL <= 6)
states that if the constant XTAL is less than or equal to 6 then insert one nop in-
struction whenever the macro Delay_600 is expanded. At 6 MHz this will be

12 One Bit at a Time 407

Program 12.8 A crystal frequency-independent short delay macro
Delay_600 macro ; Delays by nominally 0.6us

if(XTAL <= 6)
nop

else
fill (nop),2*(3*XTAL/d’20’+1)

endif
endm

approximately 600 ns. Notice the use of the assembler directive fill which in-
serts the 2-byte op-code for nop (h’0000’) in proportion to frequency, with an extra
nop for each increase of 6 MHz. In practice, extra delays will be introduced by
instructions toggling the bus lines and executing housekeeping tasks. Thus some
fine-tuning can be undertaken if maximum speed is a criterion.

Based on the macro of Program 12.8 and the following initialization code:

include "p18f4520.inc"
#define XTAL d’20’ ; Eg. 20MHz. Replace with actual data

S_CL equ 0
S_DA equ 1

MAIN setf ADCON1 ; Make Port A all digital
bcf PORTA,SCL ; Preset Clock & Data pins to 0
bcf PORTA,SDA ; so that line can be dragged Low
bsf TRISA,0 ; Float Clock line High RA0 (TRISA[0])
bsf TRISA,1 ; & Idle the Data line RA1 (TRISA[1])

which is assuming that we are using Port A bits 0 and 1 of a 20 MHz PIC18F4520
to implement our SCL and SDA lines, we can code the three subroutines outlined in
Program 12.9 to allow us to communicate with the I2C MAX518.

START
This subroutine releases both the SCL and SDA lines which are then pulled High
to ensure the bus is in its Idle state for the minimum duration 1.3 µs tBUF. Bringing
SDA Low gives the characteristic Start , which is followed by a 0.6 µs delay to
implement tHD;STA (HolD; STArt—see Fig. 12.17) before the subroutine exits with
both SCL and SDA Low.

STOP
The Stop condition is implemented by ensuring that both SCL and SDA lines are
Low (which should be the case after an Acknowledge condition) and then releasing
the SCL line which is then pulled High. After a 0.6 µs delay to implement tSU;STO

(Set-Up; STOp), SDA is released to give the characteristic Stop . The subrou-
tine exits with both lines released idling in preparation for the next Start condition.

I2C_OUT
This subroutine clocks out the eight bits placed in DATA_OUT by the caller, MSB
first, and then checks that the Slave has Acknowledged the transaction.

408 The Essential PIC18® Microcontroller

Program 12.9 Low-level I2C subroutines
; ***
; * FUNCTION: Outputs the Start condition *
; * ENTRY : None *
; * EXIT : Start condition and SCL, SDA pins low *
; ***
START bsf TRISA,S_DA ; Ensure that we start with the

bsf TRISA,_CL ; Data and Clock lines pulled high
Delay_600 ; 1.3us delay in Idle state
Delay_600
bcf TRISA,S_DA ; Low-going edge on Data line
Delay_600 ; Wait for Slave to detect this
bcf TRISA,S_CL ; Exit with the Clock line low
return

; ***
; * FUNCTION: Outputs the Stop condition *
; * ENTRY : None *
; * EXIT : Stop condition and SCL, SDA pins high (Idle) *
; ***
STOP bcf TRISA,S_CL ; Make sure that Clock line is low

bcf TRISA,S_DA ; and the Data line is low
bsf TRISA,S_CL ; Bring Clock line high
Delay_600 ; for a minimum of 0.6us
bsf TRISA,S_DA ; Rising edge on Data signals Stop
return ; including the return time

; ***
; * FUNCTION: Transmits byte to Slave and monitors Acknowledge*
; * ENTRY : 8-bit data to be TXed is in DATA_OUT *
; * RESOURCE: START and STOP subroutines *
; * EXIT : Byte transmitted. ERROR is 01 IF no Ack received*
; * EXIT : from Slave ELSE 00. SCL low *
; ***
I2C_OUT bcf TRISA,S_CL ; Make sure that Clock line is low

clrf ERR ; Start with no error
movlw 8 ; Loop counter = 8
movwf COUNT

I2C_OUT_LOOP
bcf TRISA,S_DA ; Start with Data bit low
rlncf DATA_OUT,f ; Shift data left once into Carry
btfsc STATUS,C ; Is C 0 or 1?
bsf TRISA,S_DA ; IF the latter THEN make Data high

Delay_600 ; Delay plus extra instructions OK
Delay_600
bsf TRISA,S_CL ; Bring Clock pin high
Delay_600 ; for at least 0.6us
bcf TRISA,S_CL ; Bring Clock low
decfsz COUNT,f ; Decrement loop count
bra I2C_OUT_LOOP; and repeat eight times

; Now check Acknowledge from Slave
bsf TRISA,S_DA ; Release Data line
Delay_600 ; Keep Clock line low
Delay_600 ; long enough for Slave to respond
bsf TRISA,S_CL ; Bring Clock line high
btfsc TRISA,S_DA ; Check if Data is low from Slave
incf ERR,f ; IF not THEN ERROR1

bcf TRISA,S_CL ; Now finish ACK by bringing CLock low
return

12 One Bit at a Time 409

The first part of this process is implemented by repetitively shifting the datum in
DATA_OUT and inspecting the Carry flag. SDA is set to mirror C and the SCL line
toggled to accord with the tLOW and tHIGH parameters illustrated in Fig. 12.17.

Once the loop count reaches zero, the Data line is released with SCL Low for
the duration tLOW. SCL is then released High and the state of SDA, which should
have been dragged Low by the Slave, checked. If not Low, the No ACKnowledge
(NACK) situation is returned with ERR= h’01’; otherwise it will be zero.

Our use of errors here is very rudimentary. For instance, errors can also occur if
some other device has locked either line Low; that, is the bus is busy.

We have not coded a Master-Receive I2C counterpart to subroutine I2C_OUT,
as the MAX518 only demands a Master-Transmit data interchange. However, Pro-
gram 12.19 gives the I2C_IN mirror.

As our example we will send the contents of File h’040’ to the MAX518 Channel 0
and then the contents of File h’041’ to Channel 1; at that point updating both DAC
registers and hence simultaneously outputting the analog equivalent of File h’040’ to
pin Vout0 and File h’041’ to pin Vout1. We assume that both AD0 and AD1 pins are
connected to Ground.

Our implementation task list will involve the transmission of a group of five
packets of information, sandwiched between a Stop and a Start condition.

1. Start.
2. Address byte: b’01011000’

Slave address b’01011(00)’, Write.
3. Command byte 1: b’00000XX0’

No ReSeT, no Power Down, Channel 0.
4. Data byte 1:

Contents of File h’040’.
5. Command byte 2: b’00000XX1’

No ReSeT, no Power Down, Channel 1.
6. Data byte 2:

Contents of File h’041’.
7. Stop and update both DAC registers.

The listing of Program 12.10 follows our itemization exactly. On return from
each call to I2C_OUT the Error datum is tested for zero. If not zero then the pro-
cess is restarted. Repeated Starts (without Stops) are allowed by the I2C protocol.
However, if there was a hardware fault with the bus or Slave then this process would
continue indefinitely. Thus, for robustness a time-out mechanism should be imple-
mented to prevent hang-ups.

The MSSP module supports both Slave and Multi-Master I2C protocols with
7- and 10-bit addressing. Avoiding a bus collision situation complicates matters, and
the MSSP Master I2C operation is correspondingly complex and beyond the scope
of this text. Details are given in the Microchip application note AN7578, Use of the

410 The Essential PIC18® Microcontroller

Program 12.10 Interacting with the MAX518 dual-channel I2C DAC
ANALOG call START ; Start a transmission packet
; Address byte --

movlw b’01011000’; Slave address Master-Write
movwf DATA_OUT ; Copied to pass location
call I2C_OUT ; Send it out
tstfsz ERR ; IF no Error THEN continue
bra ANALOG ; ELSE try again

; Command byte 1 --
movlw b’00000000’; No ReSeT, No Power Down, Channel0
movwf DATA_OUT ; Copied to pass location
call I2C_OUT ; Send it out
tstfsz ERR ; IF no Error THEN continue
bra ANALOG ; ELSE try again

; Data byte 1 ---
movf h’40’,w ; Channel0’s datum from memory
movwf DATA_OUT ; Copied to pass location
call I2C_OUT ; Send it out
tstfsz ERR ; IF no Error THEN continue
bra ANALOG ; ELSE try again

; Command byte 2 --
movlw b’00000001’; No ReSeT, No Power Down, Channel1
movwf DATA_OUT ; Copied to pass location
call I2C_OUT ; Send it out
movf ERR,f ; Check for an error
tstfsz ERR ; IF no Error THEN continue
bra ANALOG ; ELSE try again

; Data byte 2 ---
movf h’41’,w ; Channel1’s datum from memory
movwf DATA_OUT ; Copied to pass location
call I2C_OUT ; Send it out
tstfsz ERR ; IF no Error THEN continue
bra ANALOG ; ELSE try again

call STOP

SSP Module in the I2C Multi-Master Environment. Here we will confine ourselves
to the use of the MSSP module as an I2C 7-bit address Slave device.

Figure 12.18 shows a block diagram of a MSSP configured as an I2C Slave.
Typically pinRC4 is used as the bidirectional I2C SDA data channel and RC3 im-
plements the SCL clock line. Both pins need to be set as inputs for the I2C Slave
protocol.

Internally, data I/O is via the SSPSR shift register, which is used both for Slave
transmission or reception.

Transmission
Where the Slave is sending data (Slave-Write) to a remote Master (Master-Read)
the datum placed in the SSPBUF buffer register will automatically be transferred
into the SSPSR (if empty) whence it is shifted out of SDA in eight clock pulses. If

12 One Bit at a Time 411

Fig. 12.18 Block diagram of a MSSP module set-up as an I2C Slave device

the SSPSR is not empty, this transfer does not happen and a Write-collision error is
set.

Reception
If the Slave expects to read a packet from the remote Master, then the data is shifted
in via SDA and when collected is transferred into the SSPBUF register. The MSSP
module then automatically ACKnowledges the safe reception of the datum during
the ninth clock pulse, unless an overflow error has occurred. This happens where
the previously received byte has not been read from the SSPBUF register in time.
This can be used by the Slave as a mechanism to tell the Master to stop sending any
more data.

Once a Start condition is sensed, all Slaves on the bus shift in the first packet
from the Master, looking for a match with the pattern set-up in software in the
SSP ADDress register (SSPADD). If the top seven bits match (bit 0 is R/W) then
it is ACKnowledged and the addressed Slave is now ready to converse with the
remote Master. Both the BF and SSPIF flags will be set to signal an I2C event and
the address byte loaded into SSPBUF. As we have seen in Fig. 12.15, bit 0 of this
first address packet tells the Slave to either receive or transmit as directed until the
next Start or Stop condition. This will set or clear the R/W bit in SSPSTAT[2] as
appropriate.

As in the case of the SPI mode, the Control and Status registers need to be set-up
to configure and monitor the operation of the MSSP module. Figure 12.19 shows
the situation applicable for the four possible I2C Slave modes. These should be
compared to those shown for the SPI modes of Fig. 12.9. The same SSPSTAT and
SSPCON1 registers are used and indeed, rather confusingly, some of the bit names

412 The Essential PIC18® Microcontroller

Fig. 12.19 The MSSP module’s CONtrol and STATus registers as appropriate for the I2C Slave
modes

have been retained, such as CKE, even though their function is very different. The
MSSP has a second control register named SSPCON2. Apart from bits 7 and 0,
SSPCON2 deals solely with the Master I2C environment.

SSPEN
Setting SSPCON1[5] enables the Synchronous Serial port. On any type of reset, the
MSSP is disabled and pinsRC3 and RC4 may be used for normal Port C I/O duties.

SSPM3:0
Four combinations of these MSSP Mode switches are relevant to this discussion.
For simplicity, we will assume a 7-bit Slave address mode. Where a 10-bit address
mode is used, the software must first place the top address byte b’11110A9A80’
in SSPADD for comparison and then follow it with the bottom 8-bit address byte
b’A7A6A5A4A3A2A1A0’. Modes b’0110’ and b’1110’ differ only in that the SSP inter-
rupt flag SSPIF is optionally set when a Start or Stop situation occurs.

12 One Bit at a Time 413

BF, SSPIF
Buffer Full generally indicates that something is still happening with data in the
SSPBUF register. SSPIF is the interrupt flag associated with the MSSP module, and
is set whenever an I2C event has occurred. Where an address is sent, BF and SSPIF
will only be set if it matches the value of SSPADD.

Slave-Receive
When a complete frame is received from the Master and has been dumped
into the SSPBUF register, BF is set to indicate that a new datum is ready for
collection and an ACKnowledge is sent back during clock pulse 9. SSPIF in
PIR[3] is also set to potentially generate an interrupt. When this byte is read by
the software, BF is automatically cleared (it is a read-only flag), but SSPIF has
to be manually reset in the normal interrupt flag manner.

Should a complete new byte be shifted in before the previous datum is
read; that is, if BF is still 1, then it will not be transferred to SSPBUF and the
SSPOV flag will be set to show an OVerflow condition has occurred. In this
case an ACKnowledge is Not sent; that is, NACK.

Slave-Transmit
While a byte is being shifted out to the Master, BF is set to show that a transmit
is in progress. If a new byte is written into SSPBUF, it will not be transferred
into SSPSR and the WCOL flag is set to indicate a Write COLlision has oc-
curred. That is, there is no double-buffering action during a transmit.

SSPOV
In a Slave-Receive situation, failure to read the SSPBUF register before the next
byte has arrived is signaled by setting this flag.

A NACK is sent to the Master to indicate an overflow. The NACK state can be
used by the Slave deliberately to inform the Master that it should try again later.
This condition is cleared by reading the datum from the SSPBUF register to clear
BF and manually zeroing SSPOV.

WCOL
An attempt to write to the SSPBUF while a transmission is in progress sets the
WCOL flag to indicate the Write COLlision has occurred. This flag has to be manu-
ally cleared.

S, P
These flags indicate that a Start or stoP bit, respectively, was detected last. They are
normally the inverse of each other except that they are both zero after any Reset or
when the module is enabled—SSPEN → 1. A set P indicates that the bus is free;
which is useful if a listening device wishes to take over as a Master.

D/A, R/W, UA
These flags all relate to the packet(s) following a Start condition, which contains
information regarding the Slave address and direction of subsequent data packets.

• D/A indicates whether the byte sitting in the SSPBUF is Data or Address.

414 The Essential PIC18® Microcontroller

• R/W informs the software whether the message is going to be Master-Read
(R/W = 1) or Master-Write (R/W = 0). Effectively, it is bit 0 of the (first) ad-
dress packet.

• UA is used only in the 10-bit address modes. In this case the seven MSBs of the
first address byte b’11110A9A80’ are matched first. the LSB represents R/W and
is 0 to indicate that the next address packet is to be written from the Master. UA
is then automatically set to 1, to indicate that the software must now place the
lower address byte into SSPADD for match detection. When this is done, UA is
automatically cleared.

GCEN
When the General Call Enable bit is 1, the SSPIF interrupt flag will be set when the
General Call address b’00000000’ is received; irrespective of an address match. This
indicates that the Master wishes to make a general broadcast to all Slaves.

CKP, SEN
When CKP is cleared, the Slave device holds the SCL pin Low, so that the Master
device is unable to send clock pulses. When CKP is set to 1, the SCL pin is released
and the Master can clock a new packet. Clock stretching is implemented automati-
cally during a Slave-Transmit sequence. If BF is clear at the end of a transmit frame,
indicating that another byte is not ready to be sent yet, then the CKP bit is automati-
cally cleared, resulting in the SCL pin being held low. When the Slave subsequently
copies the next byte into SSPBUF, then it should manually set CKP to release the
clock line and allow the next transmit frame to be shifted out.

Clock stretching during a Slave-Receive mode transaction is optional, and is
controlled by the SEN (Stretch ENable) bit in SSPCON2[0].

SEN = 0
There is no automatic clock stretching when data is being received from a
Master.

SEN = 1
When SEN is set, automatic clock stretching is enabled for Slave reception.
If the BF bit is set, indicating a full buffer, then the CKP bit is cleared. By
thus holding the SCL pin low, the Slave has time to to read the contents of
the SSPBUF before the Master can initiate another transmit sequence. This is
useful if the Master is sending packets at too fast a rate for the Slave to process.
The CKP bit should be set manually then the Slave is ready for the next data
frame from the Master.

CKE
This should be set to alter the electrical characteristics of SDA and SCL to conform
to the SME bus standard.

Before looking at an example, the MSSP module needs to be initialised in the
start-up routine. Typical set-up code for a PIC18F4520 device acting as an interrupt-
driven Compatible mode 100 kHz Slave with 7-bit address h’06’ would be something
like:

12 One Bit at a Time 415

include "p18f4520.inc"

SETUP movlw b’00110110’ ; Enable MSSP, no clock stretch, CKP=1
movwf SSPCON1 ; 7-bit Slave mode 0110

bsf SSPSTAT,SMP ; Slew rate for 100kHz
bsf SSPCON2,SEN ; SEN=1 for auto clock stretch on RX
movlw h’0C’ ; h’0C’ is address 06 shifted left 1
movwf SSPADD ; for matching

bsf PIE1,SSPIE ; Enable the SSP interrupt (SSPIE)
bsf INTCON,PEIE ; Enable the Peripheral module group
bsf INTCON,GIE ; Globally turn on enabled interrupts

where:

1. The three MSSP Status/Control registers are set-up appropriately for our specifi-
cation.

2. The Slave address h’06’ aligned with the top seven bits of the Address packet) is
copied into the SSPADD for matching.

3. The SSP interrupt is enabled by setting to 1 the specific SSPIE as well as the
general Peripheral group mask bit PEIE and Global mask GIE—see Fig. 7.2 on
p. 209.

With our MSSI module set-up as above, we can code the bottom layer of func-
tions that service the reading and writing of single bytes from a bus Master. These
will be the counterpart to the subroutines of Program 12.9.

Subroutine I2C_OUT simply keeps checking for Buffer Full (BF == 1?) until
any byte in the SSP Shift Register (SSPSR) has been shifted out. When this is the
case, any active Write Collide is cleared (WCOL = 0 and the datum in WREG on
entry is copied into the SSP BUFfer for onward transmission. Provided WCOL is
clear, the process is completed.

The converse subroutine I2C_IN first checks to see if a byte too many has been
received since the last read of SSPBUF, causing an OVerflow (SSPOV == 1?). If
this is the case then I2C_ERROR is set to −2 to indicate that the returned byte may
be suspect. With a zero SSPOV flag, the datum is read from the SSPBUF whenever
BF shows a byte has been copied from the SSPSR. This is the value returned from
the subroutine.

The layer of functionality above this treats the MSSP Slave as a sequential ma-
chine, responding to each of five possible I2C states as they occur. Although the
SSPIF flag in the PIR1 register may be polled, our exemplar software will use an
interrupt-driven approach with the processor in the default Compatible mode.

Once the MSSP and interrupt system are initialized, the interrupt service routine
(ISR) can be written to recognise the various I2C events. Any legitimate event will
transfer processing from the background process to the ISR. Even if the Slave is
asleep, a I2C happening will set SSPIF and awaken it in the usual way. These events
are:

416 The Essential PIC18® Microcontroller

Program 12.11 Bottom layer I2C functions
; ***
; * FUNCTION: Slave write to bus Master *
; * ENTRY : Byte in WREG *
; * EXIT : Byte transmitted when ready *
; ***
I2C_OUT btfsc SSPSTAT,BF ; Check for Buffer Full

bra I2C_OUT ; IF still full THEN try again

I2C_OUT_LOOP
bcf SSPCON1,WCOL ; Clear any Write COLlision
movwf SSPBUF ; Start the transmission
btfsc SSPCON1,WCOL ; Shouldn’t be any WCOL here
bra I2C_OUT_LOOP ; but to be sure

return ; Done

; **
; * FUNCTION: Slave read from bus Master *
; * ENTRY : None *
; * EXIT : Byte received is in WREG. ERROR -2 IF OVerflow*
; **
I2C_IN btfss SSPCON1,SSPOV ; Test for an overflow condition

bra I2C_IN_LOOP ; IF none THEN continue
bcf SSPCON1,SSPOV ; ELSE clear it
movf SSPBUF,w ; and reset BF by doing a read
decf I2C_ERROR,f ; Indicate an OVerflow error
decf I2C_ERROR,f ; by returning an ERROR code of -2
return ; and exit

I2C_IN_LOOP
btfsc SSPSTAT,BF ; Check for Buffer Full yet?
bra I2C_IN_LOOP ; Keep checking

movf SSPBUF,w ; Get byte
return ; Exit with datum in WREG

1: Master-Write: Packet received was an Address
The bus Master has initiated a Start and has sent an Address packet with R/W = 0
to indicate that the Master will begin to send Data packets to the addressed Slave(s).
This packet is ignored unless the address matches or it is a General Broadcast.

S = 1 Start condition occurred last.

R/A = 0 Master-Write conversation pending.

D/W = 0 This packet is an Address.

BF = 1 Buffer is full.

It is important to read the SSPBUF register to clear the BF flag, even though the
address byte sent by the Master is going to be discarded. If this is not done, the next

12 One Bit at a Time 417

byte sent by the Master will cause an SSP OVerflow (SSPOV → 1) and the MSSP
will Not ACKnowledge (NACK) the byte. The SSPBUF will not be updated on a
mismatch.

As SEN is 1 in our instance, then CKP will automatically be cleared and the
clock stretched. When appropriate, CKP must be set to 1 to allow the Master to
proceed. The ISR shown in Program 12.12 always sets this bit to release the clock
line when a new event occurs.

2: Master-Write: Packet received was Data
After the Address packet (State 1), the Master will send one or more Data packets.
The Slave must read each one to avoid MSSP OVerflow and ensure an ACK at the
end of each packet. If any previous received byte has not yet been read the SSPOV
bit will be set and the MSSP module will NACK the byte. The Status settings differ
from State 1 only in that D/A is 1.

S = 1 Start condition occurred last.

R/W = 0 Master-Write conversation pending.

D/A = 1 This packet is Data.

BF = 1 Buffer is full.

3: Master-Read: Packet received was an Address
The bus Master device begins a new read operation by initiating a Start and send-
ing an Address packet with R/W = 1 to indicate that the Slave is expected to start
sending Data packets back. Only when a Slave recognizes its personal address, or a
General Broadcast if GCEN is active, will the key SSPSTAT settings will be:

S = 1 Start condition occurred last.

R/W = 1 Master-Read conversation pending.

D/A = 0 This packet is an Address.

BF = 1 Buffer is full.10

Otherwise this packet is ignored. As in State 1, the SSPBUF register should be read
to clear the BF bit, even though the address byte sent by the Master is going to be
discarded. If this is not done, the next byte sent by the Master will cause an SSP
OVerflow (SSPOV → 1) and the MSSP will NACK the byte.

Once its Address has been recognized, the Slave can send the first byte to the
Master by copying it into SSPBUF. The CKP bit is cleared in the ISR to release
the SCL pin. Clock stretching is always automatically asserted on a Master-Read
packet, independent of the setting of the SEN bit.

10In older PIC18 devices, and also the PIC18F1X20, BF is cleared in this event and it is not neces-
sary to read the SSPBUF to clear it. See App. Note AN734B for further details.

418 The Essential PIC18® Microcontroller

4: Master-Read: Packet received was was Data
This is similar to State 3, with the same treatment of the CKP clock stretching switch.
A new data byte should not be copied into SSPBUF whilst BF is 1 otherwise the
WCOL bit will set to show a Write COLlision.

The SSPSTAT settings are identical to State 3 except that D/A is 1 to show that
a Data packet was sent last:

S = 1 Start condition occurred last.

R/W = 1 Master-Read conversation pending.

D/A = 1 This packet is Data.

BF = 0 Buffer is free for transmission.

5: Master-Read: Master sent a NACK
This occurs typically when the Master does not wish to receive any more bytes from
the Slave. The NACK signals the end of the message, and when sensed by the Slave
MSSP resets the I2C logic.

CKP = 1 Clock is released.

S = 1 Start condition occurred last.

R/W = 1 R/W bit remains set.11

D/A = 1 This packet is Data.

BF = 0 Buffer is free for transmission.

The NACK event is identified because the CKP bit remained set when the status bits
indicated that a data byte has been received from the Master. Normally CKP is 0
with SCL being automatically stretched at the end of the byte reception.

For our example, let us assume that the Slave PIC18F4520 set-up to respond
to address h’06’ is monitoring eight temperature transducers using its Analog-to-
Digital Convertor (ADC) module—see Chap. 14. The Master wishes to read any
one of these digitized channels via its I2C port by first of all initiating a Master-
Write sending the channel number N to the Slave and then launching a Master-Read
of the Slave; which then sends the designated datum. We assume the subroutine
GET_ANALOG of Program 14.1 on p. 517 is in situ.

A suitable task list would be:

1. Master sends a Start pulse followed by a call to Slave 06 requesting that it read
the next packet (Master-Write).

2. Master sends one Data packet, specifying a channel number 0–7.

11In older PIC18 devices R/W was cleared.

12 One Bit at a Time 419

3. Master sends a Start pulse (repeat Start) for Slave 06, this time requesting that it
write the next packet (Master-Read).

4. Slave stretches clock while its ADC digitizes its specified analog input.
5. Slave sends the requested datum.
6. Master NACKs Slave to signal end of transmission.

For clarity, our foreground software is shown as two separate routines. Pro-
gram 12.12 gives the ISR framework software. On entry, the SSPIF interrupt flag is
checked and if not set the ISR exits. In a real-world situation, interrupts may come
from several sources, and this part of the code would be elaborated to check for each
of the applicable interrupt flags.

If SSPIF is 1 then a copy of the state of the SSPSTAT Status register is made in
I2C_STATUS, with the non-critical bits first cleared. The program variable named
I2C_ERROR is also zeroed. This is used to advise the background that an erroneous
situation has occurred. We have already seen in Program 12.11, Error −2 indicates
an overflow situation when reading a packet.

Once initialization is complete, the actual I2C interpretation software is called as
the subroutine shown in Program 12.13. This software is structured as a series of five
separate cases; each one corresponding to one of the listed I2C states. This is done
by using the xorlw instruction to check for no differences (see p. 128) between the
copy of the SSPSTAT Status pattern and the listed I2C state byte. Where a match
is found, an action is taken corresponding to our task list, or in some cases just
housekeeping to enable the MSSP to continue in the correct state. For instance,
nothing needs to be done for I2C State 5, where the Master NACKs the Slave, as
the MSSP will be automatically reset. If no state match is found, I2C_ERROR is
decremented to return Error state −1.

Program 12.12 The I2C temperature acquisition ISR
; **
; * FUNCTION : ISR to send digitized channel N via I2C link*
; * ENTRY : An I2C event has occurred *
; * EXIT : One of five states implemented *
; * RESOURCE : Subroutines GET_ANALOG, I2C_HANDLER *
; * ENVIRONMENT: Variables I2C_STATUS, I2C_ERROR *
; **
; Check the SSPIF flag is set? -------------------------------
ISR btfss PIR1,SSPIF ; Is this a MSSP interrupt?

bra ISR_EXIT ; IF not THEN exit
movf SSPSTAT,w ; ELSE get the settings from SSPSTAT
andlw b’00101101’; Zero all but S, D/A, R/W and BF
movwf I2C_STATUS ; and copy into a Temporary File
clrf I2C_ERROR ; Zero Error flag
call I2C_HANDLER; Now respond to the I2C event

; Restore the context --
ISR_EXIT bcf PIR1,SSPIF ; Clear interrupt flag

bsf SSPCON1,CKP; Release clock line and
retfie FAST ; return to background with context

420 The Essential PIC18® Microcontroller

Program 12.13 The I2C temperature acquisition handler subroutine
; **
; * FUNCTION : Interprets I2C state & responds appropriately*
; * ENTRY : Copy of SSPCON1 in I2C_STATUS. SCL released *
; * EXIT : Appropriate action taken *
; * EXIT : I2C_ERROR = -1 IF state not recognized *
; * RESOURCE : I2C_STATUS, TEMP *
; **
I2C_HANDLER
; Are we in State 1? (Start: Address packet, Master-Write)

movf I2C_STATUS,w; Get copy of SSPSTAT status
xorlw b’00001001’ ; Check for S=1, D/A=0, R/W=0, BF=1
bnz STATE2 ; IF not equal THEN try for State 2
movf SSPBUF,w ; ELSE do a dummy read to clear BF
return ; Exit

; Are we in State 2? (Data packet, Master-Write) -------------
STATE2 movf I2C_STATUS,w; Get copy of SSPSTAT status

xorlw b’00101001’ ; Check for S=1, D/A=1, R/W=0, BF=1
bnz STATE3 ; IF not equal THEN try for State 3
call I2C_IN ; ELSE read in Channel number
call GET_ANALOG ; Digitize Channel N’s analog input
movwf TEMP ; and copy outcome into TEMPerature
return ; Exit

; Are we in State 3? (Start: Address packet, Master-Read) -----
STATE3 movf I2C_STATUS,w; Get copy of SSPSTAT status

bcf WREG,0 ; Ignore BF which varies with device
xorlw b’00001100’ ; Check for S=1, D/A=0, R/W=1
bnz STATE4 ; IF not equal THEN try for State 4
movf SSPBUF,f ; Dummy read to clear BF
movf TEMP,WREG ; Get TEMPerature
call I2C_OUT ; and send to the Master
return ; Exit

; Are we in State 4? (Data packet, Master-Read) --------------
STATE4 movf I2C_STATUS,w; Get copy of SSPSTAT status

xorlw b’00101100’ ; Check for S=1, D/A=1, R/W=1, BF=0
bnz STATE5 ; IF not equal THEN try for State 5
return ; Data has been sent, so do nothing!

; Are we in State 5? (Master NACKs Slave) --------------------
STATE5 btfsc SSPCON1,CKP ; Master has NACKed?

bra S5_ERROR ; IF yes something is wrong!
movf I2C_STATUS,w; ELSE get copy of SSPSTAT status
bcf WREG,2 ; Mask out RW to ignore device diffs
xorlw b’00101000’ ; Check for S=1, D/A=1, R/W=0, BF=0
btfss STATUS,Z ; Equal, so exit?

S5_ERROR decf I2C_ERROR,f ; IF not THEN signal ERROR -1
return

12 One Bit at a Time 421

Program 12.14 Interfacing to the MAX518 in C with a 4 MHz PIC18F4520
/* Set device as Master with the SSP module and Fast timing. */

#include <18f4520.h>
#use delay(clock=4000000)
#use i2c(master, scl=PIN_C3, sda=PIN_C4, fast, FORCE_HW)

#fuses NOWDT, XT
#byte DATA_X = 0x20
#byte DATA_Y = 0x21

void MAX518(unsigned int channel_0, unsigned int channel_1);

main()
{
/* Various code lines here */
MAX518(DATA_X,DATA_Y); /* Send out the two bytes */
/* More code */
}

void MAX518(unsigned int channel_0, unsigned int channel_1)
{
i2c_start(); /* Start condition */
i2c_write(0x58); /* Send out Slave address; Master-write*/
i2c_write(0); /* Send out Command 1 */
i2c_write(channel_0); /* Send out datum to Channel 2 */
i2c_write(0x01); /* Send out Command 1 */
i2c_write(channel_1); /* Send out datum to Channel 2 */
i2c_stop(); /* Stop condition */
}

On exit, the CKP switch bit is set to 1 to lift any clock stretching and the SSPIF
is cleared in the normal way.

Another example of the use of the MSSP module is given in the Microchip ap-
plication note AN734B, Using the PIC Microcontroller SSP for Slave I2C Commu-
nications.

As for the SPI protocol, many C compilers targeted to the PIC MCU have built-
in functions to implement the I2C protocol and avoid the necessity for user-defined
functions.

To illustrate the technique, consider Program 12.14 which replicates the assem-
bly-level coding of Programs 12.9 and 12.10 using the CCS compiler.

i2c_start();
Generates the Master Start condition.

i2c_stop();
Generates the Master Stop condition.

i2c_read();
Reads a byte over the bus. If an optional parameter of 0 is used then will NACK the
received data. In Master mode, will generate a clock.

422 The Essential PIC18® Microcontroller

i2c_write(value);
Sends a single byte over the bus. In Master mode will generate a clock. Returns a 0
if the addressed Slave acknowledged, 1 if no acknowledged and 2 if there was a
Multi-Master bus collision.

#use i2c(master, scl=PIN_C3, sda=PIN_C4, fast,

FORCE_HW)
This is a directive by which the programmer informs the compiler which pins are
used for the I2C lines, the fast or standard protocols and Master or Slave mode. The
compiler will use the MSSI module if the FORCE_HW option is specified, otherwise
a bit-banging routine (such as in Program 12.11) is used.

More than one I2C channel can be hosted by the one device, perhaps one using
the MSSP module and the other a software approach, with a #use i2c(stream,
...) naming each stream. For instance:

#use i2c(master,scl=PIN_A0,sda=PIN_A1,stream=main_channel)
#use i2c(slave,scl=PIN_C3,sda=PIN_C4,FORCE_HW,stream=s_channel)
/* More code ... */
i2c_slaveaddr(s_channel,0x06);/* Set the Slave’s addr to 06*/
/* More code ... */
i2c_write(main_channel,0x55); /* Send byte to this channel */
i2c_write(s_channel,0x99); /* Send byte to this channel */

Notice the use of the i2c_slaveaddr() function to set-up the Slave address.

The key characteristic of the various serial protocols discussed up to now is that
a clock signal is transmitted by the Master, which allows the various Slaves to re-
ceive or transmit data in perfect synchronization. An alternative approach is to send
data under the assumption that the transmitter and receivers are running at approx-
imately the same frequency. This asynchronous protocol has been in use for data
communications systems for over a century to send alphanumeric data over tele-
graph, telephone, and radio links to implement the Telex system.

One of the features of early computer development in the 1940s/1950s was the
extensive use of existing technology. An essential adjunct of any computer-oriented
installation is a data terminal. At that time the communications industry made con-
siderable use of the teletypewriter (TTY).12 Serial data were converted between
serial and parallel formats in the terminal itself, as well as providing keyboarding
and printing functions.

Until the early 1980s, TTYs were electromechanical machines, driven by a syn-
chronous electric motor. This meant that synchronization between remote terminals

12Literally a “typewriter from afar”; Greek, tele = far.

12 One Bit at a Time 423

Fig. 12.20 Transmitting the message string "PIC" in the asynchronous serial mode, with an 8-bit
code word with a minimum of one stop bit

could only be guaranteed for short periods. To get around this problem, each word
transmitted was proceeded by one Start bit and followed by one or more Stop bits.
A typical example is shown in Fig. 12.20. While the line is idling, a logic 1 (break
level) is transmitted. A logic 0 signals the start of a word. After the word has been
sent, a logic 1 terminates the sequence. Electromechanical terminals typically print
ten characters per second, and require a minimum of two Stop bits. For 8-bit words,
this requires a transmission rate of 110 bits per second, or 110 baud.13

The first purely electronic terminals required only one Stop bit, and could print
at 30 characters per second, giving a rate of 300 baud. Traditionally communication
channels use multiples of 300; e.g., 1200, 2400, 4800, 9600, PC Serial ports can
run up to 115,200 baud. However, this 300 × n series is not mandatory, as long as
receiver and transmitter are running at the same nominal rate.

Typically a receiver, on detecting an incoming datum, will try and sample each
bit at approximately the mid-point. This means that a frequency drift of ±0.5 bit
time can be tolerated in the space of 10 bits. Thus the receiver and transmitter local
sample clocks must be within ±5%. The two will be resynchronized at the start of
each datum.

Although not the most efficient of techniques, the asynchronous protocol outlined
here has the major advantage of being an international standard. There are several
variants; for instance, the word can typically be from 5 to 9 bits long. In our example
the word length is 8 bits.

The original teleprinter code developed by Emile Baudot in 1875 is only 5 bits
long.14 Here the string "PIC" is coded as 10110 00110 01110. Although limited in
capability, its key advantage over Morse code (Samuel Morse, 1840) was its fixed
length (compare with · – – · ·· – · – ·) which considerably simplifies the design of
the transmitter and receiver. However, Morse code is more efficient, as the number
of bits is approximately inversely proportionally to a letter’s statistical frequency of
use.

13Strictly speaking the baud rate is a measure of information flow. For a simple baseband system
this is equal to the bit rate. However, this equality is not always true. For instance, a telephone
modem can use a di-bit modulation scheme where groups of bits two at a time give a carrier tone
phase shift of 0◦, 90◦ , 180◦ and 270◦ for the patterns 00, 01, 10, 11, respectively. In this case the
baud rate is twice the bit rate.
14Actually the first documented binary coded alphanumeric code was devised by Francis Bacon in
around 1600. It too was a 5-bit code.

424 The Essential PIC18® Microcontroller

The 7-bit ASCII code of Table 1.1 on p. 5, first adopted in 1963, was the first
code specifically developed for computer communication systems. In 8-bit systems
the extra bit is usually utilized to add a selection of 128 accented, mathematical
and graphic symbols. However, the extra bit can be used to provide a limited error-
checking capability. This parity bit is set so that the number of 1s in the word is
always odd or even. This can be checked at the receiver (see SAQ 5.13 on p. 156) to
detect a single bit error. Alternatively, parity can be accommodated by using a 9-bit
(8 + 1P) word format.

For our example we have adopted a format of one Start, eight data bits with no
parity and one Stop bit. Using a bit-banging approach, as we have already done
for our SPI and I2C protocols, is straightforward provided that we have an accurate
1
2 -bit delay. For instance, for a 9600 baud link this would be (1 ÷ 9600) × 0.5 =
52 µs. As the delay is so short we can use an in-line approach using a macro, in the
same manner as in Program 12.8 on p. 407, rather than the subroutine approach of
Example 6.1 on p. 189.

As the listing below has a total of 4K cycles, the delay will be

4K× 4

XTAL
= 16K

XTAL
µs.

Equating this to 0.5 × 1000000
BAUD gives

K= XTAL× 31250

BAUD

for an approximate baudrate delay independent of the crystal frequency. For low
frequency/baudrate combinations, some padding with nop instructions to increase
the quantum of delay will be necessary.

Baud_delay macro
local BAUD_LOOP ; Local label
movlw (XTAL*d’3125’)/(BAUD/d’10’); The delay const

BAUD_LOOP addlw -1 ; Decrement
btfss STATUS,Z ; until zero
bra BAUD_LOOP

endm

The constants XTAL and BAUD are defined appropriately at the head of the pro-
gram using this macro; for instance, Program 12.15. To avoid values that cannot be
handled with 16-bit assembler arithmetic,15 the constant 31,250 has been reduced
by a factor of ten, with BAUD also diminished by the same factor. The example
shown here with a baud rate of 9,600 and a clock frequency of 20 MHz resolves to
a constant K of d’65’ and gives the requisite delay of 52 µs.

With our delay macro in situ, the basic I/O subroutines of Program 12.15 are
analogous to our bit-banging SPI subroutines. The PUTCHAR subroutine simply
brings the TX pin Low for two Baud_delay periods and then assigns the pin eight

15Newer versions of the assembler use 32-bit arithmetic for label arithmetic.

12 One Bit at a Time 425

Program 12.15 Asynchronous formatted input and output subroutines
#define XTAL d’20’ ; E.g. 20 MHz 9600 set-up
#define BAUD d’9600’

; ***
; * FUNCTION: Transmits one 8-bit byte in asynchronous format *
; * ENTRY : 8-bit datum in DATA_OUT, XTAL & BAUD predefined *
; * EXIT : WREG, STATUS altered. Byte TXed *
; * RESOURCE: Macro Baud_delay giving a 0.5 bit delay; COUNT *
; ***
PUTCHAR movlw 8 ; Eight data bits

movwf COUNT

bcf PORTA,TX ; Start bit
Baud_delay ; 2x0.5 bit delay
Baud_delay

; Now shift out data, LSB first -------------------------------
PUTCHAR_LOOP rrncf DATA_OUT,f ; Rotate right

btfss DATA_OUT,7 ; Test what was LSB pre-shift
bra ITS_A_0 ; IF 0 THEN output a 0

bsf PORTA,TX ; ELSE output a 1
bra PUTCHAR_NEXT ; and continue

ITS_A_0 bcf PORTA,TX ; Output a 0

PUTCHAR_NEXT Baud_delay ; One-bit duration
Baud_delay
decfsz COUNT,f ; Repeat eight times
bra PUTCHAR_LOOP

bsf PORTA,TX ; Stop bit
Baud_delay
Baud_delay
return

; ***
; * FUNCTION: Receives one 8-bit byte in asynchronous format *
; * ENTRY : XTAL & BAUD predefined *
; * EXIT : DATA_IN holds the received byte. *
; * EXIT : Err is 00 if no Framing error ELSE -1 *
; * RESOURCE: Macro Baud_delay giving a 0.5 bit delay; COUNT *
; ***
GETCHAR movlw 8 ; Eight data bits

movwf COUNT
clrf ERR ; Zero Error byte

GETCHAR_START btfsc PORTA,RX ; Poll for 0
bra GETCHAR_START

Baud_delay ; Hang around for 0.5 bit time
btfsc PORTA,RX ; Check; is it still Low?
bra GETCHAR_START

Baud_delay ; IF yes THEN hang around
Baud_delay

GETCHAR_LOOP bcf STATUS,C ; Clear Carry
rrcf DATA_IN,f ; Shift 0 into datum
btfsc PORTA,RX ; Check; is input High?
bsf DATA_IN,7 ; IF yes THEN set bit in datum

Baud_delay
Baud_delay
decfsz COUNT,f ; Do eight times
bra GETCHAR_LOOP

btfss PORTA,RX ; Look for a Stop bit (High)
decf ERR,f ; IF Low THEN signal an error

return

426 The Essential PIC18® Microcontroller

times, corresponding to the contents of DATA_OUT, least-significant bit first—the
opposite order to SPI/I2C. Finally TX is held High for the same period to give the
Stop/Idle condition.

The input GETCHAR counterpart is more complex. After an Idle state, a Low-
going voltage at pin RX will be treated as a Start bit. However, if the data
stream is subsequentially sampled at intervals of one-bit periods (two evocations
of Baud_delay) then as this is just at the transition point of the transmitter, any
drift in the two clock rates may cause errors. To avoid this, a half-bit period is evoked
and then the state of RX is checked to ensure that the Start bit is still present. If it is,
then subsequent samples are taken at two Baud_delay periods, which is approx-
imately at the bit center point. Better noise rejection could be obtained by sampling
at a higher rate (over sampling) and then taking a majority decision regarding the
logic state of the incoming voltage.

After the eight data bits have been shifted into DATA_IN, the Stop bit is checked
for 1. If Stop is 0 then a Framing error has occurred. This is signaled by returning
a value of −1 in ERR. Other more elaborate schemes may return a variety of error
types. For instance, where parity is used then a Parity error can be returned.

As an example, if we wish to transmit the 3-character string “PIC”, then the fol-
lowing code fragment would implement our task. For convenience the assembler
allows the programmer to represent characters in delimited single quotes to repre-
sent their ASCII equivalent, as described on p. 266.

movlw ’P’ ; Same as movlw h’50’ (ASCII for P)
movwf DATA_OUT ; Put in store
call PUTCHAR ; Send it out
movlw ’I’ ; Same as movlw h’49’(ASCII for I)
movwf DATA_OUT ; Put in store
call PUTCHAR ; Send it out
movlw ’C’ ; Same as movlw h’43’ (ASCII for C)
movwf DATA_OUT ; Put in store
call PUTCHAR ; Send it out

Handling serial communications this way is only really satisfactory for very sim-
ple situations. For example, if the RX pin is not continually monitored, a transmis-
sion can be missed or synchronization lost. Also it is difficult to implement a full-
duplex link. In addition the procedure is software intensive, with most of the pro-
cessing power being wasted in delay loops. The situation can be improved somewhat
by using an internal timer to generate the baud delay and by using interrupt-driven
techniques. For this reason, all PIC18 MCUs have at least one integral communica-
tions port to automatically deal with asynchronous transmission.

One of the first applications of the, then new, LSI fabrication techniques in the
late 1960s was the implementation of a dedicated hardware asynchronous serial
port known as the universal asynchronous receiver transmitter. The UART16

16Sometimes known as the asynchronous communication interface adapter, or ACIA.

12 One Bit at a Time 427

Fig. 12.21 The generic UART

was already in production by the time microprocessors were developed. Virtually all
PCs, even in the 1970s, had a serial port implemented by a UART, as do most current
desktop systems. As well as dealing with shifting, error checking, and interrupt
handling; most UARTs also have an integral baud-rate generator which can be set-
up in software to give the correct bit frequency.

The basic structure of a UART is shown in Fig. 12.21. Any given UART circuit
will have three core sections. A Transmit shift register will serialize a datum with
appended Start and Stop bits to be shuffled out via a TX pin. Associated with TXREG
is a Buffer register holding data for onward transmission. A Status register will hold
a flag (TBUF in our diagram) indicating when this buffer is free for more data.

The Receive shift register strips the Start and Stop bits off an incoming frame
at a RX pin, transferring the parallelized datum when complete into one or more
Buffer registers. At the same time, a flag (RBUF in our case) will be set to allow
the software to determine that a new datum is ready for collection. This needs to be
read before the next frame has been assembled, otherwise an overrun condition will
occur and data will be lost. The transmission and reception of a frame is not locked
in step; that is, they can overlap, but the baud rates are usually the same.

Real devices are more sophisticated, in that various options, such as the number
of bits in a datum, and error condition detection are supported. Thus the associated
Control and Status registers are of necessity rather more comprehensive, but the
PIC MCU Serial Communication Interface (SCI) module, more usually known as
the USART (Universal Synchronous-Asynchronous Receiver Transmitter mod-
ule) shown in Fig. 12.22 is clearly based on the generic UART architecture. This
module is actually a dual-purpose SCI in that it supports both the asynchronous
protocol described here if the SYNC bit in TXSTA[4] is 0 (the default reset value)
and a synchronous mode (SYNC = 1) which does not use a Start and Stop delim-
ited frame. This latter protocol uses pinRC6/CK as a clock; output if operating as a

428 The Essential PIC18® Microcontroller

Fig. 12.22 The Enhanced Universal Synchronous/Asynchronous Receiver/Transmitter (USART)
module configured for asynchronous serial communication

transmitter and clock input if a receiver. PinRC7/DT then operates as a I/O data line
as appropriate. Synchronous data can be sent either one byte at a time or as a contin-
uous burst. Because of this synchronous function the module is known as a USART
rather than a UART. Here we will concentrate on the asynchronous mode, and the
three Control/Status registers shown in Fig. 12.22 are illustrated as appropriate to
this mode of usage.

There are three version of the USART module in use in the various PIC16/18/24
family devices. The basic module was introduced for use in early PIC16 devices.
The Addressable USART (AUSART)17 is found in later members of that family
and early devices in the PIC18 family; such as the PIC18F252. The current version
is called the Enhanced USART (EUSART), and is a superset of the AUSART with
added features of particular use in networks. Where we refer to features common
across all versions, we will use the general USART designation.

17See The Quintessential PIC® Microcontroller, Chap. 12, by the author for more details.

12 One Bit at a Time 429

The core of the EUSART is the Transmit and Receive shift registers and their
associated Buffer and Status registers. To enable the overall module, the Serial Port
ENable (SPEN) bit in the ReCeive STAtus register (RCSTA) (RCSTA[7]) must be
set. Both RC6 and RC7 pins used for the transmission and reception lines TX and
RX, respectively, have to be set-up as inputs.18

Transmission
The transmitter logic is enabled when the TranSmit ENable (TXEN) bit in the
TranSmit STAtus register (TXSTA[5]) is set. To send a character the datum must be
moved to the TranSmit data REGister (TXREG), from where it will be transferred
to the Transmit shift register and shifted out of pin TX. If a 9-bit data format is
required the TX9 bit in TXSTA[6] must be set to 1 and the ninth bit placed in TXD9
in TXSTA[0] before moving the lower eight bits into TXREG. If the Transmit shift
register is not empty; that is, it is in the process of shifting out a previous datum, then
the new datum will remain in the TXREG buffer register awaiting the completion of
transmission before being transferred.

TRMT in TXSTA[1] reflects the state of the Transmit shift register, whilst the
TranSmit Interrupt Flag (TXIF) in the Peripheral Interrupt Register 1 (PIR1) is
automatically set when the TXREG buffer is empty and ready for reloading. If an
interrupt on TX buffer is empty is required, the corresponding TXIE mask bit in the
Peripheral Enable Register 1 (PIE1) must be set—see Fig. 7.2 on p. 209. TXIF is
automatically cleared whenever a datum is written into the TXREG, so it doesn’t
have to be manually cleared in the polling routine or associated ISR.

Reception
If the CREN bit in RCSTA[4] is set, the USART’s receiver section will be enabled.
In this instance, once a Start bit is detected at pinRX then the succeeding eight bits
are shifted into the 2-deep ReCeive data REGister (RCREG) pipeline, irrespective
of what is going on at the transmitter section. When a datum has been received, it
is automatically stored in the top RCREG buffer from where it moves to the lower
buffer; provided that no datum is still waiting to be read. The ReCeiver Interrupt
Flag (RCIF) is automatically set whenever a datum is waiting for collection, and
this can be used to generate an interrupt if the RCIE mask bit is set; as well as
the appropriate global interrupt flags in INTCON[7:6]. RCIF is automatically cleared
whenever a datum is read. If a datum is waiting in the top buffer, then it then moves
down and RCIF is immediately set again, showing that there is another datum ready
for collection.

If a third character has been received and the 2-deep Receive pipeline is full, then
the Overflow ERRor (OERR) bit at RCSTA[1] will be set and this newly received
datum will be lost. The RCREG can still be read twice to retrieve the two buffered
bytes. However, to clear OERR the receive logic must be reset by clearing CREN
and then setting it again. No further characters will be received until this is done.

18Exceptionally, the 18-pin footprint devices, such as the PIC18F1X20, use RB1 and RB4 for TX
and RX respectively.

430 The Essential PIC18® Microcontroller

Fig. 12.23 A local area network (LAN) using an asynchronous serial protocol

The Framing ERRor (FERR) bit in RCSTA[2] indicates when a Start bit has
been detected but at the end of the shift no Stop bit is found. Both FERR (and any
ninth received bit) are double-buffered in the same way as the received data, and so
should be checked first before the datum in RCREG is read, as this will move data
down the pipeline and therefore change these auxiliary bits.

All versions of the USART module support the use of an 8- or 9-bit datum in-
dividually selectable for both transmission and reception. In the latter case the RX9
bit in RCSTA[6] must be set to 0. Typically this extra bit, read in RX9D in RCSTA[0],
will be used to add a parity error-checking capability. However, another use of a
9-bit datum is to implement a network of asynchronous devices. Here the ninth bit
can be used to indicate that the other eight bits represent either data or a Slave ad-
dress. A basic network using this principle is shown in Fig. 12.23. With an 8-bit
address, up to 255 Slaves may be addressed with one address reserved for a general
broadcast facility.

To facilitate networking in this manner, newer versions of the USART module
can be configured so that the arrival of a set ninth bit sets the RCIF interrupt flag
automatically. This is enabled by setting the ADDEN bit in RCSTA[3] to 1. With
both ADDEN and RX9 set to 1, any frame with its MSB = 0 will be ignored and
the datum will not be placed in the Receive Data pipeline. If the MSB is 1, then
the datum will be copied out of the Receive Shift Register into the Receive pipeline
and RCIF set. The Slave can then read this address from RCREG, with this process
clearing RCIF. If a match is found in software, the Slave can clear ADDEN and
any subsequent data frames will be captured in the normal way. The Slave can still

12 One Bit at a Time 431

monitor the ninth bit in RX9D and thus the Master can terminate its conversation by
sending a datum with the ninth bit set to 1.

Baud-Rate Generator
This SPBRG:SPRGH (Serial Port Baud Rate Generator) register pair is basically
paired with a programmable 8/16-bit counter with tappings giving a pair of switch-
able frequency ÷4 rates, which can be set-up to give the appropriate sampling and
shifting rates for the desired baud rate. Based on the PIC MCU’s clock frequency
fosc we have:

Baud rate = fosc

64 × (X + 1)
8-bit low-speed: BRG16 = 0 BRGH = 0

Baud rate = fosc

16 × (X + 1)
8-bit high-speed: BRG16 = 0 BRGH = 1

Baud rate = fosc

16 × (X + 1)
16-bit low-speed: BRG16 = 1 BRGH = 0

Baud rate = fosc

4 × (X + 1)
16-bit high-speed: BRG16 = 1 BRGH = 1

where X is either the 8-bit datum written into SPBRG or the 16-bit word written
into SPBRGH:SPBRG.

On reset the BRG operates in its 8-bit mode. This is compatible with earlier
versions of the USART module.

For instance, if we require a baud rate of 9600 on a fosc = 20 MHz device
with an 8-bit low-speed setting (BRG16 : BRGH = 00) then using the formula X =

fosc
64×BAUD −1 gives X ≈ 31. The actual baud rate with SPBRG = h’1F’ is 9766, giving
an error of +1.7%. If a 16-bit high-speed setting is used (BRG16 : BRGH = 11) we
have X = fosc

4×BAUD −1, giving approximately 520, or h’02:08’ for SPBRG16:SPBRG.
The actual rate here is 9596, giving an error of −0.03. Where there are options for
a given baud/clock rate, it may be advantageous to try each valid combination to
give the closest fit. Baud rates of well over 1 Mbaud are possible with higher fosc

frequencies.
Actually, the BRG produces a frequency of 16 or 64 times the base baud rate, to

enable the USART to take three samples around bit midpoints and adopt a majority
decision. This increases reliability in a noisy environment.

Apart from the optional 16-bit BRG settings, the EUSART module differs from
its AUSART predecessor in that it has extended capabilities for compatibility with
the LIN bus.19 The Local Interconnect Network was developed in 1999 by a con-
sortium of European car manufacturers and Motorola/Freescale as a low-cost low-
specification adjunct to the more complex and expensive CAN (Control Area Net-
work) serial bus used for vehicle networking. It is designed to operated with any
device with a standard UART. One Master and up to 16 Slaves are supported us-
ing a single wire of up to 40 meters (130′) length and with a maximum bit rate of
19.2 kbaud.

19See http://www.lin-subbus.org for more details.

432 The Essential PIC18® Microcontroller

In a quiescent network, all Slaves are normally inactive. The Master device sends
a Break character of typically h’000’; which gives 13 0s including the normal asyn-
chronous Start bit, followed by the Stop bit. This longer data field ensures that listen-
ing LIN nodes with a UART baud rate not quite at the Master’s rate can synchronise
their clock. This is done by sending a following Synch data frame, with the da-
tum byte pattern b’01010101’, which allows the Slave to measure the time between
edges averaged over the frame period. The third frame is the Identifier byte, which
carries a 4-bit Slave address and two Parity bits, which can detect two bit errors
or correct one bit error. The two remaining bits code the number of data bytes in
the message, which can be up to eight bytes. The final byte is a checksum of all
the preceding message bytes, which may also optionally include the Identifier byte
(version 2.0+).

The EUSART module supports detection or generation of the LIN bus Break
frame and auto baud rate synchronization. The BAUDCON and TXSTA register bits
relevant to these functions are:

RXDTP, TXCKP
Signals out of/into the TX/RX pins can be individually inverted. This polarity shift
can be used to compensate for any inversion caused by line drivers. These pins are
respectively Data DT and Clock CK when this module is used in its synchronous
mode; hence the name RX/DT Polarity and TX/CK Polarity.

SENB
The SEND Break bit in TXSTA[3] enables the EUSART to transmit a Start bit, fol-
lowed by 12 0s and then a Stop bit. This special LIN bus character is sent whenever
the EUSART is enabled (SPEN = 1) for asynchronous operation (SYNCH = 0).
With this setting, the following sequence of events will send a header made up of a
Break followed by a Synch byte, as shown in Fig. 12.24.

1. Set TXEN and SENDB bits.
2. Load the TXREG with a dummy character (which is disregarded) when empty

(TXIF = 0) to initiate the Break character transmission.
3. Write the byte h’55’ to TXREG when empty to load the Synch character into the

Transmit Buffer register.
4. After the Break has been sent, the SENDB bit is reset automatically.
5. The Synch character is now transmitted.
6. When the TXREG becomes empty, the next datum byte (usually the Identifier

byte) can be sent in the usual way.

WUE, RCIDL
The EUSART module can receive a Break character using the Auto-Wakeup feature.
When there is no activity on the LIN bus, all Slave nodes are usually dormant. If
they are implemented using PIC MCUs they may well be in a Sleep mode, with
the processor clock and therefore Baud Rate Generator inactive. The Auto-Wake-up
feature allows the controller to wake up due to activity on the RX pin.

This feature is enabled when the WUE (Wake-Up Enable) bit in BAUDCON[1] is
set. To avoid any potential loss of data, the RCIDL bit (ReCeive IDLe) flag in BAUD-
CON[6] should be checked to ensure that no data is being received. The EUSART is

12 One Bit at a Time 433

Fig. 12.24 LIN bus protocol and physical layer

now in an Idle state. The processor can then optionally be put in its Sleep state; that
is the sleep instruction executed. Any subsequent (Start bit) on RX will set
RCIF and bring the processor out of its Sleep state. At the end of the break character,
the of the Stop bit will automatically clear the WUE switch bit. The processor
now exits its Idle mode and returns normal running. Doing a dummy read will clear
the RCIF interrupt flag in the normal way.

Auto-wake-up only works properly based on a character which is all 0s, to ensure
that WUE clears on the Stop bit, and not in the middle of the data. This doesn’t have
to be twelve 0s, but the longer LIN bus Break gives more time for oscillator start-up.

The alternative method of detecting the Break character is for the Slave device
to temporarily alter its baud rate to 13

8 , so that the Stop bit will occur in the correct
time slot. However, this presupposes that the Slave baud rate is accurate and relies
on all the Slaves being active all the time.

ABDEN, ABDOVF
The EUSART can be configured to automatically set the SBRGH16:SBRG register
pair to match the incoming baud rate. If the ABDEN (Automatic BauD rate ENable)
bit in BAUDCON[0] is set, then a following Start bit launches the 16-bit SBRG pair
as 16-bit counter. After the fifth rising edge, which corresponds to the Stop bit of
the Synch character b’01010101’ (or ASCII ’U’), the accumulated total is the correct
value of X with the chosen setting of the BRG16:BRGH bit setting. ABDEN is now
automatically cleared.

The baud rate thus calculated is appropriate for a 16-bit X, that is BRG16 = 1,
unless there is an overflow from the counter; in which case ABDOVF (Auto BauD
rate OVerFlow) in BAUDCON[7] is set. If the BRG is configured in an 8-bit mode
(BRG16 = 0), then the software needs to check that both ABDOVF is 0 and SPBRGH
is zero for a valid value of X. ABDOVF should be cleared in software. Doing a
dummy read of RCREG will clear the RCIF interrupt flag in the normal way.

434 The Essential PIC18® Microcontroller

Where an auto-baud rate sequence is to follow an auto-wake-up event, as in the
LIN bus protocol, then setting ABDEN when WUE is set, will ensure that Auto-Baud
Detection (ABD) will occur on the byte following the Break character. Only after
the ABD process is over, should the EUSART attempt to transmit, as the BRG pair
is reversed during this process.

To illustrate how to use the USART, we will repeat our GETCHAR and PUTCHAR
subroutines using hardware. Firstly, in the main program we have to set-up the Serial
Port Baud Rate Generator and both Transmit and Receive Status/Control registers.
Assuming the programmer has defined the constants XTAL and BAUD, then we can
let the assembler evaluate the arithmetic to give us the value of X to put in the
SPBRG. With this in mind, the initialization code would look something like:

include "p18f4520.inc"
config OSC=INTIO67, WDT=OFF

#define BAUD d’9600’ ; For example 9600 baud rate
#define XTAL d’8’ ; 8MHz crystal
#define X ((XTAL*d’1000000’)/(d’64’*BAUD))-1

START movlw X ; Move X to Baud Rate Generator
movwf SPBRG
movlw b’00100000’ ; 8 data bits, TX enabled
movwf TXSTA ; Low speed SPBRG mode
movlw b’10010000’ ; USART enabled, 8 data bits
movwf RCSTA ; Receiver enabled

Note that Microchip specifies that both RX and TX pins be configured as inputs for
correct operation. As this is the default Reset state, bits TRISC[7:6] have not been
explicitly altered in the listing.

With the USART enabled, the subroutines are coded in Program 12.16. PUTCHAR
is simply a matter of polling TXIF, which indicates when the TXREG is empty,
waiting for it to go to 1. When the go-ahead is given, the datum is copied to the
TranSmitter REGister. TXIF is then automatically cleared.

The input GETCHAR is a little more complex if some error checking is to be
incorporated. The subroutine polls the state of RCIF, which goes to 1 whenever
there is data to be read. Also returned is the variable ERR which is h’00’ if there is
no problem, −1 if a Framing error occurred, −2 if a Overflow situation is sensed
and −3 if both errors occurred. In these latter two situations, OERR is zeroed by
resetting the receiver logic. After the error conditions have been checked, the data is
read from the ReCeive REGister. Error checking is always done first before reading
the datum, to avoid altering these Status flags.

Some systems may not wish the processor to hang up waiting for a character
which is a long time in coming. In such cases an alternative input subroutine, per-
haps called getch, could return an ERR of +1 if the return was empty handed.
A better approach would be to generate an interrupt each time an incoming charac-
ter is sensed rather than using a polling technique.

12 One Bit at a Time 435

Program 12.16 The USART-based I/O subroutines
; ***
; * FUNCTION: Transmits one 8-bit byte in asynchronous format *
; * RESOURCE: PIC MCU USART *
; * ENTRY : 8-bit datum in DATA_OUT *
; * EXIT : Contents of DATA_OUT unchanged, byte TXed *
; ***
PUTCHAR btfss PIR1,TXIF ; Check, is TX buffer full?

bra PUTCHAR ; IF not THEN try again
movff DATA_OUT,TXREG; ELSE copy to USART TX register
return

; ***
; * FUNCTION: Receives one 8-bit byte in asynchronous format *
; * RESOURCE: PIC MCU USART *
; * ENTRY : None *
; * EXIT : DATA_IN holds the received byte. *
; * EXIT : ERR is 00 if no error. Framing ERRor only = -1 *
; * EXIT : ERR = -2 if Overflow ERRor and -3 if both types *
; ***
GETCHAR clrf ERR ; Zero flag byte

btfss PIR1,RCIF ; Check, is there a char ready?
bra GETCHAR ; IF not THEN try again

; Error return --
btfss RCSTA,FERR ; Was there a Framing error?
bra CHECK_OERR ; IF not THEN check for Overflow
decf ERR,f ; ELSE record a Framing error

CHECK_OERR
btfss RCSTA,OERR ; Check for Overflow ERRor
bra GET_EXIT ; IF none THEN complete
decf ERR,f ; Otherwise register error
decf ERR,f
bcf RCSTA,CREN ; and reset the logic
bsf RCSTA,CREN

GET_EXIT
movff RCREG,DATA_IN ; Get datum and put away
return

Asynchronous links can be used in C as a standard input/output channel. In the
specific case of the CCS C compiler, the #use rs232 directive tells the compiler
which pins are to be used for RX and TX and the baud rate. The normal C I/O
functions, such as printf(), use these pins as their link to the standard channel.

As an example, Program 12.17 shows a C implementation of an asynchronous
9600-baud duplex link to a terminal; such as shown in Fig. 12.27. A switch is con-
nected to pinRB0, and when the operator sends the character G (for Go) to the
PIC MCU it continually monitors this switch. When the switch closes, bringing the
pin Low, the terminal is to alert the operator by printing the message "Switch
1 is now closed". The standard C I/O functions printf() for output and
getch() are used for output and input, respectively.

436 The Essential PIC18® Microcontroller

Program 12.17 Using a duplex asynchronous channel in C
#include <18f4520.h>
#use delay (clock = 20000000)/* Tell compiler 20MHz xtal */
/* Tell compiler baud rate & which pins to use for TX & RX */
#fuses HS,NOWDT,NOPBADEN /* Port B not analog */
#use rs232(baud=9600, xmit=PIN_A1, rcv=PIN_A2)
#bit SWITCH1 = 0xF81.0 /* Switch connected to RB0 */

main()
{
while(TRUE)

{
if(getch() == ’G’)

{
while (SWITCH1) {;} /* Do nothing while Switch is hi*/
printf("Switch 1 is now closed \n");
}

}
}

As pinsRA1 and RA2 are specified as the TX and RX pins, respectively, the
compiler will generate a software UART implementation, such as that used in Pro-
gram 12.15. For this reason the compiler needs to know the crystal frequency so that
it can generate the appropriate baud delays. If pinsRC6 and RC7 are used with this
processor, the compiler will automatically use the USART rather than software for
serial interface.

More than one concurrent asynchronous link can be supported, by giving each
channel a stream name. For instance:

#use rs232(baud=9600, xmit=PIN_C6, rcv=PIN_C7, stream=gps)
#use rs232(baud=1200, xmit=PIN_A0, rcv=PIN_A1, stream=phone)
..
if(fgetch(gps) == ’T’)

{fprintf(phone,"Start");}

sets up a 9600 baud asynchronous channel using the hardware USART named gps
and a 1200 baud channel called phone with pins RA0 and RA1 for the trans-
mit/receive lines. Note that the baud rate can be different for each channel, as the
latter is entirely software driven.

The body of the code sends the message Start to the phone channel whenever
the character T is received from the gps channel. Notice the functions fprintf()
and fgetch() for named streams, as opposed to printf() and getch() used
for the default stdio channel.

There is more to setting up a communication link than establishing a suitable
protocol. PIC microcontrollers have normal logic voltage and current levels which
are not intended for connections greater than 30 cm (1′). Although with care,20 dis-

20Or sometimes ignorance!

12 One Bit at a Time 437

tances considerably in excess of this can be employed; in situations with relatively
fast bit rates, different signaling techniques have to be used.

In the era of electromechanical TTYs the 20 mA loop de facto standard was
in common use. This uses zero and 20 mA current to signal logic 0 and logic 1
respectively. Use of current means that line attenuation is not a problem (as current
out must equal current in) and this level of current was sufficient to directly activate
the receiver solenoid relay.

Current sources are realized by using high voltages in series with a large re-
sistance. The latter gives long time constants, which, while adequate in the era of
110 baud rates, did not transfer well to the introduction of electronic terminals,
UARTs and modems. RS-23221 was introduced in 1969 as the standard interface
for connecting an item categorized as a Data Terminal Equipment (DTE), such as a
terminal, to approved Data Circuit terminating Equipment (DCE), typically a mo-
dem. Thus, not only did it define signaling levels, as shown in Fig. 12.25(a), but
also various control and handshake lines, some of which are shown in Figs. 12.25(d)
and 12.27. For instance, the modem would signal back to the DTE that a telephone
link had been opened with the remote DTE by activating the Clear To Send (CTS)
handshake signal. Two data lines plus an optional ground line are needed for a full
duplex transmission circuit.

The RS-232 standard has a specified range of 15 m (50′) at a maximum rate of
20 kbaud, which it achieves by mapping logic 0 (often called a space) to typically
+12 V and logic 1 (often called a mark) to typically −12 V. The receiver can distin-
guish levels down to ±3 V. The RS-423/EIA-423 standard (1978) in Fig. 12.25(b)
is similar but can manage 1.2 km (6000′) at up to 80 kbaud and 10 Mbaud at 12 m
(40′) with up to ten receivers.

Both RS-232 and RS-423 are unbalanced (or single-ended) standards, where
the receiver measures the potential between signal line and local ground reference.
Even though the transmitter and receiver grounds are usually connected through the
transmission line return, the impedance over a long distance may support a signif-
icant difference in the two ground potentials, which will degrade noise immunity
and cause significant current flows. Furthermore, any noise induced from outside
will affect signal lines differently from ground, due to their dissimilar electrical
characteristics; hence the term unbalanced.

The RS-422/EIA-422 (1978) and RS-485/EIA-485 (1983) standards are de-
scribed as balanced. Here each signal link comprises two conductors, normally
twisted around each other, known as a twisted pair. The logic level is represented
as the difference of potential across the conductors, not the difference from ground.
Calling the conductors A and B, then logic 0 is represented as A < B and logic 1 by
A > B. A difference of more than ±200 mV at the receiver is sufficient to establish
the logic level, and the transmitter will typically generate a �V = ±5 V. As the A
and B conductors have the same characteristics and are tightly wound together, they
represent similar targets for induced noise. As the same noise voltage appears in both

21Defined in the United States of America as the Electronics Industries Association EIA 232-E
standard and in Europe as the V24 interface, by the CCITT.

438 The Essential PIC18® Microcontroller

F
ig

.1
2.

25
So

m
e

si
gn

al
in

g
co

nfi
gu

ra
tio

ns

12 One Bit at a Time 439

Fig. 12.26 CAT5 4-channel
network cable

conductors and the receiver only distinguishes differences, rejecting common-mode
voltages up to ±7 V, then the noise immunity of these balanced links is clearly su-
perior to unbalanced schemes. Commercial twisted-pair cables, used in Local Area
Networks (LANs), often carry multiple pairs of conductors, each link having a dif-
ferent twist pitch to reduce cross-talk between links; as shown in Fig. 12.26. PC
USB leads also use a balanced signal path.

The main difference between the RS-422 and RS-485 standards is the provi-
sion in the latter case for multiple transmitters as well as receivers to implement
multi-drop LANs. As only one transmitter can be active at any one time, an RS-485
transmitter buffer must have an enable input, to select the Master device. The single
RS-422 transmitter has no need to be disabled.

RS-232 was originally designed for DTE-modem interconnection, although its
use is now much more varied; for instance see Fig. 12.27. Figure 12.25(d) shows
a simple Frequency Shift Keying (FSK) full duplex system with the mark/space
of one channel being represented by the tones 1070/1270 Hz and the other by
2025/2225 Hz; frequencies which fit well inside the normal telephone link band-
width of 300–3400 Hz. Handshake lines DCD (Data Carrier Detect), CTS (Clear
TO Send) and RTS (Ready To Send) are used to control the sequence of modem
operations prior to and terminating the communication of data.

Many modem schemes currently use Phase Shift Keying (PSK), where typically
at least eight different phases in 45◦ steps of a single tone are used to encode 3-
binary bit code groups (tri-bits) in any one time slot. In this way the baud rate may
be increased with the same signaling rate, albeit at the expense of noise immunity; as
witnessed by the steady increase in PC-dial-up home telephone Internet data rates
from the original 1200 baud systems to 56 kBaud. ADSL broadband systems are
based on the same techniques as dial-up, but separate out the voice baseband 300–
3.2 kHz channel from the data, which use either 256 or 512 4.3125 kHz parallel
channels. This gives a total capacity of up to 2.2 MHz.

As an example, Fig. 12.27 shows the connection between a PIC MCU and the
serial port of a PC—or any device with an asynchronous RS-232 port. The Maxim
MAX233 dual RS-232 transceiver translates between +12 V and 0 V (logic 0) and
between −12 V and +5 V (logic 1). If handshake lines are not being used, as is usual
in simple links, the PC can be ‘fooled’ into treating the interface as ready to accept
data by linking, as shown in the diagram. For instance, the serial port UART’s RTS

440 The Essential PIC18® Microcontroller

Fig. 12.27 Communicating with a PC via an RS-232 link and the outside world

is looped back to CTS. The MAX233 has two transmit and two receive buffers in
all and thus can be used to buffer some additional handshake lines if required.

In Fig. 12.27 the same PIC MCU is shown driving a half-duplex RS-485 link
using a Maxim MAX485 voltage converter. Each buffer has a separate Enable of
the opposite logic polarity. The PIC MCU can activate the appropriate buffer de-
pending on the communication direction. Alternatively the MAX485 can be used to
implement a full duplex channel using two separate links.

The RS-485 link need not use the asynchronous protocol. Any synchronous pro-
tocol can be buffered to RS-485, but normally a separate buffered clock channel will
be needed.

Examples

Example 12.1 In Example 11.2 we designed a subroutine to compare a fixed num-
ber TRIP with the byte read in from Port B. In some cases it may be necessary
to have the software adapt to changing circumstances, altering the trigger value by
reading updates from outside. Rather than using up another eight port lines, it is
proposed that the update be fed in from an outside agency in series at pin RA4, with
RA3 being used as the clock line. With the assumption that each data bit is stable
when the Clock line is High, write a subroutine to read in a new value into memory
at TRIP.

Solution One solution is shown in Program 12.18. The Clock line is monitored for
a High state, during which time the Data will be stable. By mirroring the state of the
Data line into the Carry flag the datum is rotated bit by bit into memory. After each
shift, the loop is not completed until the Clock line again goes Low.

This is similar to subroutine SPI_READ in Program 12.3, except that the clock
is generated from outside; that is, the PIC MCU is acting as a Slave. This causes
a problem in a system where the PIC MCU Slave needs to tell the Master when it
wants a new byte. One solution would be to use an additional port line as a Clear To
Send handshake.

12 One Bit at a Time 441

Program 12.18 Updating Program 11.10’s trip value
; ***
; FUNCTION: Shifts in value for TRIP which is subsequently *
; FUNCTION: used as one operand for subroutine COMP *
; ENTRY : Data bit changes at RA4 when at RA3 is Low *
; EXIT : COUNT is 00, datum is in TRIP *
; ***
SER_TRIP movlw 8 ; Bit loop count

movwf COUNT
SER_TRIP_LOOP1

btfss PORTA,3 ; Wait for Clock to go High
bra SER_TRIP_LOOP1
bcf STATUS,C ; Carry = 0
btfsc PORTA,4 ; Is Data line High?
bsf STATUS,C ; IF yes THEN Carry = 1
rlcf TRIP,f ; Shift bit in from Carry

SER_TRIP_LOOP2
btfsc PORTA,3 ; Wait for Clock to go Low
bra SER_TRIP_LOOP2
decfsz COUNT,f
bra SER_TRIP_LOOP1
return

Of course the Master could be another PIC MCU and if so, we have an econom-
ical way of connecting two PIC MCUs together. If PIC MCUs with integral serial
ports are used, then interrupts can be automatically generated and this is a frequently
used method of implementing multi-processor networks.

Example 12.2 Design and code the I2C_IN counterpart of the I2C_OUT subrou-
tine of Program 12.9. You may assume that the same variables are available and that
the received datum is in DATA_IN on exit.

Solution The I2C_IN subroutine of Program 12.19 shifts the datum in File
DATA_IN eight times through the Carry flag, which mirrors the state of pinSDA.
At the same time the Clock line SCL is toggled according to the I2C time and pro-
tocol specification; as in our I2C_OUT subroutine of Program 12.9. In this protocol
the Master signals back to the Slave to stop sending data by letting the SDA line
float High in the Acknowledge slot in the ninth clock pulse—see Fig. 12.13. The
normal Low state in this slot is called ACK, whilst the deviant High Acknowledge
state is called NACK (No ACKnowledge). To cope with both these situations our
I2C_IN optionally generates either situation depending on the state of the variable
ACKNO, as set by the caller. If File ACKNO is zero on entry, then a normal Low ACK
is sent in this slot. Any non-zero value in this variable causes a High NACK to be
sent back to the Slave. The Slave then terminates its transmission and listens for the
next Stop/Start condition.

442 The Essential PIC18® Microcontroller

Program 12.19 Reading in a byte using the I2C protocol
; ***
; * FUNCTION: Reads in byte from Slave with optional ACK/NACK *
; * ENTRY : ACKNO = 00 for ACK ELSE NACK *
; * RESOURCE: START and STOP subroutines, Delay_600 macro *
; * EXIT : DATA_IN holds datum sent from slave *
; * EXIT : ACK or NACK sent to Slave, SCL low *
; ***
I2C_IN bcf TRISA,S_CL ; Make sure that Clock line is low

bsf TRISA,S_DA ; and DAta pin is input
movlw 8 ; Loop count = 8
movwf COUNT

I2C_IN_LOOP
bcf TRISA,S_CL ; Clock low
Delay_600 ; For minimum period
Delay_600
bsf TRISA,S_CL ; Clock high
bcf STATUS,C ; Carry = 0
btfsc PORTA,S_DA ; Check state of incoming bit?
bsf STATUS,C ; IF 1 THEN make Carry = 1
rlcf DATA_IN,f ; and rotate it into the datum
decfsz COUNT,f ; Decrement loop count
bra I2C_IN_LOOP ; and repeat eight times

; Now determine if Acknowledge is to sent ---------------------
bcf TRISA,S_CL ; Clock low
movf ACKNO,f ; Test the caller’s wish
btfsc STATUS,Z ; IF non zero THEN leave as NACK
bcf TRISA,S_DA ; ELSE bring low to signal ACK
Delay_600 ; Keep Clock low
Delay_600
bsf TRISA,S_CL ; Now high
Delay_600
bcf TRISA,S_CL ; Leave with Clock low
return

Example 12.3 Many MCU-based products require storage of data in non-volatile
memory for retrieval after the system has been powered down. A typical example is
the total distance traveled by a car from new; which should be held independently
of the state of the car battery—see Fig. 3.8 on p. 59. Such data is typically held in
Electrically-Erasable Programmable Read-Only Memory (EEPROM); as detailed
on p. 28. Although PIC18 microcontrollers have an integral EEPROM data module,
as described in Chap. 15, capacity is limited to 512 bytes at most. Whilst the Pro-
gram memory can be used for this purpose, this is also limited and in many cases an
external EEPROM memory is required. Most of these devices use an SPI (25XXX
family) or I2C interface; specifically the I2C 24AAXXX shown in Fig. 12.28. The
24AAXXX 8-pin serial EEPROMs vary from the 1 kbit 24AA01 to the 512 kbit
24LC512, organized as bytes; i.e., 128 byte to 64 kbyte.

The 24AAXXX serial EEPROMs have the following features.

12 One Bit at a Time 443

Fig. 12.28 The 24XXX series of I2C serial EEPROMs

• 400 kHz I2C compatible (2.5 ≤ VDD ≤ 5.5 V); 100 kHz 1.8 ≤ VDD ≤ 2.5 V.
• Write protection (ROM mode) using the WP pin.
• 2 ms typical Write cycle time.
• 1,000,000 minimum Write cycle endurance per byte cell.
• Maximum 3 mA Write, 1 mA Read and 1 µA standby current.
• Internal generation of higher programming voltage.

Using a 24AA01 serial EEPROM, show how you could increment a number in
the bottom three locations, which represents the total distance. You may assume that
the PIC MCU is interrupted on each mile/kilometer and that your software is part
of the interrupt handler. You have the resources of the subroutines of Programs 12.9
and 12.19.

Solution Before writing code to implement our specification, we need to look more
closely at the protocol used by the 24XXX serial EEPROMs in communicating with
the Master PIC MCU. This is encapsulated in the signals shown in Fig. 12.29.

In all cases the Master initiates a data transfer by sending a Start condi-
tion followed by a Command byte. The Control byte contains the I2C Slave
address 1010; the chip select address A2 A1 A0 and the R/W bit in the order

1 0 1 0 A2 A1 A0 R/W . Although the chip select address
is shown as part of the Command byte and the three corresponding pins are shown in
Fig. 12.28, newer versions of the smaller EEPROMS do not implement this feature.
This is because if EEPROM capacity needs to be expanded then it is more effi-
cient to replace the device by a pin-identical larger version. For example replacing
a 24AA01 by a 24AA08 gives an eightfold increase with no hardware alteration.
Larger EEPROMS, such as the 24AA256 do implement chip select address pins
as the method of expansion, as additional devices will need to be hung on the bus
in this situation. Eight 24LC512s will give a capacity of 512 kbyte of non-volatile
memory.

444 The Essential PIC18® Microcontroller

Fig. 12.29 EEPROM Read and Write waveforms

This is normally followed by the address in the EEPROM that data is to be writ-
ten into or read out of. In the specific case of the 24AA01 the data is arranged as 128
cells, each comprising a byte that can be individually written to or read from. This
means that a 7-bit address will fit comfortably in the 8-bit address byte. This scheme
will cope with devices up to the 24AA02 but beyond this addresses greater than 8 bit
wide are needed. This is done by using the three Chip select bits in the Command
byte, giving an address width of 11 bits and a capacity of 2 kbytes (16 kbits). For
EEPROMs larger than the 24AA16, two Address bytes are used following the Com-
mand byte.

The process of sending the byte address to the EEPROM is implemented as a
Write action in Fig. 12.29(a). This is actioned by setting the R/W bit Low in the
Command byte. Where a data byte is to be written into the addressed location, this
byte comes immediately after the Address byte and then is followed by a Stop con-
dition. If more than one data byte is transmitted before the Stop then this data is
stored in a small on-board buffer and the actual programming will not occur until
the Stop condition. The 24AA01 can store eight bytes at a time in a single page, with
the lower three address bits being incremented on each data byte sent. If this address
rolls over, earlier addressed data will be overwritten. The size of this page depends
on the device; for instance, the 24AA256 uses a 64-byte page. In Fig. 12.29(a), three
bytes are shown being written into the 24AA01. As these locations are to be targeted
in the bottom three locations, h’00-01-02’, then roll-over will not occur.

As soon as the Stop condition is received, the 24AA01 will commence program-
ming the targeted cells with the buffered data. This process takes typically 2–5 ms
across the family. If the Master attempts to initiate a process during this time, then
the EEPROM will not Acknowledge following the Start-Control byte and this can

12 One Bit at a Time 445

Program 12.20 Incrementing the non-volatile odometer count
EXTRA_MILE

call START ; Get the three bytes at h’00:01:02’
; Start a transmission packet

; Command byte 1 to initialize address -------------------------
movlw b’10100000’; Slave address Master-Write
movwf DATA_OUT ; Copied to pass location
call I2C_OUT ; Send it out
movf ERR,f ; Check for an Acknowledge error
btfsc STATUS,Z ; IF Zero THEN continue
bra EXTRA_MILE ; ELSE try again

; Address 00 ---
clrf DATA_OUT ; Pass location
call I2C_OUT ; Send it out

; Command byte 2 to change over to Read ------------------------
call START
movlw b’10100001’; Slave address Master-Read
movwf DATA_OUT ; Copied to pass location
call I2C_OUT ; Send it out

; Now read in three bytes --------------------------------------
clrf ACKNO ; Enable Acknowledge
call I2C_IN ; Read the High byte in 00h
movf DATA_IN,w ; Get byte
movwf MSB ; and put in memory
call I2C_IN ; Read the Middle byte in 01h
movf DATA_IN,w ; Get byte
movwf NSB ; and put in memory
incf ACKNO,f ; Signal a NACK
call I2C_IN ; Read the Low byte in 02h
movf DATA_IN,w ; Get byte
movwf LSB ; and put in memory
call STOP ; End of Read process

; Now increment 3-byte array ----------------------------------
incfsz LSB,f ; Add one
bra PUT_BACK ; IF not THEN continue

incfsz NSB,f ; Increment middle byte
bra PUT_BACK ; IF not zero THEN continue

incf MSB,f

PUT_BACK call START ; Start the Write process
movlw b’10100000’; Write state
movwf DATA_OUT
call I2C_OUT
clrf DATA_OUT ; Address 00h
call I2C_OUT

movf MSB,w ; Get the new High byte
movwf DATA_OUT
call I2C_OUT
movf NSB,w ; Get the new Middle byte
movwf DATA_OUT
call I2C_OUT
movf LSB,w ; Get the new Low byte
movwf DATA_OUT
call I2C_OUT

call STOP

446 The Essential PIC18® Microcontroller

be used as a busy indicator. This polling is shown when the first Control byte is sent
out in Program 12.20.

The opposite process of reading bytes from the EEPROM, shown in Fig. 12.29(b),
is slightly more involved. As in the previous case, an opening address has to be
written into the device. After this occurs a repeat Start condition is sent, with the
following Control byte having its R/W bit High to indicate Master-Read. The Slave
EEPROM then transmits the byte at the specified location to the Master, which
Acknowledges receipt and the process continues indefinitely with the address incre-
menting until the Master does not send an Acknowledge. The Slave then releases
the bus and the Master is free to issue a Stop condition. If the initial writing of the
first address is omitted, then one beyond the last used address is the first location
read from.

The software listed in Program 12.20 follows the process outlined in Fig. 12.29
exactly. Once the initial address h’00’ has been sent, the Master PIC MCU goes
into a listen mode and three sequential bytes are read from memory; terminated
by the Master returning a NACK condition followed by Stop. With the triple-byte
distance count in locations MSB:NSB:LSB, the array is incremented in the usual
way. Finally address h’00’ is again written out to the EEPROM followed by the three
updated bytes and the process terminated by the Master transmitting Stop.

Example 12.4 It is possible to combine some of the attributes of synchronous I2C
and asynchronous signaling to send data asynchronously in both directions half-
duplex along a single link. One example of this is the 1-Wire™ 22 interface outlined
in Fig. 12.30.

In Fig. 12.30(a) a Maxim Integrated Products DS18S20 digital thermometer is
shown driven from a single port line, with the MCU acting as a 1-Wire Master.

The DS18S20 has the following features.

• Measures temperature from −55◦C to +125◦C in 0.5◦C steps as a signed 16-bit
datum.

• ±0.5% accuracy in the range of −10◦C to +85◦C.
• Converts temperature in 750 ms maximum.
• Zero standby current.
• May be powered from the data line; supply range +3 V to +5.5 V.
• Multidrop capability.

The various DS18S20 functions, such as Convert (h’44’) and Read temperature
(h’BE’), are initiated by the Master sending the appropriate control data as 8-bit
codes, each bit comprising a Start condition () with eight slots in a frame; as
shown in Fig. 12.30(b). As in the I2C case, the data line DQ is pulled into the High
state with a pull-up resistor and the Master simulates the logic 1 state by changing

221-Wire® is a registered trademark of Maxim Integrated Products Inc.

12 One Bit at a Time 447

Fig. 12.30 Interfacing the DS18S20 1-Wire digital thermometer

its port line from the Low state to input (see Fig. 12.14(b)). In this state the Master
can listen to data sent by the Slave, as shown in Fig. 12.30(c).23

For our example we are required to design two subroutines that will respectively
write a byte to a 1-Wire Slave and read a byte from the Slave.

Solution From Fig. 12.30(b) we see that writing a bit to a Slave involves the follow-
ing tasks:

1. The Master starts the process by forcing the data line Low for at least 1 µs.
2. The Master either keeps the line Low (Write 0) or releases the line (Write 1) for

60–120 µs.
3. The Slave reads the line state between 15–45 µs later.
4. The Master releases the line (if Write 0) for at least 1 µs to relax the system.

23For more details, see Microchip’s application note AN1199 1-wire® Communication with PIC®

Microcontroller.

448 The Essential PIC18® Microcontroller

The subroutines of Program 12.21 assume that the port line driving DQ has been
set-up as described on p. 403 for the I2C bus to give the two states as hard Low
and open circuit, pulled up to the High state. Also we assume that we have the
delay macro Delay_us in situ which gives a K µs delay, where K is the parameter
passed to the macro.

Delay_us macro K ; K is the number of us delay
local DELAY_US_LOOP
movlw ((K*XTAL)/d’16’)+1; 4~ (4/XTAL us) per loop: 1~

DELAY_US_LOOP
addlw -1 ; Decrement count : N~
btfss STATUS,Z ; to zero : N + 1~
bra DELAY_US_LOOP ; : 2(N-1)~

endm

The additional plus one in the formula for loop count ensures that values for K round
up.

Both subroutines begin by driving DQ Low for a minimum of 1 µS, defining the
Start condition. Writing a single bit to DQ occurs in a slot which has a duration
of 60–120 µs, and commences with DQ either Low or released to be pulled High,
defining a Write-0 or Write-1 condition. The Slave samples the state of the data
line sometime after 15 µs into the slot. Although the duration of the slot is not
critical, care needs to be taken as a Low-state duration of between 480 and 960 µs
is interpreted by the Slave as a Reset command (see SAQ 12.2).

Eight Write slots are used with a minimum 1 µs relax period interval to transmit
the byte; each slot’s state following the bit rotated into the Carry flag of the datum
byte DATA_OUT. After eight shift/output cycles the process terminates.

Reading from a Slave involves the following tasks:

1. The Master starts the process, forcing the data line Low for at least 1 µs.
2. The Master then listens to data placed on the line by the Slave which is valid for

up to 15 µs after the Start edge.
3. The Slave releases the line after 15 µs which should be pulled High by the end

of the 60 µs slot.
4. The Master waits a minimum of 1 µs before starting the next slot.

The input subroutine READ_1W follows this task list, sampling the data line
sometime before 15 µs into the slot, at which time the Slave’s data should have set-
tled to the appropriate voltage level. Each bit is used to appropriately set the Carry
flag, which is then shifted right into DATA_IN LSB first. After eight sample/shift
loops, DATA_IN has the received byte datum.

Unlike the I2C bus, the 1-Wire architecture is designed for a single Master. How-
ever, 1-Wire Slaves have device addresses comprising a 64-bit unique code as part
of an internal ROM. The first eight bits are a 1-Wire family code—the DS18S20
code is h’10’. The following 48 bits are a unique serial number and the last eight bits
are an error-checking byte.

12 One Bit at a Time 449

Program 12.21 Reading and writing on a 1-Wire system
; ***
; * FUNCTION: Writes a byte datum to a 1-Wire slave *
; * RESOURCE: macro Delay_us giving N microsecond delay *
; * ENTRY : Datum is in DATA_OUT *
; * EXIT : DATA_OUT is zero, W, STATUS altered *
; ***
WRITE_1W movlw 8 ; Loop count

movwf COUNT
W_LOOP bcf TRISA,DAT ; Low edge signals Start

Delay_us 1 ; for 1us
rrcf DATA_OUT,f ; LSB first shift into Carry
btfsc STATUS,C ; Was it a 1?
bsf TRISA,DAT ; IF it was THEN output high

Delay_us d’60’ ; Hold for 60us
bsf TRISA,DAT ; Release line to go high
Delay_us 1 ; Relax for 1us
decfsz COUNT,f ; Repeat eight times
bra W_LOOP

return

; ***
; * FUNCTION: Reads a byte datum from a 1-Wire slave *
; * RESOURCE: macro Delay_us giving N microsecond delay *
; * ENTRY : None *
; * EXIT : Datum is in DATA_IN, W, STATUS altered *
; ***
READ_1W movlw 8 ; Loop count

movwf COUNT
R_LOOP bcf TRISA,DAT ; Low edge signals Start

Delay_us 1 ; for 1us
bsf TRISA,DAT ; Release line
Delay_us 8 ; Wait 8us for Slave to O/P data
bcf STATUS,C ; Clear Carry
btfsc PORTA,DAT ; Check input state
bsf STATUS,C ; IF high THEN set Carry

rrcf DATA_IN,f ; Shift bit in -> LSB
Delay_us d’48’ ; Wait to end of slot
decfsz COUNT,f ; Repeat eight times
bra R_LOOP

return

Self-Assessment Questions

12.1 Show how you could connect four MAX518 ADCs (see Fig. 12.16) on the one
I2C circuit and how channel 1 on the third ADC could be written to.

12.2 Communications along a 1-Wire link begins with a Reset operation, where the
Master pulls the line Low for 480–960 µs after which the line is released. The
Slave then responds by dragging the line Low after no more than 60 µs delay.
This Low state persists for a further 60–240 µs after which the Slave releases

450 The Essential PIC18® Microcontroller

this line. Design a subroutine that will do this procedure when called. Assume
the resources of Program 12.21 are available to you.

12.3 Parity is a technique whereby the number of digits in a word is always either
even or odd. This is accomplished by adding an extra bit which is calculated
by the transmission software to be 0 or 1 to meet this overall criterion. For
instance, for odd parity of an 8-bit word b’01101111’ we have b’1 01101111’.
The receiver will check that all nine received bits have an odd count. If one bit
(or any odd number) has been corrupted by noise, then a parity error is said
to have occurred.

Based on the PIC MCU USART, write software to set the asynchronous
protocol to 9 bit word and calculate the odd one’s parity bit of DATA_OUT
which should be placed in TX9D of the TXSTA register prior to the loading of
the data into TXREG and transmission.

12.4 Rewrite the subroutine GETCHAR of Program 12.15 as an interrupt service
routine called GETCH. Compare the two approaches.

12.5 A certain data logger is to sample temperature once every 15 minutes. The
power supply current consumption is reduced by using a Low-voltage part at
a VDD of 3 V and a crystal of 32.780 kHz. Under these conditions the current
consumption with the Timer 1 running is a maximum of 70 µA (45 µA typical).
A I2C EEPROM is to be used to store the data as it is read, but is only powered
on at sample time—by using a spare port line as the EEPROM’s power supply.
The logger is to be left submerged at the bottom of a lake for 6 months before
being recovered. Can you choose an appropriate 24LCXXX EEPROM and
estimate the required capacity of the 3 V battery in mA-hours?

12.6 A PIC18F4520 is to be used over a mobile phone network, to remotely moni-
tor and control an intelligent home heating system. As shown in Fig. 12.31, the
processor communicates with a GM862 GSM (Groupe Spécial Mobile) mod-
ule24 via a duplex asynchronous serial link. A second simplex asynchronous
stream echos commands and gives status messages to a PC with a serial port.

The GSM module is turned on (and also off) with a 1 s duration .
The controller must then send the two characters ’A’, ’T’ (ATtention). If
successful, the module will echo back with the message ’A’, ’T’, ’\r’,
’\n’, ’O’, ’K’, ’\r’, ’\n’ (where \r and \n are Carriage Return (0x0D)
and New Line (0x0A) respectively).

Fig. 12.31 GSM module dual-serial interface

24See http://www.roundsolutions.com/techdocs/index.php for more details.

12 One Bit at a Time 451

Design software coded in CCS C to implement the following task list:
1. Set-up two 2400 baud serial links with the USART being used for the gsm

stream. The software pc stream is to use pinRA0 as its transmit pin—see
p. 436.

2. Use pinRA1 to pulse the GSM module for 1s.
3. Send the message ’A’, ’T’ to the GSM module.
4. Wait nominally one minute.
5. As the characters are received in an ISR from the GSM module during the

delay, they are stored in a global buffer and echoed to the PC. If too many
characters are received, a warning message should be sent.

6. After the delay, if the correct eight characters have been received, then a
confirmation message should be sent to the PC, otherwise an error mes-
sage is transmitted and the process repeated.

Chapter 13
Time Is of the Essence

Of crucial importance in many systems are time-related functions. These may man-
ifest themselves in the measurement of duration, event counting, or control of an
external physical event for known periods. An example of the former would be the
time between pulses generated by the teeth on a flywheel to measure engine speed
for a car dashboard management system—see Fig. 3.8 on p. 59.

Where time is of the essence these functions are often best implemented by using
hardware counters to time events, rather than software delay routines. In this chapter
we will look at the various timer modules which are available to the PIC18 MCU
family. After completion you should:

• Know how a Watchdog timer improves the robustness of a MCU-based system
and how to use the integral WDT module for both this purpose and to awaken the
processor when operating in a power management mode.

• Be able to use the basic 8/16-bit Timer 0 module as both a counter and timer.
• Understand the function of the 16-bit Timer 1/3 modules and their interaction

with the Capture/Compare/PWM (CCP) modules.
• Be able to use the 8-bit Timer 2 module together with the CCP modules, to gen-

erate pulse-width modulated outputs.

Many MCU-based systems are hosted in an electrically hostile environment, with
noise induced outside both through logic lines and the power supply. Our example
of an auto dashboard manager is typical of this situation, with induction from the
high-voltage ignition sparks and alternator sourced ripple in the battery supply. No
matter what precautions in shielding and filtering are taken, it is inevitable that on
occasion the MCU will jump out of its proper location in Program memory and ‘run
amok’ with potentially serious consequences on the controlled system.1 In some
cases this is little more serious than requiring a manual reset.2 However, this is not
possible in many situations; for instance, in a pacemaker implanted in the patient’s
body or a Martian space probe.

1The same can happen as a result of software bugs.
2As in a Window’s® PC.

S. Katzen, The Essential PIC18® Microcontroller,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-229-2_13, © Springer-Verlag London Limited 2010

453

454 The Essential PIC18® Microcontroller

One solution to this problem is to use an oscillator/binary counter, which resets
the processor when the count overflows.3 If the software is arranged to clear this
counter on a regular basis so that overflow never occurs, then the MCU never resets.
If something happens and the MCU jumps out of its normal loop then eventually,
without this constant clearing, the counter will overflow and the MCU will be reset
to its starting point. This circuit is given the name Watchdog timer, as it enhances
the system security.

Rather than rely on external Watchdog timers, all PIC MCUs, even the early low-
range family, have an integral WDT module. The operation of this function, shown
in Fig. 13.1, is essentially:

• A 7-bit counter frequency divides the nominal 31 kHz INTRC internal oscillator
(see Fig. 10.11 on p. 321) to give the fundamental Watchdog period of approxi-
mately 4.1 ms (3.56 ms minimum, 4.82 ms maximum).

• The Watchdog counter is enabled if the WDTEN fuse is 1 (default) or else it can be
controlled in software by the SWDTEN bit in WDTCON (this is the only functional
bit in this control register).

• The basic 4.1 ms period is divided by a 16-bit Postscaler counter4 to give a
chain of periods in powers of 2; with a maximum value of 2.18 minutes. Any
one of these can be selected with the four WDTPS3:0 fuses in CONFIG2H (see
Appendix B) addressing a multiplexer. For instance:

config OSC=HS, WDTPS=512, WDT=ON

will set up these fuses to b’1001’ to give a time-out period of ×512 ≈ 12 s.
WDT=OFF must be used to disable the hardware control of the WDT. The equiv-
alent for the CCS compiler is:

#fuses HS, WDT, WDT512

and NOWDT is the counterpart of WDT=OFF.
• The execution of a clrwdt (CLeaR WatchDog Timer) instruction will reset the

WatchDog counter/Prescaler chain to zero. If this happens at a rate faster than the
selected period, then the WatchDog Timer will never time out. For the example
given, software running in an endless loop with clrwdt being executed more
frequently than every 12 seconds, will prevent overflow.

• If the Postscaler does overflow, that is the selected flip flop goes 1, then the TO
(Time Out) flag in the RCON register will be cleared; its active state. If the pro-
cessor is running normally (that is, not in a Sleep/Idle state) then this will reset
the processor, which begins execution at the Reset vector h’00000’. A WDT reset

3Other approaches typically are based on a retriggerable monostable.
4Early PIC18 devices, such as the PIC18F452, had an 8-bit Postscaler; as did earlier families.

13 Time Is of the Essence 455

F
ig

.1
3.

1
T

he
E

nh
an

ce
d

PI
C

18
M

C
U

W
at

ch
do

g
tim

er
m

od
ul

e

456 The Essential PIC18® Microcontroller

does not change the state of TO and so can be checked to distinguish from a ‘nor-
mal’ restart. A clrwdt instruction following this check will set TO and will at
the same time clear and restart the WatchDog Timer—see p. 456.

The WDT module can also be used in a secondary role to waken a processor fol-
lowing a sleep instruction. On execution, this instruction will zero and restart the
Watchdog counter Prescaler chain. If it should time out, the processor will awaken
and execution will restart with the instruction following sleep. The processor does
not reset. Normally, sleep is followed by a clrwdt which zeros and restarts the
WDT module and deactivates TO.

Another way of arousing an idle or sleeping processor is via an external interrupt
or internal trigger sourced from a module with a local oscillator; such as Timer 1.
Of course, the Primary oscillator will be disabled following a sleep instruction.
If interrupts are globally disabled, execution will begin with the instruction follow-
ing on after sleep. If however, the interrupt is enabled both locally and globally,
then the processor will vector to the ISR in the normal way. By examining the PD
(Power Down) flag, the ISR can determine if it was launched when the process was
asleep or idling. PD is set inactive only by executing a clrwdt instruction.

In summary, the WDT module has two functions.

1. Most embedded programs operate in one or more endless loops. By judicious
selection of the time-out period, executing clrwdt on each pass will keep the
Watchdog counter chain from overflowing. If the software malfunctions, then the
processor will reset automatically.

2. The WDT module can be used to awaken the processor from a Sleep or Idle
mode, after a nominal delay of between 4.1 ms and 131 seconds. Note that an
active WDT timer will add typically 5.5 µA (15 µA maximum) at a VDD of 5 V
and 25◦C to the power budget—see p. 308.

As an example, consider a system counting cans of beans moving along a con-
veyer belt in the manner shown in Fig. 13.3, keeping a tally in a File called
BEAN_COUNT. On Power-on this tally is to be zeroed. If due to a glitch there is
no activity for a period of nominally a minute, the PIC MCU’s Watchdog is to reset
but keep the tally unchanged. To do this we can use the startup code to check the
state of TO and take the appropriate action; for instance:

config WDT=ON ; Enable the Watchdog timer
config WDTPS=16384 ; Approx 65 second time-out

;
org h’00000’ ; The Reset vector

MAIN btfss RCON,TO ; Was this a Watchdog reset?
clrf BEAN_COUNT ; IF not THEN zero tally

; More initializing code
clrwdt ; Set TO and reset Watchdog

Apart from parallel ports and Watchdog timer, the only peripheral module of-
fered by the first line of PIC MCUs was an 8-bit timer called the Real-Time

13 Time Is of the Essence 457

Counter-Clock. The PIC16 family kept the RTCC, but eventually changed its name
to Timer 0 to line up with the new Timer 1 and Timer 2 modules. Timer 0 in the
PIC18 family defaults to an 8-bit counter-timer on reset for compatibility with these
earlier devices. However, this version has been expanded with a 16-bit mode of
operation.

From Fig. 13.2 we see that the counting chain comprises a cascade of two pri-
mary 8-bit counters fronted with an optional 8-bit Prescaler counter. This gives eight
selectable clock rates into the primary counter; selected by the PS2:0 bits in the
Timer 0 CONtrol register T0CON.5 If the PreScaler Assign PSA bit is 1, its reset
value, then the Prescaler flip flop chain is by-passed.

The counting chain can either be clocked by the internal instruction cycle clock
fOSC

4 (that is at the instruction cycle rate) or from an external source via the Timer 0
Clock Input T0CKI pin. The Timer 0 Clock Select T0CS bit at T0CON[5] is used
to select the internal/external mode. When clocked from outside, the active edge is
set using the Timer 0 Set Edge T0SE bit at T0CON[4].

An event at the T0CKI pin will appear to be random with respect to the internal
clock cycle. In order to allow Timer 0 to be read from or written to in the normal
way without interaction between the two timing signals, a synchronization stage
is necessary. This is done using a 2-stage shift register before the Timer 0 primary
counter’s clock input. This causes a delay of two instruction cycles; 1 µs with an
8 MHz crystal. Where the primary counter is directly connected to the internal clock,
this will cause a 2-cycle delay before anything happens after a datum is written into
Timer 0.

How fast can the T0CKI pin be clocked and still reliably be tallied? The answer
depends on whether the Prescaler is used to predivide the incoming pulse train. In
the former case PSA = 1 the external pulse train is directly synchronised by the
instruction cycle, and so cannot be more than fOSC

4 ; denoted in the data sheet as the
period tCY. Actually, a short set-up and hold time is specified, giving a minimum
period tT0P of tCY + 40 ns; tT0L = tCY + 20 = tT0H for the Low and High durations
respectively. For instance, with a 8 MHz fOSC clock, the minimum square wave
period would be 500 + 40 = 540 ns (≈1.85 MHz).

Where the Prescaler is used, the T0CKI pulse rate can be scaled up to reflect the
period multiplication; that is tCY+40

PS , where PS is the Prescale ratio. However, there
is an absolute minimum High or Low duration of 10 ns. For instance, for a 8 MHz
clock and a PS-ratio of 16, the minimum duration is 540

16 = 33.75 ns or ≈30 MHz.
However, if a 20 MHz clock was used, the overarching period limit of 20 ns or
50 MHz square wave, must be used.

The primary counting chain can be configured as either 8-bit or 16-bit using the
Timer 0 8BIT T0BIT8 bit in T0CON[7]. In the former case, when TMR0L overflows,
TMR0IF in INTCON[2] will be set. In the 16-bit configuration, TMR0L clocks the
high byte of Timer 0 and so it is this overflow that is signaled by setting the TiMeR 0
Interrupt Flag. In either case TMR0IF should be cleared in software in any ISR or

5In earlier families, the Option register OPTION_REG was used to configure Timer 0, the WDT
module and more besides.

458 The Essential PIC18® Microcontroller

Fig. 13.2 Simplified functional diagram for the Timer 0 module

13 Time Is of the Essence 459

polling routine in order to catch any subsequent overflow. An interrupt will be set in
train if the TMR0IE enable bit in INTCON[5] is set, with its appropriate priority set
with TMR0IP in INTCON2[2].

The low byte of Timer 0 can be read from to written to at any time in the same was
as any File. As only eight bits can be accessed by any instruction, there is a potential
problem in reading or writing to a 16-bit Timer 0. For instance, consider Timer 0 is
h’7F FF’ at an instant of time. Reading the low byte gives h’FF’. Perhaps just as the
high byte is about to be read, the counter chain increments to h’80 00’, then the value
obtained will be h’80’. Thus the counter will be erroneously read as h’80 FF’! For
this reason, direct access to the high byte of the count is not permitted. Instead its
state is accessed via a go-between buffer register TMR0H. An instruction reading
from TMR0L will automatically copy the high byte of the count into TMR0H, from
where it can subsequentially be read. Writing is done the same way, first copying
the required high byte into TMR0H and then writing the low byte into TMR0L. Both
bytes will then be loaded into the 16-bit Timer 0. For instance, to set-up the timer to
h’20 00’ we have:

movlw h’20’ ; The high byte
movwf TMR0H ; in the High buffer
clrf TMR0L ; Low byte = 00 and High byte is h’20’

Writing to TMR0L always clears the Prescaler and clock synchronizer, in either 8-
or 16-bit modes.

Timer 0 is mainly used either to count external events or to measure the time
between external events. It can also be used to time software toggling port pins for
precisely known durations, without tying up the processor in time-wasting delay
routines.

We will illustrate the usage of Timer 0 as an event counter and stop clock with
two examples. The first, which also illustrates the Watchdog timer, is to tally cans
of baked beans traveling along a conveyer belt, as shown in Fig. 13.3. Each 24 cans
passing the sensor should generate a pulse to a packing machine, so that the box can
be replaced by a new empty container. This pulse need only be a few microseconds

Fig. 13.3 Counting cans of beans on a conveyer belt

460 The Essential PIC18® Microcontroller

in duration. A double-byte count should also to be kept of the number of boxes
packed since the last Power-on/Manual Reset. This will be uploaded to the central
plant computer at the end of the shift for inventory control.

Our first consideration is the set-up and initialization code. This code, shown
below, begins by checking the TO flag at the Reset vector. If zero then the bulk of
the initialization code is omitted, as reset was due to a Watchdog time-out. If this was
not the case, then Ports A & B pins are configured as digital, with pinT0CKI/RA4
set-up as an input, and RB1 set-up as an output to activate the packing machine.

include "p18F4520.inc"
config WDT=ON, WDTPS=128, OSC=XT ; Enable Watchdog

cblock h’020’
COUNT:2

endc

org 0 ; Reset vector
btfss RCON,TO ; Check if a Watchdog reset
bra MAIN_LOOP ; IF yes THEN no initialization

bra MAIN ; ELSE a fresh start

org 8 ; Compatible Interrupt vector
goto ISR ; Foreground program

MAIN setf ADCON1 ; Make all port pins digital
bsf PORTB,1 ; Idle state of the Packing pulse
bsf TRISA,4 ; Make sure that T0CK1 is I/P
bcf TRISB,1 ; & RB1/Packing machine an O/P
movlw b’11101000’ ; Timer on, external rising edge
movwf T0CON ; 8-bit mode, no Prescaler

movlw -d’24’ ; Initialize TMR0 to -24 (h’E8’)
movwf TMR0L
clrf COUNT+1 ; Clear the 2-byte score count
clrf COUNT
bsf INTCON,TMR0IE; Enable Timer0 interrupt
bsf INTCON,GIE ; Enable all interrupts

; The background program which amongst other things - - - - -
MAIN_LOOP

clrwdt ; Regularly resets the wdt
... ; More background code
goto MAIN_LOOP ; DO forever main loop

No details were given about the maximum time to execute the Main loop, so for
illustration purposes the Watchdog timer has been configured to extend its time-out
period by ×128. Timer 0 is enabled in its 8-bit mode to be clocked from T0CKI on
a with no Prescaler. Finally, Timer 0 itself is set to h’E8’ (i.e., −24 decimal) so
that 24 can pulses will cause it to overflow and generate an interrupt. Both INTCON
flags TMR0IE and GIE are then set to enable the interrupt.

The main background program commences with a clrwdt instruction. Provided
that the background endless loop is no longer than nominally 3.56 ms × 128 ≈
0.455 s, the minimum Watchdog period, then time-out will not occur.

With the initialization code in situ, all that remains is to implement the interrupt
service routine (ISR) that will be automatically entered after each batch of 24 cans;

13 Time Is of the Essence 461

Program 13.1 The bean counter interrupt service routine
; ***
; * FUNCTION: ISR to issue a Packing-machine pulse and re- *
; * FUNCTION: initialize Timer0 to -24. Keeps a grand score *
; * FUNCTION: total in COUNT:2 for background analysis *
; * RESOURCE: COUNT:2 *
; ***
ISR btfss INTCON,TMR0IF ; Was it a can?

bra ISR_EXIT ; IF no THEN false alarm

; Core code --
bcf PORTB,1 ; Pulse packing machine
movlw -d’24’ ; Re-initialize Timer0
movwf TMR0L
infsnz COUNT,f ; Add one to score count
incf COUNT+1,f

bcf INTCON,TMR0IF ; Reset interrupt flag
bsf PORTB,1 ; End packing machine pulse and

ISR_EXIT
retfie FAST ; return from interrupt with context

that is, when Timer 0 counts up 24 input pulses and overflows back to zero. When
this occurs, Timer 0 will set TMR0IF and the PIC MCU will jump to the Interrupt
vector at h’00008’. In our initialization code we have placed a goto ISR at this
point, and so named the routine in Program 13.1. If there are other sources of inter-
rupt then the switch would be to another part of the ISR, as shown in the listing of
Program 13.3.

The ISR simply checks the TMR0IF interrupt flag and exits if not set. The core
implements the following task list in no particular order:

• Pulse RB1 to signal the packing machine.
• Reset Timer 0 to −24.
• Increment the double-byte score Count.
• Reset the Timer 0 interrupt flag TMR0IF.

For an alternative approach using Hardware interrupts see Program 7.3 on p. 229.
Program 13.2 shows the same task coded in CCS C—see also Program 9.3 on

p. 293. This follows the structure of the assembly program, using the following
CCS-specific functions:

setup_timer_0(mode)
This function takes a list of OR delineated (|) mode commands to set-up Timer 0.
Each of the timers have an equivalent function to initialize their control register;
T0CON in our example. The list of mode commands are defined in the appropriate
processor header file; e.g. 18f4520.h. See also SAQ 13.13.6.

set_timer0(value)
Updates the value of the timer. All timers have functions of this form and also
get_timerx() to read Timer x.

restart_wdt()
Does a clrwdt instruction.

462 The Essential PIC18® Microcontroller

Program 13.2 Coding the bean counter in C
#include <18f4520.h>
#fuses WDT,WDT128,XT
#bit PACK_MACHINE = 0xF81.1 /* Activate packing machine */

long int COUNT; /* Global 16-bit variable */

main()
{
/* Do the following initialization if reset was a normal POR */
if(restart_cause() == NORMAL_POWER_UP)

{
COUNT = 0; /* Start with a zero count */

/* Config Timer0 as 8-bit, +ve edge ext clock with no Prescale*/
/* Have to specify 8-bit Timer 0 as 16-bit is default */

setup_timer_0(RTCC_EXT_L_TO_H|RTCC_DIV_1|RTCC_8_BIT);
set_timer0(-24); /* Timer 0 = -24 */
set_tris_b(0xFD); /* RB1 set as output */
setup_adc_ports(NO_ANALOGS); /* All pins digital */
enable_interrupts(INT_TIMER0);/* Enable Timer 0 interrupts*/
enable_interrupts(GLOBAL); /* Enable interrupt logic */
}

while(1) /* DO forever */
{
restart_wdt(); /* Clear WDT */
/* DO this; DO that; DO the other; Dummy code */
}

}

#int_timer0
isr()
{
PACK_MACHINE = 0; /* Pulse the packing machine */
set_timer0(-24); /* Timer 0 = -24 */
COUNT++; /* One more score */
PACK_MACHINE = 1;
}

restart_cause()
This function interrogates the TO and PD flags in the RCON register. In Pro-
gram 13.2 the key return value is WDT_TIMEOUT. Other values based on RCON
flags are listed in 18f4520.h; for instance, wdt_FROM_SLEEP and BROWNOUT_
RESTART.

Notice the use of #int_timer0 to designate the function isr() as a Timer 0
interrupt handler—see p. 292.

Our second example illustrates the use of Timer 0 as a clock to measure time
between events. The events in question are R-points peaks in the ECG waveform
illustrated in Fig. 7.1 on p. 206. In this example, a peak detector interrupts the MCU,
which keeps a 2-byte count from a 10 kHz external oscillator. In this manner the
period between events can be determined on each event in increments of 100 µs,

13 Time Is of the Essence 463

which we call here jiffies. For our example we will modify the specification to
eliminate this oscillator and use Timer 0 to keep a nominal 125 µs 2-byte Jiffy tally.
The 1

8 ms tick rate used here is based on a 4.096 MHz main system clock, which is
divided down by a Prescaler ratio of 128; i.e. 4.096

4×128 . We will see further on in the
chapter, that the more sophisticated timers can be used to give a wider range and
precision of clock rates.

As well as setting the INT0IE flag to enable Hardware interrupt 0, which is used to
signal an ECG peak event at INT0, the Timer 0 interrupt is also enabled by setting
the TMR0IE flag. As a safety feature, if the timer overflows; that is after 65.536×8 ≈
8.2 s, then we would like to sound the alarm. We will assume a sounder is connected
to pinRA0. Whenever an ECG peak is detected, the 16-bit Jiffy count in Timer 0 is
copied into two Files JIFFY:2 and sets the File NEW to a non-zero value. Neither
this double-byte Jiffy count nor Timer 0 need be cleared as the first reading of the
series will always be erroneous—because the patient’s heartbeat is not synchronized
to the PIC MCU reset! However, File NEW, which is set to non-zero each time an
ECG peak is detected, is cleared.

config WDT=OFF, OSC=XT

cblock h’020’
JIFFY:2,NEW:1
endc

org 0 ; Reset vector
bra MAIN ; Background program

org 8 ; Compatible Interrupt vector
goto ISR ; Foreground program

MAIN movlw b’10010110’ ; INT on -ve edge, internal clock
movwf T0CON ; Prescale /128 assigned to Timer0
setf ADCON1 ; Make parallel port pins digital
bcf PORTA,0 ; Make RA0 start as 0
bcf TRISA,0 ; as an Output to alarm
clrf NEW ; Zero the New flag
bsf INTCON,TMR0IE ; Enable the Timer 0 interrupt
bsf INTCON,INT0IE ; Enable the Hardware interrupt
bsf INTCON,GIE ; Enable Interrupt system
clrf TMR0H ; Zero the timer
clrf TMR0L

MAIN_LOOP
.... ; Background code
.... ; More background code
goto MAIN_LOOP ; DO forever main loop

The core of the ISR shown in Program 13.3 implements the following task list
when an interrupt is received:

464 The Essential PIC18® Microcontroller

Program 13.3 Measuring the ECG waveform period to a resolution of 125 µs
; ***
; * FUNCTION: IF INT0 interrupt, set NEW, zero TMR0 *
; * FUNCTION: Also update the two JIFFY bytes *
; * FUNCTION: Sound alarm at RA0 IF TMR0 interrupt *
; * RESOURCE: JIFFY:2, NEW:1 *
; ***
ISR btfss INTCON,TMR0IF; Was it a heartbeat?

bra HEART_BEAT ; IF yes THEN go to it

; ELSE must have been TMR0 overflowed ---------------------------
bsf PORTA,0 ; In which case sound the alarm
bcf INTCON,TMR0IF; Clear Timer 0’s interrupt flag
bra ISR_EXIT ; and return

; This code handles the case when ECG peak detected -------------
HEART_BEAT movff TMR0L,JIFFY ; Copy 16-bit count to JIFFY:2

movff TMR0H,JIFFY+1
setf NEW ; Tell the world there is new data
clrf TMR0H ; Zero Timer 0
clrf TMR0L
btfsc INTCON,INT0IF; Reset Hardware0 interrupt flag

ISR_EXIT retfie FAST ; and return from interrupt

1. IF a Hardware interrupt from peak picker.

• Copy Jiffy count into memory.
• Zero Timer 0.
• Set New indicator.
• Reset Hardware interrupt flag INT0IF.
• Return from interrupt.

2. ELSE Timer 0 interrupt.

• Set alarm.
• Reset TMR0IF interrupt flag.
• Return from interrupt.

Both bytes in Timer 0 are copied into the Files called JIFFY+1:JIFFY when a
Hardware interrupt is received. Notice how the lower byte of Timer 0 TMR0L is read
first, to simultaneously update the high byte buffer TMR0H; which can subsequently
be accessed. Conversely, writing to Timer 0, in this case clearing the timer, is done
in reverse; that is, TMR0H is updated first. When TMR0L is subsequently cleared,
the value in TMR0H is uploaded into the buried high byte of Timer 0.

In setting NEW the ISR is signaling that a fresh period value is ready. When the
background program polls File NEW and finds a non-zero datum, then it knows that
a fresh count is ready for collection. It then, for instance, could send it to a serial
EEPROM as in Example 12.3 on p. 442 or down a serial link to a PC for subsequent
storage, processing and display.

The equivalent coding in CCS C is shown in Program 13.4. The approach is sim-
ilar to that in the assembly coding of Program 13.3, but note that a separate function
is used for each of the two types of interrupt source. The compiler will generate code

13 Time Is of the Essence 465

Program 13.4 ECG peak-to-peak timer in CCS C
#include <18f4520.h>
#fuses NOWDT,XT
#bit ALARM = 0xF80.0 /* Overflow alarm */
long int JIFFY; /* Global 16-bit variable */
int NEW; /* New peak detected */
main()
{
/* Timer0 internal clocking, prescaled 128. Defaults to 16-bit */
setup_timer_0(RTCC_INTERNAL|RTCC_DIV_128);
set_tris_a(0xFE); /* RA0 set as output */
setup_adc_ports(NO_ANALOGS); /* All pins digital */
enable_interrupts(INT_TIMER0); /* Enable Timer 0 interrupts */
enable_interrupts(INT_EXT); /* Enable INT0 interrupts */
enable_interrupts(GLOBAL); /* Enable interrupt logic */

while(1) /* DO forever */
{
if(NEW == 1) /* Dummy code */

{
NEW = 0;
/* DO this; DO that; DO the other; Dummy code */
}

}
}

#int_timer0
overflow()
{
ALARM = 1; /* Sound alarm on overflow */
}

#int_ext
ecg()
{
JIFFY = get_timer0();
NEW = 1;
set_timer0(0);
}

to test each interrupt flag in turn and call up the ISR function as appropriate. No-
tice the anarchic use of the original name for Timer 0; that is the RTCC (Real-Time
Counter Clock). The function get_timer0(); returns a 16-bit integer, irrespec-
tive of the two possible counter sizes. Note how set_timer0(0); is used to
clear Timer 0.

Extended-range PIC MCUs have three6 additional timer/counters and associated
circuitry with the following properties.

Timer 1
Timer 1 is a 16-bit counter with its own optional dedicated oscillator and pro-
grammable Prescaler. Its state can be sampled by an external event and it can control
the state of a pin when it reaches a predefined value.

6The PIC24 family have up to nine additional timers.

466 The Essential PIC18® Microcontroller

Timer 2
This 8-bit counter has both programmable Pre- and Postscaler functions. Its count
length can be set by the programmer and it may be used to generate a pulse-width
modulated output with no on-going software overhead.

Timer 3
This is a clone of Timer 1 with virtually identical properties. It does not have its own
optional oscillator, but can use that provided for Timer 1. Optionally it can provided
the timebase for the Capture/Compare/Pulse Width Modulation logic.

Capture/Compare/PWM
Timers can be used in conjunction with additional logic called Capture/Com-
pare/Pulse Width Modulation (CCP) to implement the Timer 1/3 sample instant
(Capture), the Timer 1/3 roll-over value (Compare), and the automatic PWM gener-
ation from Timer 2.

Timer 1 comprises a primary 16-bit counter implemented as a pair of Files with
the lower byte named TMR1L. Like Timer 0, the high byte is buried. Normally ac-
cess to this byte is via the TMR1H buffer, which is updated whenever TMR1L is read
from or written from in the same manner as the 16-bit mode Timer 0. Thus the state
of the 16-bit Timer 1 can be accessed or changed at a single point in time. However,
unlike Timer 0 this buffered access can be disabled, effectively coupling TMR1H to
the high byte of Timer 1. This unbuffered mode is compatible with earlier versions
of this module available in the PIC16 family, but needs to be used with care. For in-
stance, Microchip recommend that the timer be turned off during an unbuffered read
of the two bytes to avoid the problems discussed on p. 459. When this counter over-
flows, then the Interrupt Flag TMR1IF in the Peripheral Interrupt Register 1 PIR1[0]
is set.

The source of the counting pulses may be external to the device; either events at
the T13CKI (Timer 1/3 ClocK Input) or from a dedicated Timer 1 oscillator. Alter-
natively, the internal system oscillator fOSC

4 may be selected as the counting source.
In all cases, the counting pulse train can be divided down with a Prescaler counter.
External counting pulses default to being synchronized to the system oscillator.

The Timer 1 CONtrol register T1CON, shown in exploded form in Fig. 13.4, is
used to select the various features of the Timer. All bits in this Control register are 0
on Power-on/Brown-out Resets, which initially disables an unbuffered Timer 1 and
its external oscillator, with a Prescaler value of 1:1 and system clock used as the
source. All bits can be read and except for T1RUN, be written to.

TMR1ON
Setting T1CON[0] to 1 enables the Timer. In this case the Timer 1 related pins are
then automatically set as input, overriding any TRIS settings.

TMR1CS, T1OSCEN
Timer 1 can be configured to measure time from the internal system clock if the
TiMeR 1 Clock Select switch bit in T1CON[1] is 1 or else use an external source of
counting pulses.

13 Time Is of the Essence 467

Fig. 13.4 Functional equivalent circuit for Timer 1

External events can be a rising edge (following the first falling edge) on
the T13CKI pin, or else if the Timer 1 OSCillator Enable switch bit in T1CON[3]
is 1, a ‘private’ oscillator separate from the main PIC MCU oscillator. This avoids
having to pick the main crystal to suit the timer, as we did in our Timer 0 ECG
peak picker of p. 463. This external oscillator is timed with a crystal across the
T1OS0/T13CKI and T1OSC1 pins, with a maximum value of 200 kHz. Typically
a 32.768 kHz (215 Hz) watch crystal is used.

T1CKPS1:0
Whatever the source of counting pulses, the primary 16-bit counter may be incre-
mented either directly or on every second, fourth, or eighth event. This is controlled
by the setting of T1CON[5:4], as listed in the diagram.

Timer 1 will overflow and set the TMR1IF interrupt flag after 216 = 65,536
counter events from zero. This in turn can be used to interrupt the processor if
the paired TMR1IE mask bit in the Peripheral Interrupt Enable 1 register is set (see

468 The Essential PIC18® Microcontroller

Fig. 7.2 on p. 209), or else polled. In either case the program should manually clear
the TMR1IF flag once overflow has been detected.

For instance, if a 32.768 kHz watch crystal is used, then Timer 1 will overflow
in two seconds if T1CKPS1 : 0 = 00 and every 16 seconds if T1CKPS1 : 0 = 11.

T1SYNC
Output from the Prescaler is by default synchronized to the system clock, giving a
2-instruction cycle delay. However, unlike Timer 0 this synchronization shift register
can be by-passed with T1CON[2] set to 1. The asynchronous mode allows Timer 1
to be used with an external count source when the PIC MCU is asleep. As the
synchronizer shift register is clocked from the system clock fOSC (actually Q4 in
Fig. 4.5 on p. 76), which is switched off when in the Sleep mode, a by-pass is
necessary in this situation. The asynchronous mode also needs to be used when the
external count pulse rate is faster than the system clock, as the synchronizer will
then miss some events.

Apart from these cases, T1SYNC should be 0, as the lack of synchronization
can lead to an unpredictable outcome if software attempts to write to Timer 1 at the
same time as the random external event tries to increment the timer. If the Timer 1
state is to be updated in the asynchronous mode, then it should be disabled and thus
stopped by clearing TMR1ON during this process. For instance, to change the state
of Timer 1 to h’8000’:

movlw h’80’ ; New high byte
bcf T1CON,TMR1ON ; Stop the timer
movwf TMR1H ; Set Timer1 to 8000
clrf TMR1L ; Update the two bytes
bsf T1CON,TMR1ON ; Restart the timer

Altering the state of TMR1L will always clear the Prescale counter and synchronizer.
When the internal system clock is selected (TMR1CS = 0), synchronization is

not necessary. In this case the state of T1SYNC is ignored.

RD16
When ReaD/write 16-bits is 1, the high-byte buffers are enabled. In this situation
both bytes of Timer 1 can be read or written to at the same time as activity at TMR1L.

T1RUN
When the SCS1:0 bits in OSCON[1:0] are set to 01 then the Timer 1’s oscillator is
used as the system clock—see p. 322. In this situation the Timer 1 is RUNning as
the system clock bit is set and the state of the T1OSCEN enable bit is overridden;
so the running of this oscillator is not controlled by Timer 1. However, Timer 1 can
still elect to use the clock if required.

For our example, assume that we require a low-power temperature logger that
will read the sensor and transmit its value back to base once every 15 minutes. It is
proposed that Timer 1 be used to action this process and that the Timer 1 oscillator
with a 32.768 kHz watch crystal is to give the timebase.

13 Time Is of the Essence 469

Program 13.5 Generating a 15-minute data logger timebase
include "p18f4520.inc"
config WDT=OFF, OSC=XT, LPT1OSC=ON

cblock h’020’
JIFFY:1
endc

MAIN movlw b’10011111’ ; Timer on, external clock, asynch
movwf T1CON ; Extern osc enabled, PS ratio 1:2
bsf INTCON,PEIE ; Enable the Peripheral interrupts
bsf PIE1,TMR1IE ; Enable the Timer1 interrupt

clrf JIFFY ; Zero Jiffy count
clrf TMR1H ; and zero the counter
clrf TMR1L

DOZE sleep ; Slumber & wait for Timer1 interrupt
bcf PIR1,TMR1IF ; Zero the interrupt flag
incf JIFFY,f ; Record one more Jiffy
movlw d’225’ ; Check, 225 Jiffies = 15 minutes?
cpfseq JIFFY ; IF yes THEN skip to take a sample
bra DOZE ; ELSE go back to sleep

; Take a sample ---
clrf JIFFY ; ELSE reset Jiffy count
call SAMPLE ; Sample temperature and transmit
bra DOZE ; and go back to sleep

As the maximum possible overflow time is only 16 s we need to keep a count of
overflows to record 900 s in total. Setting the overflow period to 4 s gives us a Jiffy
count requirement of 900

4 = 225 to record our 15 minute total. Thus our set-up and
main skeleton software would be something like that shown in Program 13.5. Here
Timer 1 is set up to use the its external oscillator with a Prescaler ratio of 1:2, giving
our 4 s Jiffy.

In order to reduce power consumption the PIC MCU is to be in its Sleep mode,
and will be woken up every four seconds. To facilitate this, the TMR1IE mask bit
in PIE1[0] is set to 1. As GIE remains in its reset clear state, when awoken, the
processor continues onto the instruction following sleep.

After TMR1IF is cleared, one is added onto the Jiffy count. This is tested for 225
and if equal, then it is zeroed and the subroutine to transmit temperature to base is
called.

It should be noted that an enabled, Timer 1 adds something of the order of
2 µA (10 µA maximum at 5 V) current drain, which is a consideration that
is especially important if it is intended to use Timer 1 to waken the processor
from a low-current Sleep state which typically only uses 0.4 µA (2 mA maxi-
mum); all figures for the PIC18F4520 at 5 V and 25°C. The LPT1OSC (Low-
Power Timer 1 OSCillator) fuse can be activated to run the oscillator in a low
power mode. Doing this increases the feedback resistor across this oscillator’s
amplifier. Whilst this reduces power (but no value is given in the data sheet) is
also makes the TMR1 oscillator more prone to interference from outside signals.

470 The Essential PIC18® Microcontroller

Fig. 13.5 The Timer 3 CONtrol register

Timer 3 is a clone of Timer 1 with T3 replacing T1 in the appropriate SFR and
interrupt bits. However, there are some differences, as shown shaded in Fig. 13.5.

• When Timer 3 is configured to use an external counting source, this is shared with
the Timer 1’s input pin T13CKI (on rising edges following the first falling edge).

• If the Timer 1 oscillator is enabled; that is bit T1OSCEN in T1CON[3] is 1, then
this is the source of timing pulses if Timer 3 is configured for external counting.
This is true even if Timer 1 is not set-up for an external clock source.

The sharing of resources between the two timers releases two control bits in
comparing T1CON with T3CON. These bits, labelled T2CCP2:1 in Fig. 13.5, are
used to assign Timer 1 and Timer 3 as the timebase for the CCP modules; as depicted
in Fig. 13.8.

Timer 2 is an 8-bit counter with both a programmable Prescaler and Postscaler;
as shown in Fig. 13.6. Input to this counter is always a derivative of the system
clock. Unlike the two previous timers, output is not taken from the counter chain but
from the Timer 2 Comparator. This compares the state of Timer 2 with that in the
Period Register PR2. On equality an output pulse is generated which resets Timer 2
at the next count pulse. This may optionally be used to determine the MSSP port’s
SPI clock rate, as listed in Fig. 12.9 on p. 392. As determined by the Postscaler,
any integer number from 1 to 16 of these reset events will set the Timer 2 Interrupt
Flag TMR2IF in PIR1[1]. If the Timer 2 mask bit TMR2IE is also set, an interrupt is
potentially generated.

The value of the Pre- and Postscaler ratio and actuation of Timer 2 is set-up using
the T2CON Control register as listed below. All bits are cleared on a reset, turning
Timer 2 off with 1:1 Pre- and Postscaler ratios. At the same time TMR2 is cleared as
are the Pre- and Postscaler counters. The Period Register is set to all 1s.

13 Time Is of the Essence 471

Fig. 13.6 A simplified equivalent circuit for Timer 2

TMR2ON
Setting T2CON[2] to 1 enables Timer 2.

T2CKPS1:0
Timer 2 can be incremented either directly at the instruction cycle rate fOSC

4 or fre-
quency divided by four or 16. The three settings of T2CON[1:0] are listed in the
diagram.

T2OUTPS3:0
The number of Timer 2 overflows activating the TMR2IF interrupt flag can be set to
between one and 16 with T2CON[6:3]. This 4-bit code n maps to n+1 periods; from
b’0000’ = 1:1 to b’1111’ = 1:16.

The advantage of this architecture is that time-out can be fine tuned by setting
the Period Register to an appropriate value. The delay until TMR2IF is set is given
as:

4

fOSC
× Prescale × (PR2 + 1) × Postscale.

For our example, consider the need for an interrupt 100 times per second as part
of a digital real-time clock. Assuming a 4 MHz crystal, choosing a Prescaler ra-
tio of 1:4 gives a clocking period for Timer 2 of 4 µs. If the Period Register is set
to 249 then the Timer 2 comparator output period is 250 × 4 = 1 ms. Thus set-
ting the Postscaler to 1:10 (1001) will give the required 10 ms (100 Hz) interrupt
rate. By varying the Postscaler from 1 to 16 we can have a corresponding interrupt
rate from 1 to 16 ms. For fine adjustments a unit change in PR2 alters the rate in
4×Postscale µs steps.

472 The Essential PIC18® Microcontroller

Set-up code for this example is:

movlw b’01001101’ ; Postscale 1:10 (1001). Timer2 on (1)
movwf T2CON ; Prescale 1:4 (01)
movlw d’249’ ; Set up period register to 249
movwf PR2

bsf PIE1,TMR2IE ; Enable Timer2 interrupts
bsf INTCON,PEIE ; Enable Timer2 interrupts
bsf INTCON,GIE ; Global enable

The setup_timer_2(mode,period,postscale); function is the CCS
C equivalent to initialize Timer 2.

setup_timer_2(T2_DIV_BY_4,249,10);
enable_interrupts(INT_TIMER2);
enable_interrupts(GLOBAL);

Timer 2 can be read from using the get_timer2() function and written to with
the set_timer2() function.

Time, the 4th dimension, is an important property of most systems interact-
ing with the physical world. In particular, measuring the span between events and
generating precision pulse durations. The various PIC MCU families use CCP
(Capture/Compare/Pulse-Width Modulation) modules in conjunction with the
various timers acting as a timebase to implement these functions. Most PIC18 de-
vices offer two CCP modules (exceptionally the PIC18F1X20 with one). Modules
CCP1 and CCP2 are virtually identical, sometimes even sharing the same time-
base, but with separate input/output pins CP1 and CP2. Generic references to the
CCP module registers and bit names generally replace the numeral by X; for in-
stance, CCP1CON and CCP2CON are indicated as CCPXCON. Thus, CCPXCON
might equally refer to CCP CONtrol register 1 or 2. Any differences will be noted
as appropriate.

A CCP module has three main functions.

• When configured in a Capture mode, an outside event on the associated CCP pin
causes the state of Timer 1 or 3 to be copied into the CCP register. This can be
used to derive the time or duration of this event, to a resolution down to 20 ns.

• Configured in a Compare mode; when the state Timer 1/3 equals that in the CCP
register, the state of the associated CCP pin is changed or Timer 1/3 is reset. This
can be used to generate a precisely timed event in hardware with a 100 ns resolu-
tion.

• When configured in a PWM mode; a CCP module, in conjunction with Timer 2,
can generate by hardware a pulse-width modulated output with a variable period
and duty cycle of up to 10-bit resolution (0.1%).

13 Time Is of the Essence 473

In all cases involving Timer 1 or 3, a synchronized clock must be used to guarantee
correct operation; that is, T1SYNCH = 0 or T3SYNCH = 0 as appropriate.

Each CCP module has an associated Control register used to set the mode. In
all cases, the appropriate CCP pin needs to be explicitly set-up as an input or out-
put as appropriate. In devices with 28+ pins, the CCP1 and CCP2 pins share with
RC2 and RC1 respectively. Pinning on most PIC18 devices corresponds with ear-
lier analogous PIC16 devices. For instance, the PIC18F4520 is a drop-in replace-
ment for the 40-pin PIC16F877. Unfortunately, CCP2 is adjacent to T13CKI/RC0,
which is used for Timer 1’s local oscillator. Interaction between signals at CCP2
and T13CKI can cause unpredictable operation of this timer. This is particularly
the case when this oscillator is configured to operate in its low-power mode; as
managed with the LPT1OSC fuse—see p. 469. For this reason pinCCP2 can be
moved to an alternative location, sharing with pinRB3. This option is directed with
the CCP2MX fuse—see Appendix B.

The Capture mode is illustrated in Fig. 13.7. The various submodes are:

CCPXM3:0 = 0000
On a Power-on/Brown-out Reset all bits are zeroed. This turns off the associated
CCP module and clears the Prescaler. The recommended way of avoiding spurious
interrupts when changing mode is to turn off the module before making the change.

CCPXM3:0 = 0100
On a \ edge at the CCPX pin, Timer 1 or Timer 3 is copied into the CCPRXH:L
pair of Files. At the same time the CCPX Interrupt Flag CCP1IF or CCP2IF is set,
and if corresponding CCP1IE or CCP2IE mask bit is set, an interrupt will be gener-
ated.

CCPXM3:0 = 0101
The time capture described above is triggered on a edge at the relevant CCP
pin.

CCPXM3:0 = 0110
Capture is actioned after four rising edges at the CCP pin.

CCPXM3:0 = 0111
Capture occurs after 16 rising edges at the CCP pin.

Once a defined event has taken place, the processor can read this frozen value—
that is, the time—either in an ISR or when the appropriate CCPIF flag is polled
as a 1. If the timebase timer is reset after each capture, then the sampled datum is the
time since the last event. Alternatively, as the timebase timer continues to increment,
its captured value can be subtracted from the previous reading to give the difference.
As the mode may be altered on the fly, the time between rising and falling edge on
CCPX can be measured by toggling CCPXM0 between captures. This may cause
the CCPXIF interrupt flag to be set. To prevent false interrupts, CCPXIE should be

474 The Essential PIC18® Microcontroller

Fig. 13.7 Capturing the time of an event

cleared before the change-over and CCPXIF after the change-over. Alternatively, the
CCP1 module can be used to capture the rising edge and CCP2 the falling edge—see
Example 13.3.

Although it seems perverse; if the CCP pin is set as an output, then under program
control a capture can take place by altering the state of this pin from inside. Thus
the time of an internal event can be captured.

As our example, consider that we wish to measure the period of our ECG signal
with the peak detector of Fig. 7.1 on p. 206 connected to pin CCP1. If we assume
that we are using Timer 1 synchronously clocked by its own 32.768 kHz watch
crystal as our timebase; our set-up code is something like this:

movlw b’10001011’ ; Timer1 on, external clock, synched
movwf T1CON ; Oscillator enabled, PS ratio 1:1
bcf T3CON,T3CCP2; Choose Timer1 as CCP1 timebase

movlw b’00000100’ ; Capture mode, event = falling edge
movwf CCP1CON

clrf NEW ; Zero NEW flag

bsf PIE1,CCP1IE ; Enable the CCP1 interrupt
bcf PIR1,CCP1IF ; Ensure that interrupt flag is zero
bsf INTCON,PEIE ; Enable Timer/CCP interrupts
bsf INTCON,GIE ; Global interrupts enabled

The ISR simply reads the contents of the CCPR1H:L register and stores it away
in two temporary locations, setting File NEW to indicate to the background program
that a new time datum exists. Timer 1 is then cleared ready for the next event.

With a crystal of 32.768 kHz, the time resolution of the captured datum is 30.5 µs
with our 1:1 Prescale setting. Timer 1 will overflow in 2 s, which is sufficient to
record a heart rate down to 30 beats per minute. A more robust software system

13 Time Is of the Essence 475

Program 13.6 Capturing the instant of time an ECG R-point occurs
; **
; * FUNCTION : CCP1 ISR to copy CCPR1H:L datum to TEMP+1:TEMP *
; * ENTRY : CCP1 interrupt enabled *
; * EXIT : CCPR1H:CCPR1L <- TEMP+1:TEMP. TMR1 zero *
; * EXIT : TMR1 <- 0000. NEW <- 1 *
; **
ISR_ECG btfss PIR1,CCP1IF ; Was it a CCP1 interrupt?

bra ISR_EXIT ; IF no THEN false alarm

incf NEW,f ; Signal a new capture
bcf PIR1,CCP1IF ; Reset interrupt flag
movff CCPR1L,TEMP ; Get captured low byte
movff CCPR1H,TEMP+1 ; Get captured high byte
clrf TMR1H ; Zero Timer1’s High buffer
clrf TMR1L ; and complete double byte

ISR_EXIT retfie FAST ; and return from interrupt

would also enable the Timer 1 overflow interrupt. If this occurs it indicates that the
subsequent captured data will be invalid—although time-outs can be counted and
thus extend the validity of the captured time. However, in our system it is more
likely to be used to set off an alarm!

Modes 0010 and 1000–1011 listed in Fig. 13.8 give five Compare modes. Here a
16-bit digital equality comparator detects when the 16-bit Timer 1 or Timer 3 datum
equals the setting in the 2-byte CCPRXH:CCPRXL register. When an equality match
occurs, the CCPXIF interrupt flag will be set and this can cause an interrupt if the
corresponding CCPXIE mask bit, together with the appropriate global enable bits,
are set.

Fig. 13.8 The CCPX module set to Compare mode

476 The Essential PIC18® Microcontroller

Depending on the setting of the CCPXM3:0 mode bits, one of five actions are
possible on a match:

CCPXM3:0 = 0010: Toggle Output Pin on Match
PinCCPX changes state. When this mode is first entered from a CCPX reset (Mode
0000), the initial state of the CCPX latch is 0.

CCPXM3:0 = 1000: Set Output Pin on Match
Pin CCPX is forced High. The CCPX latch can only be cleared by switching the
CCPX module to Mode 0000; that is, by turning it off.

CCPXM3:0 = 1001: Clear Output Pin on Match
Pin CCPX is forced into its Low state. The initial state of the associated latch is 1
(the opposite to the match state) when this mode is initially selected from a CCPX
reset.

CCPXM3:0 = 1010: Generate Software Interrupt on Match
The CCPX latch remains unchanged and the associated pin can be used as a normal
I/O pin. However, the CCPXIF flag is set, effectively generating an internal interrupt
(sometimes called a software interrupt) if enabled.

CCPXM3:0 = 1011: Trigger Special Event on Match
The timebase timer is cleared and a potential interrupt is actioned. With CCP2 (this
is the only functional difference between CCP1 and CCP2) an ADC module conver-
sion can be optionally initiated—see Fig. 14.12 on p. 510. The CCPX latch remains
unchanged and the CCPX pin can be used as a normal I/O pin.

In Modes 0010, 1000 and 1001, the parallel port bits shared with CCP1 and CCP2
should be set-up as outputs. Whilst the CCPX module is off (as it is after any sort of
reset) these pins will reflect the state of those port bits. Because clearing CCPXCON
to Mode 0000 is the only way of relaxing the CCPX latch to its pre-match value for
Modes 1000 and 1001, it is advisable to set each associated port bit to this value
to avoid spurious pulses. For instance, if Mode 1001 is being used, then the port bit
should be set to 1 in the initialization code to ensure a High-state reset value.

Suppose that we wish to set up Timer 1 as configured in the last example to over-
flow every 10 seconds. To do this we need to set the timer to roll over after 16 s
(Prescaler ratio 1:8) and then shorten the cycle. This is implemented by loading
the CCPR1H:L register with the fraction 10

16 (216 × 10
16); which translates to h’A000’.

Whenever Timer 1 reaches this value it will automatically be reset and an interrupt
will occur if the CCP1IE mask bit (and global PEIE and GIE masks) are set. Initial-
ization code for this is:

movlw h’A0’ ; Set up CCPR1 to h’A000’
movwf CCPR1H
clrf CCPR1L
movlw b’00001011’ ; CCP Compare Mode 1011. Special event
movwf CCP1CON
movlw b’00111011’ ; Timer1 on (1), external clock (1)
movwf T1CON ; Synched (0), oscillator (1) 1:8 (111)
bsf PIE1,CCP1IE ; Enable CCP1 interrupts
bsf INTCON,PEIE ; Enable Timer/CCP interrupts
bsf INTCON,GIE ; Enable all interrupts

13 Time Is of the Essence 477

The PIC MCU will then be interrupted every 10 seconds.
Because the CCP1 pin is not changed by Compare Mode 1011, this pin can be

used as a normal parallel port input/output independently of the CCP1 module.

One of the more common applications of MCU-based systems is the control
of power circuits, such as heating, lighting and electric motor speed control. One
approach to this problem would be to use a digital-to-analog converter, such as that
discussed in Fig. 12.16 on p. 404, driving a power amplifier. Such linear control
is expensive and inefficient due to the large current:voltage products that must be
handled by the power amplifier. A rather more efficient and cost effective approach
rapidly switches the load on and off at a reasonably fast rate. A power switch, such
as a thyristor or power FET, dissipates relatively little power, as when the switch
is off no current flows and when the switch is on the voltage across the switch is
small—ideally zero.

An example of such waveforms is shown in Fig. 13.9. The average amplitude is
simply A×N , where N is the duty cycle fraction of the repeat period. If we vary N

from 0 to 100% then the average power will vary in a like fashion—all without the
benefit of analog circuitry. This digital-to-analog conversion technique is known as
Pulse-Width Modulation (PWM).

The thermal or mechanical inertia of most high-power loads is such that even
with a relatively low repetition rate (typically no lower than 100 Hz) the ‘bumps’
will be smoothed. Low switching rates are more efficient, as each switching action
dissipates energy. If PWM is used for more conventional digital-to-analog conver-
sion, such as for audio applications, then a low-pass filter may be utilized to reduce
the high-frequency harmonics. In such cases a sampling rate of typically ten times
the maximum analog signal should be used to space out the harmonics (see Fig. 14.3
on p. 493) and reduce the necessary filtering burden.

Generating a PWM waveform is conveniently implemented using a counter and
digital equality comparator. The output pin is driven from a latch, which is always
set as the counter rolls over. The latch is reset when the counter state equals a number

Fig. 13.9 Pulse width modulation

478 The Essential PIC18® Microcontroller

representing the duty cycle. The larger is the Duty number the longer the pin will
remain in its High state.

As a simple example, consider a 3-bit count with a Duty number of b’011’:

In this instance the pin will remain in its High state for three counts, giving a duty
cycle of 3

8 , or 37.5%. By changing this number, the average power can be altered
with a resolution of 1

8 from zero up to 87.5%.
PIC microcontrollers implement this scheme using the CCP modules. In the

PWM mode, Timer 2 is used to implement the timebase counter and the Duty num-
ber is fed in via a double-buffered register to a 10-bit PWM comparator. Either or
both CCP modules can be used to generate a PWM waveform via their individual
Duty number and CCPX pin, but in the latter case they share the same Timer 2 and
thus have the same period. Any CCP pin used as a PWM output must be set-up as
an output, with associated TRIS bit logic 0.

Period
The timebase is set using Timer 2 in the manner outlined in Fig. 13.6. The roll-over
period is a function of the main instruction cycle time 4 × tOSC, the Prescaler ratio,
and the contents of the Period register PR2. Recalling that Timer 2 resets on the
clock pulse after equality with PR2 is reached, the total repetitive period is given
as:

(4 × tOSC) × Prescaler ratio × (PR2 + 1).

For instance, for a 16 MHz crystal, Prescaler ratio 1:16 and PR2 contents of h’63’ =
d’99’ we have:

Period =
(

4 × 1

16

)
× 16 × (99 + 1) = 400 µs.

Each time Timer 2 overshoots the Period number, three things happen.

1. Timer 2 is reset to zero (unless PR2 is zero).
2. The PWM latch is set and pinCCPX goes to its High state.
3. The 10-bit content of the Master register is copied into the Slave register and

presents the next Duty number to the 10-bit PWM digital comparator.

On its way back up again, when Timer 2 reaches the Duty number (which is stored
in the Slave register) the PWM latch is cleared. When the count once again reaches
PR2 + 1 the process repeats . . . indefinitely.

Duty Cycle
The Duty number is presented to the 10-bit PWM equality comparator in a 2-deep
10-bit wide pipeline. The outer word is located in the 8-bit CCPRXL together with

13 Time Is of the Essence 479

the two lowest bits held in CCPXCON[5:4], which together are labeled in the dia-
gram as the Master register. The contents of the Master register can be altered at
any time by the software as two separate movwf instructions. This word is only
moved down the pipeline to be presented as the Duty number to the comparator at
the end of each period. This reduces the possibility of a mid-period glitch, due to
the unsyncronized nature of any changes in the contents of the Master register in
relation to the timebase. The Slave register comprises CCPRXH companded with
a 2-bit internal latch. While in this mode the CCPRXH register is read-only. This
prevents direct access by software to the Duty number.

The core Timer 2 register is only eight bits wide. In order to extend Timer 2 to
10 bits, to match the Duty number, two lower bits are added. These extra two bits
either originate from the Prescaler counter which is dividing down the system clock
to Timer 2 or else if a Prescaler ratio of 1:1 is chosen, the 2-bit count defining the
quadrature clocks of Fig. 4.5 on p. 76. In either case, the result is to give a maximum
10-bit (1:1024) resolution in the Duty cycle, with a counting rate of ×4 of that of
the 8-bit Timer 2 core.

When this 10-bit count equals the Duty number, the PWM latch is reset, and the
CCPX pin drops to its Low state. It stays low until the next period begins, when
Timer 2 rolls over and the cycle repeats ad infinitum. In all cases the datum in
CCPRXL must be smaller than that in PR2, otherwise the PWM latch will never
reset! If PR2 is h’FF’ then the resolution of the system is a full 10 bits. Smaller val-
ues of Timer 2 period data will reduce this resolution. For instance, if PR2 = h’3F’
then the resolution is reduced to 8 bits; six in Timer 2 proper and two extension bits.

For our example, let us assume the situation described previously where our time-
base period is 400 µs (2.5 kHz) for a 16 MHz crystal with Prescaler ratio of 1:16
and a PR2 value of h’63’. If we wish to generate a 25% duty cycle, as in Fig. 13.9(a),
the set-up code for the CCP1 module would be something like:

movlw h’63’ ; Set up Timer2 Period register to d’99’
movwf PR2
bcf TRISC,2 ; Make CCP1 an output
movlw h’19’ ; Set-up Master to 1/4 full scale (h’63/4’)
movwf CCPR1L ; That is, b’0001 1001’
movlw b’00001100’; CCP1 module PCM Mode (1100)
movwf CCP1CON ; with CCP1CON[5:4] (00)
movlw b’00000110’; Timer2 Prescale 1:16 (10)
movwf T2CON ; Timer2 on (1). Start waveform

The Timer 2 Postscaler does not affect the PWM generation but still sets the
TMR2IF in the normal way. The CCPXIF flag is not affected in this mode.

Many high-power applications, especially dc motor control, require two (half-
bridge) or four (full-bridge) switching waveforms to control the load. Most PIC18
devices have an extension of their CCP1 module to add this and related functionality.
Of our exemplar devices, this ECCP1 module is implemented in the PIC18F1X20
and PIC18F4X20, but not the 28-pin PIC18F2X20 range.

480 The Essential PIC18® Microcontroller

Fig. 13.10 Timer 2 with the CCP1 in its PWM mode

A full treatment of the Enhanced CCP module is beyond the scope of this chap-
ter, but as an example, Fig. 13.11 shows a dc motor with both speed and direction
controlled from this module. ECCP1 is an upwardly compatible development of
the standard CCP1 module, with the latter’s PWM mode CCP1 3:0 = 11XX (see
Fig. 13.10) being expanded to four submodes using the two unused control bits
CCP1CON[7:6].

P1M1:0 = 00
CCP1 compatible, with only the P1A/CCP1 pin being modulated. The three other
P1 pins can be used as normal port I/O.

P1M1:0 = 01
Full-bridge forward output with pinP1D being modulated, P1A active and both P1B
and P1C both inactive. This is the situation shown in Fig. 13.11 where current flows
through transistors QA, the motor field coils and QD.

P1M1:0 = 10
Half bridge output with pinP1A being modulated and P1B modulated in anti-phase.

A variable dead-band control is available in which both pins are inactive for
a short variable period at the end of each cycle; controlled using the PWM1CON
register. This eliminates ‘shoot-through’ due to transistors turning off more slowly
than turning on. This can give transient short circuits across the power supply.

13 Time Is of the Essence 481

F
ig

.1
3.

11
C

on
tr

ol
lin

g
a

dc
m

ot
or

in
a

fu
ll-

br
id

ge
co

nn
ec

tio
n

482 The Essential PIC18® Microcontroller

P1M1:0 = 11
Full-bridge reverse output is the mirror of forward output, using pin P1B as the
modulated control and P1C active. The current flow, shown dotted in Fig. 13.11
would result from this mode, and flows through the motor field coils in the opposite
direction.

Waveforms can be switched between forward and reverse by toggling the P1M1
bit. When this happens, the modulated outputs are inactive for a short period at the
end of the switching cycle to reduce the possibility of shoot-through.

Each pair of PWM pins can be individually inverted; as controlled by the lower
two control bits CCP1M1:0 when the module is in a PWM mode (that is CCP1M3:2
= 11).

When controlling significant power, any malfunction can lead to considerable
collateral damage. For instance, a mechanical stall can burn out the motor field
windings. To guard against this scenario, the ECCP module provides an Auto-
Shutdown feature, directed by the ECCP1AS register, which immediately places
the PWM pins into a defined shutdown state when such an event occurs.

A shutdown event can be signaled by external sensing circuitry via either of the
analog Comparator modules (see Fig. 14.7 on p. 499) or else a logic 0 on the FauLT
FLT0 pin. As an example, if the motor is monitored with a Hall-effect sensor, giving
a voltage output proportional to current, and this exceeds a threshold, then the analog
comparator switches and if enabled (the ECCPASE bit in ECCP1AS[7]) an Auto-
shutdown process is initiated. Writing to ECCPASE is disabled as long as the cause
of the shutdown persists. After the fault clears ECCPASE can be cleared to restart
the process. Alternatively, ECCPASE can be automatically cleared in this situation if
the PWM ReStart ENable PRSEN bit in PWM1CON[7] is 1. Effectively this gives
an automatic restart facility.

Examples

Example 13.1 Show how you could use Timer 0, configured for an internal 8-bit
count with a maximum prescale value, to generate a PWM waveform via pin RA0.
The digital byte in File DATUM is to hold the mark duration in terms of the fraction
of the cycle. For instance, if DATUM= d’64’, or 1

4 of full scale, the mark:space ratio
should be 1:3. Assuming a 4 MHz crystal, calculate the resulting PWM duration.

Solution Timer 0 will give a time-out related to the number loaded into the timer
register at the beginning of the period. If we load in the 2’s complement of the byte
(the negative value; i.e. 256 − DATUM) then the duration will be proportional to
this value—the larger it is, the longer the timer has to count before overflowing.
Conversely loading in the value of DATUM will give a time-out duration inversely
proportional to the value. By alternately loading the 2’s complement of DATUM and
making the pin High followed by DATUM itself making the pin Low will give us a

13 Time Is of the Essence 483

Program 13.7 Pulse-Width Modulation using Timer 0
MAIN setf ADCON1 ; Make ports all digital

movlw b’11000111’ ; TMR0 on, Int clock, 1:256 prescale
movwf T0CON
bcf TRISA,0 ; Make RA0 the PWM output
bsf INTCON,TMR0IE ; Enable Timer 0 interrupt
bsf INTCON,GIE ; Enable all interrupts

; <<<< More background code >>>>

; ***
; * FUNCTION : ISR to generate a PWM waveform at RA0 *
; * FUNCTION : Set-up TMR0 to either DATUM or 256-DATUM *
; * FUNCTION : Depending on the toggling PORTA[0] state *
; * ENVIRONMENT: DATUM:1 *
; * RESOURCE : Timer0, PORTA[0]
; ***
ISR btfss INTCON,TMR0IF ; Has Timer0 overflowed?

bra ISR_EXIT ; IF no THEN false alarm; ELSE

bcf INTCON,TMR0IF ; Reset interrupt flag
movf DATUM,w ; Get datum
btfsc PORTA,0 ; Is current output low?
negf WREG ; IF not 2’s complement copy of DATUM
btg PORTA,0 ; Toggle PWM pin output

movwf TMR0L ; Initialize Timer

ISR_EXIT
retfie FAST ; Return from interrupt with context

total period approximately the same as a total Timer 0 time-out as if sequentially
counting through all 256 states.

The coding of Program 13.7 sets up Timer 0 in its 8-bit mode to increment at a
1

256 ≈ 0.00391 MHz or 3.91 kHz rate with a 1:256 Prescaler setting. When Timer 0
overflows it generates an interrupt. The ISR toggles pinRA0 each time it is executed.
The state of this output is a convenient way of determining whether to reload Timer 0

Fig. 13.12 PWM waveform with a DATUM value of h’64’, giving a nominal mark:space ratio of
1:3. For clarity, this is shown with a Prescale value of 1:1

484 The Essential PIC18® Microcontroller

with the byte value in DATUM or else its 2’s complement value which will also toggle
as required.

With the time to count 256 states of 1 × 256 × 256 = 65.536 ms, the cycle rate
will be ≈15.26 Hz. The actual measured time was 65.564 ms and mark:space ra-
tio was 1:2.998. This small disparity is due to the time taken to enter the ISR and
execute down to the change in Timer 0 state. Increasing the clock frequency will
increase the PWM frequency; to a maximum of 152.6 Hz in this case at 40 MHz.
Reducing the Prescale value will also increase the PWM cycle frequency, but this in-
struction offset will increasing reduce the accuracy. Eliminating the Prescaler gives
a measured mark:space ratio of 1:2.64 with PWM rate of 35 kHz derived from a
40 MHz system clock; as shown in Fig. 13.12.

Example 13.2 A certain tachometer is to register engine speed in the range
0–12,000 rpm (revolutions per minute). The engine generates one pulse per revo-
lution and it is intended that a PIC18F2420 be used to count the number of pulses
each second and calculate the equivalent rpm. Using two of the four available timers,
can you design a suitable hardware–software configuration?

Solution One approach to this problem is to create a 1 s gate to count pulses during
that time. A speed of 12,000 rpm translates to a maximum pulse count of 200 rps
(revolutions per second) and so we can use Timer 0 in its 8-bit mode as the pulse
counter driven from pin T0CKI with no Prescaler. The 1 s gate can conveniently be
implemented with Timer 1 using its local oscillator with a 32.768 kHz watch crystal.
With a Prescale ratio of 1:1 the natural time-out period will be two second. Using
this timer as the time base for the CCP1 module in a Compare mode, will enable the
count to be reduced to a span of h’0000–7FFF’ to give the required gate period.

One possible solution is shown in Program 13.8. Here the initialization code
implements the following task list:

• Set Timer 0 to count events at T0CKI.
• Set Timer 1 to increment from its local oscillator (with a 32.768 kHz watch crystal).
• Set CCP1 to Compare Mode Timer 1 with h’7FFF’.
• Enable an interrupt whenever Timer 1 is reset.

The ISR itself simply multiplies the rps reading from Timer 0 by 60 and copies
this into the double File RPM:2. Timer 0 is then zeroed ready for the next count. The
variable NEW is set to non zero to flag to the background program that a new rpm
reading is available. This will be cleared whenever the new value is used; perhaps
sent to a display or maybe transmitted to a computer over a serial link.

To make the system more robust, the Timer 0 interrupt flag TMR0IF should be
checked as part of in the ISR to signal overflow and thus to activate an overspeed
warning indicator.

13 Time Is of the Essence 485

Program 13.8 Tachometer software
MAIN movlw h’FF’ ; Setting CCP1 Register to h’7FFF’

movwf CCPR1L
movlw h’7F’ ; To reduce timebase from 2 to 1s
movwf CCPR1H

movlw b’00001011’ ; CCP1 Compare mode 1011
movwf CCP1CON

movlw b’11111000’ ; Timer0 on, 8-bit, external
movwf T0CON ; No prescale
setf ADCON1 ; All port pins digital

movlw b’00001011’ ; Timer1 PS1:1, local synched
movwf T1CON ; and enabled

clrf NEW ; Clear the New flag
bsf INTCON,PEIE ; Enable Timer interrupts
bsf INTCON,GIE ; Global enable mask bit on
bsf PIE1,CCP1IE ; Enable CCP1’s interrupt
clrf TMR0L ; Tach count zeroed
clrf TMR1H
clrf TMR1L

; <<<< More background code >>>>

; **
; * FUNCTION : ISR to measure the number of pulses at T0CKI *
; * FUNCTION : in a one-second period generated using TMR1/CCP1*
; * FUNCTION : as a Timebase *
; * ENVIRONMENT: NEW:1 *
; * RESOURCE : Timer0, Timer1, CCP1 *
; **
ISR btfss PIR1,CCP1IF ; Did Timer1 reset?

bra ISR_EXIT ; IF no THEN false alarm

incf NEW,f ; Tells world a new reading taken
movf TMR0L,w ; Get totalized pulse count
clrf TMR0L ; Zero pulse count
mullw d’60’ ; Multiply by 60 to give rpm
movff PRODL,RPM ; Copy into RPM:2
movff PRODH,RPM+1

ISR_EXIT bcf PIR1,CCP1IF ; Reset interrupt flag and
retfie FAST ; return from interrupt with context

Example 13.3 A PIC18F4520 is to be used to measure the duration of an event.
This duration is the time a signal is in its High state, as shown in Fig. 13.13. You
can assume that the main crystal is 8 MHz and the duration of the event is guaranteed
to be no more than 100 ms.

Solution One way of tackling this problem is to feed the signal shown in the diagram
into both pins CCP1 and CCP2 in parallel. Using one CCP module to capture the
state of Timer 3 on the rising edge and the other to capture the falling edge gives the
duration as the difference in the two captured values. In Program 13.9, Timer 3 is
zeroed on a rising edge and thus the second captured Timer 3 state is our duration. If
we use a Prescaler ratio of 1:4 and the system machine cycle clock, then we have as

486 The Essential PIC18® Microcontroller

Fig. 13.13 An event manifesting itself as a pulse duration

Program 13.9 Measuring the duration of a pulse
MAIN movlw b’00000101’ ; CCP1 module captures +ve edge

movwf CCP1CON
movlw b’00000100’ ; CCP2 module captures -ve edge
movwf CCP2CON

bsf PIE1,CCP1IE ; Enable interrupts from CCP1
bsf PIE2,CCP2IE ; Enable interrupts from CCP2

movlw b’11100001’ ; Timer3 enabled, 16-bit write,
movwf T3CON ; internal osc, prescale 1:4

clrf NEW ; Clear the New flag

bsf INTCON,PEIE ; Enable Timer/CCP interrupts
bsf INTCON,GIE ; Global enable mask bit on

; <<<< More background code >>>>

; ***
; * FUNCTION : ISR to measure the duration of pulses at CCP1/2*
; * FUNCTION : in 2us ticks *
; * ENVIRONMENT: NEW:1, TIME:2 *
; * RESOURCE : Timer3, CCP1, CCP2, PORTC[2:1]/CCP1/2 *
; ***
ISR btfsc PIR1,CCP1IF ; A CCP1 rising edge capture?

bra CAPTURE1 ; IF yes THEN go to it!
btfss PIR2,CCP2IF ; A CCP2 falling edge capture?
bra ISR_EXIT ; IF not THEN false alarm!

CAPTURE2 movff CCPR2L,TIME ; Get low byte of captured time
movff CCPR2H,TIME+1 ; Get high byte of captured time
bcf PIR2,CCP2IF ; Clear flag
incf NEW,f ; Tell the world: A new time datum
bra ISR_EXIT

CAPTURE1 clrf TMR3H ; Zero count
movlw d’3’ ; Compensates for execution time
movwf TMR3L
bcf PIR1,CCP1IF ; Reset interrupt flag and

ISR_EXIT retfie FAST ; Return from interrupt with context

our counting rate 500 kHz; i.e., the system resolution is 2 µs. The overall maximum
duration that can be measured in this way is 216 × 2 = 131,077 µs; which is large
enough not to overflow for a maximum duration of 100 ms.

13 Time Is of the Essence 487

The ISR in Program 13.9 simply tests each CCP interrupt flag in turn and goes to
the appropriate routine. If CCP1 has signaled a event then the timer is zeroed
to restart the count. Timer 3 has been configured to increment at a 500 kHz rate and
when the next occurs the CCP2 module captures the state of this timebase
and places it in the 16-bit CCPR2 register. The ISR then copies it into the two Files
TIME+1:TIME and this is the period in 2 µs ticks.

Actually resetting Timer 3 on the first event introduces some inaccuracy into the
process, as the clearing event takes some 11 instruction cycles to reach this point.
The listing shows a starting point of h’0003’ for the timebase to mostly trim out this
offset error. A slightly more accurate method would be to leave Timer 3 running con-
tinually and the two captured 16-bit data subtracted to give the required difference at
relative leisure. If the timebase overflows between the first and second reading, then
this subtraction will give a 2’s complement outcome, and this will need correcting
to give the modulus difference.

Self-Assessment Questions

13.1 Using Timer 1 and CCP1, design a system to generate a continuous square
wave with a total period of 20 ms from pinCCP1. You may assume that the
main crystal is 8 MHz. Hint: Consider using the Compare-Toggle CCP mode
described on p. 476.

13.2 The echo sounding hardware shown in Fig. 7.13 on p. 237 uses an external
1.72 kHz oscillator to interrupt the PIC MCU once per 5.813 ms; that is, once
every time sound travels 1 cm through air. Assuming that a 20 MHz PIC MCU
is used, show how Timer 2 could be used to generate this interrupt rate to an
accuracy better than 0.1%.

13.3 The enhanced-range PIC MCU family has three hardware input pins; namely
INT0, INT1 and INT2. Suggest some way to use Timer 0 to simulate another
hardware interrupt with pin T0CKI.

13.4 As part of a software implementation of an asynchronous serial channel run-
ning at 300 baud, a delay of 3.33 ms is to be generated. Assuming that a 8 MHz
PIC MCU is the host processor, show how you could use a timer to generate
an interrupt each baud period. Extend your routine to enable baud rates up to
19,200 in doubling geometric progression.

13.5 Show how you would use Timer 1 with its separate integral oscillator with a
32.768 kHz watch crystal, to keep the central heating real time clock array
HOURS:MINUTES:SECONDS of Example 7.3 on p. 233 up to date.

13.6 The CCS C compiler has integral functions dealing with the Timer and
CCP modules. For instance, Timer 1 can be written to using set_timer1
(datum); and read from using get_timer1();. The function setup_
timer_1(mode); is used to initialize the timer. Similarly setup_ccp1
(mode); initializes the CCP1CON register. Mode scripts for Timer 1 and the
CCP Compare configuration are:

488 The Essential PIC18® Microcontroller

T1_DISABLED T1_INTERNAL T1_EXTERNAL
T1_EXTERNAL_SYNCH T1_CLK_OUT T1_DIV_BY_1
T1_DIV_BY_2 T1_DIV_BY_4 T1_DIV_BY_8
CCP_COMPARE_RESET_TIMER

Where separate modes can be separated by the Inclusive-OR | operator.
Show how you would code your solution to SAQ 13.5 in C. In CCS C a

function can be turned into a CCP1 interrupt service routine by preceding it
by the directive #INT_CPP1; see Program 9.3 on p. 293 for details. You an
also assume that the reserved variable CCP_1 represents the 16-bit CCPR1H:L
register.

13.7 Pulse-width modulation can be used to control the speed of a DC motor by
altering the average winding current. However, starting up such a motor is
problematic, as the current flow is much greater than normal until the motor
reaches normal running speed and the consequent back emf reduces winding
current. It is proposed that to avoid damage to the current driving transistors, a
PWM technique be used to gradually increase the duty cycle from zero to full
over a period of several seconds. Show how you could do this assuming a PIC
MCU with a 4 MHz crystal and CCP module.

13.8 Light-controlled pedestrian crossings (Pelican crossings) in the UK follow
the listed sequence of operations once one of the cross-request switches are
closed.
1. Green light only (standby).
2. Amber light only for 3 s.
3. Red light plus buzzer for 15 s.
4. Flashing amber light—five flashes each comprising 3 s on and 3 s off.
5. Return to standby.

Using a suitable PIC microcontroller with a Timer 1 module, design the
software to control the lights and buzzer. Although the lights are on both
sides of the road, you may assume that they are connected in parallel and
are activated by a High state on the relevant parallel port pin. The two input
switches, CROSS_REQUEST0 and CROSS_REQUEST1 give 0 when closed.
The buzzer is activated by a Low state on the connected parallel port pin.

Chapter 14
Take the Rough with the Smooth

Given that digital microcontrollers are in the business of monitoring and controlling
the real environment—which is commonly analog in nature—we need to consider
the interaction between the analog and the digital worlds. In some cases all that
is required is a comparison of two analog voltage levels. However, for more so-
phisticated situations, analog input signals need conversion to a digital equivalent;
that is, analog-to-digital conversion (ADC). Thereafter the digital patterns can be
processed in the normal way. Conversely, if the outcome is to be in the form of an
analog signal, then a digital-to-analog conversion (DAC) stage will be necessary.

Of these various processes, illustrated in Fig. 14.1, A/D conversion is by far the
more complex. Most PIC microcontrollers feature integral multi-channel A/D facil-
ities. However, analog outputs frequently require external circuitry to implement the
D/A process.

In this chapter we will look at the properties of analog and digital signals and the
conversion between them, as relevant to the PIC MCU. After completion you will:

• Understand the quantization relationship between analog and digital signals.
• Be aware of the need to sample an analog signal at least twice the highest fre-

quency component.
• Appreciate how the successive approximation technique can convert an analog

voltage to a binary equivalent.
• Understand the operation and be able to configure the Analog Comparator, Volt-

age Reference and ADC modules.
• Know how to configure I/O pins as either analog or digital.
• Be able to write assembly-level programs to acquire analog data using polling,

interrupt-driven, and Sleep techniques, and to interrogate the state of the analog
comparators.

• Be able to code high-level C programs to set-up and interact with the various
analog modules.

• Know how to interface to a proprietary DAC.

The information content of an analog signal lies in the continuously changeable
worth of some constituent parameters, such as amplitude, frequency, or phase. Al-
though this definition implies that an analog variable is a continuum in the range

S. Katzen, The Essential PIC18® Microcontroller,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-229-2_14, © Springer-Verlag London Limited 2010

489

490 The Essential PIC18® Microcontroller

Fig. 14.1 Analog world—digital processing

±∞, in practice its span is restrained to between an upper and lower limit. Thus
a mercury thermometer may have a continuous range between, say, −10◦C and
+180◦C. Below the bottom number mercury disappears into the bulb. Above the
highest number and the top of the tube is blown off!

Theoretically the quantum nature of matter sets a lower bound to the smooth
continuous nature of things. However, in practice noise levels and the limited ac-
curacy of the device generating the signal sets an upper limit to the resolution that
processing needs to take account of.

Digital signals represent their information content in the form of arrangements
of discrete characters. Depending on the number and type of symbols making up
the patterns, only a finite totality of value portrayals are possible. Thus in a binary
system, an n-digit pattern can at the most represent 2n levels. Although this rough
grainy view of the world seems inferior to the infinity of levels that can be smoothly
represented by an analog equivalent, the quantizing grid can be tailored to fit the
accuracy of the task to be undertaken. For instance, a telephone speech circuit will
tolerate a resolution of around 1%. This can use an 8-bit depiction, which gives up to
256 discrete values with a corresponding ≈0.5% resolution. A music compact disk
uses a 16-bit scheme, giving a one part in 65,636 grid—around 0.0015% resolution,
and a DVD has a 20-bit encoding.

From this discussion it can be seen that any process involving interconversion
between the analog and digital domains will involve transition through the quanti-
zation state. Therefore we need to look at how this affects the information content
of the associated signals.

As an example, consider the situation shown in Fig. 14.2, where an input range
is represented as a 3-bit code. In essence the process of quantizing a signal is the
comparison of the analog value with a fixed number of levels—eight in this case.
The nearest level is then taken as expressing the original as its digital equivalent.
Thus in Fig. 14.2 an input voltage of 0.4285 of full scale is 0.0536 above quantum
level 3. Its quantized value will then be taken as level 3 and coded as b’011’ in our
3-bit scheme of things.

The residual error of −0.0536 will remain as quantizing noise, and can never
be eradicated—see also Fig. 14.3(d). The distribution of quantization error is given
at the bottom of Fig. 14.2, and is affected only by the number of levels. This can

14 Take the Rough with the Smooth 491

Fig. 14.2 The quantizing process

simply be characterized by evaluating the average of the error function squared. The
square root of this is then the root mean square (rms) of the noise.

F (x) = − L

X
x + L

2
.

The mean square is:

1

X

∫ X

0
F (x)2 dx = 1

X

∫ X

0

[
L2

X2
x2 − L2

X
x + L2

4

]
dx

= 1

X

∣∣∣∣ L2

3X2
x3 − L2

2X
x2 + L2

4
x

∣∣∣∣
X

0
= L2

12
.

Thus the rms noise value is L√
12

= L

2
√

3
, where L is the quantum level.

492 The Essential PIC18® Microcontroller

Table 14.1 Quantization parameters

Binary
bits n

Quantum levels
(2n)

% resolution Resolution dynamic
range

S/N ratio
(dB)

4 16 16.25 24.1 dB 26.9 dB

8 256 0.391 48.2 dB 49.9 dB

10 1024 0.097 60.2 dB 61.9 dB

12 4096 0.024 72.2 dB 74.0 dB

16 65,536 0.0015 96.3 dB 98.1 dB

20 1,048,576 0.00009 120.4 dB 122.2 dB

A fundamental measure of a system’s merit is the signal-to-noise ratio. Taking the
signal to be a sinusoidal wave of peak to peak amplitude 2nL, we have an rms signal

of
(2nL

2)√
2

; that is, peak√
2

. Thus for a binary system with n binary bits, we have a signal-
to-noise ratio of:

(2nL

2
√

2
)

(L√
12

)
= 2n

√
12

2
√

2
= 1.22 × 2n.

In decibels we have:

S/N = 20 log 1.22 × 2n = (6.02n + 1.77) dB.

The dynamic range of a quantized system is given by the ratio of its full scale (2nL)
to its resolution, L. This is just 2n, or in dB, 20 log 2n = 20n log 2 = 6.02n. The
percentage resolution given in Table 14.1 is of course just another way of expressing
the same thing.

The exponential nature of these quality parameters with respect to the number of
binary-word bits is clearly seen in Table 14.1. However, the implementation com-
plexity and thus price also follows this relationship. For example, a 20-bit conver-
sion of 1 V full scale would have to deal with quantum levels less than 1 µV apart.
Pulse-code modulated telephonic links use eight bits, but the quantum levels are
unequally spaced, being closer at the lower amplitude levels. This reduces quanti-
zation hiss where conversations are held in hushed tones! Linear 8-bit conversions
are suitable for most general purposes, having a resolution of better than ± 1

4 %. Ac-
tually video looks quite acceptable at a 4-bit resolution, and music can just about be
heard using a single bit—i.e., positive or negative!

S/N ratios presented in Table 14.1 are theoretical upper limits, as errors in the
electronic circuitry converting between representations and aliasing (discussed be-
low) will add distortion to the transformation.

The analog world treats time as a continuum, whereas digital systems sample
signals at discrete intervals. Shannon’s sampling theorem1 states that provided this
interval does not exceed half that of the highest signal frequency, then no informa-

1Shannon, C.E.: Communication in the Presence of Noise, Proc. IRE, vol. 37, January 1949,
pp. 10–21.

14 Take the Rough with the Smooth 493

Fig. 14.3 The analog–digital process

tion is lost. The reason for this theoretical twice highest frequency sampling limit,
called the Nyquist rate, can be seen by examining the spectrum of a train of am-
plitude modulated pulses. Ideal impulses (pulses with zero width and unit area) are
characterized in the frequency domain as a series of equal-amplitude harmonics at
the repetition rate, extending to infinity. Real pulses have a similar spectrum but the
harmonic amplitudes fall with increasing frequency.

If we modulate this pulse train by a baseband signal A sinωf t , then in the fre-
quency domain this is equivalent to multiplying the harmonic spectrum (the pulse)
A sinωht by B sinωf t ; giving sum and different components thus:

A sinωht × B sinωf t = AB

2
(sin(ωh + ωf)t + sin(ωh − ωf)t)

for each of the harmonic frequencies ωh.

494 The Essential PIC18® Microcontroller

Fig. 14.4 Illustrating aliasing

More complex baseband signals can be considered to be a band-limited (0 → fm)

collection of individual sinusoids, and on the basis of this analysis, each of these
pulse harmonics will sport an upper (sum) and lower (difference) sideband. We can
see from the geometry of Fig. 14.3(b) that the harmonics (multiples of the sampling
rate) must be spaced at least 2 × fm apart, if the sidebands are not to overlap.

A low-pass filter can be used, as shown in Fig. 14.3(d), to recover the baseband
from the pulse train. Realizable filters will pass some of the harmonic bands, albeit
in an attenuated form. A close examination of the frequency domain of Fig. 14.3(d)
shows a vestige of the first lower sideband appearing in the pass band. However,
most of the distortion in the reconstituted analog signal is due to the quantizing
error resulting from the crude 3-bit digitization. Such a system will have a S/N ratio
of around 20 dB.

In order to reduce the demands of the recovery filter, a sampling frequency some-
what above the Nyquist limit is normally used. This introduces a guard band be-
tween sidebands. For instance, the pulse code telephone network has an analog in-
put band limited to 3.4 kHz, but is sampled at 8 kHz. Similarly the audio compact
disk uses a sampling rate of 44.1 kHz, for an upper music frequency of 20 kHz.

A more graphic illustration of the effects of sampling at below the Nyquist rate
is shown in Fig. 14.4. Here the sampling rate is only 0.75 of the baseband fre-
quency. When the samples are reconstituted by filtering, the resulting pulse train,
the outcome—shown in Fig. 14.4(b)—bears no simple relationship to the original.
This spurious signal is known as an alias. In particular, this will occur where an
input analog signal has frequency components above half the sampling rate, maybe
due to noise. These noise frequencies will alias and will appear as distortion in the

14 Take the Rough with the Smooth 495

reconstituted signal. For this reason analog signals are usually low-pass filtered with
hardware at the input of an A/D converter; for instance, see Fig. 14.19. This process
is known as anti-aliasing filtering.

In dealing with analog inputs, many situations simply need to make a true:false
decision on whether a voltage is above or below a reference value Vref. For instance,
the signal shown in Fig. 14.5 (see also Fig. 14.21) represents the current during the
discharge of an EKG (ECG) diphasic defibrillator, as generated using a Hall effect
current to voltage sensor. When nothing is happening the baseline voltage is 2.6 V.
When the defibrillator begins its discharge, this voltage rapidly rises to a peak of
3.6 V over a few tens of microseconds. If the MCU is to sample the voltage over
the next several tens of milliseconds, say, to calculate the total shock energy, then
to begin this process it needs to know when this voltage rises above a threshold.
In the diagram this is shown as 3.4 V. It could of course rapidly sample the analog
signal using its integral Analog-to-Digital module, as described later on p. 510,
but this continuous sample-and-check routine would use most of the processing
capability of the processor. It would be much more software efficient to be able to
automatically generate an interrupt in hardware when the input voltage Vdefb rises
above this threshold. The resulting ISR could then begin sampling the signal and
performing the real-time analysis.

In Fig. 14.5 the analog signal Vdefb is used as the input to the non-inverting (+)

terminal of an analog comparator. The inverting terminal (−) is connected to a
fixed reference Vref of 3.4 V. Whenever Vdefib rises above Vref, the comparator’s
output voltage changes from logic 0 to logic 1, and conversely when Vdefb < Vref the
output goes back to logic 0.

Fig. 14.5 Using an analog comparator to determine the start of the EKG defibrillator discharge

496 The Essential PIC18® Microcontroller

An analog comparator is basically a high-gain analog differential amplifier with
no negative feedback. With a very large open-loop gain the amplifier will saturate at
either near its positive or negative power supply if the difference between inputs is
more than an exceedingly small value. An ordinary operational amplifier can act as
an analog comparator, but circuits specifically designed for this purpose give stan-
dard logic levels at their output and have a snap action whenever slowly changing
noisy inputs cross the differential threshold.

As a simple exemplar of the use of analog comparators, all PIC182 devices have
an integral High/Low Voltage Detect module. The HLVD module shown in Fig. 14.6
is mainly used to generate an event whenever the supply voltage VDD drops below
or rises above one of up to 15 fixed fractions of the supply range. The actual trip
voltages vary with device.

The operation of this module is controlled with the HLVDCON register.

HLVDEN
To enable this module, the High/Low Voltage Detect ENable bit in HLVDCON[4]
must be set to 1. This will power-up the internal 1.2 V Fixed Voltage Reference
(FVR) circuit and switch in the resistor chain.

HLVDL3:0
The High/Low Voltage Detect Limit bits in HLVDCON[3:0] switch one of six-
teen voltages through to the inverting input of the comparator. Fifteen of these are
stepped down fractions of VDD derived through a resistor chain. The voltages anno-
tated on the diagram show for the PIC18FXX20 line of devices the value of VDD

needed to cause the comparator to switch state. That is, would equal the value of the
internal voltage reference fed to the non-inverting comparator inputs.

The 16th analog input, selected with HLVDL3:0 = 1111 effectively connects the
non-inverting input of the comparator to the outside world via the HLVDIN pin. If
this facility is used, then HLVDIN, which is normally shared with the RA5 pin (but
exceptionally RA0 in the PIC18F1X20 devices) needs to be set-up as an input with
the appropriate TRIS bit. It will automatically be configured as an analog channel.
The module defaults to tapping 5 (HLVDL3:0 = 0101) on a Power-on Reset.

VDIRMAG
When VDD or HLVDIN rises above the specified threshold, the output of the
comparator goes to logic 0. This \ edge can be optionally inverted with the
Exclusive-OR gate when LHVDCON[7] = 1 to give a potential interrupt whenever
the voltage drops below the threshold.

Our PIC18FXX20 exemplar and earlier family members; for instance the
PIC18F452, lacked this polarity control and always generated an event whenever
the voltage dropped too low. In this case the function was called the Low Voltage
Detection module, with LVD replacing HLVD in the associated registers and control
bits; e.g. LDVIF.

2Also the PIC24/30/32 families and some PIC16 devices.

14 Take the Rough with the Smooth 497

Fig. 14.6 The High/Low Voltage Detect module for the PIC18FXX20 line

IRVST
Both Brown-Out Reset (BOR) and HLVD modules make use of the 1.2 V Fixed
Voltage Reference circuit. When enabling either or both of these modules, this ref-
erence circuit requires TIVRST (20 µs typical, 50 µs maximum) to stabilize. After
this time the Internal Reference Voltage STable bit will automatically set to 1 to

498 The Essential PIC18® Microcontroller

indicate proper operation of the facility.3 Interrupts will be disabled until this hap-
pens.

Generally if the BOR and HLVD modules are not being used, they should both
be disabled to reduce the current consumption. For instance, for the PIC18FXX20
the HLVD module typically uses 30 µA, with a maximum of 70 µA over the oper-
ating temperature range and with a VDD of 5 V.

As an example of the usage of this module, consider a battery-powered system
with VDD ≈ 3 V. The battery can be charged by plugging into a USB computer port
which gives a 5 V supply. Determine the housekeeping code in a HLVD ISR to
detect whenever the USB cable is removed and the supply falls again to below 4 V,
and set-up a rising edge detection of nominally 4.5 V on exit.

From Fig. 14.6 we see that tapping 14 will sense the passage about the 4.5 V
level and tapping 11 likewise the 4 V threshold. We assume that the background
software has enabled the module to set the HLVDIF when the voltage rises beyond
the level 14 threshold, and so we have first to reset the trip point and direction
before executing the core code. After this kernel has been executed, an endless loop
monitors HLVDIF looking for a drop to the lower voltage and then exits with the trip
reset to threshold 14. To allow for transients when cables are disconnected, a delay
is implemented before finally returning to the background software.

ISR_HLVD movlw b’00011011’ ; Reset to detect falling below
movwf HLVDCON ; 4.5V
bcf PIR2,HLVDIF ; Clear the HLVD flag

< < < < Core code > > > >

ISR_HLVD_LOOP
btfss PIR2,HLVDIF ; Don’t exit until voltage falls
bra ISR_HLVD_LOOP

movlw b’10011110’ ; Now set to detect rising above
movwf HLVDCON ; 4V

call DELAY_1S ; Wait for supply to settle
bcf PIR2,HLVDIF ; Clear the HLVD flag again
retfie FAST ; and return to background

Most devices (not our exemplar PIC18F1X20) offer the more flexible Compara-
tor module shown in Fig. 14.7. Two analog comparators can be configured as di-
rected by the three CM2:0 Comparator Mode bits in the CoMparator CONtrol
CMCON register. The analog inputs can be connected to pins RA0 through RA5, as
well as an on-chip reference voltage source. Outputs can be read from the C2OUT
and C1OUT bits in CMCON[7:6] respectively and though digital output pins RA5:4
(C2OUT:C1OUT).

3In the PIC18FXXK20 series, this is replaced by the FVRST (Fixed Voltage Reference STable bit
in CVRCON2[6]. CVRCON2[7] holds the FVREN bit to enable this facility.

14 Take the Rough with the Smooth 499

Fig. 14.7 The Comparator module as implemented for the PIC18FXX20 device line

On a Power-on Reset Mode 111, both comparators are off and the Port A pins
can be used for other purposes. The seven other modes make use of several Port A
pins, which should be set as inputs as appropriate. Any such pins used in a mode
will automatically be configured to accept an analog signal ranging between VSS

(0 V) and VDD. As a general rule all input pins with an analog function will come
out of a POR configured for analog signals. This Power-on Reset requirement is
to prevent physical damage to the input digital buffers (see Fig. 11.9 on p. 349) if
an analog input voltage, say 2.6 V, were present at a pin on powering up. If that

500 The Essential PIC18® Microcontroller

pin was set to be a digital input, expecting a voltage around 0 V or VDD, then an
intermediate voltage could cause several transistors to conduct at the same time;
possibly causing thermal damage. As analog voltages are not well defined, even
where a pin is configured as analog, an external resistor is often used to limit current
flow if the analog voltage exceeds VDD or goes negative, as shown in Fig. 14.21.
Such protection resistors should be kept to less than 10 k� to reduce offset voltages
due to input leakage currents (typically ±500 nA) and time constants arising from
the pin input capacitance of typically 5 pF.

CM2:0
Six active modes, as selected by these three Comparator Mode bits CMCON[2:0],
basically allow either completely independent operation for one or two Compara-
tors, or both non-inverting inputs can be combined to be used as a common reference
input. Mode 000 is a legacy configuration of little utility.

C1OUT, C2OUT, C1INV, C2INV
Outputs of any active Comparator may be read at any time from the Comparator 1
OUTput bit in CMCON[6] and likewise in CMCON[7] for Comparator 2. Each output
has an associated programmable invertor control Comparator 1 INVert and Com-
parator 2 INVert in CMCON[4] and CMCON[5] respectively. When Vin+ > Vin−
and the associated INVersion bit is 0 then the Comparator output will read as 1,
otherwise as 0.4

In Modes 011 and 101 the state of C1OUT and C2OUT as controlled by the
programmable invertors are reflected at pins C1OUT and C2OUT respectively. These
pins should be set-up as outputs in the normal way.

CIS
The Comparator Input Switch in CMCON[3] in Mode 110 is used to connect the
comparator inverting inputs Vin− to either pins RA0/RA1 or else RA3/RA2. In this
state the non-inverting inputs Vin+ are connected to a configurable internal voltage
reference—see Fig. 14.8.

When there is a change in an active Comparator output, the CoMparator Inter-
rupt Flag CMIF will be set and will generate an interrupt if the associated CoM-
parator Interrupt Enable mask CMIE and global mask bits GIE and PEIE have
been set to 1. As each Comparator does not have its own interrupt flag, the soft-
ware needs to maintain information regarding the previous status of the output bits
C1OUT and C2OUT to determine which Comparator actually changed. This status
can be updated as part of the ISR. The act of reading CMCON will end the Change
mismatch—in the same manner as the Port B Change interrupt described on p. 358.
Only then can the CMIF flag can be cleared in software in the normal manner. If the
Comparator mode is to be changed ‘on the fly’ then interrupts should be disabled

4There is a small uncertainty range in this difference signal of ±10 mV maximum (±5 mV typical)
due to Comparator offset voltages.

14 Take the Rough with the Smooth 501

beforehand. After a delay of not less than 10 µs after the mode change, to allow volt-
age levels to stabilize, CMCON should be read again to clear any Change mismatch
and CMIF cleared afterwards before re-enabling the interrupt system.

As the Comparator module does not depend on the system oscillator, an active
Comparator can be used to awaken a sleeping PIC MCU when an external voltage
crosses a Vref threshold and sets CMIF. After wakening, the PIC MCU should cancel
the Change mismatch and clear CMIF following the sleep instruction, or in the
ISR if the Comparator interrupt is enabled.

It should be noted that an active Comparator uses considerably more current than
the base Sleep value. For instance, the PIC18F45K20 has a typical quiescent current
at 3 V and 85◦C of 0.5 µA.5 The Comparator module uses a current of typically
40 µA in the same environment. Thus if Comparators are not being used during the
Sleep duration, they should then be disabled.

All family members with a Comparator module have a separate but related Com-
parator Voltage Reference CVR module. As can be seen from Fig. 14.8, this is
essentially a resistor chain with an analog multiplexer gating through one of 16
different voltages. The functionality of the module is directed by the Comparator
Voltage Reference CONtrol register.

CVREN
The CVR ENable bit in CVRCON[7] powers on the module, which defaults to off.
The CVR module requires a maximum of 10 µs to settle after being enabled. Un-
less the Comparator module is being used to waken an inactive processor, the CVR
module should be disabled during Sleep to reduce quiescent current consumption.

CVR3:0, CVRR
The Comparator Voltage Reference bits in CVRCON[3:0] select which analog
voltage tapped from node n of the typically 2 k� chain of resistors is multiplexed
to the Vref output.

Two separate voltage ranges are available, as set with the Comparator Voltage
Reference Range CVRR bit in CVRCON[5], which switches in or out an extra 8R
resistor at the bottom of the chain. The result of this additional resistor is to reduce
the span of the selection but to give a finer resolution; i.e. step size. In either case
the accuracy is given as better than 1

2 LSB. When altering this tapping, 10 µs should
be allowed for the new output to settle.

The two ranges are:

CVRR Value Vref Minimum In 16 steps of Maximum

0 (reset) �VREF × (0.25 + n/32) 0.25 × �VREF �VREF/32 0.71875 × �VREF

1 �VREF × n/24 0 V �VREF/24 0.625 × �VREF

where n ranges from 0 through 15 and �VREF is VREF+ − VREF−.

5However, note that the Comparator module for this device is somewhat more flexible, with a
several control registers to give the required options. For instance, each comparator has its own
interrupt flag.

502 The Essential PIC18® Microcontroller

Fig. 14.8 The Comparator Voltage Reference module

CVRSS
By default the Power-on Reset voltage across the resistor chain is VDD − VSS. As
VSS is normally 0 V, then in this situation replacing �VREF in the table above by
VDD gives the reset situation.

Using the power supply as the root of a reference voltage is not a good idea
where precision is required. Noise from digital circuit switching, power surges and
variations due to battery condition will be coupled into the analog circuitry. Early
versions of the CVR module gave the designer no choice in the matter. However,
subsequent implementations allow the option of a precision external voltage source.
Where the Comparator Voltage Reference Source Select bit in CVRCON[4] is 1,
the voltage at the VREF+ pin is connected to the top of the chain. Normally the
bottom of the chain at VREF- is connected to ground, but this is not necessarily
the case. Usually the reference voltages should lie within the power supply range;
actual values will be specified in the device data sheet. If �VREF is a variable analog
signal, then if used in conjunction with the ADC module of Fig. 14.10, a limited
range analog multiplication can be implemented.

14 Take the Rough with the Smooth 503

CVROE
When the CVR Output Enable bit CVROE in CVRCON[6] is set to 1, the selected
analog voltage Vref is gated through to the appropriate pin. As this pin, usually RA2,
is shared with the VREF+ input, this connection should only be set whenever an
external voltage reference is not used. When chosen, the setting of TRISA[2] is over-
ridden. However, current consumption will be less if this is set-up as an output.

Due to the relatively low value of resistance, which also depends on the se-
lected tap, Microchip recommend that this external reference voltage be buffered—
typically with an operational amplifier. If necessary, the amplifier gain can be altered
to give finer control over the VREF value and filtering can be added to reduce high-
frequency noise. Used in this way, the Voltage Reference module can be employed
as a simple 4-bit digital-to-analog converter.

As our example, assume that VDD is 5 V and we are going to generate our thresh-
old voltage of 3.4 V for Fig. 14.5. We will need to use the high range; that is,
CVRR = 0, and calculate a value for CVR[3:0]:

5 × (0.25 + n/32) = 3.4,

0.25 + n/32 = 3.4/5,

n = (3.4/5 − 0.25) × 32 = 13.76,

giving n = 14 as our closest approximation. Making CVR[3:0] = b’1110’ gives an
actual Vref of 3.4375 ± 0.078128 V.

The code to set-up the Comparator and CVR modules for our defibrillator exam-
ple using Comparator 1 with RA3 as the analog input is then:

include "p18f4520.inc"
movlw b’00001110’ ; Comparator mode 110
movwf CMCON ; Switch to RA3 (CIS = 1)

movlw b’10001110’ ; CVR module on (1), not external (0)
movwf CVRCON ; Hi internal range (00), CVR3:0 = 1110

bsf PIE2,CMIE ; Enable Comparator interrupts

call DELAY_10US ; Allow 10us for voltages to settle
movf CMCON,f ; Read CMCON to clear any Change state

bcf PIR2,CMIF ; Zero the Comparator interrupt flag
bsf INTCON,PEIE ; Enable Peripheral interrupt group
bsf INTCON,GIE ; & Globally enable interrupt system

Notice especially that before enabling the interrupt system a delay of 10 µs is ex-
ecuted to allow internal analog voltages to attain equilibrium. Reading the CM-
CON register then clears any Change situation, after which the Comparator In-
terrupt Flag CMIF is cleared. The general interrupt system can then be enabled
by setting the PEIE and GIE mask bits in the usual way in the INTCON register.

504 The Essential PIC18® Microcontroller

In many situations more information on the analog signal is needed than a bang-
bang comparison with a reference voltage. For instance, in the waveform shown
in Fig. 14.5 the deviation of the voltage squared from the baseline, integrated with
time, would be required to measure power. In such a situation the incoming signal
would have to be sampled and converted from an analog amplitude to a digitized
equivalent.

The mapping function from an analog input quantity to its digital equivalent can
be expressed as:

Vin �→ Vref

n∑
i=1

ki × 2−i

where ki is the ith binary coefficient having a Boolean value of 0 or 1 and Vin ≤ Vref,
where Vref is a fixed analog reference voltage. Thus Vin is expressed as a binary
fraction of Vref, and the Boolean coefficients ki are the required binary digits of the
series 1

2 , 1
4 , 1

8 ,
To see how we might implement this in practice, consider the following mechan-

ical successive approximation analogy. Suppose we have an unknown weight W

(analogous to Vin), a balance scale (equivalent to an analog comparator) and a set of
precision known weights 1, 2, 4, and 8 g (analogous to a Vref of 15 g). A systematic
technique based on the task list might be:

1. Place the 8 g weight on the pan. IF too heavy THEN remove (k1 = 0) ELSE leave
(k1 = 1).

2. Place the 4 g weight on the pan. IF too heavy THEN remove (k2 = 0) ELSE leave
(k2 = 1).

3. Place the 2 g weight on the pan. IF too heavy THEN remove (k3 = 0) ELSE leave
(k3 = 1).

4. Place the 1 g weight on the pan. IF too heavy THEN remove (k4 = 0) ELSE leave
(k4 = 1).

This technique will yield the nearest lower value as the sum of the weights left on
the pan. For instance, if W were 6.2 g then we would have a weight assemblage of
4 + 2 g, or b’0110’ for a 4-bit system.

The electronic equivalent to this successive approximation technique uses a net-
work of precision resistors or capacitors configured to allow consecutive halving of
a fixed voltage Vref to be switched in to an analog comparator; which acts as the
balance scale.

Most MCUs use a network of capacitors valued in powers of two to subdivide
the analog reference voltage, such as shown in Fig. 14.9. Small capacitance values
are easily fabricated on a silicon integrated circuit and although the exact value will
vary somewhat between different batches of ICs, within the one device all capacitor
values will closely match and track with changes in temperature and supply voltage.
Multiples of this base value can be fabricated by paralleling unit devices—typically
FET gate-source capacitance.

Before the conversion process gets underway, the network has to be primed with
the unknown analog input voltage Vin, as shown in Fig. 14.9(a). The dynamics of this

14 Take the Rough with the Smooth 505

Fig. 14.9 Initializing the 8-4-2-1 capacitor network for a 4-bit convertor

sampling acquisition process involves charging up this capacitance network through
both internal and external resistance; allowing for the settling time of the internal
analog switches. If we take the 10-bit ADC module of Fig. 14.2 as an example,
then the parallel capacitor network appears at the AN pin as a 25 pF (25 × 10−12F)
capacitor. Internal switch resistance is of the order of 2 k� with a 5 V VDD, but
is rather temperature and supply voltage dependent (e.g. 4 k� at 3 V). Contact
resistance is given as 1 k�. Externally the maximum recommended value is 2.5 k�

in order to keep any ohmic voltage offset due to the pin leakage current of ±100 nA
and time constants small. A smaller external source resistance will of course reduce
the time constant.

The time constant τ (CR) with the values given here is 25×10−12 ×5.5×103 ≈
140 ns for a total resistance of 2.5+3.0 = 5.5 k�. In order to get within 0.05% of the
final voltage; that is, 1

2 of a 10-bit quantum level, takes approximately 8×τ ≈ 1.2 µs.
The data sheet gives the maximum amplifier/switch settling time of 0.2 µs. Taking a
worse-case scenario at 25◦C, a sampling time of 1.4 µs should ensure stability before
the conversion. For temperatures above this, an additional 0.02 µs per ◦C should be
added to this figure. For instance, at 85◦C an extra 1 µs should be added; giving
a total of 2.4 µs minimum acquisition time. Of course, to evaluate the maximum
rate of samples that can be taken, the actual conversion time must be added to this
acquisition time.

During the sample (S) period the top capacitor electrodes are held to 0 V and
bottom electrodes are charged to Vin. The change-over to the hold (H) position,
shown in Fig. 14.9(b), grounds the bottom electrodes and allows the top electrodes to

506 The Essential PIC18® Microcontroller

Fig. 14.10 Simplified view of a 4-bit successive approximation A/D converter

float. The voltage across a capacitor can only change if charge is transferred across
electrodes, �Q = C�V . Thus the change in voltage �V = −Vin at the bottom
electrodes is matched at the top floating electrodes; which now become 0 − Vin, as
charge cannot flow in or out of the floating top electrodes. Thus at the start of the
conversion process the inverting input of the analog comparator is −Vin.

A 4-bit version of the successive approximation network at the heart of the ADC
module is shown in a simplified form in Fig. 14.10. The step-by-step process is se-
quenced by a shift register (SRG4—see Fig. 2.22 on p. 36) when the programmer
sets the GO/DONE bit in the ADC Control register. As the Control shift register is
clocked, a single 1 moves down to activate each step in the sequence:

14 Take the Rough with the Smooth 507

The capacitor network is switched to Hold and each capacitor, beginning with the
largest value, is switched to Vref in turn. The outcome of the comparator then de-
termines the state of the corresponding bit in the Successive Approximation Reg-
ister (SAR). The process is detailed in Fig. 14.11. After four set–try–reset actions,
the outcome in the SAR is transferred to the Analog-to-Digital RESult register.
The GO/DONE switch/flag bit is now cleared to indicate end of conversion and the
Analog/Digital Interrupt Flag ADIF set. Finally, the analog input is again switched
back into the capacitor network (Sample) which then charges up ready for the next
conversion after a suitable settling period.

The total conversion time is approximately six times the clock period TAD of the
sequencer shift register—one period for each bit plus one each for the Hold and
Complete/Sample slots. In the case of a 10-bit module, this will be approximately
12 times the clock period. For the PIC18FXX20 devices, the minimum clocking pe-
riod is 0.7 µs (≈1.4 MHz) for VDD ≥ 3 V. The PIC18LFXX20 with VDD = 2 V has a
minimum figure of 1.4 µs and older devices, such as the PIC18F/LF1X20, have val-
ues 1.6/3.0 µs. For the PIC18FXX20 devices there is a 25 µs lower clocking period,
as charge slowly leaks away from the network capacitors; so a clocking frequency
of less than 40 kHz should be avoided. Other devices will have other values, and
very high temperatures increase leakage currents. For instance, the PIC18FXXK20
at 125◦C has a lower boundary of 4 µs (250 KHz). From Fig. 14.12 we see that the
ADC clock can be derived from one of seven sources. Six these are fractions of the
system clock rate and the seventh is a stand-alone CR oscillator with a nominal TAD

of 1.2 µs for the PIC18FXX20 (6/9 µs for the PIC18F/LF1X20).
The conversion process, where each successive half-fraction of Vref is added to

and conditionally taken away from the initial value is illustrated in Fig. 14.11. As
we have seen in Fig. 14.9, at the end of the acquisition period the top plates of the
capacitor array are at −Vin. As an example, let us assume that Vin is 0.4285Vref.

1. The process begins by switching in Vref into the lower plate of the largest ca-
pacitor, as controlled by the SAR8 latch in Fig. 14.10. This causes an injec-
tion of charge �Q = CtotalVref, which is identical across both the 8-unit ca-
pacitor C1 and the rest of the capacitors. These latter also have a parallel
value of 8 units in Fig. 14.11. Thus the voltage at node N rises by Vref/2 to
−0.485 + 0.5 = +0.07125Vref. In general �VN = VrefCk/Ctotal. The comparator
output is now logic 0 and thus the SAQ8 latch is consequently cleared, reversing
the Vref/2 step.

2. SAQ4 switches Vref into the next highest capacitor, giving a Vref/4 step at N (4
16).

The resulting voltage of −0.485 + 0.25 = −0.178Vref gives a comparator output
of logic 1 and SAR4 remains set with the node voltage staying at −0.1785Vref.

3. SAQ2 switches Vref into the second lowest capacitor, giving a Vref/8 step at N

(2
16). The resulting voltage of −0.1785 + 0.125 = −0.0535Vref gives a com-

parator output of logic 1 and SAR2 remains set with the node voltage staying at
−0.0535Vref.

4. SAQ1 switches Vref into the lowest capacitor, giving a Vref/16 step at N (1
16). The

resulting voltage of −0.0535 + 0.0625 = +0.009Vref gives a comparator output
of logic 0 and SAR1 is cleared reversing the Vref/16 step.

508 The Essential PIC18® Microcontroller

Fig. 14.11 The successive approximation process

14 Take the Rough with the Smooth 509

The state of the SAR of b’0110’ or 0.375Vref, represents the best 4-bit fit to Vin =
0.4285Vref. The residue 0.0535Vref is the quantizing error.

Most MCUs use an 8- or 10-bit capacitor array. In principle the technique can
readily be extended to higher resolutions, but in practice the difficulty in matching
ever greater capacitors and internal logic noise means the majority of processors
are limited to 12-bit resolution.6 External high-speed successive-approximation de-
vices with 12+ bit resolution, usually using a resistor ladder network, are readily
available, but can be expensive. A low cost example is the Microchip MCP3301,
which features a 13-bit resolution with a single differential voltage input and a SPI
interface.

Matching of the array capacitors, offsets, and resistance of internal switches,
leakage currents, and analog comparator non-linearities all contribute to errors in
the conversion process. The four types of error specified in the data sheets relate
to the analog-digital transfer function illustrated in Fig. 14.2. Ideally this mapping
should be a staircase with equal steps in a straight line from the first transition at 0.5
of a step to 1.5 of the step before the maximum analog voltage.

Integral non-linear
Maximum deviation of the actual transfer characteristic over the whole range.

Differential non-linear
Maximum deviation of any step from the ideal.

Gain
Deviation of the slope from the ideal.

Offset
Shift of transfer characteristic left or right from the ideal voltage giving the first
step; that is first non-zero code.

Our exemplar devices give a value for the first three of these errors, which are non
cumulative, as < ±1 LSB. Offset error is quoted as a maximum of ±2 LSB. How-
ever, it is guaranteed that the transfer is monotonic; that is, the binary code will
never move in the reverse direction for any change �Vin of input voltage. These
error figure are for a given �VREF ≥ 3 V.

Virtually all the PIC18 family members feature an integral 10-bit ADC module,
based on a capacitor network with characteristics previously described. From the
user’s perspective the details of the conversion process are less important than the
system aspects integrating this module into software. The architecture of the ADC
module is shown in Fig. 14.12. There are only relatively small differences across
the range.

Although there is a single analog-to-digital converter, this is fronted with an ana-
log multiplexer. This allows the software to select up to 13 separate analog voltages

6For instance the PIC24H family.

510 The Essential PIC18® Microcontroller

Fig. 14.12 The PIC18FXX20 10-bit multi-channel analog-to-digital convertor module

one at a time.7 Three Control registers allow the program to select any one chan-
nel for sampling and to determine the source of the sequence clock. In addition the
appropriate pins may be set-up as either analog or digital, with control over the in-
ternal/external nature of the reference voltages. The conversion is initiated via the
GO/DONE bit, which also indicates when the process is complete and the 10-bit
outcome can then be read from the two Result registers.8

Our description of the ADC module can be split into the initial set-up and the
conversion process.

718- and 24-pin devices, lacking a Port E have up to 10 possible analog input channels.
8Early PIC16 device ADC modules use one AD Result register to hold one 8-bit outcome.

14 Take the Rough with the Smooth 511

Initialization
In setting up your module you need to consider the following points:

1. How do I enable the module?
2. Which channels am I going to use?
3. How am I going to clock the module?
4. What delay am I going to use to allow for stabilization after starting a conversion?
5. Do I only need an 8-bit outcome?

All these choices, together with operational matters, are set-up using the various
AD Control registers.

ADCON0
ADCONtrol register 0 enables the module, initiates and indicates the completion
of the process, and picks the input channel for conversion.

ADON
On a Power-on Reset the ADC module is disabled. Setting ADON in ADCON[0]
to 1 turns the module on. An enabled module typically uses 1µA even when
idling, so it should be disabled when not in use where power consumption
is a consideration. During a conversion the average current is 180 µA. The
GO/DONE switch bit should not be set to 1 in the same instruction as the
module is enabled to avoid beginning a conversion at the same time as the
module is being started up.

GO/DONE
Setting ADCON0[1] initiates a conversion. GO/DONE remains 1 until the con-
version is complete, which is signaled by a 0 state. At the same time the ADIF
flag will be set, which can trigger an interrupt.

CHS3:0
These three CHannel Select bits in ADCON0[5:2] pick which pin is gated
through to the A/D converter logic.

Early versions of these modules use five Port A and in 40+ footprint
devices, three Port E pins. Newer ADC modules have added an optional
five Port B pins to this complement. The PBADEN fuse must be active
(PBADEN=ON) to enable these potential additional analog inputs.

ADCON1
ADCONtrol register 1 configures blocks of pins shared with the digital parallel
ports to accept analog range voltages and selects between internal and external ref-
erence voltages.

PCFG3:0
From Fig. 14.12 we see that analog channels coexist with normal digital port
lines. Figure 14.13 shows one of these shared port lines in a little more detail.
Here the connection to the analog ports is pictured in parallel to the ordinary

512 The Essential PIC18® Microcontroller

Fig. 14.13 Simplified logic of a combo analog/digital port line

digital connections. The major problem with this arrangement is that the digital
input buffer can be damaged by prolonged analog voltages midway between
the logic levels causing excessive current flows.

On a Power-on Reset all potentially shared A/D port pins are configured as
analog-friendly; that is with disabled digital input buffers. In the case of the
five Port B A/D pins, this is only the case when the PBADEN fuse is on. If the
number of analog channels required for a particular application is less than the
maximum available, some unused channels can be reclaimed for use as ordi-
nary digital I/O. This is accomplished using the appropriate settings in the Port
ConFiGuration bits. The actual choices, number, and location of these bits are
device specific,9 but those patterns applicable to the PIC18FXX20 group are
shown in Fig. 14.12. For instance, if you only require a single analog channel
for your project, the pattern b’1110’ will leave pinRA0/AN0 as analog and the
rest for other digital purposes.

In previous chapters, in examples where no analog activity was required
(such as Program 11.1 on p. 338) the ADCON1 register still needed to be set to
b’11111111’ (setf ADCON1) to configure all pins as digital. Failure to do this
is one of the more common errors, as all devices have analog module(s) and

9For instance, the PIC18F1X20 use ADCON1 to individually enable each of the seven available
analog inputs, and as a consequence the two VCFG bits move to ADCON0. The PIC18FXXK20
group use the two ANSELH:ANSEL registers to configure each of the 13 channels individually.

14 Take the Rough with the Smooth 513

all relevant pins will therefore always default to analog on a Power-on Reset or
avoid possible damage.

From the diagram we can make the following deductions.

• A port pin configured as analog will read as logic 0 due to the disabled digital
input buffer.

• The TRIS buffer is not affected and thus the appropriate TRIS bits should
be 1; that is, the direction of the port pins configured as analog should be set
to input to prevent contention between the analog Vin and the digital state of
the Data flip flop.

• The ADC can read an analog voltage at the pin even if that pin has not
been configured as analog. However, the still active digital input buffer may
consume an excessive current outside of the device’s specification.

VCFG1:0
Analog channels 2 and 3 are dual-purpose,10 in that they may optionally be
used to supply external reference voltages, as a less noisy and more accurate
alternative to the power-supply lines VDD and VSS. Each Voltage ConFiGure
bit gates one of these channels through as Vref+ and Vref− to the ADC logic. For
instance, for a single analog channel and an external VREFH ADCON1 should
be b’0001 1011’—actually this will give three analog input channels.

If external references are used, then VREFH should normally be between
VDD

2 and VDD + 0.6 V and VREFL between VDD − 3 V and VSS − 0.3 V
(PIC18FXXK20 figures). In any case �VREF should be not less than 3 V for
VDD ≥ 3 V and 1.8 V for supply voltages below this.

ADCON2
The A/D CONtrol register 2 selects the source of the ADC sequence clock; delay
in beginning a conversion after a Start Conversion command and how the 10-bit
outcome is aligned within the 16-bit result field.

ADCS2:0
The ADC module needs a clock signal in order to time the set and test sequence
of Fig. 14.11. If the clock rate is too fast, changes in switching voltages will
not have time to settle. Our exemplar devices quotes a minimum clock period
TAD as 0.7 µs; corresponding to a clocking rate of 1.43 MHz.

Typically the A/D clock is derived as a fraction of the system clock. The
A/D Clock Select bits in ADCON2[2:0] can be set to give processor frequency
division ratios from ÷2 to ÷64. Normally the smallest ratio is chosen to give
a FAD less than the quoted value. For instance, a PIC18FXX20 with an 8 MHz
crystal needs a ÷8 ratio (ADCS[2:0] = 001), giving a FAD of 1 MHz. Choosing
÷4 would give 2 MHz; which is beyond the 1.43 MHz limit. Table 14.2 shows
the maximum possible system clock rate for the various division values.

10In the PIC18FXXK20 channel 15 is also special, connected to the FVR—see Fig. 14.6.

514 The Essential PIC18® Microcontroller

Table 14.2 Maximum device frequency FAD against the six division ratios

To generate ADC clock Maximum device frequency to give

Division ratio ADSC2:0 TAD ≥ 0.7 µs TAD ≥ 1.4 µs

fosc/2 000 2.86 MHz 1.43 MHz

fosc/4 100 5.71 MHz 2.86 MHz

fosc/8 001 11.43 MHz 5.72 MHz

fosc/16 101 22.86 MHz 11.43 MHz

fosc/32 010 40.00 MHz 22.86 MHz

fosc/64 110 40.00 MHz 22.86 MHz

CR1 X11 1.2 µs typ 2.5 µs typ

Note 1: Normally used in the Sleep mode and in any case not recommended for
frequencies above 1 MHz

To allow operation in a low-speed system clock environment; for instance,
when a 32.768 kHz watch crystal is used, a separate internal Capacitor-Resistor
(CR) oscillator is provided. As this stand-alone oscillator is separate from the
system clock, a conversion can be completed while the PIC MCU is in its Sleep
state. In this situation, the End Of Conversion interrupt can be used to waken
the processor. Doing a conversion with the system clock turned off makes
sense, as this gives a quiet environment with little digital noise. If the separate
CR clock is used with a system clock of greater than 1 MHz, then Microchip
recommends using a Sleep conversion; as the lack of synchronization between
the two clock sources increases noise induced into the analog circuitry.

Our example was based on a minimum A/D clock period of 0.7 µs. The
actual value will vary with device, and will be quoted in the appropriate data
sheet. Table 14.2 also shows the maximum possible device frequency for the
PIC18LFXX20, which has a minimum TAD of 1.4 µs.

ACQT2:0
We have already seen on p. 504 that whenever the capacitor network is con-
nected to an analog voltage, finite time is required to charge up to its equilib-
rium value. Typically this will occur whenever the input channel changes or
after a new conversion is started. Thus for full accuracy, the software should
wait an appropriate time after a conversion is complete or change in channel
before starting again. In our exemplar modules the ACQuisiTion bits in AD-
CON[5:3] can be set to automatically insert a fixed delay after the GO/DONE
bit is set.

Figure 14.14 shows a timeline for a conversion process.

1. Once the go-ahead is given, a fixed number of TAD cycles (between 2
and 20) is inserted before the capacitor network is disconnected from the
analog input pin. Typically a four cycle delay (ACQT2:0 = 010) covers
most situations.

14 Take the Rough with the Smooth 515

Fig. 14.14 Timeline for the conversion process

2. With the analog voltage held, the conversion begins. After a further TAD

period, each bit is built up from the MSB downwards.
3. After the LSB has been computed, the capacitor is discharged for one pe-

riod, giving a total of TAD × 12 A/D clocks to complete the process.
4. The 10-bit digitized word is copied to the two ADRES registers, GO/DONE

is cleared in parallel with setting the ADIF interrupt flag to indicate the end
of the conversion. Concurrently, the analog voltage is again gated through
from the selected pin.

The Power-on Reset of these bits is not to insert any fixed delay. This is
the legacy condition, as older ADC modules do not provide this facility. In
this situation the conversion process is delayed by one instruction cycle. This
facilitates a conversion process when the MCU is asleep, to allow time for the
sleep instruction to be executed.

ADFM
Our example ADC module needs two Files to hold the 10-bit outcome. As the
total capacity of ADRESH:ADRESL is 16 bits, there are two ways of aligning
these ten bits.

Many applications only require 8-bit resolution and processing. Where this
is the case, the bottom two bits of the outcome word can be thrown away. From
Fig. 14.15(a) we see that this is facilitated by left alignment. The content of
ADRESL is simply ignored.

Where a full 10-bit word is necessary, setting the A/D ForMat b it in AD-
CON2[7] to 1 will right-align the datum. As can be seen from Fig. 14.15(b), the
outcome is a 10-bit datum extended to a 16-bit format by padding with leading
zeros. Normal 16-bit arithmetic and other processing algorithms can then be
used.

Conversion Process
After the module has been configured, from the user’s perspective digitizing a se-
lected analog channel is relatively straightforward. Assuming first that interrupts are

516 The Essential PIC18® Microcontroller

Fig. 14.15 Aligning the 10-bit digital outcome in a 16-bit field

not being used, the following steps can be identified (including, for completeness,
the initialization process) and is visualized with the timeline of Fig. 14.14.

1. Configure ADC module.

• Set up port pins as analog/voltage reference (ADCON1).
• Select ADC conversion clock source (ADCON2).
• Select fixed A/D acquisition delay; if any (ADCON2).
• Select initial ADC input channel (ADCON0).
• Turn on ADC module (ADCON0).

2. Start conversion by setting the GO/DONE bit to 1.
3. Wait for ADC conversion to complete by polling the GO/DONE bit for logic 0.
4. Read the ADRES registers.
5. For next conversion go to step 1 or step 2 as required.

As an example, consider that we wish to continually read each of the eight ana-
log pins AN0 through AN7 of a PIC18FXX20 in turn, while outputting the most
significant eight digitized bits to Port B and the channel number to the lower three
bits of Port D. The main crystal is 20 MHz and the power supply is to be used for
the reference voltages.

The listing of Program 14.1 assumes that the ADC module has been initialized
at reset with start-up code of the form:

include "p18f4520.inc"

config WDT = OFF, PBADEN=OFF

movlw b’00000111’ ; Make pins AN7:0 analog
movwf ADCON1 ; I.e. shared Ports A & E all analog
clrf TRISB ; All Port B Output
movlw b’11111000’ ; Low 3 bits of Port D are Outputs
movwf TRISD

movlw b’00000001’ ; CH0 (0000) for 1st conversion
movwf ADCON0 ; No conversion (0), ADC turned on (1)

movlw b’00010101’ ; Right justified (0), 4TAD delay (010)
movwf ADCON2 ; FAD = FOSC/16 (101)

14 Take the Rough with the Smooth 517

Program 14.1 Scanning an 8-channel data acquisition system
MAIN clrf CHANNEL ; Use a GPF to hold the channel count
MAIN_LOOP movf CHANNEL,w ; Get the Channel number

andlw b’00000111’; Zero the top five bits
movwf CHANNEL
movwf PORTD ; Copy to Port D

call GET_ANALOG ; Digitize it; returned in W
movwf PORTB ; and copy to Port B

incf CHANNEL,f ; Advance to next channel
bra MAIN_LOOP ; and DO forever

; ***
; * FUNCTION : Analog/digital conversion at channel n *
; * ENTRY : Channel number in W *
; * EXIT : Digitized 8-bit analog value in W *
; ***

GET_ANALOG rlncf WREG,w ; Shift channel number left >>2
rlncf WREG,w ; with outcome in W
bcf ADCON0,CHS0; Zero channel bits
bcf ADCON0,CHS1
bcf ADCON0,CHS2
bcf ADCON0,CHS3
addwf ADCON0,f ; Moves channel number to ADCON0[5:2]
bsf ADCON0,GO ; Start conversion after fixed delay

GET_ANALOG_LOOP
btfsc ADCON0,GO ; Check for End Of Conversion
bra GET_ANALOG_LOOP
movf ADRESH,w ; Fetch datum when GO/NOT_DONE is zero
return

which configures the module to enable all eight analog channels with internal ref-

erence voltages with ADCON1 set to . ADCON2 is initialized to

to select a left-aligned outcome with a fixed acquisition delay
of 4 × TAD and a FAD rate of 20

16 = 1.25 MHz (TAD = 0.8 µs). Channel zero is set-up
in ADCON0[5:2] (the initial value is irrelevant) and the module turned on. With an
initial zero value of GO/DONE no conversion is actioned.

With the module initialized, the main software of Program 14.1 spends all its time
in a loop reading the digitized equivalent of each channel in turn from ADRESH (the
top eight bits) and copying it in turn to Port B. Before the digitization, the Channel
counter is sent to Port D as a modulo-3 number.

The acquisition itself is implemented using the GET_ANALOG subroutine, to
which is passed the desired channel number in the rightmost three bits of the Work-
ing register. This is logic shifted two places to the left to align the channel number
with the CHSn bits in ADCON0[5:2]. After clearing the CHS3:0 bits, the shifted
Channel number can then be added into ADCON0 to set CHS3:0 to the appropriate
channel.

After the channel number has been set-up, the GO/DONE bit in ADCON0[1] is
set to initiate a conversion.11 A fixed delay of 4 × TAD has been actioned before the

11A conversion may be aborted at any time by clearing GO/DONE.

518 The Essential PIC18® Microcontroller

conversion proper begins, to allow for switch delay and stabilization—see p. 505.
The completion of the process can be monitored by polling GO/DONE until this goes
to 0. At this point the content of ADRESH is the 8-bit outcome of the conversion.

Each actual conversion takes around 4 + 12 × 0.8 ≈ 13 µs. Taking into account
the housekeeping software, an 8-channel scan and display takes around 132 µs to
complete. That is, around 7500 scans per second.

Rather than polling for completion, the end of conversion can be used to generate
an interrupt. In particular if a conversion is to be done in the Sleep mode then this
interrupt can be used to waken the device. The ADC module can operate when the
PIC MCU is in its Sleep state as it has the option of its own private oscillator to se-
quence the conversion; even if the system oscillator is disabled. The main advantage
of a conversion while asleep is the electrically quiet environment when the system
oscillator is off. Against this is the considerably longer conversion time, as when
the PIC MCU is wakened, there will be the normal 1024-cycle delay to restart the
system oscillator—see p. 319.

This personal oscillator may be used even where the PIC MCU is not put to
sleep. However, as there is no synchronization between the system and local oscil-
lators, clock feedthrough noise becomes a problem; especially with system clock
rates above 1 MHz.

The following task list outlines the Sleep state conversion process.

• The ADC clock source must be set to CR, ADCS2 : 0 = X11.
• The ADIF flag must be cleared to prevent an immediate interrupt.
• The ADIE and PEIE mask bits must be set to enable the ADC interrupt to awaken

the processor.
• The GIE mask bit must be 0 unless the programmer wishes the processor to jump

to an ISR when it awakens.

Program 14.2 Scanning an 8-channel data acquisition system
; ***
; * FUNCTION : Analog/digital conversion at channel n *
; * ENTRY : Channel number in W *
; * EXIT : Digitized 8-bit analog value in W *
; ***

GET_ANALOG rlncf WREG,w ; Shift channel number left >>2
rlncf WREG,w ; with outcome in W
bcf ADCON0,CHS0; Zero channel bits
bcf ADCON0,CHS1
bcf ADCON0,CHS2
bcf ADCON0,CHS3
addwf ADCON0,f ; Moves channel number to ADCON0[5:2]
bcf INTCON,GIE ; Disable all interrupts
bcf PIR1,ADIF ; Ensure that AD Int flag is 0 before
bsf ADCON0,GO ; Starting the conversion after 2TAD

sleep ; Doze in peace while converting

bsf INTCON,GIE ; Re-enable interrupts (optional)
movf ADRESH,w ; Fetch datum when GO/NOT_DONE is zero
return

14 Take the Rough with the Smooth 519

• The GO/DONE bit in the ADCON0 register must be cleared to initialize the con-
version; followed immediately by the sleep instruction.

• On wakening, the ADRESH:L registers hold the digitized value.

For instance, consider a Sleep state version of the GET_ANALOG subroutine of
Program 14.1. This time the initialization code must set up the interrupt system as
specified in the task list, to ensure that when the AD Interrupt Flag ADIF is set at the
end of the conversion (at the same time as the GO/DONE flag goes to 0) the PIC
MCU is woken up.

include "p18f4520.inc"

config WDT = OFF, PBADEN=OFF

movlw b’00000111’ ; Make pins AN7:0 analog
movwf ADCON1 ; I.e. shared Ports A&E all analog
clrf TRISB ; All Port B Output
movlw b’11111000’ ; Low 3 bits of Port D are Outputs
movwf TRISD

movlw b’00000001’ ; CH0 (0000) for 1st conversion
movwf ADCON0 ; No conversion (0), ADC turned on (1)

movlw b’00010101’ ; Right justified (0), 4TAD delay (010)
movwf ADCON2 ; FAD = FOSC/16 (101)

bcf PIR1,ADIF ; Zero the AD interrupt flag
bsf PIE1,ADIE ; Enable AD interrupts
bsf INTCON,PEIE; & enable the Peripheral interrupt group

Apart from the initialization of the interrupt system, the only change is to the setting
of ADCON2[3:0], which is made b’111’ to select the internal CR ADC oscillator as
the clock.

The Sleep version of GET_ANALOG shown in Program 14.2 is virtually identical
to the original version, with the following changes.

1. GIE may need to be cleared if other devices can request an interrupt.
2. Before the conversion is started, the ADIF flag is cleared to ensure that the Sleep

state is not prematurely terminated.
3. A sleep instruction follows the setting of the GO/DONE switch. In our example

a TAD ×2 delay is inserted before the conversion proper starts. The internal clock
gives a TAD = 1.2 µs step rate for this conversion for the PIC18FXX20 (2.5 µs for
the PIC18FXXLF20 line). If a zero fixed acquisition time is selected, a delay of
one instruction cycle is added before the ADC clock starts, to allow the sleep
instruction to be executed before starting a conversion.

4. There is no need to poll the GO/DONE status flag, as the PIC MCU will only
restart after the conversion has completed and will then execute the following
instruction. In our example the GIE mask bit has been cleared, and it should then
be set again to 1 if there is to be interrupt activity from other sources. If GIE is
permanently left at 1 then the processor will automatically jump to an ISR after
it awakens.

520 The Essential PIC18® Microcontroller

For our final example we are going to code a 20 MHz PIC18F4520 in CCS C
to act as a magnitude comparator in the manner of Example 11.2 on p. 364. Here
we want to measure up the parallel-input 8-bit word N at Port B against an analog
input at Channel 0. Outputs at pins RC2:0 are to represent Analog Lower Than N

(b’001’), Equivalent (b’010’) and Higher Than N (b’100’) respectively. The compara-
tor is to have a hysteresis of � = ±1 bit; called delta in our program. That is, if
a previous comparison showed Analog < N then the new trigger level is N + 1.
Similarly, on a downward trajectory the trigger level is decreased to N − 1.

The function compare() of Program 14.3 assumes that initialization code of
the form:

#include <18f4520.h>
#byte PORT_B = 0xF81
#byte PORT_C = 0xF82
#device ADC=8 /* Configure for an 8-bit outcome */
/* Declare function to which is sent delta (+1 or -1)
and which returns updated value +1 or -1 */
unsigned int compare(unsigned int delta);

int main()
{
unsigned int hysteresis = 0;
set_tris_c(0xF8);
setup_adc(ADC_CLOCK_DIV_16);
setup_adc_ports(AN0);
set_adc_channel(0);

has already been executed.
The key internal functions used here are:

setup_adc(ADC_CLOCK_DIV_16)
This function configures bits ADCS2:0 in ADCON2[2:0] to select the module’s clock
source; here the processor oscillator/16. The internal CR oscillator is selected with
the script ADC_CLOCK_INTERNAL.

setup_adc_ports(AN0)
This configures bits PCFG3:0 in ADCON1[3:0] to select which port pins are analog,
which are digital, and if external reference voltages are to be used. The script AN0
indicates that port pin RA0 is to be analog with internal reference voltages; with the
rest being digital; PCFG3:0 = b’1110’—see Fig. 14.12. The equivalent script using
an external VREF+ at RA3 is AN0|VSS_VREF. Scripts appropriate to any particular
device are stored in the corresponding header file; in this case 18f4520.h. For
instance, for the situation outlined in Program 14.1, the script AN0_TO_AN7 would
be applicable. All devices with an ADC module have scripts ALL_ANALOG and
NO_ANALOGS; for instance see Program 9.3 on p. 293.

set_adc_channel(n)
This is used to set up the channel number bits CHS3:0 in ADCON0[5:2].

14 Take the Rough with the Smooth 521

Program 14.3 A digital/analog comparator with hysteresis
unsigned int compare(unsigned int delta)
{
unsigned int analog;
analog = read_adc();
if(analog > PORT_B + delta) {PORT_C = 0x04; delta = 0xff;}
else if(analog == PORT_B) {PORT_C = 0x02;}
else {PORT_C = 0x01; delta = 1;}
return delta;
}

read_adc()
This activates GO/DONE in ADCON0[1] and returns with the digitized value from
ADRESH:L when GO/DONE goes to 0.

#device ADC=8
This directive configures the ADC module to left align the 10-bit outcome (see
Fig. 14.15) and is used by the function read_adc() to return an 8-bit int, which
it gets from ADRESH. The directive device ADC=10 returns a long int from
ADRESH:L.

The function compare() in Program 14.3 expects the value of the hysteresis,
called delta, which here is either +1 or −1 (h’FF’). After the ADC module is read,
the digitized value analog is compared with the contents of Port B plus delta
and the three Port C bits RC2:0 set to their appropriate state.

At the same time as the comparison is resolved, delta will be updated to re-
flect the outcome (i.e., +1 if analog < (PORT_B + delta), −1 if analog >

(PORT_B + delta)). The value delta is returned by the function to allow the
caller function to update its variable; called, say, hysteresis. Thus to activate
the comparator outputs and also update hysteresis at the same time, the caller
might have a statement such as hysteresis = compare(hysteresis);.
An alternative would be to define the variable hysteresis before the main func-
tion main(), making it global; that is, known to all functions. In this situation its
value need not be passed by the caller back and forth to any appropriate function.

Conversion from a digital quantity to an analog equivalent is somewhat simpler
than the converse and not so commonly required. Perhaps for these reasons digital-
to-analog converters (DACs) are not often found as an integral function in most
MCU families. We have already seen that one way of providing this mapping is to
vary the mark:space ratio of a pulse train of constant repetitive duration; as shown in
Fig. 13.9 on p. 477. Here a small digital number gives a skinny pulse, which when
smoothed out by a low-pass filter (which gives the average or d.c. value) translates
to a low voltage. Conversely, a large digital number leads to a correspondingly large
mark:space ratio; which in turn, after smoothing, yields a higher voltage.

522 The Essential PIC18® Microcontroller

PWM conversion can be very accurate and is simple to implement. However,
extensive filtering is required to remove harmonics of the pulse rate and this makes
the conversion slow to respond to changes in the digital input. Normally PWM is
used to control heavy loads, such as motors or heaters, where the inertia of these
devices inherently provides the smoothing action. Furthermore, the pulsed nature of
the signal is ideally suited to power control, activating thyristor firing circuits.

Another way is to switch in a tapping on a chain of resistors, each adding one
least significant bit increment to the grand total. This is the principle used in the
Comparator Voltage Reference module of Fig. 14.8. However, rather a lot of resis-
tors are needed; e.g., 1024 for 10-bit resolution.

Many commercial DAC devices are available which can be controlled externally.
Two examples were given in Figs. 12.3 and 12.5 on pp. 384 and 388, where the
MCU transferred digital data in series. Here for completeness, we will look at an
example where parallel data transfer is used.

The majority of proprietary devices are based on an R-2R ladder network, such
as that shown in Fig. 14.16(a). Voltage appearing at any bit switch node emerges at
the output node in an attenuated form. As our analysis will show, each move to the
left attenuates this voltage bi by 50%, which is the binary weighting relationship:

V =
N+1∑
i=0

bi × 2i

for an N -bit word.
In Fig. 14.16(b), at node A looking to the left we see a resistance of R (2R//2R)

and the voltage b0 is attenuated by two. As we move to the right the process is
repeated, with each voltage divided by two. Thus, at node B the voltage b0/2 is
further divided by two as is voltage b1, giving VB = b0/4 + b1/2. As the network
is symmetrical the resistance looking right at any mode is also 2R. This means that
as seen from any digital switch, the total resistance is 2R + 2R//2R = 3R. This
is important, as the characteristics of a transistor switch, such as resistance, are
dependent on current, and keeping this the same reduces error.

For clarity our analysis has been for three bits. This can be extended by simply
moving the leftmost terminating resistor over and inserting the requisite number of
sections. This does not affect the resistance as seen left of the mode, and therefore
does not change the conditions of the rightmost sections. An inspection of our anal-
ysis shows that nowhere does the absolute value of resistance appear. In fact the
accuracy of the analysis depends only on the R:2R ratio. While it is relatively easy
to fabricate accurate rationed resistors on a silicon die, this is certainly not the case
for absolute values. For this reason R:2R networks are the standard technique used
for most integrated circuit DACs.

The Maxim MAX506 of Fig. 14.17 is an example of a commercial D/A converter
(DAC). This 20-pin footprint device contains four separate DACs sharing a common
external VREF. Digital data is presented to the D7:0 pins and one of four latch
registers selected with the A1:0 address inputs. Once this is done, the datum byte is
loaded into the selected register n and appears at the corresponding output VOUTn.

14 Take the Rough with the Smooth 523

Fig. 14.16 R-2R digital-to-analog conversion

This output analog voltage ranges from zero (Analog GrouND) for a digital input
of h’00’ through to VREF for a digital input of h’FF’. Where VSS is connected to
ground, then VREF can be anything between 0 V and VDD (+5 V). However, VSS can
be as low as −5 V and in this situation VREF can be anywhere in the range ±5 V. If

524 The Essential PIC18® Microcontroller

Fig. 14.17 The Maxim MAX506 quad 8-bit D/A converter

14 Take the Rough with the Smooth 525

Fig. 14.18 Generating a continuous sawtooth using a MAX506 DAC

VREF is negative for dual supplies then the output voltage will also be negative. In
either case, effectively the output can be treated as the product D × VREF; where D

is the digital input byte scaled to the range 0–1 (h’00–FF’).
The MAX505 is a 24-pin variant which permits separate reference voltages to be

used for each of the four DAC channels. In addition, the MAX505’s DAC latches are
isolated from the converter ladder circuits by a further layer of latches, all clocked at
the same time with a LDAC (Load DAC) control signal. This double buffering per-
mits the programmer to update all four DACs simultaneously after their individual
latches have been set-up.

As an example, consider that a MAX506 quad DAC has its Address selected via
RA1:0 and RA2 drives the WR input to latch in the addressed data from Port B. We
need to generate the continuous staircase sawtooth waveform shown in Fig. 14.18
from DACD. A suitable software routine would be something like the following
listing:

movlw b’0111’ ; DACD is channel 3 (b’11’), WR = 1
movwf PORTA ; To MAX506 WR, A1:0

LOOP movwf PORTB ; Datum to MAX506’s D7:0
bcf PORTA,2 ; WR = 0; Latch datum in
bsf PORTA,2 ; WR = 1; by pulsing WR
addlw 1 ; Increment staircase count
bra LOOP ; and repeat forever

where we are assuming that PORTB and PORTA[2:0] have been set-up as outputs.
The typical DAC staircase output waveform shown in the oscillogram in

Fig. 14.18 is based on a 12 MHz crystal clocked PIC MCU. With a loop cycle

526 The Essential PIC18® Microcontroller

count of six cycles gives a sawtooth duration of (256 × 6)/3 ≈ 0.5 ms, at 2 µs per
step.

Examples

Example 14.1 The analog input channel voltage range for most ADC modules is
limited to the supply voltage rails at most. Many situations require a digitized map-
ping from bipolar analog signals. Design a simple resistive network to translate a
bipolar voltage range of ±10 V to a unipolar range of 0–5 V, assuming VREF+ is
+5 V. Extend the design to give an anti-aliasing filter, assuming a sampling rate of
5000 per second.

Solution One possibility is shown in Fig. 14.19. The value of the three resistors
must be such that the input voltage Vin range of ±10 V will be shifted so that the
midpoint of 0 V gives half-scale (VREF+/2 = 2.5 V) at the input pin AN. The range
at this pin must also be attenuated by a factor of 4. A more general way of expressing
this is given by the relationship Vout = Vin/K + VREF+/2.

1. When Vin is zero, the voltage at the summing node is half-scale, which maps to
b’10000000’. To do this, R1 paralleled with R2 must have the same resistance as
R3, i.e.,

R3 = R1//R2.

2. The attenuation of the network is a function of the potential divider between R1

and R2//R3. This gives us the value of K as:

K = (R1 + (R2//R3))/(R2//R3) = 4.

Fig. 14.19 A level-shifting resistor network

14 Take the Rough with the Smooth 527

After some manipulation we have:

R1 = (K/2 − 1) × R2,

R2 = K/2 × R3.

Of course we have three unknowns and only two equations, so we have to start off
by choosing a value for one of them. If we pick a value of 5 k� for R3, then we have
R2 = 2 × 5 = 10 k� and R1 = 10 k�.

The resistance looking out from the pin is all three resistors in parallel; which in
our case is 2.4 k�. This meets the maximum to keep within a LSB leakage error for
a 10-bit conversion. For 8-bit resolution, the resistor values could be increased by a
factor of four.

A small capacitor at the summing node can be used to implement a simple first-
order low-pass filter to attenuate high frequencies from external sources, such as
the MCU’s system clock, and act as an anti-aliasing filter; as described in Fig. 14.4.
With a sampling rate of 5000 per second, then ideally the filter break frequency
should be no more than 2.5 kHz—half the sampling frequency. As this filter has
an attenuation of only 6 dB per octave, choosing a break frequency 1

2πCR of 1 kHz
provides a generous margin. We then have:

1

2πCR
= 1000,

C = 10−6

4.8 × π
,

C ≈ 66 nF.

To further reduce noise, the filter capacitor should have good high-frequency
characteristics; e.g., polyester (capacitors become inductors at high frequencies) and
together with the resistors, be physically as close as possible to the pin and not
adjacent to any digital lines. It is always good practice to decouple the reference
voltage and power supply with a low-value Tantalum electrolytic capacitor or/and a
0.1 µF ceramic capacitor to reduce switching noise from the MCU and other devices
taking power from the same source. Using a separate supply and ground connection
to the power supply to the PIC MCU should also reduce noise from this source.

Example 14.2 As part of a smart biomedical monitor, the peak analog value of
an electrocardiogram (EKG) signal is to be determined anew for each cycle. This
R-point (see Fig. 7.1 on p. 206) maximum value is to be output from Port B and
RA0 is to be pulsed High whenever this value is being updated. Assuming that a
16 MHz PIC18F1220 is used to implement the intelligence, and the EKG signal
(conditioned as shown in Fig. 14.19) is connected to Channel 1 RA1, devise a pos-
sible strategy. Timer 0 is being used to interrupt the processor at nominally 2000
times per second—see Program 13.3 on p. 464. Design a suitable ISR to implement
your strategy.

Solution As in any biomedical parameter, the EKG signal will vary from cycle to
cycle in gain, shape, and period. Even if this were not so, imperfections in the data

528 The Essential PIC18® Microcontroller

Fig. 14.20 EKG detection strategy

acquisition system, notably the skin electrodes, can cause slow baseline (d.c.) drift.
Thus the threshold at which the signal is to be tracked to its peak R-value must be
reset at some sensible fraction of its previous peak during the period following the
last update.

One possibility is shown in Fig. 14.20. Here the threshold is slowly decremented
after the peak to ensure that a following peak of lower amplitude is not missed.
On the basis of a lowest EKG rate of 40 beats per minute (period 1.5 s), if we
reduce the threshold by 1

64 of a bit every sample, then the maximum reduction would
be a count of ≈47 at a sample rate of 2000 per second. To do this the threshold
value THRESHOLD in Program 14.4 is stored as a double-byte number of form
integer:fraction and 1

64 of an integer (i.e., fraction = b’00000100’) subtracted in
each sample where the peak value MAXIMUM is not updated. This droop rate can be
altered by changing the subtracted fraction.

The task list implemented by this listing is:

1. DO a conversion to get ANALOG.
2. IF (ANALOG > THRESHOLD)

• MAXIMUM = ANALOG.
• THRESHOLD = ANALOG.
• PORTB = ANALOG.
• RA5 = 1.

3. ELSE

• Reduce THRESHOLD by 1
64 .

• RA5 = 0.

In updating THRESHOLD (where ANALOG > THRESHOLD) the integer byte
takes the new value of MAXIMUM whilst the fractional byte is zeroed. Treating this
byte pair as a 16-bit word, this effectively equates the threshold as MAXIMUM×256
or THRESHOLD = MAXIMUM << 8, where MAXIMUM has been shifted left eight
places. We are assuming that THRESHOLD has been zeroed in the background pro-
gram during the initialization phase and that we are doing an 8-bit conversion.

If the digitized analog sample is less than the threshold trip value then h’04’ =
b’00000100’ is subtracted from the lower byte at THRESHOLD and if this produces
a borrow, then the upper byte at THRESHOLD+1 is decremented. This subtract 1

64

14 Take the Rough with the Smooth 529

Program 14.4 EKG peak picking
; **
; * FUNCTION: ISR to update the EKG parameters *
; * ENTRY : On a Timer0 interrupt *
; * EXIT : Update MAXIMUM and THRESHOLD:THRESHOLD+1 *
; * RESOURCE: GET_ANALOG subroutine gets 8-bit digitized data*
; **
EKG_ISR btfss INTCON,TMR0IF ; Was this a Timer0 interrupt?

bra EKG_EXIT ; IF not THEN exit

bcf INTCON,TMR0IF ; ELSE clear flag
movlw 1 ; Initiate a conversion of
call GET_ANALOG ; Channel 1

cpfslt THRESHOLD ; Skip IF Threshold < Analog
bra BELOW ; ELSE don’t update MAXIMUM

movwf MAXIMUM ; Digitized byte is new MAXIMUM
movwf PORTB ; made visible to outside
bsf PORTA,0 ; which is signaled
movwf THRESHOLD+1 ; Now update double-byte
clrf THRESHOLD ; threshold
bra EKG_EXIT ; and finish

; Land here if the input is below the threshold ---------------
BELOW bcf PORTA,0 ; Signal no update

; Now reduce the threshold by 1/64 unless it is zero ----------
movf THRESHOLD+1,f ; Is integer threshold zero?
bz EKG_EXIT ; IF it is THEN leave alone

movlw h’04’ ; 1/64 = b’000001000’
subwf THRESHOLD,f ; Take away from fraction byte
bc EKG_EXIT ; Skip if no borrow
decf THRESHOLD+1,f ; ELSE decrement integer threes

EKG_EXIT retfie FAST ; Return from interrupt

routine is skipped if the integer threshold has reached zero; thus preventing under-
flow.

Program 14.4 uses the subroutine GET_ANALOG of Program 14.1. As the
PIC18F1220 has no CHS3 in ADCON0[5], this line of code should be removed.

Program 14.5 gives the C-coded version implementing our task list. The
#int_timer0 directive tells the compiler to treat the following function as a
Timer 0 ISR. In function ecg_isr(), the variables threshold and maximum
are declared static. This means that their value will be retained after the function
has exited and will thus be available next time on entry. The default way of treating
C function variables is to hold their value only for the duration of the function. An
alternative way of dealing with this problem is to declare such variables outside any
function; in which case they will be global and retain their value during the run.

530 The Essential PIC18® Microcontroller

Program 14.5 An implementation of the EKG peak picker in C
#bit RA0 = 0xF80.0 /* Pin RA0 is bit 0 of Port A */
#byte PORT_B = 0xF81 /* Port B is File h’F81’ */

#int_timer0
void ecg_isr(void)
{
unsigned int analog;
static unsigned long int threshold = 0;
static unsigned int maximum;
analog = read_adc();

if(analog > threshold>>8)
{
maximum = analog; /* New maximum value */
PORT_B = analog; /* Show the outside world */
threshold = maximum << 8; /* New 2-byte threshold */
RA0 = 1; /* Tell outside world */
}

else if(threshold >= 0x0004)/* IF threshold not less than h’0004’*/
{
threshold = threshold - 0x0004; /* THEN reduce by 1/64 */
RA0 = 0; /* Signal no update */

}
}

The threshold variable is defined as a long int and the CCS compiler
will then treat this datum as a 16-bit variable as required. The definition in equating
threshold to zero will only initialize it once when the program begins its run, as
the variable is static. Again this is not the normal behavior of a default auto
variable.

In equating threshold to the new maximum value, the latter is multiplied
by 256 by shifting left eight times. A good compiler will automatically change a
N*256 to N<<8; or even better just take the upper byte of the pair as the outcome.
This double-byte form allows for the reduction by 1

64 of a bit h’0004’ to give the
specified falling trip level.

Example 14.3 A microcontroller is to be used to calculate a measure of power
discharged by the diphasic defibrillator of Fig. 14.5. When the MCU detects the
beginning of the discharge, 256 samples are to be taken at a nominal rate of 20,000
per second; with the sum of the squares of the deviation from the baseline voltage
being an analog measure of the power—assuming that the resistance of the patient’s
chest/electrodes remains constant whilst all this is going on!

A 4.096 V voltage reference device is to act as an external reference voltage
for a ADC module, giving a 16 mV resolution for an 8-bit conversion. After the
process begins, pinRA4 is to be pulsed as a trigger for a storage oscilloscope, which
allows the waveform to be captured for archiving purposes. When the process has
been completed, the top byte of the power summation is to be output via Port B for
display.

Show how you might use a 20 MHz PIC18F4520 device to implement the logic
of the measurement system. You can assume that the voltage reference device can

14 Take the Rough with the Smooth 531

be biased as for a Zener diode. In practice an optional potentiometer can be used to
trim the voltage slightly for more accurate results.

Solution Figure 14.21 shows a suitable hardware configuration, from which we can
estimate the peripheral budget. The signal itself ranging between +1.8 and +3.6 V
(see Fig. 14.5) is connected to Analog channel 0 at pinRA0/AN0. The 10 k� resis-
tor protects the analog input against overvoltage as well as implementing an anti-
aliasing filter, with the 3.3 nF capacitor giving a 450 kHz nominal breakpoint.
As the actual defibrillator uses very large voltages (of the order of 25 kV) the two
1N4004 diodes act as additional protection against high-voltage spikes, supplement-
ing the internal diodes shown in Fig. 14.13.

The external 4.096 V source is directly connected to pinRA3; which will require
VCFG0 in ADCON1[4] to be set to use this as the positive reference voltage. Both
the VDD and VREF+ voltages are decoupled with 1 µF tantalum capacitors to reduce
noise at this point.

An internal analog comparator is used to detect the initial rise of the discharge
voltage as described in Fig. 14.5. If Comparator module mode b’110’ is used, then
the CVR module can be used to generate an internal reference voltage as described

Fig. 14.21 Measuring the discharge power for an EKG defibrillator

532 The Essential PIC18® Microcontroller

on p. 503. With the CIS bit cleared (see Fig. 14.7) Comparator 1 can share Analog
channel 0 with the ADC module.

Finally, both RA4 and all of Port B must be configured as digital outputs. The
former is going to be used to generate a synchronization pulse, and the latter to
output the end result of the analysis.

org 0 ; Reset vector
bra SET_UP ; Go to the background routine
org 8 ; Interrupt vector
goto ECG_ISR ; Service a Comparator interrupt

SET_UP movlw b’00000110’ ; Comparator mode 110 CIS = 0
movwf CMCON
call DELAY_10US ; Allow 10us for voltages to settle
movf CMCON,f ; Read CMCON clears any Change state
bsf PIE2,CMIE ; Enable Comparator interrupts

movlw b’10001110’ ; CVR on (1), not ext (0), Hi range
movwf CVRCON ; Supply ref (0), CVR3:0 = 1110

movlw b’101111’ ; Make RA4 an output
movwf TRISA
clrf TRISB ; PortB is all output

movlw b’00000001’ ; Turn on ADC module, Channel 0
movwf ADCON0
movlw b’00011110’ ; RA0 analog input
movwf ADCON1 ; RA3 is VREF+ input
movlw b’00010101’ ; Clock/16, 4TAD sampling delay
movwf ADCON2

bcf PIR2,CMIF ; Zero the Comparator Interrupt flag
bsf INTCON,PEIE ; Enable Peripheral Interrupt group
bsf INTCON,GIE ; & Globally enable interrupt system

Based on our analysis, the initialization code is shown above. The modules are
set-up as follows:

1. The Analog comparator module is turned on in Mode b’110’ with CIS = 0.
A 10 µs delay is also employed to allow the module to settle. After this, the
CMCON register is read to clear any Change condition. This allows the CMIF
flag to be subsequently zeroed and interrupts enabled.

2. The CVR module is enabled and set to tapping b’1110’ in the high range to give
a 3.4375 V reference.

3. The ADC module is enabled and configured to use pinRA0 as an analog channel
and to use RA3 for the external VREF+. Alignment is set-up to facilitate an 8-bit
outcome. The ADC clock is sourced as the system 20 MHz frequency divided
by 16 and a 4 × TAD sampling delay.

4. PORTA[4] is set-up as an output, as required for AN0. Other Port A pins are left
as inputs. All of Port B is configured as output.

14 Take the Rough with the Smooth 533

Program 14.6 Gauging the defibrillator discharge power
MAIN sleep ; Idle

movff POWER,PORTB ; Output top byte of power
bra MAIN

; ***
; * FUNCTION: ISR to begin the defibrillator analysis *
; * ENTRY : On a Comparator module interrupt *
; * EXIT : Update POWER:3 *
; * RESOURCE: GET_ANALOG subroutine gets 8-bit digitized data *
; * RESOURCE: SQUARE subroutine does 8x8 multiplication *
; ***
ECG_ISR btfss PIR2,CMIF ; Was this a Comparator interrupt?

bra ECG_EXIT ; IF not THEN exit

clrf POWER+2 ; Zero the 3-byte grand total
clrf POWER+1
clrf POWER ; LSB
clrf COUNT ; Prepare to do loop 256 times

bcf PORTA,4 ; Pulse RA4
bsf PORTA,4 ; to generate a synch pulse
bcf PORTA,4

ACQUIRE clrf WREG ; Channel 0 (W is h’00’)
call GET_ANALOG ; Do a conversion
addlw -BASELINE ; Difference from baseline voltage
call SQR ; Square it

movf SQUARE,w ; Get LSB of squared voltage
addwf POWER,f ; Add it to the low byte of Power
bnc NEXT_BYTE ; IF no Carry THEN next byte
incf POWER+1,f ; Increment the high byte of Power
bnc NEXT_BYTE ; IF no Carry THEN next byte
incf POWER+2,f ; IF yes THEN increment upper byte

NEXT_BYTE movf SQUARE+1,w ; Get MSB of squared voltage
addwf POWER+1,f ; Add it to the high byte of Power
bnc CONTINUE ; IF no Carry THEN finished
incf POWER+2,f ; THEN increment the Upper byte

CONTINUE call DELAY_460US; Wait around for the next sample
incfsz COUNT,f ; Increment the loop count and do
bra ACQUIRE ; another acquisition if not zero

ECG_EXIT movf CMCON,f ; Change situation
bcf PIR2,CMIF ; and clear the interrupt flag
retfie FAST ; and return from interrupt

The actual software itself is shown in Program 14.6. The Main routine sim-
ply sleeps until the Comparator module changes state and generates an inter-
rupt. When control returns to the background routine, the top byte of the triple-

534 The Essential PIC18® Microcontroller

byte Power accumulator is copied to Port B and the process repeated for the next
run.

The foreground routine first confirms the source of the interrupt and then clears
a loop counter and the three bytes used to store the grand sum of the 256 squares
of the sampled voltage. PinRA4 is then pulsed to tell the outside world that the
discharge is beginning.

The GET_ANALOG subroutine listed in Program 14.1 is used to acquire an 8-
bit digitized sample. The difference between the baseline voltage of 2.6 V (see
Fig. 14.5) is then determined. This signed voltage is then squared using the SQR
routine of Program 8.3 on p. 259. The two global return bytes SQUARE+1:SQUARE
are then added to the triple-byte total POWER+2:POWER+1:POWER array.

This is repeated 256 times, with an extra loop delay of 460 µs to give an approx-
imate 500 µs total delay necessary to give the specified 2 kHz sampling rate. If a
greater sampling rate accuracy is required, then a Timer can be used to generate a
High-priority interrupt at this point. When this has been completed, taking a total
time of around 128 ms, the Comparator module is read to clear the difference condi-
tion. This is done at the end of the process, rather than at the beginning, as the input
voltage will fall back through the 3.4375 V Comparator threshold part way through
the process and trigger another change! The CMIF flag is then cleared and the ISR
quit.

Of course this is rather rudimentary. For instance, the baseline voltage may vary
with time, so a learning run prior to an analysis may be necessary. If fairly sta-
ble, this value can be burnt into non-volatile memory as described in the next
chapter. The use of a fixed number of samples can be restrictive, and additional
loops can be implemented until the voltage difference drops below a certain thresh-
old.

Example 14.4 Using C coding, show how a 10-bit digitized reading from Channel 3
of a PIC18F4520 can be acquired with the processor in its Sleep state.

Solution The CCS compiler uses the sleep() function to put the MCU to sleep;
this simply translates to the sleep instruction. A Sleep conversion cannot be im-
plemented using the read_adc() function of Program 14.3 as no processing is
done in the Sleep state. Instead we need to set and clear individual interrupt related
bits before going to sleep in the manner outlined in the assembly-level Program 14.2.
On wakening the state of ADRESH:L registers can then be read ‘manually’ and com-
bined to give the 10-bit outcome.

Coding for this specification is shown in Program 14.7. Here the PEIE, ADIF
and GO/DONE bits are defined using the #bit directive. This time the script
ADC_CLOCK_INTERNAL is used with the setup_adc() internal function to se-
lect the internal CR clock for the DAC module; as necessary for the Sleep conver-
sion.

The internal function disable_interrupts(GLOBAL) clears both GIE and
PEIE mask bits. The complementary enable_interrupts(GLOBAL) sets both
bits, but we need to enable the PEIE only and leave GIE cleared. This is imple-
mented by the ‘bit-twiddling’ statement PEIE=1;. Similarly, clearing the ADIF

14 Take the Rough with the Smooth 535

Program 14.7 Sleep conversion in C
#include <18f4520.h>
#device ADC=10 /* Configure for a 10-bit outcome */
#use delay(clock=8MHZ) /* Tell compiler its an 8MHz clock */

#bit ADIF = 0xF9E.6 /* The A/D Interrupt Flag in PIR1[6] */
#bit PEIE = 0xFF2.6 /* The group interrupt flag in INTCON[6] */
#bit GO = 0xFC2.1 /* The Go/NOT_DONE bit in ADCON0[1] */

#byte ADRESH = 0xFC4 /* The Result registers */
#byte ADRESL = 0xFC3

main()
{
unsigned long int result; /* 16-bit digitized outcome */
set_tris_a(0x0E);
setup_adc(ADC_CLOCK_INTERNAL|ADC_TAD_MUL_2);
setup_adc_ports(AN0_TO_AN3);
set_adc_channel(3);
disable_interrupts(GLOBAL);/* Disable all ints (GIE & PEIE=1) */
ADIF = 0;
enable_interrupts(INT_AD);
PEIE = 1; /* Enable the auxiliary group interrupts */
/* Code */
GO = 1;
sleep();

result = ((long)ADRESH<<8)+ADRESL; /* When awake read each byte */
return;
}

flag is directly actioned by ADIF=0;. Before calling sleep(), the statement
GO=1;manually starts the conversion. After sleep() the ADRESH register is read
and cast to a long int to ensure that the compiler treats it as a 16-bit object. Mul-
tiplying by 256 tells an intelligent compiler to treat it as the top byte of a 16-bit
object. Adding ADRESL puts this in the low byte of the 2-byte outcome.

Self-Assessment Questions

14.1 In Example 14.2 the decay of the threshold level was linear. Although this
is fairly effective for situations where the nominal period is known a priori
and does not vary greatly, an exponential decay would be better suited where
this is not the case. To generate this type of relationship a fixed percentage of
the value at each sample point should be subtracted to give the new outcome
rather than a constant. Show how you could modify Programs 14.4 and 14.5
to decrement at a rate of 1

4096 (≈0.025%) on each sample and determine the
time constant in terms of the number of samples.

14.2 Real-world analog signals are noisy. In practice this means that some form
of filtering or smoothing is frequently required. In any circumstance, noise
coming in from outside should not have any appreciable frequency compo-
nents above half the sampling rate, since such noise will be frequency shifted

536 The Essential PIC18® Microcontroller

back into the baseband; as shown in Fig. 14.4. Such low-pass filtering must be
applied to the signal before the A/D conversion, as shown in Fig. 14.21.

Although this external anti-alias filter must by definition be implemented
using hardware circuitry (such as a CR network), noise within the passband
can be smoothed out using software filtering routines. One simple approach to
digital filtering is to take multiple readings and average them to give a com-
posite outcome. For example, 16 readings summed and shifted right four times
(÷16) would reduce random noise by a factor of

√
16 = 4—see also SAQ 6.9

on p. 203.
Another approach well known to statisticians, is to take a moving average;

for example, of a stock price over a month interval. A comparatively efficient
algorithm of this type is a 3-point average:

Array[i] = Sn

4
+ Sn−1

2
+ Sn−2

4
,

where Sn is the nth sample from the analog module.
Show how you could modify the GET_ANALOG subroutine to remember

the last samples from the two previous calls and return the smoothed value.
14.3 It has been proposed that as part of the EKG monitor of Example 14.2 that the

MAX506 DAC of Fig. 14.17 be used to introduce an automatic gain control
(AVC) function preceding the PIC MCU’s analog input. The aim of the AVC
is to keep the peak of the analog input between 3

4 and 7
8 full scale. How might

you go about implementing this subsystem? Hint: Recall that the output of
each channel of a MAX506 is the product of its digital input and VREF, and
that the latter can vary between 0 V and VDD.

14.4 An input analog sinusoid signal, conditioned as shown in Fig. 14.19, is to
be full-wave rectified; that is, voltages that were originally negative are to
have their sign changed. Design a routine to do this, assuming that the 8-bit
digitized input voltage is available at ADRESH and the processed output is to
be presented via Port B to a DAC.

14.5 Figure 14.22 is based on Fig. 10 of Microchip’s application note AN546 Us-
ing the Analog-to-Digital (A/D) Converter, as a means of providing an external
voltage reference source for power-sensitive applications. How do you think
the circuit works and what factors govern the choice of current limiting resis-
tor?

14 Take the Rough with the Smooth 537

Fig. 14.22 A controllable
external voltage circuit

Chapter 15
To Have and to Hold

Many applications involving digital circuitry involve the storage of semi-permanent
information. Such non-volatile data is distinguished from that held in RAM, in that
it will remain unaltered during periods when the system is powered down. Typically
the nature of such data will be look-up tables (e.g. see Program 6.13 on p. 196),
alphanumeric strings and data gathered from the outside world. A good example of
this is the odometer tally in a car; which needs to be retained in the absence of a
power supply—see Example 12.3 on p. 442. Although this facility can be imple-
mented using an external EEPROM memory, such as the 24XXX of Fig. 12.28 on
p. 443; where only a modest amount of non-volatile data needs to be kept, integral
EEPROM storage increases reliability and reduces cost, size, and power require-
ments.

Our objective here is to examine these integral non-volatile storage facilities.
After reading this chapter you will:

• Be familiar with the characteristics of the EEPROM Data module.
• Know how to both read and write data to the EEPROM Data module.
• Understand how the main Flash EEPROM Program memory can be used to re-

trieve, and in some devices to store, non-volatile data.
• Be able to contrast the EEPROM Data module and Flash Program memory as a

location for non-volatile data.

The now obsolete PIC16C84, introduced in 1994, had several firsts. The Program
store used electrically erasable PROM technology, which meant that UV radiation
was not needed to erase data—see Fig. 2.13 on p. 27. Along with this innovation,
an EEPROM Data peripheral module was featured; which enabled the programmer
to store up to 64 bytes of non-volatile data independently of the normal Data store.

The PIC16C84 and its analogous Flash EEPROM Program store successor, the
PIC16F84, remained the only EEPROM family member until the introduction of the
PIC16F87X in 1998. This innovative device and many of its successors, including
the PIC18 family, blurred the Harvard architecture’s separation between Program
and Data, by allowing data to be read from the Program store and in some devices,
to be written into it.

S. Katzen, The Essential PIC18® Microcontroller,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-229-2_15, © Springer-Verlag London Limited 2010

539

540 The Essential PIC18® Microcontroller

Before examining the details, it is instructive to look at an application requiring
the use of non-volatile storage. A good example of this is the smart card of Fig. 12.1
on p. 380. Here we need to store, amongst other things, the card account number,
PIN number, start and expiry dates. Some of this data, such as the account number,
is essentially fixed. Security data may need to be altered occasionally by the user
from a terminal. If the card is used as a cash card, its credit will need to be charged
via an ATM and discharged when payments are made. The size and cost sensitivities
of a smart card processor is such that integral EEPROM data storage is vital.

Figure 15.1 shows the logic organization of the PIC18 EEPROM Data module.1

The memory matrix is not part of the normal Data and Program stores but is indi-
rectly accessed via four SPRs, which address the target byte, collect/hold data, and
control the Read and Write processes.

EEPROM Matrix
The enhanced-range EEPROM Data module architecture supports up to 256 byte-
sized cells. Key features are:

• 1,000,000 typical (105 minimum) Erase/Write cycle endurance for each cell at
5 V and 25◦C.2

• Maximum Erase/Write cycle time 4.86 ms; 4.11 ms typical.
• Data retention greater than 40 years.

EEADR
The EEPROM ADdRess Register addresses the target cell holding the EEPROM
data.

EEDATA
The EEPROM DATA Register either holds the 8-bit datum read out of the ad-
dressed cell or the byte the programmer wishes to write to the target EEPROM cell.

EECON1
The EEPROM Data module has two modes of operation, with EEPROM CONtrol
Register 1 controlling and monitoring the Read and Write actions. EECON1 is also
used to switch between the EEPROM Data module, Flash EEPROM or Configura-
tion data (such as the Fuses).

RD
The ReaD control bit initiates a Data EEPROM read action. After one instruc-
tion cycle RD will automatically be cleared. This bit is not used when accessing
the Program store EEPGD = 1 or CFGS = 1.

WR
Setting the WRite control bit initiates a Data EEPROM or Flash memory erase
or write operation. WR automatically clears when the process has completed.

1A few family members have an extended architecture. For instance, the PIC18F2620 supports
1 kbyte.
2Compare with 10,000 to 100,000 for Flash Program memory.

15 To Have and to Hold 541

Fig. 15.1 The PIC18 EEPROM Data module

WREN
WRite ENable enables a write process by gating WR. This reduces the proba-
bility of an erroneous destruction of data.

542 The Essential PIC18® Microcontroller

Fig. 15.2 The PIC18FXX20 EECON1 register

WRERR
WRite ERRor signals a prematurely terminated write process (e.g. by a Re-
set). When 0, a successful write process is signaled.

FREE
Flash Row Erase Enable causes a row of Program memory to be erased when-
ever a write process is actioned. FREE is cleared automatically on completion
of the process.

CFGS
ConFiGure Select allows access to the Configuration region of the Program
store—see Fig. 15.4.

EEPGD
EEPROM ProGram or Data targets the Data EEPROM module when 0 oth-
erwise Flash memory.

EEPROM CONtrol Register 2 EECON2
This register is not physically implemented; it always reads as zero. Rather the ac-
tion of writing the code pattern b’01010101’ followed immediately by b’10101010’
with no interruption is used to unlock the Write cycle. This arcane incantation is
deliberately designed to convolute the process, as security against accidental alter-
ations in the data. EECON2 gives all zero if read.

In order to read a specified datum from the EEPROM Data module we have to
implement software to execute the task list:

1. Copy the target cell’s address to EEADR.
2. Set RD to 1 to initiate the Read cycle.
3. RD is automatically cleared and the target 8-bit datum can be read from EEDATA

any time from the next instruction cycle, as convenient.

Subroutine READ_EEPROM in Program 15.1 directly implements this process
and illustrates the return of the datum from the EEPROM cell via the Working reg-
ister. The datum will remain in EEDATA until the register is reused.

Writing data to the EEPROM Data module is deliberately made more Byzantine
to reduce the chance of a spurious Write corrupting the data due to a software bug or

15 To Have and to Hold 543

Program 15.1 Retrieving a byte from the EEPROM Data module
; **
; * FUNCTION: Gets one byte from the EEPROM Data module *
; * ENTRY : Address in EEADR *
; * EXIT : Datum in W and in EEDATA. System in Bank0 *
; **
READ_EEPROM movlw b’00000001’ ; Set RD for Read cycle

movwf EECON1 ; Read datum into EEDATA
movf EEDATA,w ; Copy into W
return ; for return

processor malfunction because of, say, a power glitch. The task list to write a datum
to a specified cell is:

1. Copy the target cell address to EEADR.
2. Set WREN in EECON1[2] to enable the Write process.
3. Disable all interrupts.
4. Send h’55’ to EECON2.
5. Send h’AA’ to EECON2.
6. Set WR to initiate the Write cycle.
7. Clear WREN.
8. Enable interrupts.
9. Wait until WR returns to zero, signaling the completion of the Write cycle, and

exit.

The Write cycle will not initiate if the interlock sequence in items 4–6 is not
exactly followed without interference. For instance, an interruption during the inter-
lock sequence will abort the Write cycle. Thus, in this situation interrupts should be
disabled by clearing GIE until the Write cycle has been initiated.

If desired, the completion of the Write cycle can be used to interrupt the proces-
sor. This is enabled by setting the EEIE mask bit. When the interrupt flag EEIF, is
set on completion of the Write action, then the interrupt is generated in the normal
way. EEIF should be cleared in the ISR.

It is possible that the processor is reset; for instance, by a Watchdog overflow,
before the Write cycle is complete. In this situation, the EEPROM datum may be
corrupt. The WRERR flag in EECON1[3] will be set if the Write operation has been
prematurely terminated with a Reset action. If this is not the case, when the cycle
is complete the datum may be read back and verified to give extra security. The
WREN bit may be cleared at this point to help prevent an accidental Write. Doing
this before the Write is complete will not affect the operation.

Program 15.2 implements this task list. Both EEDATA and EEADR are set up by
the caller program with the byte datum and address. The subroutine is not exited
until the Write cycle has completed; ≈4 ms. This ensures that these SPRs will not
be altered during the cycle, which may possibly give an erroneous outcome.

In order to illustrate these concepts, we will repeat Example 12.3 on p. 442,
which incremented a non-volatile triple-byte odometer total in external serial EEP-
ROM, but this time using the internal Data EEPROM module. We will assume that
the odometer count is located at EEPROM cells h’10–12’.

544 The Essential PIC18® Microcontroller

Program 15.2 Putting a byte into the EEPROM Data module
; **
; * FUNCTION: Writes one byte into the EEPROM Data module *
; * ENTRY : Datum byte in EEDATA, module address in EEADR *
; * EXIT : Interrupts disabled for 7 instructions *
; **
WRITE_EEPROM

clrf EECON1
bsf EECON1,WREN ; Enable for Write cycle
bcf INTCON,GIE ; Disable all interrupts

movlw h’55’ ; Now do the interlock
movwf EECON2
movlw h’AA’
movwf EECON2

bsf EECON1,WR ; Initiate the Write cycle
bcf EECON1,WREN ; Optionally disable any other Writes
bsf INTCON,GIE ; Re-enable interrupts

EE_FINI btfsc EECON1,WR ; Check, has the Write completed?
bra EE_FINI ; IF not THEN retry
return ; and return when cycle has finished

The coding shown in Program 15.3 makes use of the two subroutines READ_
EEPROM and WRITE_EEPROM to read and subsequently write the three odometer
bytes from/to the EEPROM module. The address of the first (highest) byte is copied
into EEADR at the beginning of the subroutine and is subsequently incremented and
decremented in situ to point to the appropriate datum.

After the 3-byte odometer state has been fetched and copied into memory it is
incremented in exactly the same manner as in Program 12.20 on p. 445. The aug-
mented array is then written back into EEPROM in the opposite sense as it was
read, with EEADR being decremented. The WRITE_EEPROM subroutine checks
that the Write cycle has been completed before returning and thus timing need not
be checked by the calling program.

Program 15.4 gives an equivalent coding in CCS C. The approach here is to build
up a 3-byte object, called mile, from the three individual EEPROM bytes. After
incrementing the mileage, it is taken apart into its constituent bytes, which are put
back into the Data EEPROM. CCS C has special library functions which facilitate
reading from and writing to Data EEPROM, as well as putting together and taking
apart bytes which are more efficient than shifting and ANDing with standard C.
Such functions used in this program are:

read_EEPROM(addr)
This function returns an 8-bit integer, being the contents of the Data EEPROM cell
who’s address has been passed to the function.

write_EEPROM(addr,value)
A single byte datum is written into Data EEPROM at the specified address.

15 To Have and to Hold 545

Program 15.3 Incrementing the non-volatile odometer count in Data EEPROM
; ***
; FUNCTION: Adds one onto the triple-precision odometer total *
; RESOURCE: Subroutines WRITE_EEPROM and READ_EEPROM *
; ENTRY : Current total in EEPROM module at h’10:11:12’ *
; EXIT : Incremented total back in EEPROM module *
; EXIT : also available in RAM at MSB:NSB:LSB *
; ***
EXTRA_MILE ; Get the three bytes from the Data EEPROM ---------

movlw h’10’ ; Address of high-byte odometer total
movwf EEADR ; Copy into EEPROM address register
call READ_EEPROM ; Read byte from EEPROM module
movwf MSB ; and put into File register MSB

incf EEADR,f ; Address of middle byte odometer
call READ_EEPROM ; Read byte from EEPROM module
movwf NSB ; and put into File register NSB

incf EEADR,f ; Address of low byte odometer
call READ_EEPROM ; Read byte from EEPROM module
movwf LSB ; and put into file register LSB

; Now increment 3-byte array ----------------------------------
incfsz LSB,f ; Add one & skip IF zero
bra PUT_BACK ; IF not THEN continue
incfsz NSB,f ; Increment middle byte
bra PUT_BACK ; IF not zero THEN continue
incf MSB,f

; Put the augmented odometer count back in Data EEPROM -------
PUT_BACK movff LSB,EEDATA ; Copy new odo low byte to EEDATA

call WRITE_EEPROM ; Write to EEPROM cell h’12’

decf EEADR,f ; Address of middle byte
movff NSB,EEDATA ; Get new odo mid byte to EEDATA
call WRITE_EEPROM ; Write to EEPROM cell h’11’

decf EEADR,f ; Address of high byte
movff MSB,EEDATA ; Get new odo low byte to EEDATA
call WRITE_EEPROM ; Write to EEPROM cell h’10’

return

make32(val1, val2, val3, val4)
This function builds up a 32-bit number out of up to four 8- and 16-bit numbers. Up
to four parameters are passed, with the rightmost being the lower byte or word of
the returned value.

In standard C this function is equivalent to a process of shifting and addition.
For instance, the make32() function in our program is equivalent to:

mile = (read_eeprom(0x10)<<16)
+read_eeprom(0x11)<<8 read_eeprom(0x12);

There is also an analogous make16() function to build up a 16-bit word from two
bytes.

make8(value,offset)
This function is the reverse counterpart of make32() int that it returns a sin-

546 The Essential PIC18® Microcontroller

Program 15.4 Incrementing the odometer in C
void extra_mileage(void)
{
int32 mile; /* 32-bit variable */
/* Build up a 3-byte word from three individual EEPROM bytes */
mile=make32(read_eeprom(0x10),read_eeprom(0x11),read_eeprom(0x12));
mile++; /* One more mile (or km) */
write_eeprom(0x12,make8(mile,0)); /* Mile byte0 to EEPROM @ 0x12 */
write_eeprom(0x11,make8(mile,1)); /* Mile byte1 to EEPROM @ 0x11 */
write_eeprom(0x10,make8(mile,2)); /* Mile byte2 to EEPROM @ 0x10 */
}

gle byte from a 16- or 32-bit number. For the latter, the offset parame-
ter is 0, 1, 2, 3 and specifies the byte number to be extracted. For instance,
in our program make8(mile,2) is equivalent to the standard C expression
(mile>>16)&0xFF.3

As well as altering data under program control it is possible to initialize the state
of the EEPROM Data module at the same time as the executable program is being
externally blasted into the Program memory. To facilitate this, the EEPROM Data
module can be treated as if it overlays the Program store, with cell h’00’ mapping
into h’F00000’. For instance, to store the value of sine every 10◦ between 0◦ and 90◦
as part of the program source code we have:

org h’F00000’ ; The EEPROM Data module
SINE de 0, h’2C’, h’57’, h’7F’, h’A4’

de h’C4’, h’DD’, h’F0’, h’FB’, h’FF’

where the assembler directive de (Data EEPROM) specifies the comma-delimited
list of data. This data is normalized as sinθ × 256. After the PIC MCU has been
programmed, the contents of the EEPROM Data module will look like Fig. 15.3.

Any data programmed in this way can be subsequently read by the program. For
instance, to read sin(50) the contents of EEPROM Data module location h’05’ (50

10)

is read; giving from our diagram h’C4’ or decimal 196 (196
256 = 0.76525 = sin(50)).

Writing to the EEPROM causes some wear and tear to the thin layer of insulation
between gate and substrate; as illustrated in Fig. 2.13 on p. 27. The actual mecha-

Fig. 15.3 The first 32 bytes of EEPROM holding the sine look-up table

3For another approach to this example without using these makex() functions, see Example 15.1
in my Quintessential PIC® Microcontroller.

15 To Have and to Hold 547

nism is disputed, but perhaps may be charges lodged in the insulation during the
quantum tunneling process. Damage does not occur during reading, which can be
done indefinitely, but the Data sheet gives two endurance figures for writing.

Byte Endurance
Parameter D120 quotes a typical figure of 106 erase/writes before a cell becomes
unusable. This is over the normal ambient temperature range of −40◦C ≤ TA ≤
+85◦C and a VDD of 5 V. The minimum endurance is 100,000 writes.

Total Endurance Before Refresh
Parameter D124 is more difficult to understand. During Write actions, a small per-
turbation occurs to other cells in the module. This does not cause damage, as such,
but may eventually corrupt the logic state. The figure given is typically 107, with a
minimum of 106.

As no destruction is done to the physical operation of the cells, writing data back
again; that is refreshing it, on a regular basis will restore it. In practice, problems
are only likely to occur when the EEPROM holds a mixture of constant data never
written to (such as our table of sines) and others that are frequently updated—such
as our odometer. If there are many of the latter, it could be that the cumulative
number of Write processes will exceed this parameter.

Generally endurance figures rise significantly with lower VDD values and ambi-
ent temperatures. More details are given in Microchip’s application note AN1019
EEPROM Endurance Tutorial. Apart from a regular refresh, it may be possible to
segregate the constant and infrequently accessed data into the Flash EEPROM Pro-
gram store.

It is possible to prevent access to the Data EEPROM module during the initial
programming blasting action. The default setting of the CPD fuse allows external
access for both reading and writing. The CPU can always read data from this mod-
ule, but internal writes can be inhibited by clearing the WRTD fuse.

Many projects make use of a fraction of the Program store memory. For instance,
if a PIC18F4520 uses 10 kbytes worth of executable software, that leaves 22 kbyte of
wasted resource. It is possible to blast data into the Program store at the same time
as the executable code; in a similar manner to that shown in Fig. 15.3. However,
because of the Harvard structure, which completely separates the Data and program
memories, such data cannot be read using normal software—see Fig. 3.2 on p. 43.

Early PIC MCU devices partly circumvented this restriction by using lists of
retlw instructions to fabricate subroutines to return one byte constant from effec-
tively a look-up table; for instance, Program 6.6 on p. 175. This stratagem is waste-
ful of storage, as each byte is stored as a 16-bit instruction in the PIC18 family.
Furthermore, there is no mechanism to alter such data after the initial programming
process.

Some later PIC16 devices introduced additional logic to modify the Harvard
structure and gain access to the Program store; which was treated as an extension of

548 The Essential PIC18® Microcontroller

Table 15.1 Table Read and Table Write instructions

Operation Mnemonic Description

Read from Program store as pointed to by TBLPTR[21:0] into TABLAT

TaBLe ReaD

TABLPTR:3 unchanged tblrd* [TABLAT] <-<TBLPTR>

TABLPTR:3 post incremented tblrd*+ [TABLAT] <- <TBLPTR++>

TABLPTR:3 post decremented tblrd*- [TABLAT] <- <TBLPTR->

TABLPTR:3 pre incremented tblrd+* [TABLAT] <- <++TBLPTR>

Write to Program store as pointed to by TBLPTR[21:0] from TABLAT

TaBLe WriTe

TABLPTR:3 unchanged tblwt* <TBLPTR ><- [TABLAT]

TABLPTR:3 post incremented tblwt*+ <TBLPTR++> <- [TABLAT]

TABLPTR:3 post decremented tblwt*- <TBLPTR -> <- [TABLAT]

TABLPTR:3 pre incremented tblwt+* <++TBLPTR> <- [TABLAT]

Note that no Status flags are altered by these instructions
TBLPTR:3 3-byte pointer TABLAT 1-byte data latch
[] Contents of < > Pointed to by
++ Incremented -- Decremented

the data EEPROM module.4 The PIC18 family uses a slightly different approach,
making use of two new instructions tblrd and tblwt to streamline Program store
manipulation; as detailed in Table 15.1.

The technology used for Flash EEPROM is different to that for the Data EEP-
ROM, with a much smaller cell size. The notably smaller cell size is necessary to
economically cope with the vastly greater capacity of the former, but it does impact
with endurance ratings. Key parameters are:

• 100,000 typical (104 minimum) Erase/Write cycle endurance for each cell at 5 V
and 25◦C.

• Typical Write cycle time 2 ms.
• Data retention minimum of 40 years; typically 100 years.

Access to the Program store involves two sets of control registers in addition to
the EECON1 (Fig. 15.2) and EECON2 registers used for the Data EEPROM mod-
ule.

TABLAT
TABle LATch is an 8-bit SFR used to hold the byte data read from the Program
store. It performs a similar role during a Write process.

4For details see Fig. 15.4 in my The Quintessential PIC® Microcontroller, 2nd edn. Springer, 2005.

15 To Have and to Hold 549

TBLPTRL, TBLPTRH, TBLPTRU
The TaBLe PoinTeR comprises three SFRs, holding the low, high and upper por-
tions of the 22-bit address of the Program store. TBLPTR[20:0] allows access to po-
tentially 2 Mbyte of program memory; although our exemplars vary from 8 through
32 kbyte (4 to 16 kword). Effectively, TBLPTR[21] selects the address range holding
Device/User ID and the Configuration fuses—see p. 316.

Figure 15.4 shows the PIC18F4520 Flash Program store as seen from the internal
perspective of the tblrd instruction. Essentially this memory space is functionally
sectioned into two zones. The Special zone holds the eight Configuration fuse bytes
at h’30000–7’ (see Appendix B) and two read-only device ID bytes set by Microchip
to identify the device and silicon revision code. Also there are eight user accessible
bytes at 20000–7’ which can be used by the end user to store identity codes; such
as software revision code. To gain access to this zone, the CFGS bit (see p. 542) in
EECON1[6] must be set to 1. If CFGS = 0, its default reset value, then EEPGD in
EECON1[7] can be used to select between the reset default Data EEPROM module
or the general code area of the Program store.

The task list for reading from the Program store is:

1. Ensure that the EEPGD and CFGS are set-up to target either the Special or
Normal zones as appropriate.

2. Copy the target cell’s address to the three TBLPTR registers.
3. Execute a tblrd instruction.
4. The datum byte can be read from TABLAT by the following instruction onwards.

To illustrate the process, the subroutine READ_PROG__EEPROM_PLUS of Pro-
gram 15.5 reads one byte from the cell address which is passed in the TBLPTR:3
registers and returns with the requested byte in TABLAT. EEPGD:CFGS are set to 10
on entry, to target the normal zone of the Program store, and cleared on exit to the
default reset state targeting the Data EEPROM module.

We see from Table 15.1 that tblrd has four variants. The normal tblrd*
leaves the pointer unchanged, whilst it is possible to automatically do a 3-byte in-
crement or decrement after use, or an increment before use. This facilitates access
to character strings or tables which are resident in sequential cells. Our subroutine
code shows the post-increment version of the access.

Program 15.5 Reading a byte from the Normal Flash EEPROM zone
; **
; * FUNCTION: Gets one byte from the Flash Program store *
; * ENTRY : Address in TBLPTRU:TBLPTRH:TBLPTRL (TBLPTR:3) *
; * EXIT : Datum in TABLAT, TBLPTR incremented *
; **
READ_PROG_EEPROM_PLUS

bsf EECON1,EEPGD ; Enable access to Program memory
bcf EECON1,CFGS ; Ensure not Configuration memory
tblrd*+ ; Get pointed-to datum & inc pointer
bcf EECON1,EEPGD ; Back to default condition
return ; and return with the datum

550 The Essential PIC18® Microcontroller

Fig. 15.4 Reading a byte from the PIC18F4520 Flash EEPROM storage system

As an example of the use of READ_PROG_EEPROM_PLUSwe will design a sub-
routine that will return the cosine of an integer degree between 0 and 90, normalized
to the range h’0000–FFFF’ (treated as a fraction, this corresponds to 0–0.999).

Essentially we need to load in a table of 91 2-byte constants at the same time as
the executable code is blasted into the Program store. In Program 15.6 the directive
dw (Data Word) is used with a word datum in a comma separated list. For conve-
nience the radix directive is used to specify constants which by default are treated

15 To Have and to Hold 551

Program 15.6 Generating the cosine of an angle
radix decimal ; All following number are decimal

; **
; * FUNCTION: Generates cosine of an integer degree 0 -- 90 *
; * RESOURCE: Subroutine READ_PROG_EEPROM_PLUS *
; * ENTRY : Integer in WREG range 0 -- 100 *
; * EXIT : 16-bit cosine in COSH:COSL. *
; **
TABLE ; Table of constants expressed in decimal
dw 65535,65525,65495,65445,65375,65286,65176,65047,64897,64728
dw 64539,64331,64103,63855,63588,63302,62996,62671,62327,61965
dw 61583,61182,60763,60325,59869,59395,58902,58392,57864,57318
dw 56755,56174,55577,54962,54331,53683,53019,52339,51642,50930
dw 50203,49460,48702,47929,47142,46340,45524,44695,43851,42995
dw 42125,41243,40347,39440,38521,37589,36647,35693,34728,33753
dw 32768,31772,30767,29752,28729,27696,26655,25607,24550,23486
dw 22414,21336,20251,19161,18064,16962,15854,14742,13625,12505
dw 11380,10252,9121,7987,6850,5712,4571,3430,2287,1144,0

; Build up address of start of table in TBLPTR:3 --------------
COSINE clrf TBLPTRH

clrf TBLPTRU
bcf STATUS,C ; 1st multiply by two to give word offset
rlcf WREG,w
movwf TBLPTRL ; Low byte
btfsc STATUS,C ; Skip IF no Carry from x2
incf TBLPTRH,f ; ELSE make high byte 01

movlw low TABLE ; Get low byte of table address
addwf TBLPTRL,f ; Add it to offset low byte
movlw high TABLE ; Now get high byte of table address
addwfc TBLPTRH,f ; and add it plus any carry to high byte
movlw upper TABLE ; Now get upper byte of table address
addwfc TBLPTRU,f ; and update upper byte of pointer

; Now read pointed-to word and return in COSH:COSL ------------
call READ_PROG_EEPROM_PLUS
movff TABLAT,COSL ; The low byte
call READ_PROG_EEPROM_PLUS
movff TABLAT,COSH ; The high byte

return

as decimal. The de directive (see p. 546) can be used for individual bytes, but note
that an odd length list is padded out with h’00’ to always give an even block.5 This
ensures that any subsequent instructions will start on an even boundary!

Directly following the table is the executable code. The subroutine itself effec-
tively copies WREG × 2 into TBLPTR:3 and then adds the 3-byte address TABLE
to it to point to the relevant table entry. Note the use of the three assembler opera-
tors upper, high and low to extract the corresponding bytes out of an assembler
label—see p. 196. Each byte is then read, with TBLPTR:3 being automatically in-
cremented before exiting.

In Fig. 15.4 the Normal Program store zone is shown divided into five blocks.
The areas relate to code protection.

5The db directive pads out each byte with a zero byte, and thus is rather wasteful.

552 The Essential PIC18® Microcontroller

Any one of these blocks can be made private, in as much as they cannot be
read using a tblrd instruction from outside that block. For instance, if the lowest
2 kbyte of the Flash memory space; that is the Boot area,6 wishes to be confiden-
tial, then the EBTRB (External Block Table Read Boot) fuse should be cleared—
EBTRB=ON. As listed in Fig. 15.5, there is a like fuse for each block; e.g. EBTR1
for Block 1.

The great majority of PIC18F devices7 support self writing into the Flash EEP-
ROM space. This is a somewhat convoluted operation, not least because execution
of program code cannot continue during the several millisecond hiatus where data
is being changed.

As shown in Fig. 2.13 on p. 27, programming an EEPROM bit involves tunneling
charge onto the floating gate of a transistor. The erased state of this transistor is no
charge on this gate. In terms of the Microchip implementation, this reads as logic 1
and thus any bit can only be changed from 1 to 0. In practical terms, an EEPROM
byte must first be erased to all 1s and then any 0s blasted in. In the case of the
Data EEPROM module, single bytes can be written to as this erase-before-write
action is done automatically. Thus the necessity to erase is hidden from the software
designer. However, this is not true for the much larger PIC18 Program stores, which
are organized typically in rows 64 bytes. Thus an erase carried out before any byte
is written to will return 64 cells to h’FF’. An erase takes around 4 ms to perform,
during which time code execution ceases.

Single byte writing is not supported, and programming is carried out as a block
of typically 8 bytes (e.g. PIC18F1X20) through to 64 bytes (e.g. PIC18FX6K20). In
Fig. 15.5 the 32-cell block write architecture of the PIC18FXX20 devices is shown.
Thus the tblwt instruction’s interaction with the Program store is more complex
than its tblrd counterpart.

The tblwt instruction implements a Short Write into the Write buffer, which
in our diagram is a bank of 32 registers. TABLAT holds the single byte to be copied
into the Write buffer and TBLPTR[4:0] holds the address of the target buffer register.
A Short Write operation takes one instruction cycle.

The actual Long Write into the Program store blasts all 32 bytes from the
Write buffer based on a block starting at TBLPTR[21:5]00000. A Long Write is
initiated using the same EECON1 and EECON2 interlock process utilized for the
Data EEPROM module, but with the EEPGM or CFGS set as appropriate—see
Program 15.2. A Long Write process takes around 2 ms; during which time code
execution ceases.

As an Erase process obliterates a block of data in Flash EEPROM, a Write se-
quence of events must first copy the 64-byte block contents into RAM before eras-
ing. This image data can then be copied 32 bytes at a time (or whatever is appropriate
for the processor’s architecture) into the Write buffer; edited as required, and then

6So called because this restart area often contains code to initialize and start up the application
code; that is boot up.
7There are exemptions; such as the PIC16F4510.

15 To Have and to Hold 553

Fig. 15.5 Writing to Flash memory with the PIC18FXX20 group

554 The Essential PIC18® Microcontroller

Long written back into the Program store. This gives the task list for altering up to
64 bytes in the Program store as:

1. Copy target 64-byte Flash memory block into RAM using the tblrd* + instruc-
tion.

2. Edit data in the RAM image as appropriate.
3. Point back at the Program store and execute an Erase procedure.
4. Copy the bottom 32 bytes from the RAM image into the Write buffer using 32

Short Writes with tblwt.
5. Implement a Long Write sequence.
6. Copy the top 32 bytes from the RAM image into the Write buffer using Short

Writes.
7. Implement a Long Write sequence.

The subroutine WRITE_PROG_PLUS listed in Program 15.7 is an example
which writes a single byte into the Program store. It is designed for processors (such
as the PIC18FXX20 series) with a 64-byte Erase and 32-byte Long Write structure.
The byte is passed in WREG and the location is preloaded into the triplet TBLPTR:3
SFR.

Following the task list we have:

1. A block of 64 GPR Files called IMAGE is reserved using the cblock directive.
FSR0 is set-up to point to this block using the low and high assembler direc-
tives to pull apart the 2-byte address IMAGE and initialize FSR0L and FSR0H
respectively. Once this is done, the tblrd*+ instruction is used inside a 64-
pass loop with an auto incremented FSR0 used to indirectly copy each the byte
in the Flash EEPROM block via TABLAT into the 64-byte shadow RAM image
from IMAGE to IMAGE+31.

In order to start at the bottom of the Flash EEPROM block, the lower six
bits (26 = 64) of TBLPTRL is zeroed. However, the entry value of this register is
saved for later use before being modified.

2. The offset from the bottom of the block in which the new datum byte is to be
written to is the lower six bits of the entry value of TBLPTRL. Adding this to the
bottom address of the RAM image; i.e. FSR0 = IMAGE+TBLPTRL[5 : 0], gives
the target address. Into this pointed-to location is copied the new byte; which has
been temporarily stored in the File DATUM from WREG on entry.

3. Before writing back the image RAM into the Program store, a 64-byte Erase
needs to be executed. Again, the bottom of this block is computed by zeroing the
lower six bits (strictly the Erase process will automatically ignore these lower
bits, but this base value is used for the Write processes following).

Erase uses the subroutine BLAST_FLASH. This is the same as the inter-
lock Data EEPROM WRITE_EEPROM subroutine in Program 15.2, but with the
EEPGD and FREE bits in EECON1 set to 1. All cells in the target 64-byte Pro-
gram block are erased to h’FF’ after approximately 4 ms.

4. The bottom 32 bytes of shadow RAM are copied into TABLAT and transferred
in succession into the Write Buffer registers of Fig. 15.5. An auto incrementing
FSR0 initialized to IMAGE points into the shadow RAM to extract the datum.

15 To Have and to Hold 555

Program 15.7 Writing a byte into the Flash Program store
; ***
; * FUNCTION : Writes a single byte into Flash Program store*
; * FUNCTION : with a 64-byte Erase and 32-byte Long Write *
; * ENTRY : Address in TBLPTR:3; byte in WREG *
; * EXIT : Byte updated in Flash memory, TBLPTR++ *
; * RESOURCE : SFR FSR0, subroutine BLAST__FLASH_EEPROM *
; * ENVIRONMENT: IMAGE:64, COUNTER:1, DATUM:1, POINTERL *
; ***

cblock h’020’
IMAGE:64
COUNTER:1, DATUM:1, POINTERL:1

endc

WRITE_PROG_PLUS
bsf EECON1,EEPGD ; Point to Flash memory
bcf EECON1,CFGS

movff TBLPTRL,POINTERL ; Copy Low address byte
movwf DATUM ; and data

; Now read all 64 bytes from Flash memory into RAM image -------
movlw d’64’ ; Counter for 64 byte block
movwf COUNTER
movlw low IMAGE ; Set up FSR0 to point to
movwf FSR0L ; the RAM image block
movlw high IMAGE
movwf FSR0H
movlw b’11000000’ ; Zero the bottom 6 bits
andwf TBLPTRL,f ; of Flash address

READ_LOOP tblrd*+ ; Get byte from Flash
movff TABLAT,POSTINC0 ; Copy byte to RAM image
decfsz COUNTER,f ; Record one more byte
bra READ_LOOP

; Now modify the one byte in the RAM image @ Base + offset -----
movlw low IMAGE ; Set up FSR0 to point to
movwf FSR0L ; the RAM image block
movlw high IMAGE
movwf FSR0H
movf POINTERL,w ; Now add the 6-bit offset
andlw b’00111111’ ; POINTERL[5:0]
addwf FSR0L,f ; to the base RAM address
btfsc STATUS,C ; to target the byte within
incf FSR0H ; the RAM image

movff DATUM,INDF0 ; and update it

; Now erase the Flash block of 64 bytes ------------------------
movf POINTERL,w ; Get back entry address
andlw b’11000000’ ; Remove bottom 6 bits
movwf TBLPTRL ; to point to Flash block
bsf EECON1,FREE ; Set up for an erase
call BLAST_FLASH ; and go to it
bcf EECON1,FREE ; and now set for a Write

(continued on the next page)

The tblwt* + instruction gives the incrementing counterpart doing a Short
Write into the buffer; starting at the entry value of TBLPTRL with the bottom six
bits zeroed. This takes around 2 ms.

556 The Essential PIC18® Microcontroller

Program 15.7 (Continued)
; Now write back the first 32 bytes into Flash EEPROM memory -
; TBLPTRL is still at bottom of 64-byte block at this point ---

movlw d’32’ ; Set up 32 loop count
movwf COUNTER
movlw low IMAGE ; Set up FSR0 to point to
movwf FSR0L ; the RAM image block
movlw high IMAGE
movwf FSR0H

WLOOP1 movff POSTINC0,TABLAT ; Get data byte from buffer
tblwt*+ ; Do a short write
decfsz COUNTER,f ; Record one more
bra WLOOP1

movf POINTERL,w ; Get back entry address
andlw b’11000000’ ; Bottom of block
movwf TBLPTRL
call BLAST_FLASH ; Do a Long Write

; Now write back the last 32 bytes into Flash EEPROM -----------
; TBLPTRL is at bottom of 64-byte block at this point ----------

movlw d’32’ ; Set up 32 loop count
movwf COUNTER

WLOOP2 movff POSTINC0,TABLAT ; Get datum from buffer
tblwt*+ ; Do a short write
decfsz COUNTER,f ; Record one more
bra WLOOP2

bsf TBLPTRL,5 ; Point to top 32-byte block
call BLAST_FLASH ; Do a Long Write

movff POINTERL,TBLPTRL ; Now increment entry pointer
tblrd*+ ; Dummy read; TBLPTR:3++
return

; **
; * FUNCTION: Blasts code into Flash memory from Write buffer *
; * ENTRY : Data in Write buffer; base address in TBLPTR:3 *
; * ENTRY : EEPGD or CFGS set as appropriate *
; * EXIT : Interrupts disabled for 7 instructions *
; **
BLAST_FLASH

bsf EECON1,WREN ; Enable for Write cycle
bcf INTCON,GIE ; Disable all interrupts

movlw h’55’ ; Now do the interlock
movwf EECON2
movlw h’AA’
movwf EECON2

bsf EECON1,WR ; Initiate the Write cycle
bcf EECON1,WREN ; Optionally disable any other Writes
bsf INTCON,GIE ; Re-enable interrupts

return ; and return when cycle has finished

5. The second block of 32 bytes is written into the Program store in a similar fash-
ion. FSR0 is already pointing to the start of the top half of the image RAM,
and TBLPTRL[5:0] is zeroed to form the start pointer of the Write Buffer register
block.

15 To Have and to Hold 557

After 32 copy/Short Writes, TBLPTR:3 is now pointing half way up the 64-
cell Program store block. Initiating a Long Write now transfers the 32-byte Write
Buffer register contents into the Program store. This also takes around 2 ms.

6. Finally, the entry value of TBLPTRL is restored and one added to the triplet reg-
ister using a dummy tblrd*+.

Any of the blocks illustrated in Fig. 15.4 can be protected against alteration using
a Long Write. For instance writing to Block 1 is regulated by the WRT1 (WRiTe 1)
fuse, which defaults to off. The WRTC (WRiTe Configuration) fuse protects the Con-
figuration fuses from internal change. If this fuse is set to 0 during the external
programming process, it cannot be changed to a 1 internally; that is, active Config-
uration code protection cannot be internally removed.

Finally, the various blocks can be individually protected against either interroga-
tion or alteration by the external Device programmer. For instance, to code pro-
tect the Boot block, the CPB (Code Protect Boot) fuse should be cleared; i.e.
config cpb=on. However, the Device programmer can always do a memory
erase to set all zones to h’FF’.

Examples

Example 15.1 The CCS compiler has the following built-in functions dealing with
the Flash Program store:

read_program_eeprom(address)
Reads a 2-byte word from the specified Program store code zone address.

write_program_memory(address, dataptr,count)
Writes count bytes pointed-to by dataptr beginning at address. An Erase
followed by a Long Write is done whenever the function is about to write into a
multiple of a Write block.

Based on these routines, write a C function to keep a 3-byte count of pages
printed by a laser printer.

Solution This coding is broadly similar to the odometer of Program 15.4. The
function read_program_memory() returns a double-byte, and so is cast to an
unsigned int (byte) when building up the 24-bit page using the make32()
function. Once this is done, and the count incremented, it is split into an ar-
ray of three bytes. The name of this array p_count is the address of the
first element of the array, and this is the parameter dataptr passed to the
write_program_memory() function. As address 0x2000 is the bottom of a
Flash EEPROM Write-to block, an erase and Long Write is performed. Note that
unlike the assembly-level subroutine of Program 15.7, non of the other data that
may lie in the 64-byte Erase block is preserved!

558 The Essential PIC18® Microcontroller

Program 15.8 C-based coding for the laser printer
#include <18f4520.h>
#FUSES NOWDT, NOEBTR, NOWRT
#ROM int8 0x2000 = {0,0,0}

void page_count(void); /* Global variable holding page count */

void main(void)
{
/* Main routine code

}

void page_count(void)
{
unsigned int32 page; /* 32-bit variable */
unsigned int p_count[3]; /* Individual bytes */
/* Build up a 3-byte word from 3 individual bytes from EEPROM */
page=make32((unsigned int)read_program_eeprom(0x2002),
(unsigned int)read_program_eeprom(0x2001),
(unsigned int)read_program_eeprom(0x2000));
page++; /* One more page */
p_count[0] = make8(page,0);
p_count[1] = make8(page,1);
p_count[2] = make8(page,2);
write_program_memory(0x2000,p_count,3); /* Write 3 bytes back */
}

Actually this is not a good use of the Flash program store, as the endurance of
any cell may be as low as 10,000 and is typically only 100,000. This data is likely to
wear out faster than a good printer! Writing data to the Program store should only
be used for data that rarely changes.

Example 15.2 In Example 14.3 the discharge energy of a defibrillator was calcu-
lated by calculating the sum of the squared voltage differences of the sampled inputs
from a baseline value. In this case we used a baseline value of 2.6 V, from observa-
tion of the waveform. This average value may vary from instrument to instrument
and over time with usage. It is proposed to enhance the software by introducing
a learning feature, which could be called up when a switch connected to, say, pin
RA4 is closed. This subroutine will sample the quiescent voltage 256 times to give
a double-byte total. Taking the upper byte is tantamount to dividing by 256 and thus
gives an average value. This datum is to be burnt into location h’00’ of the Data
EEPROM, and this can subsequentially be used as a learnt baseline value, which
if necessary can be updated at regular intervals. Assuming that the GET_ANALOG
subroutine of Program 14.1 on p. 517 is available, show how a suitable subroutine
could be coded.

Solution From Fig. 14.21 on p. 531 we see that the voltage from the defibrillator’s
Hall effect current sensor is connected to the RA0/AN0 pin. With the assumption

15 To Have and to Hold 559

Program 15.9 Learning the baseline
; ***
; * FUNCTION: Sums 256 analog samples to find an average byte *
; * FUNCTION: value for the Baseline voltage which is blasted *
; * FUNCTION: into the EEPROM Data module *
; * RESOURCE: GET_ANALOG, WRITE_EEPROM subroutines *
; * ENTRY : None *
; * EXIT : Average of Channel 0 in EEPROM location h’00’ *
; ***
LEARN clrf ACCUMULATOR+1 ; Zero double-byte sum MSB

clrf ACCUMULATOR ; Zero LSB
clrf COUNT ; Loop count zero

LEARN_LOOP
movlw 0 ; Start an Analog channel 0
call GET_ANALOG ; Digitization
addwf ACCUMULATOR,f ; Add to LSB of total
btfsc STATUS,C ; Was there a Carry
incf ACCUMULATOR+1,f ; IF yes THEN increment MSByte

decfsz COUNT,f ; Count down one
bra LEARN_LOOP

; Burn in datum into EEPROM Data module -----------------------
movff ACCUMULATOR+1,EEDATA ; Get the average value
clrf EEADR ; into Data EEPROM @ location h’00’
call WRITE_EEPROM ; Blast it in

return ; All done

that the ADC module has been enabled, as described in Program 14.6 on p. 531, our
task is to read the digitized Channel 0 byte 256 times inside a loop, accumulating to
give a 16-bit total sum. Taking the top byte of this pair effectively gives an average
value for this analog input (that is, divides by 256). If the defibrillator is quiescent
during this learning run, this average gives the baseline voltage at this time.

When we have a baseline value, this byte can be burnt into the EEPROM Data
module in the normal way. This can be subsequently read and treated in the same
way as the constant BASELINE in Program 14.6.

Program 15.9 uses the File COUNT to count 256 loop passes. Each pass adds
the digitized byte to the double-byte Accumulator File pair. On exit from the loop,
subroutine WRITE_EEPROM burns this top Accumulator byte into location h’00’ in
the EEPROM Data module.

In a real situation a better outcome could be obtained by sampling 65,536 times
and accumulating a triple-byte sum. The top byte of this triplet would again repre-
sent an average.

Example 15.3 As an alternative to the approach to Programs 6.6 and 6.13 on
pp. 175 and 196, construct a 7-segment active-low decoder based on a look-up table
located in Flash EEPROM.

560 The Essential PIC18® Microcontroller

In addition to the 16 hexadecimal characters illustrated in Fig. 6.8 on p. 173,
the input code b’10000’ is to blank out all segments and b’10001’ is to illuminate a
decimal point only, connected to bit 7.

Solution Essentially Program 15.10 is a byte-sized version of Program 15.6, with
de replacing the 16-bit dw directive. TBLPTR:3 is set-up to point to the initial ad-
dress of the table, and as only a single byte is pointed to, the mapping of the 5-bit
input code in WREG on entry into the subroutine is a simple offset to TBLPTR:3 and
does not need multiplied by two. In addition, the READ_PROG_EEPROM_PLUS
subroutine is only called once.

Note that each invocation of de (and also the equivalent db directive) adds a
h’00’ Null to the line. Thus, for instance, using a separate de for each of the last two
bytes of data, in order to make the documentation look more attractive, would have
a detrimental effect!

In comparing the outcome with the legacy table of retlw instructions; the table
itself takes 18 bytes as compared to 36 (each retlw takes two bytes. However, the
overhead code needs nine instructions compared to 15 in Program 6.13 on p. 196.
Here we are assuming that the subroutine READ_PROG_EEPROM_PLUS comes
free, in that it is necessary for other purposes. From this it is clear that the over-
whelming advantage of our approach here lies with larger tables, such as that of
Program 15.6.

Program 15.10 Generating an extended active-low 7-segment code based on Flash EEPROM
; ***
; * FUNCTION: Decodes to active-low hexadecimal 7-seg code *
; * FUNCTION: plus Blank and decimal Point *
; * RESOURCE: Subroutine READ_PROG_EEPROM_PLUS *
; * ENTRY : Integer in WREG range b’00000 - 01111’ (0 -- F) *
; * ENTRY : b’10000’ (Blank) and b’10001’ for dP *
; * EXIT : pgfedcba 7-segment code in WREG *
; ***
TABLE7 ; Table of constants
de h’C0’,h’F3’,h’A4’,h’B0’,h’E7’,h’92’,h’82’,h’F8’ ; 0 -- 7
de h’80’,h’98’,h’88’,h’83’,h’C6’,h’A1’,h’86’,h’8E’ ; 8 -- F
de h’FF’,h’7F’ ; Blnk & dP

; Build up address of start of table in TBLPTR:3 --------------
SVN_SEG clrf TBLPTRH

clrf TBLPTRU
movwf TBLPTRL ; Low byte

movlw low TABLE7 ; Get low byte of table address
addwf TBLPTRL,f ; Add it to offset low byte
movlw high TABLE7 ; Now get high byte of table address
addwfc TBLPTRH,f ; and add it plus any carry to high byte
movlw upper TABLE7 ; Now get upper byte of table address
addwfc TBLPTRU,f ; and update upper byte of pointer

; Now read pointed-to word and return in WREG -----------------
call READ_PROG_EEPROM_PLUS
movf TABLAT,w

return

15 To Have and to Hold 561

Self-Assessment Questions

15.1 Good program practice dictates that the datum written into Data EEPROM
should be verified as the value that was intended to be written. Show how you
could modify the WRITE_EEPROM subroutine of Program 15.2 to return a
value of −1 in a File called ERROR if the action is not successful, otherwise
zero.

15.2 Repeat Example 15.2 but using C coding.
15.3 Microchip-compatible assemblers have the directive da (DAta) which can be

used to store strings of character codes in Program memory. For example:

MESSAGE da "Hello world\n",0

which places the characters inside quotes, coded in 7-bit ASCII code in each
byte, followed by an all zeros byte. The \n escape character means New Line;
ASCII code h’0A’. As for the de and db directives, an evocation of da will be
padded out to an even length.

Assuming that this is done in a PIC18 device; write a subroutine called
PDATA (Print DATA) to fetch each character from Program memory and trans-
mit to a terminal using the subroutine PUTCHAR of Program 12.15 on p. 425.

15.4 A certain hotel security system is to use a PIC-based reprogrammable smart
card for electronic guest room locks. On registration the card is to be charged
up with the following details:
1. A 4-digit room number, e.g., 1311.
2. Start data, e.g., 15112009.
3. End date, e.g., 16112009.

Assume that the PIC MCU has an integral EEPROM Data module and
communicates with the receptionist’s terminal via a serial input subroutine,
such as described in Program 12.15 on p. 425. Data is coded in ASCII in
the order outlined, preceded with the character STX, terminated by ETX and
delimited by SP; see Table 1.1 on p. 5. Design a routine to extract the two
dates and store them in Data EEPROM.

Chapter 16
A Case Study

Up to this point our microcontroller material has been presented piecemeal. To com-
plete our study we are going to put much of what we have learned to good use and
design both the hardware and software of an actual widget (gadget). This is not an
easy task to do in a single short chapter. However, very little new material needs to
be presented at this point, rather a process of coalescence.

We begin with our specification. Students invariably talk too long during their
oral presentations. It is proposed that a dedicated embedded microcontroller-based
system be designed to act as a time monitor. This monitor should default to a time-
out of 10 minutes, but should have the provision to vary the allotted time from 1 to
99 minutes.

Once triggered, the monitor should perform the following sequence of opera-
tions:

1. When the RESET switch is closed, a green lamp will illuminate and a dual

7-segment display will show a count-down from the time-out value to at
1-min intervals.

2. After a further minute, an amber lamp only will illuminate; the count of will
be displayed and a buzzer will sound for nominally one second.

3. After a further minute, a red lamp only will illuminate, together with a display

of . The buzzer will sound for 2 seconds.
4. Finally, after another minute the display will show ; the red lamp will continue

to be illuminated and the buzzer will sound continuously until the STOP switch is
pressed. This will halt the timer and turn off all displays, lamps, and the buzzer.
Indeed, closing the STOP switch at any time during the sequence above will
cause the system to permanently halt. The system may be restarted from the
time-out value by resetting the processor.

5. At any time the sequence can be frozen by toggling the PAUSE switch. When
toggled again, the sequence will continue on from where it left off.

6. In order to alter the time-out from the default value of , the SETT switch must
be closed when the system is reset. The display will then show and will count
down slowly. The value showing when the SETT switch is released will be the
new time-out and will be retained indefinitely until another Set Time process.

S. Katzen, The Essential PIC18® Microcontroller,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-229-2_16, © Springer-Verlag London Limited 2010

563

564 The Essential PIC18® Microcontroller

Fig. 16.1 The annunciator hardware

The first decision to be made is the choice of microcontroller (MCU). In this
case we are constrained by the need to use one of our book’s model device, i.e.,
PIC18F1X20 or PIC18FXX20. Choosing the 40-pin PIC18F4420 or 4520 device
will give the most economical outcome; having sufficient port pins to directly drive
the peripheral switches, displays and buzzer. The book’s website shows an alterna-
tive solution using the 18-pin PIC1X20 device with serial data transmission to the
display devices.

Based on this decision the final target hardware is shown in Fig. 16.1. The port
pin budget is allocated as follows:

Switches
The five switches S2...S6 requesting the functions Go, Set-Time, Stop, Diag,
Pause are read from Port B at pins RB4:0. By using this port’s internal pull-up
resistors (see Fig 11.12 on p. 352) no external resistors are required.

S1 with R1 provides a Manual reset in order to restart the count. In the
PIC18FXX20, pin 1 can optionally be configured as an additional Port E line RE3.
On a Power-on Reset this defaults to MCLR, but in Program 16.1 the MCLRE fuse is
explicitly set-up to enable this function.

All six switches can be conveniently implemented as momentary contact key-
board switches.

Lamps
Three suitably colored 10 mm (0.4′′) high-brightness LEDs D3...D1 driven from

16 A Case Study 565

pins RE2:0 provide the light signals. Port E is chosen, rather than the more obvious
Port B, to leave pinsRB7:5 free for use in programming and in-circuit debugging.
The 330 � series resistors limit the current to nominally 10 mA.

Buzzer
The buzzer should be a miniature solid-state device. A typical piezo-electric im-
plementation will operate over a wide dc voltage range of typically 3 to 16 V and
require little more than 1 mA at 5 V.1 The buzzer is driven via pin RA2.

Numerical Display
Two 7-segment displays give the required 2-digit read-out, facilitating the maximum
specified period of 99 minutes. These are connected directly to Port C and Port D,
giving the least-significant and most-significant digits respectively. Both ports need
to be set for digital output.

The common-anode 7-segment display pinning shown in the diagram is that of
the 16-pin Dual In Line (DIL) footprint with both left and right decimal points—
lhdp and rhdp. Only the latter is used here, to indicate that the system has paused.
Alternative 16- and 14-pinouts are commonly available and even dual-digit pack-
ages. However, even the 16-pin footprint pinout is not standardized.

Smaller-sized displays, typically below 20 mm/0.8′′, use a single LED for each
bar, with a conducting voltage drop of around 2 V.2 The DIL 330 � series resistors
R5 and R6 limit the current to around 10 mA. The common anodes are connected
directly back to the normal +5 V power supply to avoid current surges affecting
the logic circuits, and should be decoupled by small tantalum capacitors. Although
the displays are normally rated for 20 mA, restricting the current to this value gives
sufficient illumination.3

Crystal
A 3.2768 MHz crystal provides the timing for the MCU’s clock oscillator, giving an
instruction cycle rate of 819.21 kHz. A typical crystal of this value has a frequency
tolerance of ±30 ppm and temperature coefficient of ±50 ppm over the operating
range.

This odd frequency choice is 216 × 50; so if we use the 8-bit Timer 0 with a
Prescaler value of 1:64 then we can create an interrupt 50 times per second—see
p. 569. An alternative low-power configuration would be to use a 32.768 kHz crystal
and generate an interrupt every 2 seconds using the 16-bit Timer 1. However, com-
pared to the current consumption of the LED display components, the MCU’s power
dissipation is minor. A cheaper approach would be to use the internal oscillator in
conjunction with Timer 1. In the context of this project, the slightly lower precision
is of little significance. The book website looks at these options in more detail.

1If you want to preclude any possibility of the speaker continuing, a piezo-electric sound bomb
producing 110 dB at 1 m distance needs a 12 V d.c. supply at 200 mA.
2Larger displays, e.g., 2.24′′/56 mm, have typically two or four LEDs in series. In the latter case a
separate 12 V supply and current buffering would be needed.
3Alternatively low-current 7-segment displays are available.

566 The Essential PIC18® Microcontroller

Fig. 16.2 The modular software structure

With the hardware environment designed, we can now concentrate on the soft-
ware.

Figure 16.2 shows the basic modular structure for our system. Here the distinc-
tive double right/left edged box denotes a subroutine or interrupt service routine
(ISR). Three distinct processes can be identified together with two major supporting
tasks.

Timebase Process
All processes are time related. Timekeeping is implemented in hardware by gen-
erating an interrupt 50 times each second. By keeping a Jiffy count, seconds and
minutes are updated and are used to sequence the appropriate process.

By monitoring the PAUSE switch this decrementing time chain can be by-
passed, hence freezing the countdown for as long as necessary.

Output Display Process
All processes need to output the state of the count or status information to the two
7-segment displays. This typically involves code conversion and copying this data
to the appropriate port. If a smaller footprint processor is used, this may involve
parallel-to-serial conversion and shifting. This the task is better gathered into one
module or driver to hide the complexity of the actual hardware used in any particular
implementation.

Main Process
The Main process is a loop displaying the 2-digit Minute count until it reaches zero,
with a premature break if the STOP switch is closed.

Set-Time Process
If the SETT switch is closed when the PIC MCU comes out of a Manual reset, then

16 A Case Study 567

the SET_TIME subroutine quickly decrements the display count until the switch is
released.

This displayed value is then written into Data EEPROM and is used by all sub-
sequent runs as the starting value for the Minute count. The default value when the
MCU is programmed for the first time is ten.

Diagnostic Process
If the DIAG switch is closed on coming out of a Manual reset, the system enters a
diagnostic subroutine. This essentially exercises each peripheral device in a manner
calculated to ease hardware fault finding.

Before looking at the these tasks in more detail, we will briefly consider the
software environment of the system when the Program store is loaded, and the ini-
tialization code which is performed at run-time after a reset. This is codified in
Program 16.1.

Load-Time
The config directive sets up the processor to use a medium frequency external
crystal, disable the Watchdog timer, disable Port B analog functionality and enables
the PoWer-on Reset Timer. We have already observed on p. 315 that the normal
supply voltage can be used to program a device. Here we have turned this facility
off, so the PGM/RB5 pin can be used as a normal Port B I/O. If this were not the
case, PGM should be tied low for normal software execution and high when code is
blasted in. Also enabled is an external MCLR facility, to allow a Manual reset to act
as a system start or Go function.

When the code is blasted into the main flash EEPROM Program, coinciden-
tally store location 0 of the Data EEPROM is set to ten. This means that a freshly
programmed PIC MCU will default to a 10-min count down. This value can subse-
quently be altered using the Set-Time process described in Program 16.5.

Run-Time
The code executed each time a reset is actioned is used to initialize the run-time
environment.

Vectors
To initialize the Reset vector at h’00000’ to point to MAIN and Interrupt vector
at h’00008’ to point to the ISR. We are not using the Priority interrupt facility.

Parallel Port Configuration
Ports C, D and E as well as pinRA2 are set-up as outputs, to drive the 7-segment
displays, status LEDs and buzzer. Any remaining pins are left as inputs. In
addition Port A and E’s Power-on Reset analog capabilities are disabled.

Timer 0 Setting
To set-up the Prescaler ratio to 1:64 and Timer 0 clock source to internal with
an 8-bit count. The Timer 0 interrupt is also enabled.

568 The Essential PIC18® Microcontroller

Program 16.1 The initialization code
BUZ equ 2 ; Buzzer activated at PORTA[2]
GREEN equ 0 ; Green LED activated at PORTE[0]
YELLOW equ 1 ; Yellow LED activated at PORTE[1]
RED equ 2 ; Red LED activated at PORTE[2]
PAUSE equ 0 ; Pause switch read at PORTB[0]
DIAG equ 1 ; Diagnostic switch read at PORTB[1]
STOP equ 2 ; Stop switch read at PORTB[2]
SETT equ 3 ; Set switch read at PORTB[3]
GOO equ 4 ; Go switch read at PORTB[4]
LSD equ PORTC ; PORTC is connected to Least Sig Digit
MSD equ PORTD ; PORTD is connected to Most Sig Digit

cblock h’020’
MINUTE:1, SECOND:1, JIFFY:1, NEW_SEC:1
COUNT:1, UNITS:1, TENS:1, DATA_L:1, DATA_H:1
TIME_OUT:1, TEMP:1, Pause:1

endc

config MCLRE=ON, PBADEN=OFF, OSC=XT, WDT=OFF, LVP=OFF
config PWRT=ON
org h’F00000’ ; The EEPROM Data module
de d’10’ ; Default value is 10 minutes

RST org 0 ; Reset vector
bra MAIN
org 8 ; Interrupt vector
goto ISR_TMR0

MAIN bcf TRISA,2 ; RA2 Output to Buzzer
setf TRISB ; PortB connected to switches
clrf TRISC ; Port C Output to LSD display
clrf TRISD ; Port D Output to MSD display
clrf TRISE ; PORTE[2:0] drives LEDs
bcf INTCON2,RBPU ; Enable Port B’s internal pull-ups
movlw b’11000101’ ; Enable (1) 8-bit TMR0 (1) internal (1)
movwf T0CON ; Enable PS set to 1:64.

; PORTA & E analog inputs disabled -----------------------------
setf ADCON1 ; by putting 11111111 into the ADCON1
clrf Pause ; The PAUSE switch toggle
clrf NEW_SEC ; Reset NEW_SEC second flag

clrf TMR0L
bcf INTCON,T0IF
bsf INTCON,T0IE ; Enable Timer0 interrupts
bsf INTCON,GIE ; Enable all interrupts

btfss PORTB,SETT ; Check the Set Time switch
call SET_TIME ; IF closed THEN set total time

btfss PORTB,DIAG ; Check the Diagnostic switch
call DIAGNOSTIC ; IF closed THEN DO diagnostic routines

16 A Case Study 569

Process Select
To check the state of the DIAG and SETT switches to optionally choose either
the Diagnostic or Set-Time processes. If neither switch is closed the normal
Main process is entered.

Looking at each of the tasks outlined in Fig. 16.2 in some detail.

ISR_TMR0
All processes are dependent on the foreground Timebase task to update the real-time
clock information. As shown in Program 16.2, this is interrupt driven and is based
on the Timer 0:Prescaler dividing down the 3.2763 MHz crystal-driven oscillator to
give overflow every 1

50 s. As can be seen in Program 16.1, the Timer 0 interrupt is
enabled and thus the PIC MCU will enter interrupt handler ISR_TMR0 whenever
the timer overflows—every 256 outputs from the Prescaler. Remembering that the
instruction cycle is 1

4 of the crystal frequency, a Prescaler ratio of 1:64 will give a

timebase rate of 50 per second; that is, 3.2763×106

4×64×256 = 50.
The task list for this function is then:

1. IF PAUSE switch open THEN
(a) Decrement the time chain by one Jiffy.
(b) IF new second THEN flag it.

2. ELSE
(a) Toggle the Pause flag.
(b) IF set THEN tell the world that the system is paused.
(c) ELSE display time to indicate normal running.
(d) Wait until SETT switch is released.

3. Return from interrupt.

Time Chain Decrementation
From Program 16.2 we see that time is kept as a 3-byte count chain located
in Files MINUTE, SECOND and JIFFY to hold the total. Assuming that the
state of bit 0 of File Pause is 0, then one is added to the Jiffy count. Normally
the ISR then exits, but when Jiffy reaches 50 it is reset to zero and the Sec-
onds count decremented. The File NEW_SEC is also made non-zero to indicate
to background software that a second has elapsed. In the situation where the
Second count reaches zero then it is reset to 59 and the Minute count is decre-
mented. The procedure is similar to the incrementing count of Example 7.3 on
p. 233.

Freeze handling
The Timebase task also handles the Pause function. The simplest approach
would be to skip over the time decrement code if the PAUSE switch is closed.
However, the necessity to keep the switch closed would be irksome if the period
is more than a few minutes.

570 The Essential PIC18® Microcontroller

Program 16.2 The timebase software
; **
; * The ISR to decrement the real-time clock *
; * Adding a 20ms Jiffy on each entry *
; * Sets NEW_SEC to a non-zero value each Second update *
; **
ISR_TMR0 btfss INTCON,T0IF ; Was it a Timer0 time-out?

bra ISR_TMR0_EXIT ; IF no THEN false alarm

btfsc Pause,0 ; Check the Pause flag
bra ISR_TMR0_EXIT ; IF closed THEN don’t increment

incf JIFFY,f ; Record one more 1/50 second
movlw d’50’ ; Has Jiffy count reached 50?
cpfseq JIFFY ; Skip IF not
bra ISR_TMR0_EXIT ; ELSE THEN finished

clrf JIFFY ; ELSE zero Jiffy count

movf SECOND,f ; Test for Seconds count = 00?
bz NEW_MIN ; IF it is THEN a new minute
decf SECOND,f ; ELSE decrement Seconds count &
incf NEW_SEC,f ; tell background prog new second

bra ISR_TMR0_EXIT ; and exit

NEW_MIN movlw d’59’ ; Reset Seconds to 59 seconds
movwf SECOND
movf MINUTE,f ; Test for Minutes count = 00?
bz ISR_TMR0_EXIT ; IF it is THEN no more decrement
decf MINUTE,f ; ELSE decrement Minutes

; ***
ISR_TMR0_EXIT

btfss PORTB,DIAG ; IF in Diagnostic mode
bra ISR_TMR0_FINI ; ignore Pause facility

btfss PORTB,PAUSE ; ELSE check the PAUSE switch
rcall FREEZE ; IF closed THEN update Pause flag

ISR_TMR0_FINI
bcf INTCON,T0IF ; Clear interrupt flag and return
retfie FAST ; from interrupt with context

(continued on the next page)

Implementing a push-on push-off scenario is ergonomically superior and
can be more economically implemented in software rather than using a tog-
gling switch. In Program 16.2 the Pause handling code is located in the sepa-
rate subroutine FREEZE. It is permissible to call a subroutine from an ISR in
the same manner as calling one subroutine from another; that is, nesting. The
hardware stack allows nesting up to 31 deep. In our situation only two stack
locations are used.

16 A Case Study 571

Program 16.2 (Continued)
; **
; * FUNCTION: Increments the Pause flag. *
; * FUNCTION: IF = 1 THEN displays the decimal points *
; * FUNCTION: IF = 0 THEN displays the normal count *
; * RESOURCE: Subroutine DISPLAY. Vars Pause, TENS, UNITS *
; * ENTRY : PAUSE switch closed *
; * EXIT : IF Pause[0] is 0 display dP ELSE Minute count *
; **
FREEZE btg Pause,0 ; Toggle Pause flag, bit 0

btfss Pause,0 ; Check status of Pause flag
bra UNFREEZE ; Change 1 -> 0, unfreeze

; Display freeze --
movlw b’00010001’ ; Code for decimal point
movwf TENS ; In situ for display
movwf UNITS
call DISPLAY ; Display
bra FREEZE_EXIT

; Land here if Pause 0 -> 1 -----------------------------------
UNFREEZE movf MINUTE,w ; Display the normal Minute count

call OUTPUT

FREEZE_EXIT
btfss PORTB,PAUSE ; Wait until switch is opened again
bra FREEZE_EXIT
clrf TMR0L ; Reset TMR0 to give debounce delay

return

Subroutine FREEZE is only entered if the PAUSE switch is closed. On each
entry the value of bit 0 of the File Pause is toggled. Pause[0] is tested and if
it is 1 then the code to illuminate only the two decimal points is sent to the
DISPLAY subroutine. This is an arbitrary indicator display; another possibility

would be . If Pause[0] is 0 then the state of the Minute count is sent to
the OUTPUT subroutine and indicates to the user that the Pause function has
ended.

Finally, the subroutine does not exit until the user releases the PAUSE
switch. This is important, as on exit the ISR will be re-entered again at the
next Timer 0 overflow, and this would cause Pause to be repeatedly retog-
gled. Some measure of switch debounce is obtained by zeroing Timer 0 and
the Prescaler when the switch is released and only then clearing T0IF. This
means that the switch will not be retested for a whole 1

50 second.

OUTPUT
The Output task acts as a device driver, interfacing to the two 7-segment displays.
Tasks implemented by Program 16.3 are:

1. Conversion to 7-segment code.
2. Presentation to the two display devices.
3. Convert a binary byte limited to decimal 99 to 2-digit BCD.

572 The Essential PIC18® Microcontroller

Program 16.3 The display driver
; **
; * FUNCTION: Displays datum as a 2-digit decimal output, with *
; * FUNCTION: direct access to look-up table for non-BCD glyphs*
; * FUNCTION: and to the 7-segment display devices *
; * RESOURCE: Subroutines BIN_2_BCD, SVN_SEG *
; * RESOURCE: Vars NEW_SEC, TENS, UNITS *
; * ENTRY : Natural binary byte 0 - 99 in WREG *
; * EXIT : TENS & UNITS data displayed, NEW_SEC zeroed *
; **
OUTPUT_BCD call BIN_2_BCD ; Convert to BCD

; Direct entry to look-up table for non-BCD displays -----------
OUTPUT movf TENS,w ; Get MSD for display

call SVN_SEG ; Convert to 7-segment code
movwf DATA_H ; Ready to display Tens digit
movf UNITS,w ; Get LSD for display
call SVN_SEG ; Convert to 7-segment code
movwf DATA_L ; To Significant Digit

; Direct entry to the 8 segments of both displays --------------
SEND movff DATA_L,LSD ; Out to hardware

movff DATA_H,MSD
clrf NEW_SEC ; Reset NEW_SEC flag

return

(continued on the next page)

Binary to 7-Segment Decoder
The kernel of this module entered at OUTPUT converts the 5-bit code in both
Files TENS and UNITS to 7-segment code; subsequently located in Files
DATA_H and DATA_L respectively. The code shown in Program 16.3 is similar
to the subroutine SVN_SEG in Program 15.10 on p. 560. However, the look-up
table is different; reflecting the mirror image connections of the segments in
Fig. 16.1. That is the segments a through g and dP are connected to port lines
7 though 0 respectively.

Display
The Display routine, which sends the data to the actual display devices, is par-
ticularly simple with our choice of hardware. The byte data in DATA_H and
DATA_L are copied to the two appropriate parallel ports; both of which have
been set-up as output. This is the only part of the driver software that needs
alteration if the hardware is changes; e.g. to a serial architecture.

If desired; it is possible to directly connect to each display, to by-pass the
7-segment decoder by entering at SEND. For instance, to display the message

, we have:

movlw b’00111111’ ; Code for P (no dP)
movwf DATA_H
movlw b’00011000’ ; Code for A.
movwf DATA_L
call SEND

16 A Case Study 573

Program 16.3 (Continued)
; **
; * FUNCTION: Decodes to active-low hexadecimal 7-seg code *
; * FUNCTION: plus Blank and decimal Point *
; * RESOURCE: Subroutine READ_PROG_EEPROM_PLUS *
; * ENTRY : Integer in WREG range b’00000 - 01111’ (0 -- F) *
; * ENTRY : b’10000’ (Blank) and b’10001’ for DP *
; * EXIT : abcdefgP 7-segment code in WREG *
; **
TABLE7 ; Table of constants
de h’03’,h’CF’,h’25’,h’0D’,h’E7’,h’49’,h’41’,h’1F’ ; 0 -- 7
de h’01’,h’19’,h’11’,h’31’,h’63’,h’85’,h’61’,h’71’ ; 8 -- F
de h’FF’,h’FE’ ; Blnk & dP

; Build up address of start of table in TBLPTR:3 --------------
SVN_SEG clrf TBLPTRH

clrf TBLPTRU
movwf TBLPTRL ; Low byte

movlw low TABLE7 ; Get low byte of table address
addwf TBLPTRL,f ; Add it to offset low byte
movlw high TABLE7 ; Now get high byte of table address
addwfc TBLPTRH,f ; and add it plus any carry to high byte
movlw upper TABLE7 ; Now get upper byte of table address
addwfc TBLPTRU,f ; and update upper byte of pointer

; Now read pointed-to word and return in WREG ------------------
call READ_PROG_EEPROM_PLUS
movf TABLAT,w

return

; **
; * FUNCTION: Converts a binary byte to a two BCD digits *
; * RESOURCE: vars UNITS, TENS *
; * ENTRY : Binary byte in W range 00 - 63h (0 - 99d) *
; * EXIT : Ten’s digit in TENS, Unit’s digit in UNITS *
; **
; Divide by ten
BIN_2_BCD clrf TENS ; Zero the Ten’s count

LOOP10 incf TENS,f ; Record one ten subtracted
addlw -d’10’ ; Subtract decimal ten
bc LOOP10 ; IF no borrow (C==1) THEN DO again

decf TENS,f ; Compensate for one inc too many
addlw d’10’ ; Add ten to residue to give units
movwf UNITS ; The residue is the Units

return ; and return to caller

Binary to BCD Conversion
The display normally reflects the current state of the Minute countdown. As
this is kept in a naturally coded 8-bit binary datum in MINUTE; as defined in
Program 16.2, we need to convert to two BCD digits. These in turn are used
as the input to the OUTPUT routine. The BIN_2_BCD subroutine listed here
is based on the routine described in Program 5.11 on p. 149. This subroutine

574 The Essential PIC18® Microcontroller

is restricted to the range 0–99, which is not a problem with our 2-digit display
hardware.

Diagnostic
If the DIAG switch is closed when the PIC MCU comes out of reset, then the code
transfers to the subroutine DIAGNOSTIC in Program 16.4. The Diagnostic process
aims to exercise the various peripheral devices interfaced to the process in order to
verify in a reproducible manner the status of the interconnection and the devices
themselves.

Program 16.4 The Diagnostic process
; **
; * FUNCTION: Checks each switch and activates a corresponding *
; * FUNCTION: LED or buzzer. Continually activates a unary *
; * FUNCTION: pattern to both 7-segment displays *
; * RESOURCE: Subroutine OUTPUT:SEND *
; * RESOURCE: Vars TEMP, DATA_H, DATA_L *
; * ENTRY : DIAG switch closed *
; * EXIT : DIAG switch open *
; **
DIAGNOSTIC

movlw b’11111110’ ; The initial 7-segment pattern
movwf TEMP ; in memory

D_LOOP movlw b’11111111’ ; Turn off all LEDs and buzzer
movwf PORTE
bsf PORTA,BUZ

; Now scan switches --
btfss PORTB,PAUSE ; IF Pause switch closed
bcf PORTE,GREEN ; THEN Green LED

btfss PORTB,STOP ; IF Stop switch closed
bcf PORTE,YELLOW ; THEN Yellow LED

btfss PORTB,SETT ; IF Set switch closed
bcf PORTE,RED ; THEN Red LED

btfss PORTB,GOO ; IF Go switch closed
bcf PORTA,BUZ ; THEN Buzzer

; Now turn on each segment in turn of both displays ------------
movff TEMP,DATA_L ; Get pattern
movff TEMP,DATA_H
call SEND

btfsc PORTB,DIAG ; IF Diagnostic switch open
return ; THEN exit the diag subroutine

clrf NEW_SEC ; Reset the New Second flag
; Now move the display pattern on one and wait for a second ----

rlncf TEMP,f ; Rotate it <<

D_LOOP2 tstfsz NEW_SEC ; Wait for the new second
bra D_LOOP ; IF yes THEN repeat routine

bra D_LOOP2 ; ELSE try again

16 A Case Study 575

Switches
Each of the five switches input via Port B are checked in turn. If a switch is
closed, either one of the LEDs or the buzzer is activated. In this manner both the
switches and the listed output devices are tested. The DIAG switch is of course
verified by moving the system into this Diagnostic process and the RESET
switch is tested by initiating the startup process.

If there were more switches than output devices then either combinations
of the latter could be activated or else one or more segments in the numerical
display could be pressed into service.

LEDs and Buzzer
The static output devices are tested in conjunction with the switch test listed
above. Of course the failure of a LED to light or buzzer to sound may be due
to either the input or output device circuit. Determining which has failed is
easily accomplished by using a voltmeter or logic probe. Also remember that
all LEDs should be illuminated during the Set-Time process.

Display
Each of the display devices is tried out by lighting one segment in turn at a 1-s
rate, in an endless loop. This is implemented by generating a walking unary
pattern b’11111110 → 11111101 → ·· ·01111111’ sent out to the output sub-
routine SEND once each time NEW_SEC is non-zero. NEW_SEC is incremented

Program 16.5 The Set-Time process
; **
; * FUNCTION: Slowly counts down from 99-00. When SETT switch *
; * FUNCTION: released EEPROM is Written with displayed count *
; * RESOURCE: Subroutines DISPLAY, WRITE_EEPROM, ISR_TMR0 *
; * RESOURCE: var TIME_OUT, SECOND *
; * ENTRY : SETT switch is closed on Reset *
; * EXIT : EEPROM Data address 00 is updated *
; **
SET_TIME movlw d’99’ ; Start count at 99 seconds

movwf SECOND
clrf JIFFY ; and no Jiffies
movlw b’000’ ; All LEDs on
movwf PORTE

SET_LOOP movf SECOND,w ; Get Second count
call OUTPUT_BCD ; Display it and reset NEW_SEC

btfsc PORTB,SETT ; Check; does user want to stop?
bra UPDATE ; IF yes THEN update EEPROM & exit
movff SECOND,TIME_OUT ; Make a temporary copy

S_LOOP tstfsz NEW_SEC ; NEW_SEC is non-zero for a new sec
bra SET_LOOP ; A new second means DO display
bra S_LOOP ; ELSE check again for a new sec

UPDATE movf TIME_OUT,w ; Get the value
movwf EEDATA ; Set up EEPROM
clrf EEADR
call WRITE_EEPROM ; Program EEPROM
return ; and return to main program

576 The Essential PIC18® Microcontroller

in the Timer 0 interrupt-handling routine each time the Seconds count is incre-
mented and cleared in the Diagnostic procedure code. This acts as a ratchet,
giving only one new display each second.

Set Time Process
This subroutine is entered when the SETT switch is closed whenever the processor
comes out of a Manual reset. Its function is to allow the operator to change the
contents of the EEPROM Data module location h’00’ to any value up to 99. This
location holds the initial count-down value used by the Main process to determine
the length of the procedure.

The strategy behind the coding shown in Program 16.5 is to initialize the Sec-
ond count to 99 and then let it decrement at a 1-s rate, as determined by the fore-

Fig. 16.3 The Main process

16 A Case Study 577

ground ISR. The value of SECOND is displayed each time the ISR sets the flag File
NEW_SEC to a non-zero value; that is, once per second. Subroutine OUTPUT clears
NEW_SEC, so the net effect is to update the display only once each second. Each sec-
ond the SETT switch is checked, and when re-opened, the state of the Seconds count
is transferred to the EEPROM Data module at UPDATE using the WRITE_EEPROM
subroutine of Program 15.2 on p. 544.

Main Process
The complete background system flow chart is shown in Fig. 16.3. This shows in

Program 16.6 The Main process
MAIN_PROC movlw b’11111110’ ; Green LED on

movwf PORTE ; Red and Yellow off
bsf PORTA,BUZ ; Buzzer off

; Get start value from EEPROM ---------------------------------
clrf EEADR ; EEPROM address zero
call READ_EEPROM ; Get the start value
movwf MINUTE
movlw d’59’ ; Initial value for seconds
movwf SECOND ; is 59
clrf JIFFY ; and zero Jiffies

DISPLAY movf MINUTE,w ; Get Minute count
call OUTPUT_BCD ; Output to display

; The 2-minutes-to-go phase -----------------------------------
; At a count of two sound the buzzer for one second and turn on
; the Yellow lamp ---
TWO movlw 2 ; Minute count = 2?

cpfseq MINUTE
bra ONE ; IF not THEN try for one minute

movlw b’101’ ; ELSE Yellow LED on
movwf PORTE
bcf PORTA,BUZ ; Buzzer on

TWO_LOOP movf NEW_SEC,f ; Check NEW_SEC status
bz TWO_LOOP ; IF still zero THEN try again
bsf PORTA,BUZ ; ELSE Turn off buzzer after one sec
bra REPEAT ; repeat display

; The 1-minute-to-go phase ------------------------------------
; At a count of one sound the buzzer for two second and turn on
; the red lamp --
ONE movlw 1 ; Minute count = 1

cpfseq MINUTE
bra ZERO ; IF not THEN try for zero minutes

movlw b’011’ ; Red LED on
movwf PORTE
bcf PORTA,BUZ ; Buzzer on

ONE_LOOP movf NEW_SEC,f ; Check NEW_SEC status
bz ONE_LOOP ; IF still zero THEN try again
clrf NEW_SEC ; Again clear NEW_SEC flag

UN_LOOP movf NEW_SEC,f ; Again check NEW_SEC status
bz UN_LOOP ; IF still zero THEN try again
bsf PORTA,BUZ ; Turn off buzzer after two seconds
bra REPEAT ; Repeat display

(continued on the next page)

578 The Essential PIC18® Microcontroller

Program 16.6 (Continued)
; The Timed-Out phase --
; When the Minute count reaches zero, sound the buzzer ---------
; until the Stop switch is closed ------------------------------
ZERO movf MINUTE,f ; Minute count = 0?

bnz REPEAT ; IF not THEN repeat after minute
bcf PORTA,BUZ ; Buzzer on

ZERO_LOOP
btfsc PORTB,STOP ; Check the Stop switch
bra ZERO_LOOP ; and continue until closed

FINI movlw b’111’ ; Turn lamps off
movwf PORTE
bsf PORTA,BUZ ; and buzzer
movlw b’00010000’; Code for blank
movwf TENS ; Blank both displays
movwf UNITS
call OUTPUT

sleep ; and await another reset

REPEAT btfss PORTB,STOP ; Check the Stop switch
bra FINI ; IF closed THEN freeze
movf SECOND,f ; Wait ’til Second count is again zero
bnz REPEAT ; IF not THEN wait again
clrf NEW_SEC ; ELSE wait one more second

R_LOOP tstfsz NEW_SEC ; Check NEW_SEC status
bra DISPLAY ; IF non zero THEN repeat display
bra R_LOOP ; ELSE repeat display

outline the decision stream taken after a reset, and in more detail, the Main process.
Although this looks rather complex, it may be broken down into five phases, with
the corresponding coding shown in Program 16.6.

Preamble
On reset if neither SETT or DIAG switches are closed, the Main procedure
code is entered at MAIN_PROC. This reads the initial value of the countdown
period from Data EEPROM location h’00’ and initializes the count chain. The
green lamp is illuminated and other lamps and buzzer are turned off.

Countdown
The Countdown phase continually displays the Minute count—updated behind
the scenes by the ISR. The green lamp remains illuminated as long as this

display does not drop below . This phase is complete whenever the count
drops below 3 minutes or else the STOP switch is closed. In the latter case all
displays are blanked and the PIC MCU is put into its Sleep state.

In all situations, except where the STOP command is issued, the Minute
count is displayed at minute intervals. The routine at REPEAT checks the Sec-
ond count and if zero the loop is repeated; that is, once per minute. Repeating
the loop each minute eases the task of sounding the buzzer once only when the
Minute count drops to both two and one.

Two Minutes to Go
When the display is the amber lamp is illuminated and the buzzer sounded

16 A Case Study 579

for one second. The latter is timed using the NEW_SEC variable. Again the
loop can be prematurely exited if the STOP switch has been closed.

One Minute to Go
When the display is the loop diverts to illuminate the red lamp. The buzzer
is sounded for 2 s; implemented in code as two 1-second buzzes.

Timed Out
When the Minute count reaches zero, not only is displayed but also the
buzzer sounds continually. This cacophony can only be silenced by pressing
the STOP switch, or by resetting and starting again. As in previous situations
when the STOP switch is closed, all displays are blanked out and the PIC MCU
is placed in its Sleep state.

After the source code has been assembled and where possible simulated (see
Fig. 8.8 on p. 265) it can then be burned into the PIC MCU’s Program store. In
the first instance only the diagnostic software and associated tasks need to be pro-
grammed in order to check the target hardware. The precise details will depend
somewhat on the PIC MCU Device programmer being used and its associated soft-
ware.

The screen shot shown in Fig. 16.4 shows the situation where the Microchip
PICSTART® Plus development programmer (see Fig. 16.5) is used in conjunction
with the MPLAB® IDE. Communication with the host computer is via a RS-232 se-
rial port. Once the programmer is specified via the Programmer|Select Pro-
grammer menu and contact is made from the drop-down menu shown at the top
left of Fig. 16.4. The Output window shows the progress and status of the burn-in
process and the Configuration Bits window, activated via the Configure menu,
shows the state of the option fuses. Optionally these fuses can be manually set-up
before burning, but it is best to embed these options in the source program. The
Program Memory window, enabled from the View menu, shows the contents of the
actual device as long as the code protection remains off. When the processor is con-
figured to turn on Code Protect, neither Program, Read nor Verify tasks can be
carried out. The complete process takes less than a minute to burn-in the 476 bytes
that this case study generates.

Once a project is ready for production, using a dedicated programmer to replicate
the software is a legitimate approach. To that end, gang programmers are available
that can clone several devices at a time from a master device. However, as a devel-
opment tool while the project is evolving, this technique is not ideal. After software
simulation, prototype software is burnt-in and MCU physically transferred to the
target board. In the event that there are functional problems, there are few tools that
can be easily used to trace the bug. Whilst software simulation is a powerful tool,
there is no interaction with the real hardware.

An extension to this simulate-program-insert process is to have the IDE control
the target hardware, and the simulation software interact with the real world. The
traditional approach to this problem, as depicted in Fig. 8.6 on p. 263, is to use an

580 The Essential PIC18® Microcontroller

Fig. 16.4 Programming the PIC MCU using the PICSTART® Plus from the MPLAB® Version 8
IDE

In-Circuit Emulator. Here, an ICE hardware pod replaces the target MCU with
similar circuitry and communicates with the computer running the IDE. In this man-
ner, the application software runs in real silicon but still under control of the IDE, so
that the designer can monitor activity at the various ports and registers as execution
progresses.

The traditional ICE is an expensive development tool, costing several thousands
of dollars. As an alternative approach, in the late 1990s Microchip introduced a
more cost effective approach, where each MCU carries additional logic which al-
lows it to execute in a Debug mode. Enabled by the DEBUG fuse, this In-Circuit
Debugger facility replaces much of the expensive ICE circuitry. An ICD module
connects to the PC, usually via a USB port; which powers the pod as well as sup-
porting communication to MPLAB® or a compatible third-party IDE. This pod in
turn interfaces to the application board via a 6-wire cable connecting the target pro-
cessor’s PGD/RB7 (ProGram Data) and PGC/RB6 (ProGram Clock) program-
ming pins together with MCLR/VPP, VDD and VSS. The target board will usually
have a RJ11 telephone socket wired to these on-chip hardware resources, or else a
ICD header carrying the processor can be plugged into the processor socket on the
board.

16 A Case Study 581

Fig. 16.5 The Microchip
PICSTART® Plus
programmer

In-Circuit Debugging primarily differs from traditional In-Circuit Emulation in
the intrusion these techniques make on the target resources. For instance, the ICD
technique required as a minimum the exclusive use of:

• Pins RB7 and RB6.
• Two levels of hardware stack.
• 512 bytes of Program memory.
• 14 bytes of Data memory.

In addition, the target board needs to be capable of running without the pod; that is,
with a functioning clock and power-supply set-up. The target processor should have
its configuration fuses set correctly with no code protection and a disabled Watchdog
timer. In addition Low-Voltage Programming (Single-Supply Programming) should
be disabled—see p. 315.

When the Debugger|Program menu option is selected, the application soft-
ware is burnt into Program memory. In addition, a small Debug operating system,
called a Debug Executive is loaded into the top of the Program store. This reduces
the allowable size of the application software. This Executive then monitors and ex-
ecutes the application software and communicates with MPLAB® via the PGD and
PGC pins when MCLR is released.

The facilities available during an ICD run depend on the sophistication and cost
of the pod. For instance, for the ICD3 pod these are:

582 The Essential PIC18® Microcontroller

Fig. 16.6 The PICkit™ 2 (left), MPLAB® ICD 2 (right) and Real ICE™ (top) pods

• Real-time execution until Breakpoint or Halt.
• Several Complex Breakpoints.
• Single step execution with Watch window.

The Microchip Real ICE™ (top of Fig. 16.6) is connected and driven in a similar
manner to an ICD, but provides a much richer and faster interaction with less distur-
bance with the target processor. However, transparency comes at a price, which in
this case is circa $500+ compared to $200 for the MPLAB™ ICD 3 and $70 for the
PICkit™ 3. The quid quo pro is a much faster operation, with many of the functions
being taken over by the ICE pod’s hardware. Additional functions made possible
with this arrangement are software traces, real-time Watch windows and interaction
with actual signals on the board with logic analyser probes.

As these ICD/ICE pods are capable of burning-in code to the target processor,
they can be used as a simple programmer—see also Fig. 10.8 on p. 315. From
Fig. 16.5 the Programmer|Settings menu enumerates modules, such as the
ICD2, in its list of possible programmers. Programming in this manner differs from
that via the Debugger menu, in that the Executive is not downloaded; only the
application software. Using an ICD simply as a straight programmer can be a cost
effective alternative to a dedicated programmer, such as a PICSTART® Plus, where
small numbers of devices are to be programmed. For instance, a PICkit™ 3 costs
around $70 compared to the latter’s $200.

16 A Case Study 583

The hardware and software circuits have been presented here as a simple illustra-
tive case study to integrate many of the techniques described in the body of the text.
If you decide to build your own version, files, C coding, PCB, comparison with a
Motorola 68,000 MPU version and other ideas for experimentation, which you are
welcome to contribute, are given on the associated website detailed in the Preface.
Good luck!

Appendix A
Acronyms and Abbreviations

ABDEN Automatic BauD rate ENable; BAUDCON[0]
ABDOVF Automatic BauD rate OVerFlow; BAUDCON[7]
ACK ACKnowledge state in the I2C protocol
ACQT2:0 ACQuition Time delay bits; ADCON2[5:3]
ADC (A/D) Analog-to-Digital Converter/Conversion module
ADCONn A/D CONtrol 0 register 2, 1, & 0
ADCS2:0 A/D Clock Select, bits; ADCON2[2:0]
ADDEN ADDress ENable bit; RCSTA[3]
ADFM A/D module outcome ForMat bit; ADCON2[7]
ADIE A/D Interrupt Enable mask bit; PIE1[6]
ADIF A/D Interrupt Flag bit; PIR1[6]
ADIP A/D Interrupt Priority bit; IPR1[6]
ADON A/D module ON bit; ADCON0[0]
ADRESH A/D RESult High byte register
ADRESL A/D RESult Low byte register
ALU Arithmetic Logic Unit
ANn ANalog input pin n
ANSI American National Standards Institution
ASCII American Standard Code for Information Interchange
BAUDCON BAUD CONtrol register
BRG16 Baud Rate Generator 16-bit mode bit; BAUDCON[3]
BRGH Baud Rate Generator High mode bit; TXSTA[2]
BSRn Bank Select Register bits; BSR[3:0]
BCD Binary Coded Decimal
BF Buffer Full bit; SSPSTAT[0]
C Carry flag bit; STATUS[0]
C1OUT Comparator 1 OUTput bit; CMCON[6]
C2OUT Comparator 2 OUTput bit; CMCON[7]
C1INV Comparator 1 INVertor bit; CMCON[4]
C2INV Comparator 2 INVertor bit; CMCON[5]
C1OUT Comparator 1 OUTput pin
C2OUT Comparator 2 OUTput pin
CAN bus Control Area Network bus
CCPX Capture/Compare/PWM module X

S. Katzen, The Essential PIC18® Microcontroller,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-229-2, © Springer-Verlag London Limited 2010

585

586 The Essential PIC18® Microcontroller

CCP1 CCP1 input/output pin
CCPR1H CCP Register 1 High byte
CCPR1L CCP Register 1 Low byte
CCP1CON CCP1 CONtrol register
CCP1IE CCP1 Interrupt Enable mask bit; PIE1[2]
CCP1IF CCP1 Interrupt Flag bit; PIR1[2]
CCP1IP CCP1 Interrupt Priority bit; IPR1[2]
CCP1M3:0 CCP Mode control bits; CCP1CON[3:0]
CCP2 CCP2 input/output pin
CCPR2H CCP Register 2 High byte
CCPR2L CCP Register 2 Low byte
CCP2CON CCP2 CONtrol register
CCP2IE CCP2 Interrupt Enable mask bit; PIE2[0]
CCP2IF CCP2 Interrupt Flag bit; PIR2[0]
CCP2IP CCP2 Interrupt Priority bit; IPR2[0]
CFGS ConFiGure Select bit; EECON1[6]
CHS3:0 ADC CHannel Select bits; ADCON0[5:2]
CIS Comparator Input Switch bit; CMCON[3]
CISC Complex Instruction Set Computer
CK USART synchronous ClocK I/O pin
CKE ClocK Edge bit; SSPSTAT[6]
CKP ClocK Polarity bit; SSPCON1[4]
CMIE CoMparator change Interrupt Enable mask bit; PIE2[6]
CMIF CoMparator change Interrupt Flag bit; PIR2[6]
CMIP CoMparator change Interrupt Priority bit; IPR2[6]
CM2:0 Comparator (analog) Mode bits; CMCON[2:0]
CMOS Complimentary Metal-Oxide Semiconductor
CMCON CoMparator (analog) CONtrol register
CPU Central Computing Unit
CREN Continuous Receive ENable bit; RCSTA[4]
CS Chip Select pin (active low)
CTS Clear To Send; RS-232 handshake signal
CVR3:0 Comparator Voltage Reference mode bits; CVRCON[3:0]
CVREN Comparator Voltage Reference ENable bit; CVRCON[7]
CVRCON Comparator Voltage Reference CONtrol register
CVROE Comparator Voltage Reference Output Enable bit; VRCON[6]
CVRR Comparator Voltage Reference Range select bit; CVRCON[5]
CVRSS Comparator Voltage Reference VREF Source Select bit; CVRCON[4]
D/A Data/Address bit; SSPSTAT[5]
DAC (D/A) Digital-to-Analog Converter/Conversion module
DC Digit Carry flag bit; STATUS[1]
DC1B1:0 Duty Cycle 1 Bits; CCP1CON[5:4]
DCE Data Circuit terminating Equipment
DSP Digital Signal Processing
DT USART synchronous DaTa pin
DTE Data Terminal Equipment
ea Effective Address
ECCP Enhanced CCP module
ECCP1AS ECCP1 module Auto Startup/Shutdown register

Acronyms and Abbreviations 587

EEADR EEPROM ADdress Register
EECONn EEPROM CONtrol registers 1 & 2
EEDATA EEPROM DATA register
EEIE EEPROM Interrupt Enable mask bit ; PIE2[4]
EEIF EEPROM Interrupt Flag bit; PIR2[4]
EEIP EEPROM Interrupt Priority bit; IPR2[4]
EEPGD EEPROM ProGram/Data bit; EECON1[7]
EEPROM Electrical Erasable PROM
EPROM Erasable PROM
EUSART Enhanced USART module
FERR Framing ERRor bit; RCSTA[2]
FLT0 FauLT input pin 0 for ECCP1 module
FREE Flash Row Erase Enable bit; EECON1[4]
FSRn File Select Register 2, 1 & 0
FVR Internal 1.2 V Fixed Voltage Reference
GIEH/GIE Global Interrupt Enable mask (High-priority) bit; INTCON[7]
GIEL/PEIE Global Interrupt Enable mask (Low-priority) bit; INTCON[6]
GO/DONE ADC Start Convert (GO)/End Of Conversion (DONE) bit; ADCON0[1]
GPR General-Purpose File Register
GSEN General SENd receive enable bit; SSPCON2[7]
HLVDCON High/Low Voltage Detect CONtrol register
HLVDEN High/Low Voltage Detect ENable bit; HLVDCON[4]
HLVDIE High/Low Voltage Detect Interrupt Enable mask bit; PIE2[5]
HLVDIF High/Low Voltage Detect Interrupt Flag bit; PIR2[5]
HLVDIP High/Low Voltage Detect Interrupt Priority bit; IPR2[5]
HLVDIN High/Low Voltage Detect INput pin
HLVDL3:0 High/Low Voltage Detect Limit bits; HLDVCON[3:0]
IC Integrated Circuit
ICSP™ In-Circuit Serial Programming
I2C Inter-Integrated Circuit serial protocol
IDE Integrated Development Environment
IEC International Electrotechnical Commission
ICD In-Circuit Debugger
ICE In-Circuit Emulator
INDFn INDirect File registers 2, 1, 0
INT2:0 External INTerrupt input pins
INTCON INTerrupt CONtrol Register
INTCONn INTerrupt CONtrol Registers 2 & 3
INTEDG2:0 External INTerrupt EDGe polarity selection bits; INTCON2[4:6]
INT2:0IE INTerrupt Enable mask bits; INTCON[4], INTCON3[3:4]
INT2:0IF INTerrupt Flag bitss; INTCON[1]; INTCON3[0:1]
INT2:1IP INTerrupt Priority bits; INTCON3[7:6]
INTSRC INTernal SouRCe bit; OSTUNE[7]
I/O Input/Output
IPEN Interrupt PRiority ENable bit; RCON[7]
IPRn Interrupt Priority Interrupt Registers 2 & 1
IRVST Internal Reference Voltage STable bit; HLVDCON[5]
ISR Interrupt Service Routine
ksps Kilo samples per second

588 The Essential PIC18® Microcontroller

LATX LATchX (Parallel I/O port LATch register X); e.g., LATA
LED Light-Emitting Diode
LIN bus Local Interconnect Network bus
LSB Least-Significant Bit or Byte
LSD Least-Significant Digit
LSI Large-Scale Integration
LVP Low-Voltage Programming (c.f. High-Voltage Programming)
MCLR Master CLear Reset pin (active low)
MCU MicroController Unit
MPU MicroProcessor Unit
µs Microsecond (10−6 s)
ms Millisecond (10−3 s)
MSB Most Significant Bit or Byte
MSD Most Significant Digit
MSI Medium-Scale Integration
MSSP Master Synchronous Serial Port
N Negative flag bit; STATUS[4]
NACK Not ACKnowledge state in the I2C protocol
ns Nanosecond (10−9 s)
OE Output Enable pin (active low)
OERR Overflow ERRor bit; RCSTA[1]
OS Operating System
OTP One-Time Programmable (EPROM)
OSCON OScillator CONtrol register
OSCTUNE OSCillator TUNE register
OV OVerflow flag bit; STATUS[3]
P StoP condition bit; SSPSTAT[4]
P1X PWM ECCP1 pins P1A,B,C,D
PC Program Counter or Personal Computer
PCFG3:0 ADC Port ConFiGuration bits; ADCON1[3:0]
PCL Program Counter Low byte register
PCLATH Program Counter LATch High byte register
PCLATU Program Counter LATch Upper byte register
PD Power Down sleep mode bit; RCON[2]
PEIE/GIEL PEripheral Interrupt Enable mask bit; INTCON[6]
PGC ProGram Clock pin; shared with RB6
PGD ProGram Data pin; shared with RB7
PGM ProGram Mode pin; shared with RB5
PIC Peripheral Interface Controller
PIPO Parallel-In Parallel-Out register
PIEn Peripheral Interrupt Enable register 2 & 1
PIRn Peripheral Interrupt Register 2 & 1
PISO Parallel-In Serial-Out shift register
POR Power-on Reset
PORTX PortX (Parallel I/O port register X); e.g., PORTA
PR2 Period Register for Timer 2
PRNG Pseudo Random Number Generator
PRODH PRODuct High byte register
PRODL PRODuct Low byte register

Acronyms and Abbreviations 589

PROM Programmable ROM
PRSEN PWM ReSet ENABLE bit; PWM1CON[7]
PS2:0 Prescale rate Select bits for TMR0; T0CON[2:0]
PSA Prescale Scaler Assign bit; T0CON[3]
PSP Pseudo Stack Pointer
PWM Pulse Width Modulation
PWM1CON PWM ECCP1 module CONtrol register
PWRT PoWer-on Reset Timer
RXn Register (Parallel I/O port) X pin n; e.g., RA0, RE3
RAM Random Access Memory
RBIE Register port B change Interrupt Enable bit; INTCON[3]
RBIF Register port B change Interrupt Flag bit; INTCON[0]
RBIP Register port B change Interrupt Priority bit; INTCON2[0]
RBPU Register port B Pull-Up bit; INTCON2[7]
RCIDL ReCeive IDLe bit; BAUDCON[6]
RCIE ReCeive register Interrupt Enable mask bit; PIE1[5]
RCIF ReCeive register Interrupt Flag bit; PIR1[5]
RCIP ReCeive register Interrupt Priority bit; IPR1[5]
RCON Reset CONtrol register
RCREG ReCeive data REGister
RCSTA ReCeive STAtus register
RD ReaD bit; EECON1[0]
RD16 ReaD/write 16-bits; T1CON[7] & T3CON[7]
R/W Read/Write packet in MSSP module bit; SSPSTAT[2]
RISC Reduced Instruction Set Computer (see CISC)
ROM Read-Only Memory
rtl Register Transfer Language
RTCC Real-Time Counter Clock; anarchic name for Timer 0
RTS Ready To Send: RS-232 handshake signal
RX ReCeive pin for USART
RX9 ReCeive 9-bit data control bit; RCSTA[6]
RX9D Ninth bit received by the USART bit; RCSTA[[0]
RXDTP Receive/DaTa Polarity bit; BAUDCON[5]
S Start condition bit; SSPSTAT[3]
SAR Successive Approximation Register
SCK Serial ClocK in SPI protocol
SCL Serial CLock in I2C protocol
SDA Serial DAta bidirectional I2C pin
SDI Serial Data Input pin in SPI protocol
SDO Serial Data Output pin in SPI protocol
SEN Stretch clock ENable bit; SSPCON2[0]
SENDB SEND Break bit; TXSTA[3]
SIPO Serial-In Parallel-Out shift register
SISO Serial-In Serial-Out shift register
SMP SaMPle incoming data bit; SSPSTAT[7]
SP Stack Pointer; STKPTR[4:0]
SPBRG Serial Port Baud-Rate Generator low byte
SPBRGH Serial Port Baud-Rate Generator High byte
SPEN Serial Port ENable bit; RCSTA[7]

590 The Essential PIC18® Microcontroller

SPI Serial Peripheral Interface protocol
SFR Special-Function File Register
SSP Synchronous Serial Port
SSPADD SSP ADDress register
SSPBUF MSSP BUFfer register
SSPCONn MSSP CONtrol register 2 & 1
SSPEN MSSP Enable bit; SSPCON1[5]
SSPIE MSSP Interrupt Enable mask bit; PIE1[3]
SSPIF MSSP Interrupt Flag bit; PIR1[3]
SSPIP MSSP Interrupt Priority bit; IPR1[3]
SSPM3:0 MSSP Mode control bits; SSPCON1[3:0]
SSPOV MSSP OVerflow bit; SSPCON1[6]
SSPSR MSSP Shift Register
SSPSTAT MSSP STATus register
STATUS Status register
STKPTR STacK PoinTeR register
STKFUL STacK FULl bit; STKPTR[7]
STKUNF STacK UNderFlow bit; STKPTR[6]
STVREN STacK oVer/underflow Reset ENable configuration bit (also STVR)
SWDTEN Software WatchDog Timer ENable bit; WDTCON[0]
SYNC SYNChronous mode in the USART bit; TXSTA[4]
T08BIT Timer 0 8 BIT/16 bit; T0CON[7]
T0CKI Timer 0 ClocK Input pin (normally shared with RA4)
T0CS Timer 0 Clock Select bit; T0CON[5]
T13CKI Timer 1/3 ClocK Input pin
T1CKPS1:0 Timer 1 ClocK Prescale bits; T1CON[5:4]
T1RUN Timer 1 oscillator is RUNning the system bit; T1CON[6]
T2CKS2:0 Timer 2 ClocK Source Prescale ratio bits; T2CON[2:0]
T2OUTPS3:0 Timer 2 OUTput Post Scaler bits; T2CON[3:0]
T0CON Timer 0 CONtrol register
T1CON Timer 1 CONtrol register
T1SYNC Timer 1 SYNChronize bit; T1CON[2]
T1OSCEN Timer 1 OSCillator ENable bit; T1CON[3]
T2CON Timer 2 CONtrol register
T3CON Timer 3 CONtrol register
T3CCPn Timer 3 CCP2 & 1 timebase select; T3CON[6 & 3]
TABLAT TABle LATch register
TBLPTR TaBLe PoinTeR (TBLPTRU:TBLPTRH:TBLPTRL registers)
TMRn TiMeR 0, 1, 2 & 3 registers
TMR0IE Timer 0 Interrupt Enable mask bit; INTCON[5]
TMR0IF Timer 0 Interrupt Flag bit; INTCON[2]
TMR0IP Timer 0 Interrupt Priority bit; INTCON2[2]
TMR0H TiMeR 0 High byte buffer register
TMR0L TiMeR 0 Low byte register
TMR1CS TiMeR 1 Clock Select bit; T1CON[1]
TMR1H TiMeR 1 High byte buffer register
TMR1L TiMeR 1 Low byte register
TMR1IE Timer 1 Interrupt Enable mask bit; PIE1[0]
TMR1IF Timer 1 Interrupt Flag bit; PIR1[0]

Acronyms and Abbreviations 591

TMR1IP Timer 1 Interrupt Priority bit; IPR1[0]
TMR1ON TiMeR 1 ON bit; T1CON[0]
TMR2IE Timer 2 Interrupt Enable mask bit; PIE1[1]
TMR2IF Timer 2 Interrupt Flag bit; PIR1[1]
TMR2IP Timer 2 Interrupt Priority bit; IPR1[1]
TMR2ON TiMeR 2 ON bit; T2CON[2]
TMR3H TiMeR 3 High byte buffer register
TMR3L TiMeR 3 Low byte register
TMR3IE Timer 3 Interrupt Enable maskbit; PIE2[1]
TMR3IF Timer 3 Interrupt Flag bit; PIR2[1]
TMR3IP Timer 3 Interrupt Priority bit; IPR2[1]
TO Watchdog Time Out bit; RCON[3]
TRISX TRIStateX (Data Direction registerX); e.g., TRISA
TRMT TRansMiT shift register empty bit; TXSTA[1]
TUN4:0 INTOSC TUning bits; OSCAL[4:0]
T0SE Timer 0 Set Edge bit; T0CON[4]
TTL Transistor Transistor Logic family
TTY TeleTYpewriter
TX Transmit pin for USART
TX9 TranSmit 9-bit data in USART; TXSTA[6]
TX9D Ninth bit for transmission in USART; TXSTA[0]
TXCKP Transmit/ClocK Polarity bit; BAUDCON[4]
TXEN Transmit register ENable bit; TXSTA[5]
TXIE Transmit register Interrupt Enable mask bit; PIE1[4]
TXIF Transmit register Interrupt Flag bit; PIR1[4]
TXIP Transmit register Interrupt Priority bit; IPR1[4]
TXREG Transmit data REGister
TXSTA Transmit STAtus register
UA Update slave 10-bit Address in MSSP bit; SSPSTAT[1]
UART Universal Asynchronous Receiver Transmitter
USART Universal Synchronous-Asynchronous Receiver Transmitter
VCFG1:0 A/D Port reference Voltage ConFiGuration bits; ADCON1[4:3]
VDD Positive (Drain) supply voltage
VEE Earth (0 V) supply voltage
VPP Positive Programming voltage
VLSI Very Large-Scale Integration
W Working register (alternative to WREG)
WCOL Write COLlision bit; SSPCON1[7]
WDT WatchDog Timer
WDTCON WatchDog Timer CONtrol register
WR WRite bit; EECON1[1]
WREG Working REGister in Data store
WREN WRite ENable bit; EECON1[2]
WRERR WRite ERRor bit; EECON1[3]
WUE Wake Up Enable bit; BAUDCON[1]
Z Zero flag bit; STATUS[2]

Appendix B
Configuration Registers and Bits
for the PIC18FXX20

S. Katzen, The Essential PIC18® Microcontroller,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-229-2, © Springer-Verlag London Limited 2010

593

594 The Essential PIC18® Microcontroller

Appendix C
C Instruction Set

S. Katzen, The Essential PIC18® Microcontroller,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-229-2, © Springer-Verlag London Limited 2010

595

596 The Essential PIC18® Microcontroller

C Instruction Set 597

Index

A
Access RAM, 81, 100, 241, 256
ADC module, 84, 418, 509–521, 531

clock, 514
Address mode

absolute, 98
bit, 108
file direct, 50, 77, 100–102
file indirect, 84, 91, 102–108, 154, 189,

554
plus W, 154, 185, 187
post-decrement, 107
post-increment, 107, 154, 184
pre-increment, 107, 187

indexed literal offset, 189, 200
inherent, 97
literal, 51, 77, 98
relative, 99

Addressable Universal Synchronous-Asynchronous
Receiver Transmitter (AUSART),
428

Aliasing, 494, 527, 531
Analog Comparator module, see Comparator

module
Analog-to-Digital Conversion (ADC), 504–

509
AND, see Operation, AND
Architecture, 42
Arithmetic logic unit (ALU), 25, 41, 77
ASCII code, see Code, ASCII
Assembler, 239, 275

Absolute, 245–253
Comment, 52, 247
Directive, 86

., 135
#define, 267, 368, 406
#include, 241
accessbank, 256
access_ovr, 256, 259, 267
banksel, 271, 272
cblock, 244, 267, 554
code, 256, 267
codebank, 255
config, 317, 454, 567
da, 561
databank, 256
db, 551, 560
de, 546, 551, 560
define, 172, 245
dw, 550
end, 245, 268
equ, 86, 115, 172, 241, 261, 267
extern, 258, 267, 270
FAST, 167, 241, 359
fill, 407
global, 258, 267
high, 196, 554
if-else, 406
include, 253, 268
local, 252, 269, 424
low, 196, 554
macro, 251, 267
org, 217, 245, 267
radix, 550
res, 258, 267
section, 256

S. Katzen, The Essential PIC18® Microcontroller,
Computer Communications and Networks,
DOI 10.1007/978-1-84996-229-2, © Springer-Verlag London Limited 2010

599

600 Index

Assembler (cont.)
udata, 256, 258, 267
udata_acs, 256, 267
udata_ovr, 267
upper, 196

label, 100, 104, 136, 137, 247
arithmetic, 266

macro, 251, 406, 424
Addlf, 268
Delay_100us, 269
Delay_1ms, 252, 270
Delay_600, 406, 407
Exgwf, 268
Movlf, 252
Mulffs, 269

number base
binary, 266
decimal, 266
hexadecimal, 266

relocating, 253–262
2’s complement, 117

Assembly-level language, 52, 241

B
Bank Select Register, see File register, BSR
Bank switching, see Data store, Bank switch-

ing
Baud rate, 423
Borrow out, 78, 120, 143
Brown-out, see Reset, Brown-out
Bus, 34

C
C language, see High-level language, C
CAN bus, 87, 431
Carry out, 22, 34, 78
CCP module, 87, 466, 470, 472–482

capture modes, 473–475, 486
compare modes, 472, 475–477, 485
enhanced, 479–482
PWM mode, 472, 478–482

Central Processing Unit (CPU), 42, 44
Clock, 30, 76, 311–313

ADC module, 514
INTOSC, 313
INTRC, 313, 454
start-up, 325

Clock switching, 320
Code

ASCII, 3, 5, 155, 266, 424

Binary Coded Decimal (BCD), 6, 79, 181
bi-quinary, 147
packed, 92, 116, 233

decimal, 3
hexadecimal, 6
7-segment, 175, 196, 560
unary, 575

Code protection, see Data/Program EEP-
ROM, Code protection

Comparator module, 88, 495–503, 531
Comparator Voltage Reference module, 501–

503, 522, 531
Compiler, 276
Configuration bit, see Fuse
Configuration memory, 315, 549
Configuration word, 593

CONFIG1H, 316
CONFIG2L, 328

Counter, see also Timer, 37

D
D flip flop, see Flip flop, D
D latch, see Latch, D
Data bus, 20, 34
Data EEPROM memory, 540–547, 567

code protection, 547
endurance, 547
read from, 543
write to, 544

Data store, 44, 49, 70, 80–84, 100
bank, 81, 82, 90, 109, 241, 256, 270
bank switching, 50, 219

Debounce, see Switch, Debounce
Device programmer, 557, 579
Digital-to-Analog Conversion (DAC), 87,

387–390, 477, 489–526
PWM, 477–482, 522

Duplex transmission, 386

E
EEPROM memory, 88, 442–446, 539–561
Enhanced Universal Synchronous-Asynchronous

Receiver Transmitter (EUSART),
428–436

Erasable PROM (EPROM)
27C64, 25

Error detection
bi-quinary, 148
checksum, 155, 250, 432
parity, 15, 156, 199, 424, 430

Index 601

Exclusive-OR, see Operation, eXclusive-OR
Executable code, see Machine code
Execute unit, 77–84
Exponential moving average, 226, 301

F
Fetch and execute, 47, 52–54
Fetch unit, 70–77
File

absolute object, 249–251, 262
Intel format, 250, 262

error, 247, 251
header, 82, 243, 291, 461, 520
include, 243, 318
linker script, 255, 267
listing, 247
machine-code, see File, Absolute object
macro, 253
object code, 52, 240
source code, 52, 240, 253

File register, 80
ADCON0, 287, 511, 517
ADCON1, 217, 288, 337, 511, 517
ADCON2, 513, 517
ADRESH, 515, 518
ADRESL, 515
ANSEL, 512
ANSELH, 512
BAUDCON, 432
BSR, 50, 81, 90, 100, 109, 127, 167, 189,

212, 219, 244, 270
CCP1CON, 472
CCP2, 472
CCP2CON, 472
CCPR1H, 473, 479
CCPR1L, 473, 479
CCPR2H, 473, 479
CCPR2L, 473, 479
CMCON, 498–503, 532
CVRCON, 501
ECCP1AS, 482
EEADR, 88, 540
EECON1, 88, 540, 548, 552, 554
EECON2, 88, 542, 548, 552
EEDATA, 88, 540
FSR0, 82, 91, 102, 106, 107, 153, 181,

182, 233, 287, 554
FSR0H, 82, 102, 554
FSR0L, 82, 102, 554
FSR1, 82, 91, 98, 102, 153

FSR1H, 111
FSR1L, 111
FSR2, 82, 98, 102, 153, 183, 188, 199
FSR2H, 98
FSR2L, 98
General Purpose Register (GPR), 81
HLVDCON, 496
INDF0, 84, 102
INDF2, 107
INTCON, 88, 210, 212, 291
INTCON2, 88, 213, 351
INTCON3, 88, 213
IPR1, 89, 213
IPR2, 89, 213
LATA, 86
LATB, 86, 347, 372
OSCCON, 314, 337, 338
OSCTUNE, 313, 314
PCL, 74, 174, 195
PCLATH, 74, 195
PCLATU, 74, 195
PIE1, 89, 213, 429
PIE2, 89, 213
PIR1, 88, 213, 429, 466
PIR2, 88, 213
PLUSW2, 107
PORTA, 84, 289, 337, 567
PORTB, 85, 203, 289, 337, 347, 372
PORTC, 85, 565, 567
PORTD, 565
PORTE, 377, 565, 567
POSTDEC2, 107
POSTINC0, 91, 107, 183
POSTINC1, 91
POSTINC2, 107
PR2, 470, 478
PREINC2, 107
PRODH, 77, 121, 153
PRODL, 77, 121, 153
PWM1CON, 480
RCON, 208, 319, 324, 325, 454
RCREG, 429, 433
RCSTA, 429
SPBRG, 431
SPBRGH, 431
Special Function Register (SFR), 81, 82

reset, 324
SSPADD, 411, 412
SSPBUF, 396, 410
SSPCON1, 392, 411

602 Index

File register (cont.)
SSPCON2, 412
SSPSR, 391, 410, 415
SSPSTAT, 392, 411
STATUS, see Status register (STATUS)
STKPTR, 77, 162–183
T0CON, 87, 457
T1CON, 466
T2CON, 470
T3CON, 470
TABLAT, 74, 548, 552, 554
TBLPTRH, 548
TBLPTRL, 548, 554
TBLPTRU, 287, 548
TMR0, 292
TMR0H, 87, 459
TMR0L, 87, 457
TMR1H, 466
TMR1L, 466
TMR2, 470–482
TMR3, 470
TMR3H, 470
TMR3L, 470
TOS, 111
TOSH, 77, 179, 183
TOSL, 77, 179, 182
TOSU, 77, 179
TRISX, 85, 228, 325, 393

reset, 334
TRISA, 85, 292
TRISB, 85
TXREG, 429
TXSTA, 429, 432
WDTCON, 454
WREG, 100, 197

File store, see Data store
Fileregister

SSPBUF, 391
Filter

anti-aliasing, 495, 526, 531, 536
moving average, 222
3-point, 156, 536

Fixed Voltage Reference (FVR) module,
328, 496, 513

Flag, 34, 77
C, 34, 48, 49, 77, 89, 99, 113, 115, 118,

120, 121, 129, 143, 195, 268
DC, 78, 92, 116, 145
N, 34, 48, 49, 79, 110, 145
OV, 79, 145

V, 34, 48, 49
Z, 34, 48, 49, 79, 80, 90, 93, 110, 143,

145, 166, 195, 227, 268
interrupt, see Interrupt, Flag

Flip flop
D, 30, 230
T, 37

Flow chart, 63
Fuse, 316–318

BOREN, 328
BORV, 327
CCP2MX, 473
CPD, 547
DEBUG, 315, 580
EBRT1, 552
EBTRB, 552
FCMEN, 316
FOSC, 316, 320, 323, 337
IESO, 317, 322
LPT1OSC, 469, 473
LVP, 315
MCLRE, 85, 324, 564, 567
OSC, 567
PBADEN, 511, 567
programming, 579
PWRTE, 325, 328, 567
setting in C, 318, 338
setting in Assembler, 317
STVREN, 179, 324
WDT, 337, 567
WDTEN, 454
WDTPS, 454
WRT1, 557
WRTC, 557
WRTD, 547
XINST, 188, 200, 314

H
Handshake, 339–341, 402
Harvard architecture, 43–54, 60, 70
Hexadecimal code, see Code, Hexadecimal
High-level language, 275–302

C, 47, 161, 277–302
*, 295
++, 281, 285, 293
-, 285, 295
«, 595
», 132, 289, 297, 595
#asm, 292
#bit, 291, 335, 534

Index 603

High-level language (cont.)
#byte, 291, 335
#define, 289
#device ADC, 521
#device high_ints, 287, 299
#endasm, 292
#inline, 288, 291
#int, 488, 529
#int_ext, 292
#int_ext1, 299
#int_ext2, 299
#int_rb, 362
#int_timer0, 292
#port_b_pullups(), 357
#separate, 288, 291
#use delay(), 292, 436
#use i2c(), 422
#use rs232(), 435
&, 290, 297, 387
absolute address, 290, 297
addition, 285
arrays, 297
automatic data, 259, 530
bclr(), 387
bit twiddling, 290, 534
bset(), 387
cast, 289, 295
clear_interrupt(), 362
comparison, 282
const, 298
contents of an address *, 290, 297
delay_cycles(), 292, 340
delay_ms(), 292, 339
delay_us(), 292
disable_interrupts(), 534
enable_interrupts(), 291, 362,

472, 534
fgetch(), 436
float, 296
for, 297
fprintf(), 436
function, 280
fuses, 318, 338, 454
getch(), 435
get_timer0(), 461, 465
get_timer1(), 487
get_timer2(), 472
global data, 292, 529
hexadecimal, 255, 289
i2c_read(), 421

i2c_slaveaddr(), 422
i2c_start(), 421
i2c_stop(), 421
i2c_write(), 422
if else, 297, 340, 362
int, 280, 282
int32, 301
interrupts in, 472, 529
ISR, see Interrupt Service Routine

(ISR), in C
long int, 282, 530
long long int, 301
main(), 286
make16(), 545
make32(), 545, 557
make8(), 545
pointer *, 289, 297
printf(), 435
read_adc(), 521, 534
read_eeprom(), 544
read_program_eeprom(), 557
restart_cause(), 462
restart_wdt(), 461
return, 280, 282, 286
set_adc_channel(), 520
set_timer0(), 461
set_timer1(), 487
set_timer2(), 472
set_tris(), 292, 335, 338
setup_adc(), 520, 534
setup_adc_ports(), 292, 338,

520
setup_ccp1(), 487
setup_oscillator(), 338
setup_spi(), 399
setup_timer_0(), 461
setup_timer_1(), 487
setup_timer_2(), 472
sleep(), 534
spi_data_is_in(), 399
spi_read(), 399
spi_write(), 399
statement, 281
static data, 259, 529
subtraction, 285
unsigned int, 280
unsigned long int, 280
void, 292
while, 281, 282, 290, 295, 301
write_eeprom(), 544

604 Index

High-level language (cont.)
write_program_memory(), 557
|, 290, 387

I
In-Circuit Debugging (ICD), 263, 580
In-Circuit Emulation (ICE), 263, 580
Input port, see Parallel I/O
Instruction, 41

addfsr, 188
addlw, 49, 51, 98, 112, 126, 165
addulnk, 188, 200
addwf, 63, 77, 96, 101, 112
addwfc, 113
andwf, 125
bc, 99, 120, 131, 145
bcf, 80, 86, 108, 121, 144, 290, 344
bn, 145
bnc, 99, 145, 193
bnn, 145
bnov, 145
bnz, 145, 166
bov, 145
bra, 89, 99, 105, 135, 145, 212
bsf, 80, 86, 108, 121, 144, 290, 372
btfsc, 108, 126, 138
btfss, 92, 108, 110, 138, 290
btg, 108, 121
bz, 126, 131, 145
call, 98, 162, 164, 165, 181

fast, 164, 167, 182, 212, 241
callw, 189
clrf, 80, 101, 120, 147, 359
clrwdt, 97, 319, 454, 460
comf, 123
conditional branch, 99
cpfseq, 105, 142
cpfsgt, 142
cpfslt, 142
daw, 97, 116, 233
dcfsnz, 139
decf, 119
decfsz, 139, 168
double-word, 84, 89, 91, 98, 111, 137,

139, 163
execution time, 89, 90, 99, 100, 136, 138,

165, 165–173
goto, 73, 93, 98, 136, 139, 161, 163,

189, 212
incf, 92, 119, 195

incfsz, 141
infsnz, 141
iorlw, 127
iorwf, 127
lfsr, 82, 91, 98, 104, 111, 153
macro, see Assembler, Macro
movf, 49, 50, 90, 93, 110, 195, 227
movff, 84, 90, 91, 111, 153, 183, 184,

195, 197, 344, 347, 358
movlb, 81, 109, 270
movlw, 100, 109, 165
movsf, 188
movss, 189
movwf, 49, 110, 344
mullw, 121
mulwf, 122, 153, 259, 268
negf, 259
nop, 97, 98, 137, 139, 141, 166, 167,

319, 340, 406, 407
pop, 97, 165, 195
pull, 181
push, 97, 165, 181, 195
pushl, 189
rcall, 99, 164, 173, 288
read-modify-write, 121, 344, 372
reset, 97, 323, 325
retfie, 97, 164, 165, 212, 220, 359

Fast, 165, 212, 215, 226, 359
retlw, 165, 173, 195, 547, 560
return, 97, 163, 165, 166

fast, 165, 167
rlcf, 131
rlncf, 133
rrcf, 129
rrncf, 133
setf, 100, 120, 147
sleep, 97, 216, 288, 319, 322, 329, 433,

456, 501, 519, 534
subfsr, 188
subfwb, 118
sublw, 117
subulnk, 188
subwf, 117
subwfb, 118, 193
swapf, 111, 195, 227
tblrd, 74, 97, 175, 298, 316, 548
tblwt, 74, 97, 316, 548, 552
tstf, 110
tstfsz, 110, 141
xorlw, 129, 419

Index 605

Instruction (cont.)
xorwf, 128

Instruction set, 66
extended, 188, 189, 200

Integrated circuit
DS18S20 digital thermometer, 446
MAX233 dual RS-232 transceiver, 439
24XXX EEPROM, 442–446, 450, 539
27C64 EPROM, 25
MAX485 RS-485 transceiver, 440
MAX505 quad DAC, 525
MAX506 quad DAC, 522, 536
MAX518 quad DAC, 403–422
MAX549A dual 8-bit SPI DAC, 387
6264 RAM, 39
74LS00 quad 2-I/P NAND, 18
74LS138 Natural decoder, 21
74LS139 Natural decoder, 20, 39
74LS148 Priority encoder, 22
74HCT164 octal SIPO shift register, 380
74LS244 octal 3-state buffer, 20
74LS283 Adder, 23
74LS373 octal D latch, 33
74LS377 octal D flip flop, 32
74LS382 ALU, 23, 25
74HCT595 latched PISO shift register,

383, 384
74LS670 Register file, 39
74LS688 Equality detector, 22
74LS74 dual D flip flop, 30, 38
MCP13301 ADC, 509

Interrupt
ADC module, 210, 507
CCP module, 476
comparator change, 500, 533
compatible mode, 208–213, 217, 228,

287, 359, 415
context switching, 212, 219, 227
EEPROM, 210
flag, 210

MSSP, 413
hardware, 208, 212, 463

INT0, 213
INT1, 223
INT2, 223

latency, 212
mask, 208, 212
multiple-precision data, 220
oscillator fail safe, 316
port B change, 210, 357, 359

priority mode, 208, 213–215, 223, 299
serial port, 429
sleep mode, 319, 329
timer 0, 460–465
timer 1, 213
timer 2, 210

Interrupt handling, 88, 207–238
Interrupt service routine (ISR), 73, 208, 212–

238, 359, 415, 566
in C, 291–294, 488, 529
port B Change, 359
timer 0, 529
timer 0, 460, 463, 465, 483, 569

Interrupt vector, see Vector, Interrupt
Inverter, Programmable, see Programmable

inverter

L
Latch

D, 30
R S, 29
R S, 29

LIN bus, 431
Linker, 253
Loader, 240, 249
Look-up table, 24, 173–175, 195, 368, 546,

559
Loop structure, 103

endless, 217, 298
for, 297
while, 281, 286, 294

Low/High Voltage Detect module, 496–498

M
Machine code, 51, 240, 249–251, 317
Macro, see Assembler, Macro
Master Synchronous Serial Port (MSSP),

390–400
Memory

EEPROM, see EEPROM memory
EPROM, 25
RAM, 39
Random Access (RAM), 39
ROM, 24

Microcontroller unit (MCU), 54
14500, 60
6801, 59
6805, 60, 273
68HC11, 60, 89
68HC12, 60

606 Index

Microcontroller unit (MCU) (cont.)
68HC16, 60
dsPIC30, 272
dsPIC32, 69
PIC10, 69
PIC12, 69
PIC16, 69, 87, 88, 210
PIC16C71, 88, 210, 303
PIC16C84, 210, 303

EEPROM Data module, 539
PIC16F627A, 210
PIC16F84, 88

EEPROM Data module, 539
PIC16F877, 473
PIC16F87X

EEPROM Data module, 539
PIC16F87XA

comparator, 503
PIC18, 69
PIC18F1220, 70–89, 207, 255, 270, 296,

303, 305, 334, 348, 417
PIC18F1320, 70, 307, 334, 417
PIC18F1X20, 70, 313, 417, 429, 472,

479, 496, 498, 507, 512, 552, 564
PIC18F2331, 88
PIC18F2420, 305
PIC18F252, 428
PIC18F2520, 305
PIC18F25K20, 308
PIC18F2620, 540
PIC18F4420, 70, 306, 334
PIC18F4450, 87
PIC18F4510, 552
PIC18F452, 313, 454, 496
PIC18F4520, 70, 80, 82, 88, 90, 102, 202,

270, 303, 306, 334
PIC18F4523, 88
PIC18F4580, 87
PIC18F45K20, 501
PIC18F6410, 307
PIC18F8410, 307, 333
PIC18F8490, 307
PIC18F86J50, 307
PIC18F8722, 72, 80, 84, 87
PIC18F96J60, 307
PIC18FX6K20, 552
PIC18FXX20, 305–332, 333, 496, 499,

564–579
ADC module, 510, 520
EEPROM Data module, 540–547

Program store, 547–557
PIC18FXXK family, 308, 312, 320
PIC18FXXK20, 507, 513
PIC18LF8722, 311
PIC18LFXX20, 308

ADC module, 514, 519
PIC24, 69, 272, 322, 465
PIC32, 69

Microprocessor unit (MPU)
4004, 6, 55
6502, 56
6800, 56
68008, 57
6802, 56
6809, 56
8008, 55
8080, 55
8085, 55
8086, 57
8088, 57

Modular programming, 160
MPLAB, 263–266, 289, 315, 579

programmer, 579
Multiprocessing, 398

N
Non-volatile memory, see EEPROM mem-

ory
NOT, see Operation, NOT

O
Object code, see File, Object code
Odd binary numbers, 157
1’s complement, see Operation, Complement
Open-collector, 19, 348
Open-drain buffer, 19, 348
Operating System (OS), 277
Operation

addition, 112, 117
analog multiplication, 502
AND, 12, 125, 290, 387
arithmetic, 112
arithmetic shift right, 11
bit twiddling, 121
compare, 364

signed, 144
unsigned, 143, 144

complement, 123
copy, 108
division, 11

Index 607

Operation (cont.)
shift and subtract, 176

eXclusive-NOR, 14, 22
eXclusive-OR, 13, 127, 155, 268
inclusive-OR, 13, 127, 290, 387
logic shift right, 11
multiple-precision multiplication, 157
multiple-precision shifting, 133
multiplication, 11, 77, 121
NAND, 13, 18, 29
NOR, 29
NOT, 12
OR, see Operation, Inclusive-OR
shifting, 129
skip, 47
subtraction, 117, 118

signed, 146
test for negative, 49
test for zero, 49, 131

Operation code (op-code), 24, 34, 50, 98
OR, see Operation, Inclusive-OR
Oscillator, see also Clock

crystal, 311
external, 313
fail safe, 316
internal, 313, 320
mode, 311–313
primary, 320
RC, 312
secondary, 320
two-speed startup, 316, 319, 326

Output port, see Parallel I/O
Output structure

open-collector, 19, 348, 351, 401
three-state, 20, 342

P
Parallel I/O, 84–86, 333–378

current, 331, 346
expansion, 377
output driver, 349
port A, 84, 137, 144
port B, 85, 111, 141, 143, 342

weak pull-up resistors, 352, 564
port C, 85, 565

SSP, 412
port D, 565
port E, 564

Peripheral interface, 84–89

Peripheral interface, Parallel I/O, see Parallel
I/O

Peripheral Interface Controller (PIC), 60
Pin

AN0, 84, 512
AN4, 217
ANn, 307, 505
C1OUT, 498
C2OUT, 498
CCP1, 472, 473, 478, 480
CCP2, 473, 478
CK, 427
CLKO, 312
DT, 428
FLT0, 482
HLVDIN, 496
INT, 210, 487
INT0, 88, 207, 208, 210, 213, 217, 230,

235, 291, 345, 463
INT1, 88, 207, 210, 211, 221, 345
INT2, 88, 207, 210, 221, 226, 345
MCLR, 85, 180, 307, 315, 323, 330, 333,

564, 567, 580
OSC1, 76, 311, 316, 320
OSC2, 76, 311, 316, 320
P1A, 480
P1B, 480
P1C, 482
P1D, 480
PGC, 315, 580
PGD, 315, 580
PGM, 567
RA0, 84, 221, 223, 228, 230, 231, 330,

496, 512
RA1, 93, 230, 231
RA2, 230, 503, 565, 567
RA3, 230
RA4, 87, 344, 348
RA5, 85, 324, 396, 496
RA6, 313, 338
RA7, 313, 338
RAn, 137, 307
RB0, 207, 217, 231, 345
RB1, 207, 223, 345
RB2, 207, 223, 345
RB3, 473
RB5, 315, 567
RB6, 315, 580
RB7, 86, 230, 315, 580
RBn, 85, 230

608 Index

Pin (cont.)
RC0, 377, 473
RC1, 377, 473
RC2, 473
RC3, 393, 396, 410
RC4, 393, 396, 410
RC5, 393, 396
RC6, 427, 429
RC7, 428, 429
RCn, 393
RE0, 565
RE1, 377, 565
RE2, 377, 565
RE3, 324, 333, 377, 564
RX, 429, 432
SCK, 380, 383, 386, 393
SCL, 400, 410
SDA, 401, 410
SDI, 391, 393
SDO, 391, 393
SS, 393, 396
T0CKI, 457, 460, 485, 487
T13CKI, 466, 470, 473
T1OSCI, 320
T1OSCO, 320
TX, 429
VREF+, 502
VREF-, 502

Pipeline, 53, 75, 76, 389
flushing, 89, 136

Pointer, 82, 91, 98
Port X, see Parallel I/O, Port X
Power consumption, 309
Power management

idle modes, 322, 323
run modes, 320–322

PoWer-on Reset Timer (PWRT), 325, 567
Program, 41

array average, 151
asynchronous serial I/O, 425, 436
background, 88, 208, 217, 222, 415
BCD incrementation, 92, 233
bi-quinary error detection, 148
binary to BCD conversion, 149, 182, 374,

572
bit position, 132
Celsius to Fahrenheit, 152
clearing an array, 101, 104
comparator, 364, 521
comparison, 144

cosine look-up, 551
defibrillator, 533, 559
delay, 166, 168, 170–172, 189, 252

clock independent, 269, 367
division, 150, 186
foreground, 89, 208, 222, 359
hardware interrupt handling, 218
I2C MSSP data acquisition, 419
I2C Read/Write subroutines, 408, 416
keypad, 356
LED blink, 338
MAX518 I2C DAC, 410
MAX549A SPI DAC, 390, 400
multiple-precision addition, 116
multiple-precision signed subtraction, 146
multiple-precision subtraction, 118
multiply array, 154
parallel port handshake, 341
parity, 199, 201
peak picking, 529
pseudo-random number generator, 302
reaction meter, 369
reading the ADC module, 517

while sleeping, 518
real-time clock, 234
root mean square, 258, 295
serial transmission, 297
7-segment decoder, 175, 196, 560, 572
7-segment string, 198
signed multiplication, 124
sine look-up, 546
SPI Read function, 387
SPI Read subroutine, 386, 400
SPI Read/Write subroutine, 397
SPI Write function, 383
SPI Write subroutine, 382
square root, 191, 192, 194, 260, 280
squaring, 259
stepper motor, 367
USART, 435

Program Counter (PC), 47, 54, 74, 76, 99,
134, 161, 174, 196, 212

Program store, 44, 48, 70–74, 97–99, 250,
315, 549

code protection, 315, 579
Program/Verify state, 315
Programmable inverter, 14, 23
Programmer, see Device programmer
Pseudo Stack Pointer (PSP), 183

Index 609

R
RAM, Access, see Access RAM
Read cycle, 48
Read-modify-write, 86, 347, 359
Read-modify-write instructions, see Instruc-

tion, Read-modify-write
Real-Time Counter-Clock (RTCC), 87, 465
Register, see also File register, 31–39

counting, 37
Register bit

BOR (RCON[0]), 327, 329
CVRn (CVRCON[3:0]), 501
CVRSS (CVRCON[4]), 502
GO/DONE (ADCON0[1]), 511, 517, 521,

534
PD (RCON[2]), 319, 327, 456
POR (RCON[1]), 326, 329
RBPU (INTCON2[7]), 351, 357
RI (RCON[4]), 325
R/W (SSPSTAT[2]), 413, 416, 417
T1SYNC (T1CON[2]), 468, 473
T3SYNC (T3CON[2]), 473
TO (RCON[3]), 319, 324, 327, 454, 460
ABDEN (BAUDCON[0]), 433
ABDOVF (BAUDCON[7]), 433
ACQTn (ADCON2[5:3]), 514
ADCSn (ADCON2[2:0]), 513, 518, 520
ADDEN (RCSTA[3]), 430
ADFM (ADCON2[7]), 515
ADIE (PIE1[6]), 518
ADIF (PIR1[6]), 507, 511, 518, 534
ADON (ADCON0[0]), 511
BF (SSPSTAT[0]), 392, 396, 397, 411,

413, 415
BRG16 (BAUDCON[3]), 431
BRGH (TXSTA[2]), 431
C1INV (CMCON[4]), 500
C1OUT (CMCON[6]), 498, 500
C2INV (CMCON[5]), 500
C2OUT (CMCON[7]), 498, 500
CCP1IE (PIE1[2]), 473, 475
CCP1IF (PIR1[2]), 473, 475, 479
CCP1Mn (CCP1CON[3:0]), 482
CCP2IE (PIE2[0]), 473, 475
CCP2IF (PIR2[0]), 473, 475, 479
CFGS (EECON1[6]), 542, 549
CHSn (ADCON0[5:2]), 511
CHSn ADCON0[5:2]), 517
CHSn (ADCON0[5:2]), 520
CIS (CMCON[3]), 500, 532

CKE (SSPSTAT[6]), 394, 414
CKP (SSPCON1[4]), 394, 414, 417
CMn (CMCON[2:0]), 500
CMIE (PIE2[6]), 500
CMIF (PIR2[6]), 500, 503, 532
CREN (RCSTA[4]), 429
CVREN (CVRCON[7]), 501
CVROE (CVRCON[6]), 503
CVRR (CVRCON[5]), 501
D/A (SSPSTAT[5]), 413
EEIE (PIE2[4]), 543
EEIF (PIR2[4]), 543
EEPGD (EECON1[7]), 542, 549, 554
FERR (RCSTA[1]), 430
FREE (EECON1[4]), 542, 554
GIE (INTCON[7]), 212, 217, 292, 319,

415, 460, 503, 518, 519, 534, 543
GIEH (INTCON[7]), 213, 223, 292, 319
GIEL (INTCON[6]), 213, 223
GSEN (SSPCON2[7]), 414, 417
HLVDEN (HLVDCON[4]), 496
HLVDIF (PIR2[5]), 496
HLVDLn (HLVDCON[3:0]), 496
IDLEN (OSCCON[7]), 322
INT0IE (INTCON[4]), 228, 291
INT0IF (INTCON[1]), 217, 220, 232, 291
INT1IE (INTCON3[3]), 223
INT1IF (INTCON3[0]), 227
INT1IP (INTCON3[6]), 223
INT2IE (INTCON3[4]), 223
INT2IF (INTCON3[1]), 226
INT2IP (INTCON3[7]), 223
INTE (INTCON[4]), 210, 463
INTEGDE1 (INTCON2[5]), 210
INTF (INTCON[1]), 210
INTSRC (OSCTUNE[7]), 320
IPEN (RCON[7]), 208, 213, 223, 287, 299,

325
IRCFn (OSCCON[6:4]), 313, 337
IRVST (HLVDCON[5]), 497
OERR (RCSTA[1]), 429, 434
OSCFIF (PIR2[7]), 316
OSTS (OSCCON[3]), 317, 322
P (SSPSTAT[4]), 413
PCFGn (ADCON1[3:0]), 511, 520
PEIE (INTCON[6]), 210, 415, 503, 534
PLLEN (OSCTUNE[6]), 320
PRSEN (PWM1CON[7]), 482
PSn (T0CON[2:0]), 457
RBIE (INTCON[3]), 357, 359

610 Index

Register bit (cont.)
RBIF (INTCON[0]), 357, 359
RCIDL (BAUDCON[6]), 432
RCIE (PIE1[5]), 429
RCIF (PIR1[5]), 429, 433, 434
RD (EECON1[0]), 540, 542
RD16 (T1CON[7]), 468
RX9 (RCSTA[6]), 430
RX9D (RCSTA[0]), 430
RXDTP (BAUDCON[5]), 432
S (SSPSTAT[3]), 413
SBOREN (RCON[6]), 328
SCSn (OSCCON[1:0]), 320
SEN (SSPCON2[0]), 414, 417
SENB (TXSTA[3]), 432
SMP (SSPSTAT[7]), 394
SPn (STKPTR[4:0]), 179
SPEN (RCSTA[7]), 429
SSPEN (SSPCON1[5]), 393, 412
SSPIE (PIE1[3]), 396, 415
SSPIF (PIR1[3]), 396, 411, 413–421
SSPM (SSPCON1[3:0]), 393, 412
SSPOV (SSPCON1[6]), 393, 396, 413
STKFUL (STKPTR[7]), 179, 180
STKUNF (STKUNF[6]), 179, 180
SWDTEN (WDTCON[0]), 454
SYNC (TXSTA[4]), 427
T08BIT (T0CON[7]), 457
T0CS (T0CON[5]), 457
T0SE (T0CON[4]), 457
T1CKPSn (T1CON[5:4]), 467
T1OSCEN (T1CON[3]), 466
T1RUN (T1CON[6]), 468
T2CKPSn (T2CON[1:0]), 471
T2OUTPSn (T2CON[6:3]), 471
T3CCPn (T3CON[6&3]), 470
TMR0IE (INTCON[5]), 459, 460, 463
TMR0IF (INTCON[2]), 457, 461, 485
TMR0IP (INTCON2[2]), 459
TMR1CS (T1CON[1]), 466
TMR1IE (PIE1[0]), 213, 216, 468, 469
TMR1IF (PIR1[0]), 213, 466, 467
TMR1IP (IPR1[0]), 213
TMR1ON (T1CON[0]), 466
TMR2IE (PIE1[1]), 210, 470
TMR2IF (PIR1[1]), 210, 470, 479
TMR2ON (T2CON[2]), 471
TMR3IE (PIE2[1]), 470
TMR3IF (PIR2[1]), 216, 470
TMR3IP (IPR2[1]), 470

TRMT (TXSTA[1]), 429
TUNn (OSCTUNE[4:0]), 313
TX9 (TXSTA[6]), 429
TX9D (TXSTA[0]), 429
TXCKP (BAUDCON[4]), 432
TXEN (TXSTA[5]), 429
TXIE (PIE1[4]), 429
TXIF (PIR1[4]), 429, 434
UA (SSPSTAT[1]), 413
VCFGn (ADCON1[5:4]), 513, 531
VDIRMAG (HLVDCON[7]), 496
WCOL (SSPCON1[7]), 393, 397, 413,

415
WCOL (SSPCON[7]), 418
WR (EECON1[1]), 540
WREN (EECON1[2]), 541
WRERR (EECON1[3]), 542, 543
WUE (BAUDCON[1]), 432

Register transfer language (rtl), 96
Reset, 323–329

ADC module, 88, 223, 228, 515
baud rate generator, 431
brown-out, 327–329, 497

external, 329
BSR, 127, 140, 189, 270
CCP, 473, 476
comparator, 499
CVR module, 502
EEPROM module, 549
external, 324
GIE, 210, 212
HLVD module, 496
interrupt, 207, 211, 213
interrupt Priority, 223
manual, 564, 567
parallel port, 223, 228, 336
power-on (POR), 325–327

analog modules, 499, 511, 512, 567
C, 78
stack status, 180

RBPU, 351
SSPEN, 393, 412
stack, 163
stack over/underflow, 180
STKPTR, 180
Timer 0, 457
Timer 1, 466
Timer 2, 470
TRIS, 346
USART module, 427

Index 611

Reset (cont.)
vector, see Vector, Reset
watchdog timer, 456, 460

Resource budget, 58
R S latch, see Latch, R S

S
Schmitt trigger buffer, 344
Serial Communication Interface (SCI), 427
Serial I/O, 86, 87, 379–451

1-Wire, 446–449
Asynchronous, 422–440, 487
I2C, 400–422
SPI, 387–400

7-segment display, 173, 370, 380, 559, 565
Shift register, 35
Sign bit, see 2’s complement, Signed num-

bers
Sign extension, 11, 121
Signaling standard

RS-232, 437–440
RS-422, 437
RS-423, 437
RS-485, 437, 440

Simplex transmission, 387
Simulator, 264–266
Sleep state, 215, 318–320, 330, 396, 415,

432
ADC module, 514, 518–520
brown-out reset, 328, 330
C code for, 534
comparator module, 501
MSSP, 396
port B Change, 358
timer 1, 468

Smart card, 380
Software, 41, 44
Source code, see File, Source code
Special Function Register (SFR), nnn, see

File register, nnn
Stack, 70, 76, 162, 570

fast, 167, 212, 215, 219
hardware, 162, 179–183, 193, 212
software, 183–189, 200

Stack Pointer (SP), 77, 162–183
Status Register (STATUS), 34, 48, 77, 167,

195
Stepper motor, 366
Subroutine, 161

nested, 161, 212
from an ISR, 361, 570

recursive, 164
transparent, 167, 193

Switch
debounce, 30, 203, 571
interface, 141, 351, 359

Synchronous Serial Port (SSP), 87, 390

T
Table Pointer, 70
10’s complement, 9
Text editor, 245
3-state buffer, 20, 342, 347
Timer, see also Counter
Timer 0 (TMR0), 87, 210, 349, 456–465, 482,

485, 565, 569
Timer 1 (TMR1), 87, 291, 320, 465–477, 485,

488, 565
clock, 320

Timer 2 (TMR2), 87, 210, 393, 465, 470–482
Timer 3 (TMR3), 87, 216, 466, 469, 486
Timer 4 (TMR4), 87
2’s complement

dividing by shifting, 11
number, 9–12, 117, 155, 266
overflow, 10, 11, 14, 23, 34, 79, 147
signed number, 9–12

U
Universal Asynchronous Receiver Transmit-

ter (UART), 426–436
Universal Serial Bus (USB), 87
Universal Synchronous-Asynchronous Re-

ceiver Transmitter (USART), 87,
427–436

V
Vector, 255

default interrupt, 73, 208, 212, 217, 228,
359, 461

high-priority interrupt, 89, 208, 213, 222,
255

interrupt, 567
low-priority interrupt, 73, 208, 214, 222,

255
normal interrupt, 89
reset, 73, 180, 217, 222, 228, 255, 262,

324, 329, 454, 460, 567

612 Index

Voltage Reference module, see Comparator
Voltage Reference module

Von Neumann architecture, 42

W
Watchdog timer, 87, 337, 338, 453–456, 460

EEPROM Data module, 543
oscillator fail safe, 316
sleep state, 319, 320, 329

Word size
byte (8), 6
long-word (32), 6
nybble (4), 6
quad-word (64), 6
word (16), 6

Working register (WREG), 32, 35, 41, 48, 77,
91, 100, 167, 212

Write cycle, 48

	Cover
	The Essential PIC18Microcontroller
	Computer Communications and Networks
	ISBN 1849962286
	Preface
	Contents

	Chapter 1Digital Representation
	Chapter 2Logic Circuitry
	Chapter 3Stored Program Processing
	Examples
	Self-Assessment Questions

	Chapter 4The PIC18F1220 Microcontroller
	Peripheral Interface
	Examples
	Self-Assessment Questions

	Chapter 5The Instruction Set
	Examples
	Self-Assessment Questions

	Chapter 6Subroutines and Modules
	Examples
	Self-Assessment Questions

	Chapter 7Interrupt Handling
	Examples
	Self-Assessment Questions

	Chapter 8Assembly Language Code Building Tools
	Examples
	Self-Assessment Questions

	Chapter 9High-Level Language
	Examples
	Self-Assessment Questions

	Chapter 10The Real World
	Examples
	Self-Assessment Questions

	Chapter 11One Byte at a Time
	Examples
	Self-Assessment Questions

	Chapter 12One Bit at a Time
	Examples
	Self-Assessment Questions

	Chapter 13Time Is of the Essence
	Examples
	Self-Assessment Questions

	Chapter 14Take the Rough with the Smooth
	Examples
	Self-Assessment Questions

	Chapter 15To Have and to Hold
	Examples
	Self-Assessment Questions

	Chapter 16A Case Study
	Appendix A Acronyms and Abbreviations
	Appendix B Configuration Registers and Bits for the PIC18FXX20
	Appendix C C Instruction Set
	Index

