
K16291

Microcontrollers: High-Performance Systems and Programming
discusses the practical factors that make the high-performance PIC
series a better choice than their mid-range predecessors for most
systems. However, one consideration in favor of the mid-range
devices is the abundance of published application circuits and code
samples. This book fills that gap:

• Provides downloadable software, including tools, resources,
supplementary materials, and code listings

• Includes sample circuits with their corresponding programs,
as well as tested PCB files

• Focuses on the popular embedded systems with PIC18
series microcontrollers

• Contains an appendix with a C language tutorial, PIC18
instruction set, links to useful tools and software

• Supplies sample circuits that are not copyrighted or patented, so
readers can freely use them in their own applications

• Covers selected topics and examples that provide solutions to
problems that practicing engineers may encounter and are not
readily found in the literature

Designed to be functional and hands-on, this book provides sample
circuits with their corresponding programs. It clearly depicts and
labels the circuits, in a way that is easy to follow and reuse. The
book matches sample programs to the individual circuits and
discusses general programming techniques.

HIGH-PERFORMANCE SYSTEMS
AND PROGRAMMING

Microcontrollers
Electrical Engineering

Julio Sanchez
Maria P. Canton

Microcontrollers
HIGH-PERFORMANCE SYSTEMS
AND PROGRAMMING

Microcontrollers

Sanchez
Canton

Microcontrollers
HIGH-PERFORMANCE SYSTEMS
AND PROGRAMMING

K16291_FM.indd 1 9/24/13 11:25 AM

K16291_FM.indd 2 9/24/13 11:25 AM

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

Julio Sanchez
Eastern Florida State College

Maria P. Canton
Brevard Public Schools

Microcontrollers
HIGH-PERFORMANCE SYSTEMS
AND PROGRAMMING

K16291_FM.indd 3 9/24/13 11:25 AM

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2014 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20130923

International Standard Book Number-13: 978-1-4665-6668-2 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been
made to publish reliable data and information, but the author and publisher cannot assume responsibility for the valid-
ity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright
holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or uti-
lized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopy-
ing, microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://
www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For
organizations that have been granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

Ta ble of Con tents

Pref ace xx

Chap ter 1 Microcontrollers for Em bed ded Sys tems 1
1.1 Em bed ded Sys tems 1
1.2 Micro chip PIC 1

1.2.1 PIC Ar chi tec ture 2
1.2.2 Pro gram ming the PIC 2

PIC Pro gram mers 3
De vel op ment Boards 4

1.3 PIC Ar chi tec ture 4
1.3.1 Base line PIC Fam ily 5

PIC10 de vices 6
PIC12 De vices 7

1.3.2 Mid-Range Fam ily 9
PIC14 De vices 9
PIC16 De vices 9

1.3.3 High-Per for mance PICs and DSPs 10
Dig i tal Sig nal Pro ces sor 11
Analog-to-Dig i tal 12

Chap ter 2 PIC18 Ar chi tec ture 13
2.1 PIC18 Fam ily Over view 13

2.1.1 PIC18FXX2 Group 14
2.1.2 PIC18FXX2 De vice Group Over view 15
2.1.3 PIC18F4X2 Block Di a gram 16
2.1.4 Cen tral Pro cess ing Unit 17

Sta tus Reg is ter 17
Pro gram Coun ter Reg is ter 17
Hard ware Mul ti plier 18
In ter rupts 18

2.1.5 Spe cial CPU Fea tures 19
Watch dog Timer 20
Wake-Up by In ter rupt 21
Low Volt age De tec tion 21
De vice Con fig u ra tion 21

2.2 Mem ory Or ga ni za tion 22
2.2.1 Pro gram Mem ory 22

v

2.2.2 18FXX2 Stack 23
Stack Op er a tions 23
Fast Reg is ter Stack 24
In struc tions in Mem ory 25

2.2.3 Data Mem ory 25
2.2.4 Data EEPROM Mem ory 27
2.2.5 In di rect Ad dress ing 28

2.3 PIC18FXX2 Os cil la tor 29
2.3.1 Os cil la tor Op tions 29

Crys tal Os cil la tor and Ce ramic Res o na tor 29
RC Os cil la tor 30
Ex ter nal Clock In put 31
Phase Locked Loop Os cil la tor Mode 31

2.4 Sys tem Re set 31
2.4.1 Re set Ac tion 32

Power-On Re set (POR) 33
Power-Up Timer (PWRT) 33
Os cil la tor Start-Up Timer (OST) 33
PLL Lock Time-Out 33
Brown-Out Re set (BOR) 33
Time-Out Se quence 33

2.5 I/O Ports 34
2.5.1 Port Reg is ters 34
2.5.2 Par al lel Slave Port 35

2.6 In ter nal Mod ules 35
2.6.1 PIC18FXX2 Mod ules 35

Chap ter 3 Pro gram ming Tools and Soft ware 37
3.1 En vi ron ment 37

3.1.1 Em bed ded Sys tems 37
3.1.2 High- and Low-Level Lan guages 38
3.1.3 Lan guage-Spe cific Soft ware 40

3.2 Micro chip's MPLAB 40
3.2.1 MPLAB X 40
3.2.2 De vel op ment Cy cle 40

3.3 An In te grated De vel op ment En vi ron ment 41
3.3.1 In stall ing MPLAB 42
3.3.2 Cre at ing the Pro ject 43
3.3.3 Set ting the Pro ject Build Op tions 45
3.3.4 Adding a Source File 47
3.3.5 Build ing the Pro ject 48
3.3.6 .hex File 48
3.3.7 Quickbuild Op tion 50

3.4 MPLAB Sim u la tors and Debuggers 50
3.4.1 MPLAB SIM 51

Us ing Break points 51
Watch Win dow 52
Sim u la tor Trace 52

3.4.2 MPLAB Stim u lus 54
Stim u lus Di a log 54

3.4.3 MPLAB Hard ware Debuggers 55

 vi Ta ble of Con tents

3.4.4 An Im pro vised Debugger 56

3.5 De vel op ment Pro gram mers 56
3.5.1 Micro chip PICkit 2 and PICkit 3 58
3.5.2 Micropro USB PIC Pro gram mer 60
3.5.3 MPLAB ICD 2 and ICD 3 In-Cir cuit Debuggers/Pro gram mers 60

3.6 Test Cir cuits and De vel op ment Boards 61
3.6.1 Com mer cial De vel op ment Boards 61
3.6.2 Cir cuit Pro to type 63
3.6.3 Bread board 64

Lim i ta tions of Bread boards 65
Breadboarding Tools and Tech niques 66

3.6.4 Wire Wrap ping 67
3.6.5 Perfboards 67
3.6.6 Printed Cir cuit Boards 68

Chap ter 4 As sem bly Lan guage Pro gram 71
4.1 As sem bly Lan guage Code 71

4.1.1 A Cod ing Tem plate 71
Pro gram Header 73
Pro gram En vi ron ment Di rec tives 73
Con fig u ra tion Bits 73
Er ror Mes sage Level Con trol 74
Vari ables and Con stants 74
Code Area and In ter rupts 74

4.1.2 Pro gram ming Style 74
Source File Com ments 75

4.2 De fin ing Data El e ments 75
4.2.1 equ Di rec tive 76
4.2.2 cblock Di rec tive 76
4.2.3 Ac cess to Banked Mem ory 77

4.3 Nam ing Con ven tions 77
4.3.1 Reg is ter and Bit Names 77

4.4 PIC 18Fxx2 In struc tion Set 79
4.4.1 Byte-Ori ented In struc tions 80
4.4.2 Bit-Ori ented In struc tions 80
4.4.3 Lit eral In struc tions 80
4.4.4 Con trol In struc tions 80

Chap ter 5 PIC18 Pro gram ming in C Lan guage 85
5.1 C Com pil ers 85

5.1.1 C ver sus As sem bly Lan guage 85
5.1.2 MPLAB C18 86

5.2 MPLAB C18 In stal la tion 86
5.2.1 MPLAB Soft ware Com po nents 87
5.2.2 Con fig u ra tion Op tions 88
5.2.3 Sys tem Re quire ments 89
5.2.4 Ex e cu tion Flow 90

5.3 C Com piler Pro ject 91
5.3.1 Cre at ing the Pro ject 91

Ta ble of Con tents vii

Se lect Hard ware De vice 92
Se lect the Lan guage Toolsuite 92
Cre ate a New Pro ject 93
Add Files to the Pro ject 95

5.3.2 Se lect ing the Build Di rec tory 96

5.4 A First Pro gram in C 98
5.4.1 Source Code Anal y sis 99

main() Func tion 100
Lo cal Func tions 101

Chap ter 6 C Lan guage in an Em bed ded En vi ron ment 103
6.1 MPLAB C18 Sys tem 103

6.1.1 PIC18 Ex tended Mode 104

6.2 MPLAB C18 Li brar ies 104
6.2.1 Start-Up Rou tines 104
6.2.2 On line Help for C18 and Li brar ies 105

6.3 Pro ces sor-In de pend ent Li brar ies 106
6.3.1 Gen eral Soft ware Li brary 106

Char ac ter Clas si fi ca tion Func tions 107
Data Con ver sion Func tions 107
Mem ory and String Ma nip u la tion Func tions 108
De lay Func tions 110
Re set Func tions 111
Char ac ter Out put Func tions 112

6.4 Pro ces sor-Spe cific Li brar ies 115
6.4.1 Hard ware Pe riph eral Li brary Func tions 115
6.4.2 Soft ware Pe riph er als Li brary Func tions 116
6.4.3 Mac ros for Inline As sem bly 116
6.4.4 Pro ces sor-Spe cific Header Files 117

6.5 Math Li brar ies 118
6.5.1 ANSI-IEEE 754 Bi nary Float ing-Point Stan dard 118

Encodings 119
Round ing 119

6.5.2 Stan dard Math Li brary Func tions 120
6.5.3 Float ing-Point Math Sam ple Pro gram 120

6.6 C18 Lan guage Spe cif ics 122
6.6.1 C18 In te ger Data Types 122
6.6.2 C18 Float ing-Point Data Types 122
6.6.3 Endianness 123
6.6.4 Stor age Classes 123
6.6.5 Static Func tion Ar gu ment 123
6.6.6 Stor age Qual i fi ers 123

far and near Qual i fi ers 123
rom and ram Qual i fi ers 124

Chap ter 7 Pro gram ming Sim ple In put and Out put 125
7.1 Port-Con nected I/O 125

7.1.1 A Sim ple Cir cuit and Code 125
7.1.2 Cir cuit Sche mat ics 125
7.1.3 As sem bler Sim ple I/O Pro gram 126

 viii Ta ble of Con tents

7.1.4 As sem bler Source Code Anal y sis 129
Com mand Mon i tor ing Loop 129
Ac tion on the LEDs 130
A De lay Rou tine 130

7.2 C Lan guage Sim ple I/O Pro gram 131
7.2.1 C Source Code Anal y sis 132

main() Func tion 133

7.3 Seven-Seg ment LED Pro gram ming 134
7.3.1 Com puted Goto 135
7.3.2 As sem bler Seven-Seg ment LED Pro gram 136

Ac cess Bank Op er a tion 136
Port A for Dig i tal Op er a tion 137
DIP Switch Pro cess ing 138
Seven-Seg ment Code with Com puted Goto 139

7.3.3 As sem bler Ta ble Lookup Sam ple Pro gram 140

7.4 C Lan guage Seven-Seg ment LED Pro grams 141
7.4.1 Code Se lec tion by Switch Con struct 142
7.4.2 Code Se lec tion by Ta ble Lookup 142

7.5 A Dem on stra tion Board 143
7.6.1 Power Sup ply 145

Volt age Reg u la tor 145

Chap ter 8 In ter rupts 147
8.1 In ter rupt Mech a nism 147
8.2 PIC18 In ter rupt Sys tem 147

8.2.1 Hard ware Sources 148
8.2.2 In ter rupt Con trol and Sta tus Reg is ters 148

INTCON Reg is ters 149
PIE Reg is ters 151
PIR Reg is ters 152
IPR Reg is ters 152

8.2.3 In ter rupt Pri or i ties 154
High-Pri or ity In ter rupts 154
Low-Pri or ity In ter rupts 155
An In ter rupt In ter rupt ing An other One 155

8.2.4 Con text Sav ing Op er a tions 155
Con text Sav ing during Low-Pri or ity In ter rupts 156

8.3 Port B In ter rupts 157
8.3.1 Port B Ex ter nal In ter rupt 158
8.3.2 INT0 In ter rupt Demo Pro gram 158

cblock Di rec tive 158
Vectoring the In ter rupt 159
Ini tial iza tion 160
Setup INT0 160
Pro gram Fore ground 161
In ter rupt Ser vice Rou tine 161
Switch Debouncing 162
In ter rupt Ac tion 162

8.3.3 Port B Line Change In ter rupt 163
Reentrant In ter rupts 164
Mul ti ple Ex ter nal In ter rupts 165

Ta ble of Con tents ix

8.3.4 Port B Line Change In ter rupt Demo Pro gram 165
Set ting Up the Line Change In ter rupt 165
In ter rupt Ser vice Rou tine 166

8.4 Sleep Mode and In ter rupts 168
8.4.1 Wake-Up from SLEEP 169
8.4.2 Sleep_Demo Pro gram 170

8.5 In ter rupt Pro gram ming in C Lan guage 171
8.5.1 In ter rupt Ac tion 171

Con text in the Stack 172
In ter rupt Data 172

8.5.2 In ter rupt Pro gram ming in C18 173
Sleep Mode and RB0 In ter rupt Demo Pro gram 174
Port B In ter rupt on Change Demo Pro gram 176

Chap ter 9 De lays, Coun ters, and Tim ers 179
9.1 PIC18 Fam ily Tim ers 179
9.2 De lay Tim ers 179

9.2.1 Power-Up Timer (PWRT) 179
9.2.2 Os cil la tor Start-Up Timer (OST) 180
9.2.3 Phase Locked Loop (PLL) 180

Power-Up De lay Sum mary 181
9.2.4 Watch dog Timer 181

Watch dog Timer Uses 181

9.3 Hard ware Timer-Coun ters 182
9.4 Timer0 Mod ule 182

9.4.1 Timer0 Ar chi tec ture 184
16-bit Mode Op er a tion 184
Timer and Coun ter Modes 185
Timer0 In ter rupt 185
Ex ter nal Clock Source 185
Timer0 Prescaler 186

9.4.2 Timer0 as a De lay Timer 186
Long De lay Loops 187
De lay Ac cu racy Is sues 188
Black–Ammerman Method 188
De lays with 16-Bit Timer0 189

9.4.3 Coun ter and Timer Pro gram ming 189
Pro gram ming a Coun ter 190
Timer0_as_Coun ter.asm Pro gram 190
A Timer/Coun ter Test Cir cuit 191
Timer0 _De lay.asm Pro gram 191
A Vari able Time-Lapse Rou tine 193
Timer0_VarDelay.asm Pro gram 193
In ter rupt-Driven Timer 196

9.5 Other Timer Mod ules 199
9.5.1 Timer1 Mod ule 199

Timer1 in Timer Mode 200
Timer1 in Syn chro nized Coun ter Mode 201
Ex ter nal Clock In put Tim ing in Syn chro nized Mode 201
Timer1 Read and Write Op er a tions 201
16-bit Mode Timer1 Write 201

 x Ta ble of Con tents

16-Bit Read-Mod ify-Write 202
Read ing and Writ ing Timer1 in Two 8-bit Op er a tions 202

9.5.2 Timer2 Mod ule 203
Timer Clock Source 204
TMR2 and PR2 Reg is ters 204
Prescaler and Postscaler 205
Timer2 Ini tial iza tion 205

9.5.3 Timer3 Mod ule 205
Timer3 in Timer Mode 207
Timer3 in Syn chro nized Coun ter Mode 207
Ex ter nal Clock In put Tim ing 208
Timer3 in Asyn chron ous Coun ter Mode 208
Ex ter nal Clock In put Tim ing with Unsynchronized Clock 208
Timer3 Read ing and Writ ing 208
Writ ing in 16-Bit Mode 208
16-bit Read-Mod ify-Write Op er a tion 209
Read ing in Asyn chron ous Coun ter Mode 209
Timer1 Os cil la tor in Timer3 210

9.6 C-18 Timer Func tions 210
9.6.1 CloseTimerx Func tion 210
9.6.2 OpenTimerx Func tion 211
9.6.3 ReadTimerx Func tion 211
9.6.4 WriteTimerx Func tion 212

9.7 Sam ple Pro grams 212
9.7.1 Timer0_as_Coun ter pro gram 212
9.7.2 Timer0_De lay Pro gram 215
9.7.3 Timer0_VarDelay Pro gram 216
9.7.4 Timer0_VarInt Pro gram 220
9.7.5 C_Timer_Show Pro gram 224

Chap ter 10 Data EEPROM 227
10.1 EEPROM on the PIC18 Microcontrollers 227

10.1.2 On-Board Data EEPROM 227

10.2 EEPROM Pro gram ming 228
10.2.1 Read ing EEPROM Data 228
10.2.2 Writ ing EEPROM Data 230

10.3 Data EEPROM Pro gram ming in C Lan guage 231
10.3.1 EEPROM Li brary Func tions 232
10.3.2 Sam ple Code 232

10.4 EEPROM Dem on stra tion Pro grams 233
10.4.1 EEPROM_to_7Seg Pro gram 233
10.4.2 C_EEPROM_Demo Pro gram 237

Chap ter 11 Liq uid Crys tal Dis plays 239
11.1 LCD 239

11.1.1 LCD Fea tures and Ar chi tec ture 239
11.1.2 LCD Func tions and Com po nents 240

In ter nal Reg is ters 240
Busy Flag 240
Ad dress Coun ter 240

Ta ble of Con tents xi

Dis play Data RAM (DDRAM) 240
Char ac ter Gen er a tor ROM (CGROM) 241
Char ac ter Gen er a tor RAM (CGRAM) 241
Tim ing Gen er a tion Cir cuit 241
Liq uid Crys tal Dis play Driver Cir cuit 242
Cur sor/Blink Con trol Cir cuit 242

11.1.3 Con nec tiv ity and Pin Out 242

11.2 In ter fac ing with the HD44780 243
11.2.1 Busy Flag and Timed De lay Op tions 244
11.2.2 Con trast Con trol 245
11.2.3 Dis play Backlight 245
11.2.4 Dis play Mem ory Map ping 245

11.3 The HD44780 In struc tion Set 247
11.3.1 In struc tion Set Over view 247

Clear ing the Dis play 248
Re turn Home 248
En try Mode Set 248
Dis play and Cur sor ON/OFF 248
Cur sor/Dis play Shift 248
Func tion Set 248
Set CGRAM Ad dress 249
Set DDRAM Ad dress 249
Read Busy Flag and Ad dress Reg is ter 249
Write data 249
Read data 250

11.3.2 18F452 8-Bit Data Mode Cir cuit 250

11.4 LCD Pro gram ming 251
11.4.1 De fin ing Con stants and Vari ables 252

Con stants 252
11.4.2 Us ing MPLAB Data Di rec tives 253

Data Def i ni tion in Ab so lute Mode 253
Relocatable Code 254
Is sues with In i tial ized Data 254

11.4.3 LCD Ini tial iza tion 255
Re set Func tion 255
Ini tial iza tion Com mands 256
Func tion Pre set Com mand 256
Func tion Set Com mand 256
Dis play Off 257
Dis play and Cur sor On 257
Set En try Mode 258
Cur sor and Dis play Shift 258
Clear Dis play 258

11.4.4 Aux il iary Op er a tions 259
Time De lay Rou tine 259
Puls ing the E Line 260
Read ing the Busy Flag 261
Bit Merg ing Op er a tions 262

11.4.5 Text Data Stor age and Dis play 264
Gen er at ing and Stor ing a Text String 265
Data in Pro gram Mem ory 265
Dis play ing the Text String 266
Sam ple Pro gram LCD_18F_MsgFlag 268

 xii Ta ble of Con tents

11.5 Data Com pres sion Tech niques 278
11.5.1 4-Bit Data Trans fer Mode 279
11.5.2 Pre serv ing Port Data 279
11.5.3 Mas ter/Slave Sys tems 280
11.5.4 4-Bit LCD In ter face Sam ple Pro grams 281

11.6 LCD Pro gram ming in C18 291
11.6.1 Ed it ing xlcd.h 292

De fin ing the In ter face 292
De fin ing the Data Port and Tris Reg is ter 293

11.6.2 Tim ing Rou tines 294
11.6.3 XLCD Li brary Func tions 295

BusyXLCD 295
OpenXLCD 296
putrXLCD 296
putsXLCD 296
ReadAddr 296
ReadDataXLCD 297
SetDDRamAddr 297
SetCGRamAddr 297
WriteCmdXLCD 298
WriteDataXLCD 298

11.7 LCD Ap pli ca tion De vel op ment in C18 299
11.7.1 Us ing the Pro ject Wiz ard 299

Main Pro gram File 300

Chap ter 12 Real-Time Clocks 303
12.1 Mea sur ing Time 303

12.1.1 Clock Sig nal Source 303
32 kHz Crys tal Cir cuit 304

12.1.2 Pro gram ming the Timer1 Clock 305
Set ting Up Timer1 Hard ware 305
Cod ing the In ter rupt Han dler 306
Sam ple Pro gram RTC_18F_Timer1.asm 306

12.2 Real-Time Clock ICs 309
12.2.1 NJU6355 310
12.2.2 6355 Data For mat ting 310
12.2.3 Ini tial iza tion and Clock Prim i tives 311

Read ing and Writ ing Clock Data 311
Ini tial ize RTC 314

12.2.4 BCD Con ver sions 316

12.3 RTC Dem on stra tion Cir cuit and Pro gram 318
12.3.1 RTC_F18_6355.asm Pro gram 318

Code De tails 319
Code List ing 319

12.4 Real-Time Clocks in C18 336
12.4.1 Timer1-Based RTC in C18 336

Ta ble of Con tents xiii

Chap ter 13 An a log Data and De vices 343
13.1 Op er a tions on Com puter Data 343
13.2 18F452 A/D Hard ware 343

 13.2.1 A/D Mod ule on the 18F452 344
ADCON0 Reg is ter 345
ADCON1 Reg is ter 347
SLEEP Mode Op er a tion 348

 13.2.2 A/D Mod ule Sam ple Cir cuit and Pro gram 349
Ini tial ize A/D Mod ule 350
A/D Con ver sion 351

13.2.3 A2D_Pot2LCD Pro gram 352

13.3 A/D Con ver sion in C18 365
13.3.1 Con ver sion Prim i tives 365

Busy ADC 365
CloseADC 365
ConvertADC 366
OpenADC 366
ReadADC 367
SetChan ADC 367

13.3.2 C_ADConvert.c Pro gram 368
C_ADConvert.c Code List ing 368

13.4 In ter fac ing with An a log De vices 371
13.4.1 LM 34 Tem per a ture Sen sor 371
13.4.2 LM135 Cir cuits 372

Cal i brat ing the Sen sor 372
13.4.3 C_ADC_LM35.c Pro gram 373

Chap ter 14 Op er at ing Sys tems 377
14.1 Time-Crit i cal Sys tems 377

14.1.2 Multitasking in Real-Time 378

14.2 RTOS Scope 378
14.2.1 Tasks, Pri or i ties, and Dead lines 379
14.2.2 Ex e cut ing in Real-Time 381

14.3 RTOS Pro gram ming 381
14.3.1 Fore ground and Back ground Tasks 382

In ter rupts in Task ing 382
14.3.2 Task Loops 383
14.3.3 Clock-Tick In ter rupt 383
14.3.4 In ter rupts in Pre emp tive Multitasking 383

14.4 Con struct ing the Sched uler 384
 14.4.1 Cy clic Sched ul ing 384
 14.4.2 Round-Robin Sched ul ing 385
14.4.3 Task States and Pri or i tIzed Sched ul ing 385

14.5 A Small Sys tem Ex am ple 386
14.5.1 Task Struc ture 386
14.5.2 Sema phore 387

14.6 Sam ple OS Ap pli ca tion 388

 xiv Ta ble of Con tents

Ap pen dix A MPLAB C18 Lan guage Tu to rial 413
A.1 In This Ap pen dix 413

A.1.1 About Pro gram ming 413
A.1.2 Com mu ni cat ing with an Alien In tel li gence 414
A.1.3 Flowcharting 415
A.1.4 C Lan guage Rules 417

Com ments 418
Pro gram Header 418
Pro gram ming Tem plates 419

A.2 Struc ture of a C Pro gram 419
A.2.1 Sample Pro gram C_LEDs_ON 420

Iden ti fi ers 420
Re served Words 421
main() Func tion 421

A.2.2 Sam ple Pro gram C_LEDs_Flash 422
Ex pres sions and State ments 423
Vari ables 423
Scope and Life time of a Vari able 425
Con stants 426
Lo cal Func tions 427

A.2.3 Cod ing Style 428

A.3 C Lan guage Data 428
A.3.1 Nu meric Data 429
A.3.2 Al pha nu meric Data 430
A.3.3 Ar rays of Al pha nu meric Data 430
A.3.4 Ar rays of Nu meric Data 431

A.4 In di rec tion 431
A.4.1 Stor age of C Lan guage Vari ables 432
A.4.2 Ad dress of Op er a tor 432
A.4.3 In di rec tion Op er a tor 433
A.4.4 Point ers to Ar ray Vari ables 434
A.4.5 Pointer Arith me tic 435

A.5 C Lan guage Op er a tors 436
A.5.1 Op er a tor Ac tion 436
A.5 2 As sign ment Op er a tor 437
A.5.3 Arith me tic Op er a tors 438

Re main der Op er a tor 439
A.5.4 Con cat e na tion 439
A.5.5 In cre ment and Dec re ment 440
A.5.6 Re la tional Op er a tors 441
A.5.7 Log i cal Op er a tors 442
A.5.8 Bitwise Op er a tors 443

AND Op er a tor 445
OR Op er a tor 446
XOR Op er a tor 447
NOT Op er a tor 447
Shift-Left and Shift-Right Op er a tors 448

A.5.9 Com pound As sign ment Op er a tors 449
A.5.10 Op er a tor Hi er ar chy 449

 As so cia tiv ity Rules 450

A.6 Di rect ing Pro gram Flow 451

Ta ble of Con tents xv

A.6.1 De ci sions Con structs 451
if Con struct 451
State ment Blocks 452
Nested if Construct 452
else Con struct 454
Dan gling else Case 454
else-if Clause 456
switch Con struct 457
Con di tional Ex pres sions 460

A.7 Loops and Pro gram Flow Con trol 460
A.7.1 Loops and It er a tions 461
A.7.2 El e ments of a Pro gram Loop 461
A.7.3 for Loop 462

Com pound State ment in Loops 464
while Loop 464
do-while Loop 465

A.8 Break ing the Flow 466
A.8.1 goto State ment 466
A.8.2 break State ment 467
A.8.3 con tinue State ment 468

A.9 Func tions and Struc tured Pro gram ming 469
A.9.1 Mod u lar Con struc tion 469
A.9.2 Structure of a Func tion 470

Func tion Pro to type 470
Func tion Def i ni tion 471
Func tion Call 471
Re turn Key word 472
Match ing Ar gu ments and Pa ram e ters 473

A.10 Vis i bil ity of Func tion Ar gu ments 474
A.10.1 Us ing Ex ter nal Vari ables 474
A.10.2 Pass ing Data by Ref er ence 475

 Point ers and Func tions 475
 Pass ing Ar ray Vari ables 476

A.10.3 Func tion-Like Mac ros 477
 Macro Ar gu ment 477

A.11 Struc tures, Bit Fields, and Un ions 478
A.11.1 Struc ture Dec la ra tion 478

 Struc ture Type Dec la ra tion 479
 Struc ture Vari able Dec la ra tion 479

A.11.2 Ac cess ing Struc ture El e ments 480
 Initializing Struc ture Vari ables 481
 Ma nip u lat ing a Bit Field 482
 Type Cast ing 484

A.11.3 Un ions 484
A.11.4 Struc tures and Func tions 485

 Point ers to Struc tures 485
 Pointer Mem ber Op er a tor 485
 Pass ing Struc tures to Func tions 486

A.11.5 Struc tures and Un ions in MPLAB C18 487

 xvi Ta ble of Con tents

Ap pen dix B De bug ging 18F De vices 491
B.1 Art of De bug ging 491

B.1.1 Pre lim i nary De bug ging 492
B.1.2 De bug ging the Logic 492

B.2 Soft ware De bug ging 493
B.2.1 Debugger-Less De bug ging 493
B.2.2 Code Im age De bug ging 493
B.2.3 MPLAB SIM Fea tures 494

Run Mode 494
Step Mode 494
An i mate 494
Mode Dif fer ences 494
Build Con fig u ra tions 495
Set ting Break points 495

B.2.4 PIC 18 Spe cial Sim u la tions 495
Re set Con di tions 495
Sleep 495
Watch dog Timer 496
Spe cial Reg is ters 496

B.2.5 PIC 18 Pe riph er als 496
B.2.6 MPLAB SIM Con trols 497
B.2.7 View ing Com mands 498

Dissasembly List ing 498
File Reg is ters 499
Hard ware Stack 500
Lo cals 500
Pro gram Mem ory 500
Spe cial Func tion Reg is ters 501
Watch 502
Watch Win dow in C Lan guage 504

B.2.8 Sim u la tor and Trac ing 504
Set ting Up a Trace 505
Trace Menu 506

B.2.9 Stim u lus 507
Stim u lus Ba sics 508
Us ing Stim u lus 509
Asynch Tab 510
Mes sage-Based Stim u lus 510
Pin/Reg is ter Ac tions Tab 510
Ad vanced Pin/Reg is ter Tab 512
Clock Stim u lus Tab 513
Reg is ter In jec tion Tab 514
Reg is ter Trace Tab 515

B.3 Hard ware De bug ging 516
B.3.1 Micro chip Hard ware Pro gram mers/Debuggers 516

MPLAB ICD2 516
MPLAB ICD3 517
MPLAB ICE 2000 517
MPLAB ICE 4000 518
MPLAB REAL ICE 519
MPLAB PICkit 2 and PICkit 3 519

B.3.2 Us ing Hard ware Debuggers 519

Ta ble of Con tents xvii

Which Hard ware Debugger? 520
ICSP 520

B.3.3 MPLAB ICD2 Debugger Con nec tiv ity 521
Con nec tion from Mod ule to Tar get 522
De bug Mode Re quire ments 523
De bug Mode Prep a ra tion 523
De bug Ready State 524
Bread board De bug ging 525

B.4 MPLAB ICD 2 Tu to rial 526
B.4.1 Cir cuit Hard ware 526
B.4.2 LedFlash_Reloc Pro gram 527
B.4.3 Relocatable Code 527

 Header Files 527
 Pro gram Mem ory 527
 Con fig u ra tion Re quire ments 528
 RAM Al lo ca tions 528
 LedFlash_Reloc.asm Pro gram 529

B.4.4 De bug ging Ses sion 531

Ap pen dix C Build ing Your Own Cir cuit Boards 533
C.1 Draw ing the Cir cuit Di a gram 533
C.2 Print ing the PCB Di a gram 535
C.3 Trans fer ring the PCB Im age 535
C.4 Etch ing the Board 536
C.5 Fin ish ing the Board 536
C.6 Back side Im age 536

Ap pen dix D PIC18 In struc tion Set 539

Ap pen dix E Num ber Sys tems and Data En cod ing 633
E.1 Dec i mal and Bi nary Sys tems 633

E.1.1 Bi nary Num ber Sys tem 633
E.1.2 Ra dix or Base of a Num ber Sys tem 634

E.2 Dec i mal ver sus Bi nary Num bers 634
E.2.1 Hex a dec i mal and Oc tal 635

E.3 Char ac ter Rep re sen ta tions 636
E.3.1 ASCII 636
E.3.2 EBCDIC and IBM 638
E.3.3 Unicode 639

E.4 En cod ing of In te gers 639
E.4.1 Word Size 640
E.4.2 Byte Or der ing 641
E.4.3 Sign-Mag ni tude Rep re sen ta tion 642
E.4.4 Ra dix Com ple ment Rep re sen ta tion 643
E.4.5 Sim pli fi ca tion of Sub trac tion 645

E.5 Bi nary En cod ing of Frac tional Num bers 646
E.5.1 Fixed-Point Rep re sen ta tions 647
E.5.2 Float ing-Point Rep re sen ta tions 648

 xviii Ta ble of Con tents

E.5.3 Stan dard ized Float ing-Point 649
E.5.4 Bi nary-Coded Dec i mals (BCD) 650
E.5.5 Float ing-Point BCD 650

Ap pen dix F Ba sic Elec tron ics 653
F.1 Atom 654
F.2 Iso topes and Ions 654
F.3 Static Elec tric ity 655
F.4 Elec tri cal Charge 656

F.4.1 Volt age 656
F.4.2 Cur rent 656
F.4.3 Power 657
F.4.4 Ohm's Law 657

F.5 Elec tri cal Cir cuits 658
F.5.1 Types of Cir cuits 658

F.6 Cir cuit El e ments 660
F.6.1 Re sis tors 661
F.6.2 Re vis it ing Ohm's Law 661
F.6.3 Re sis tors in Se ries and Par al lel 662
F.6.4 Ca pac i tors 664
F.6.5 Ca pac i tors in Se ries and in Par al lel 665
F.6.6 Inductors 666
F.6.7 Trans form ers 667

F.7 Semi con duc tors 667
F.7.1 In te grated Cir cuits 668
F.7.2 Semi con duc tor Elec tron ics 668
F.7.3 P-Type and N-Type Sil i con 669
F.7.4 Di ode 669

In dex 671

Ta ble of Con tents xix

Pref ace

Microcontrollers: High-Per for mance Sys tems and Pro gram ming can be con sid ered
a con tin u a tion of and a com ple ment to our pre vi ous two ti tles on the sub ject of
microcontroller pro gram ming. In the pres ent book we fo cus on the line of high-per -
forance microcontrollers of fered by Micro chip. In ad di tion to their en hanced fea -
tures, ex tended pe riph er als, and im proved per for mance, there are sev eral prac ti cal
fac tors that make the high-per for mance PIC se ries a better choice than their
mid-range pre de ces sors for most sys tems:

• The pos si bil ity of pro gram ming high-per for mance microcontrollers in a
high-level lan guage (C lan guage).

• Source code com pat i bil ity with PIC16 microcontrollers, which fa cil i tates code
mi gra tion from mid-range to PIC18 de vices.

• Pin com pat i bil ity of some PIC18 de vices with their PIC16 pre de ces sors. This
makes pos si ble the re use of PIC16 con trol lers in cir cuits orig i nally de signed for
mid-range hard ware. For ex am ple, the PIC18F442 and PIC18F452 in 40-pin DIP
con fig u ra tion are pin-com pat i ble with the pop u lar PIC16F877. Sim i larly, the
PIC18F242 and PIC18F252, in 28-pin DIP for mat, are pin com pat i ble with the
PIC16F684.

• Micro chip pric ing pol icy makes avail able the high-per for mance chips at a lower
cost than their mid-range equiv a lents. Re cently we have priced the 18F452 at
$6.32 while the 16F877 sells from the same source at $6.72.

Ex panded func tion al ity, high-level pro gram ma bil ity, ar chi tec tural im prove ments
that sim plify hard ware im ple men ta tion, code and pin-lay out com pat i bil ity, and
lower cost make it easy to se lect a high-per for mance PIC over its mid-range coun -
ter part. One con sid er ation that is some times men tioned in fa vor of the mid-range
de vices is the abun dance of pub lished ap pli ca tion cir cuits and code sam ples. Our
book at tempts to cor rect this. Al though it should also be men tioned that some
PIC16 pro ces sors with small foot prints have no PIC18 equiv a lent, which ex plains
why some mid-range de vices con tinue to hold a share of the microcontroller mar -
ket place.

Like our pre ced ing ti tles in this field, the book is in tended as a ref er ence and re -
source for en gi neers, sci en tists, and elec tronics en thu si asts. The book fo cuses on
the needs of the work ing pro fes sional in the fields of elec tri cal, elec tronic, com -

xxi

puter, and soft ware en gi neer ing. In de vel op ing the ma te rial for this book, we have
adopted the fol low ing rules:

1. The use of stan dard or off-the-shelf com po nents such as in put/out put de vices, in -
te grated cir cuits, mo tors, and pro gram ma ble microcontrollers, which read ers
can eas ily du pli cate in their own cir cuits.

2. The use of in ex pen sive or freely avail able de vel op ment tools for the de sign and
prototyping of em bed ded sys tems, such as elec tronic de sign pro grams, pro gram -
ming lan guages and en vi ron ments, and soft ware util i ties for cre at ing printed cir -
cuit boards.

3. Our sam ple cir cuits and pro grams are not copy righted or pat ented so that read ers
can freely use them in their own ap pli ca tions.

Our book is de signed to be func tional and hands-on. The re sources fur nished to
the reader in clude sam ple cir cuits with their cor re spond ing pro grams. The cir cuits
are de picted and la beled clearly, in a way that is easy to fol low and re use. Each cir -
cuit in cludes a parts list of the re sources and com po nents re quired for its fab ri ca -
tion. For the most im por tant cir cuits, we also pro vide tested PCB files. The sam ple
pro grams are matched to the in di vid ual cir cuits but gen eral pro gram ming tech -
niques are also dis cussed in the text. There are ap pen di ces with use ful in for ma tion
and the book's online software con tains a list ing of all the sam ple pro grams de vel -
oped in the text.

Julio Sanchez

Maria P. Canton

xxii Pref ace

Chap ter 1

Microcontrollers for Em bed ded Sys tems

1.1 Em bed ded Sys tems

An em bed ded sys tem is a com puter with spe cific con trol func tions. It can be part of a
larger com puter sys tem or a stand-alone de vice. Most em bed ded sys tems must op er -
ate within real-time con straints. Em bed ded sys tems con tain pro gram ma ble pro ces -
sors that are ei ther microcontrollers or dig i tal sig nal pro ces sors (DSPs). The
em bed ded sys tem is some times a gen eral-pur pose de vice, but more of ten it is used in
spe cial ized ap pli ca tions such as wash ing ma chines, tele phones, mi cro wave ov ens,
au to mo biles, and many dif fer ent types of weap ons and mil i tary hard ware.

A microcontroller or DSP usu ally in cludes a cen tral pro ces sor, in put and out put
ports, mem ory for pro gram and data stor age, an in ter nal clock, and one or more pe -
riph eral de vices such as tim ers, coun ters, an a log-to-dig i tal con vert ers, se rial com -
mu ni ca tion fa cil i ties, and watch dog cir cuits. More than two dozen com pa nies in the
United States and abroad man u fac ture and mar ket microcontrollers. Mostly they
range from 8- to 32-bit de vices. Those at the low end are in tended for very sim ple
cir cuits and pro vide lim ited func tions and pro gram space, while the ones at the high
end have many of the fea tures as so ci ated with mi cro pro ces sors. The most pop u lar
microcontrollers in clude sev eral from Intel (such as the 8051), from Zilog (de riv a -
tives of their fa mous Z-80 mi cro pro ces sor) from Motorola (such as the 68HC05),
from Atmel (the AVR), the Par al lax (the BASIC Stamp), and many from Micro chip.
Some of the high-end Micro chip microcontrollers and DSPs are the topic of this
book.

1.2 Micro chip PIC

The names PIC and PICmicro are trade marks of Micro chip Tech nol ogy. Micro chip
pre fers the lat ter des ig na tion be cause PIC is a reg is tered trade mark in some Eu ro pean
coun tries. It is usu ally as sumed that PIC stands for Pe riph eral In ter face Con trol ler, al -
though the orig i nal ac ro nym was Pro gram ma ble In ter face Con trol ler. More re cently,
Micro chip has stated that PIC stands for Pro gram ma ble In tel li gent Com puter, a much
nicer, al beit not his tor i cally true ver sion of the ac ro nym.

1

The orig i nal PIC was built to com ple ment a Gen eral In stru ments 16-bit CPU des -
ig nated the CP-1600. The first 8-bit PIC was de vel oped in 1975 to im prove the per -
for mance of the CP-1600 by offloading I/O tasks from the CPU. In 1985, Gen eral
In stru ment spun off its mi cro elec tron ics di vi sion. At that time, the PIC was re-de -
signed with in ter nal EPROM to pro duce a pro gram ma ble con trol ler. To day, hun -
dreds of ver sions and vari a tions of PIC microcontrollers are avail able from
Micro chip. Typ i cal on-board pe riph er als in clude in put and out put ports, se rial com -
mu ni ca tion mod ules, UARTs, and mo tor con trol de vices. Pro gram mem ory ranges
from 256 words to 64k words and more. The word size var ies from 12 to 14 or 16
bits, de pend ing on the specific PIC family.

1.2.1 PIC Ar chi tec ture

PIC microcontrollers con tain an in struc tions set that var ies in length from 35 in struc -
tions for the low-end de vices to more than 70 for the high end. The ac cu mu la tor, which
is known as the work reg is ter in PIC doc u men ta tion, is part of many in struc tions be -
cause the low- and mid-range PICs con tain no other in ter nal reg is ters ac ces si ble to the
pro gram mer. The PICs are pro gram ma ble in their na tive As sem bly Lan guage. C lan -
guage and BASIC com pil ers have also been de vel oped. Open-source Pascal, JAL, and
Forth com pil ers are also avail able, al though not very pop u lar.

 It is of ten men tioned that one of the rea sons for the suc cess of the PIC is the sup -
port pro vided by Micro chip. This sup port in cludes de vel op ment soft ware, such as a
pro fes sional-qual ity de vel op ment en vi ron ment called MPLAB, which can be down -
loaded free from the com pany's website (www.micro chip.com). The MPLAB pack -
age in cludes an as sem bler, a linker, a debugger, and a sim u la tor. Micro chip also sells
an in-cir cuit debugger called MPLAB ICD 2. Other de vel op ment prod ucts in tended
for the pro fes sional mar ket are also available from Microchip.

In ad di tion to the de vel op ment soft ware, the Micro chip website con tains a mul ti -
tude of free sup port doc u ments, in clud ing data sheets, ap pli ca tion notes, and sam -
ple code. Fur ther more, the PIC microcontrollers have gained the sup port of many
hob by ists, en thu si asts, and en tre pre neurs who de velop code and sup port prod ucts
and pub lish their re sults on the Internet. This com mu nity of PIC us ers is a trea sure
trove of in for ma tion and know-how eas ily ac ces si ble to the be gin ner and use ful
even to the pro fes sional. One such Internet re source is an open-source col lec tion of
PIC tools named GPUTILS, which is dis trib uted un der the GNU Gen eral Pub lic Li -
cense. GPUTILS in cludes an as sem bler and a linker. The soft ware works on Linux,
Mac OS, OS/2, and Win dows. An other prod uct, called GPSIM™, is an open source
simulator featuring PIC hardware modules.

1.2.2 Pro gram ming the PIC

Stand-alone pro gram ming a PIC microcontroller re quires the fol low ing tools and
com po nents:

• An As sem bler or high-level lan guage com piler. The soft ware pack age usu ally in -
cludes a debugger, sim u la tor, and other sup port pro grams.

• A com puter (usu ally a PC) on which to run the de vel op ment soft ware.

2 Chap ter 1

• A hard ware de vice called a pro gram mer that con nects to the com puter through
the se rial, par al lel, or USB line. The PIC is in serted in the pro gram mer and “blown”
by down loading the ex e cut able code gen er ated by the de vel op ment sys tem. The
hard ware pro gram mer usu ally in cludes the sup port soft ware.

• A ca ble or con nec tor for con nect ing the pro gram mer to the com puter.

• A PIC microcontroller.

Al ter na tively, some PIC microcontrollers can be pro grammed while in stalled in
their ap pli ca tions boards. Al though this op tion can be very use ful as a pro duc tion
and dis tri bu tion tool, for rea sons of space it is not dis cussed in this book.

PIC Pro gram mers

The de vel op ment sys tem (as sem bler or com piler) and the pro gram mer driver are the
soft ware com po nents. The com puter, pro gram mer, and con nec tors are the hard ware
el e ments. Fig ure 6.1 shows a com mer cial pro gram mer that con nects to the USB port
of a PC. The one in the il lus tra tion is made by MicroPro.

Fig ure 1.1 USB PIC pro gram mer made by MicroPro.

Many other pro gram mers are avail able on the mar ket. Micro chip of fers sev eral
high-end mod els with in-cir cuit se rial pro gram ming (ICSP) and low-volt age pro -
gram ming (LVP) ca pa bil i ties. These de vices al low the PIC to be pro grammed in the
tar get cir cuit. Some PICs can write to their own pro gram mem ory. This makes pos si -
ble the use of so-called bootloaders, which are small res i dent pro grams that al low
load ing user soft ware over the RS-232 or USB lines. Pro gram mer/debugger com bi -
na tions are also of fered by Microchip and other vendors.

 Microcontrollers for Em bed ded Sys tems 3

De vel op ment Boards

A de vel op ment board is a dem on stra tion cir cuit that usu ally con tains an ar ray of con -
nected and connectable com po nents. Their main pur pose is as a learn ing and ex per i -
ment tool. Like pro gram mers, PIC de vel op ment boards come in a wide range of prices
and lev els of com plex ity. Most boards tar get a spe cific PIC microcontroller or a PIC
fam ily of re lated de vices. Lack ing a de vel op ment board, the other op tion is to build
the cir cuits one self, a time-con sum ing but valu able ex pe ri ence. Fig ure 1.2 shows the
LAB-X1 de vel op ment board for the 16F87x PIC fam ily.

Fig ure 1.2 LAB-X1 de vel op ment board.

 The LAX-X1 board, as well as sev eral other mod els, are prod ucts of
microEngineering Labs, Inc. De vel op ment boards from Micro chip and other ven -
dors are also avail able.

1.3 PIC Ar chi tec ture

PIC microcontrollers are roughly clas si fied by Micro chip into three groups: base line,
mid-range, and high-per for mance. Fig ure 1.3 shows the com po nents of each PIC fam -
ily at the time of this writ ing.

4 Chap ter 1

Fig ure 1.3 Micro chip PIC and dsPIC fam i lies.

Within each of the groups the PIC are clas si fied based on the first two dig its of
the PIC's fam ily type. How ever, the sub-clas si fi ca tion is not very strict, as there is
some over lap. In fact, we find PICs with 16X des ig na tions that be long to the base -
line fam ily and oth ers that be long to the mid-range group. In the fol low ing sub-sec -
tions we de scribe the ba sic char ac ter is tics of the var i ous sub-groups of the three
ma jor PIC fam i lies with 8-bit ar chi tec tures.Ta ble 1.1 shows the prin ci pal hard ware
char ac ter is tics of each of the four 8-bit PIC fam i lies

Ta ble 1.1

8-bit PIC Ar chi tec tures Com par i son Chart

BASELINE MID-RANGE ENHANCED PIC18

Pin Count 6-40 8-64 8-64 18-100
In ter rupts No Sin gle in ter rupt Sin gle in ter rupt Mul ti ple

Con text saved In ter rupts
Con text saved

Per for mance 5 MIPS 5 MIPS 8 MIPS Up to 16 MIPS
In struc tions 33, 12-bit 35, 14-bit 49, 14-bit 83, 16-bit
Pro gram Mem ory Up to 3 KB Up to 14 KB Up to 28 KB Up to 128 KB
Data Mem ory 138 Bytes 368 Bytes 1,5 KB 4 KB
Hard ware Stack 2 level 8 level 16 level 32 level
To tal Num ber
of De vices 16 58 29 193
Fam i lies PIC10 PIC12 PIC12FXXX PIC18

PIC12 PIC16 PIC16F1XX
PIC14
PIC16

1.3.1 Base line PIC Fam ily

This group in cludes mem bers of the PIC10, PIC12, PIC14, and PIC16 fam i lies. The de -
vices in the base line group have 12-bit pro gram words and are sup plied in 6- to 28-pin
pack ages. The microcontrollers in the base line group are de scribed as be ing suited for

 Microcontrollers for Em bed ded Sys tems 5

Microchip PIC and dsPIC Families

MPLAB DEVELOPMENT ENVIRONMENT

PIC10 PIC12 PIC16 PIC18 PIC24F PIC24H dsPIC30 dsPIC32 PIC32

8-bit

Baseline family

Mid-range family

Assembly Language
programmable

MPLAB C Compiler programmable

High-performance family

16-bit 32-bit

bat tery-op er ated ap pli ca tions be cause they have low power re quire ments. The typ i -
cal mem ber of the base line group has a low pin count, flash pro gram mem ory, and low
power re quire ments. The fol low ing types are in the Base line group:

• PIC10 de vices

• PIC12 de vices

• PIC14 de vices

• Some PIC16 de vices

We pres ent a short sum mary of the func tion al ity and hard ware types of the base -
line PICs in the sec tions that fol low, al though these de vices are not cov ered in this
book.

PIC10 de vices

The PIC10 de vices are low-cost, 8-bit, flash-based CMOS microcontrollers. They use
33 sin gle-word, sin gle-cy cle in struc tions (ex cept for pro gram branches, which take
two cy cles. The in struc tions are 12-bits wide. The PIC10 de vices fea ture power-on re -
set, an in ter nal os cil la tor mode which saves hav ing to use ports for an ex ter nal os cil la -
tor. They have a power-sav ing SLEEP mode, A Watch dog Timer, and op tional code
pro tec tion.

The rec om mended ap pli ca tions of the PIC10 fam ily range from per sonal care ap -
pli ances and se cu rity sys tems to low-power re mote trans mit ters and re ceiv ers. The
PICs of this fam ily have a small foot print and are man u fac tured in for mats suit able
for both through hole or sur face mount tech nol o gies. Ta ble 1.2 lists the char ac ter is -
tics of the PIC10F devices.

Ta ble 1.2

PIC10F De vices

10F200 10F202 10F204 10F206

Clock:
Max i mum Fre quency

 of Op er a tion (MHz) 4 4 4 4
Mem ory:

Flash Pro gram
Mem ory 256 512 256 512
Data Mem ory (bytes) 16 24 16 24

Pe riph er als:
Timer Mod ule(s) TMR0 TMR0 TMR0 TMR0
Wake-up from Sleep Yes Yes Yes Yes
Com para tors 0 0 1 1

Fea tures:
I/O Pins 3 3 3 3
In put Only Pins 1 1 1 1
In ter nal Pull-ups es Yes Yes Yes
In-Cir cuit Se rial
Pro gram ming Yes Yes Yes Yes
In struc tions 33 33 33 33

Pack ages: --------------------------------- 6-pin SOT-23 -------------------------------
----------------------------------- 8-pin PDIP --------------------------------

6 Chap ter 1

Two other PICs of this se ries are the 10F220 and the 10F222. These ver sions in -
clude four I/O pins and two an a log-to-dig i tal con verter chan nels. Pro gram mem ory
is 256 words on the 10F220 and 512 in the 10F222. Data mem ory is 16 bytes on the
F220 and 23 in the F222.

PIC12 De vices

The PIC12C5XX fam ily are 8-bit, fully static, EEPROM/EPROM/ROM-based CMOS
microcontrollers. The de vices use RISC ar chi tec ture and have 33 sin gle-word, sin -
gle-cy cle in struc tions (ex cept for pro gram branches that take two cy cles). Like the
PIC10 fam ily, the PIC12C5XX chips have power-on re set , de vice re set, and an in ter nal
timer. Four os cil la tor op tions can be se lected, in clud ing a port-sav ing in ter nal os cil la -
tor and a low-power os cil la tor. These de vices can also op er ate in SLEEP mode and
have watch dog timer and code pro tec tion fea tures.

The PIC12C5XX de vices are rec om mended for ap pli ca tions rang ing from per -
sonal care ap pli ances, se cu rity sys tems, and low-power re mote trans mit ters and re -
ceiv ers. The in ter nal EEPROM mem ory makes pos si ble the stor age of user-de fined
codes and pass words as well as ap pli ance set ting and re ceiver fre quen cies. The var -
i ous pack ages al low through-hole or sur face mount ing tech nol o gies. Ta ble 1.3 lists
the char ac ter is tics of some selected members of this PIC family.

Ta ble 1.3

PIC 12CXXX and 12CEXXX De vices

12C508(A) 12C518 12CE519 12C671 12CE674
12C509A 12C672
12CR509A 12C673

Clock:
Max i mum
Fre quency
of Op er a tion
(MHz) 4 4 4 10 10

Mem ory:
EPROM
Pro gram
Mem ory
(bytes) 25/41/41 25 41 128 128

Pe riph er als:
EEPROM
Data Mem ory
(bytes) — 16 16 0/0/16 16
Timer
Mod ule(s) TMR0 TMR0 TMR0 TMR0 TMR0
A/D Con verter
(8-bit)
Chan nels — — — 4 4

Fea tures:
In ter rupt
Sources — — — 4 4
I/O Pins 5 5 5 5 5
In put Pins 1 1 1 1 1

(con tin ues)

 Microcontrollers for Em bed ded Sys tems 7

Ta ble 1.3

PIC 12CXXX and 12CEXXX De vices (con tin ued)

12C508(A) 12C518 12CE519 12C671 12CE674
12C509A 12C672
12CR509A 12C673

 In ter nal
Pull-ups Yes/Yes/No Yes Yes Yes Yes
In-Cir cuit
Se rial
Pro gram ming Yes/No Yes Yes Yes Yes
Num ber of
In struc tions 33 33 33 35 35
Pack ages 8-pin DIP 8-pin DIP 8-pin DIP 8-pin DIP 8-pin DIP

SOIC JW,SOIC JW. SOIC SOIC JW

Two other mem bers of the PIC12 fam ily are the 12F510 and the 16F506. In most
re spects these de vices are sim i lar to the ones pre vi ously de scribed, ex cept that the
12F510 and 16F506 both have flash pro gram mem ory. Ta ble 1.4 lists the most im por -
tant fea tures of these two PICs.

Ta ble 1.4

PIC12F510 and 12F675

Two other mem bers of the PIC12F are the 12F629 and 12F675. The only dif fer -
ence be tween these two de vices is that the 12F675 has a 10-bit an a log-to-dig i tal con -
verter while the 629 has not A/D con verter. Ta ble 1.5 lists some im por tant fea tures
of both PICs.

8 Chap ter 1

 12F629 12F675
Clock:
 Maximum Frequency of Operation (MHz) 20 20
Memory:
 Flash Program Memory 1024 1024
 Data Memory (SRAM bytes) 64 64
Peripherals:
 Timers 8/16 bits 1/1 1/1
 Wake-up from Sleep on Pin Change Yes Yes
Features:
 I/O Pins 6 6
 Analog comparator module Yes Yes
 Analog-to-digital converter No 10-bit
 In-Circuit Serial Programming Yes Yes
 Enhanced Timer1 module Yes Yes
 Interrupt capability Yes Yes
 Number of Instructions 35 35
 Relative addressing Yes Yes
 Packages 8-pin PDIP, 8-pin PDIP
 SOIC, SOIC,
 DFN-S DFN-S

Ta ble 1.5

PIC12F629 and 12F675

12F629 12F675
Clock:

Max i mum Fre quency of Op er a tion (MHz) 20 20

Mem ory:
Flash Pro gram Mem ory 1024 1024
Data Mem ory (SRAM bytes) 64 64

Pe riph er als:
Tim ers 8/16 bits 1/1 1/1
Wake-up from Sleep on Pin Change Yes Yes

Fea tures:
I/O pins 6 6
An a log com para tor mod ule Yes Yes
An a log-to-dig i tal con verter No 10-bit
In-cir cuit se rial pro gram ming Yes Yes
En hanced Timer1 mod ule Yes Yes
In ter rupt ca pa bil ity Yes Yes
Num ber of in struc tions 35 35
Rel a tive ad dress ing Yes Yes
Pack ages 8-pin PDIP 8-pin PDIP

SOIC SOIC
DFN-S DFN-S

Sev eral mem bers of the PIC12 fam ily, 12F635, 12F636, 12F639, and 12F683, are
equipped with spe cial power-man age ment fea tures (called nanowatt tech nol ogy by
Micro chip). These de vices were es pe cially de signed for sys tems that re quire ex -
tended bat tery life.

PIC14 De vices

The sin gle mem ber of this fam ily is the PIC14000, which is built with CMOS tech nol -
ogy. This makes the PIUC14000 fully static and gives it in dus trial tem per a ture range.
The 14000 is rec om mended for bat tery charg ers, power sup ply con trol lers, power
man age ment sys tem con trol lers, HVAC con trol lers, and for sens ing and data ac qui si -
tion ap pli ca tions.1.3.2

1.3.3 Mid-range PIC Fam ily
The mid-range PICs in cludes mem bers of the PIC12 and PIC16 groups as well as the
PIC 18 group. Ac cord ing to Micro chip the mid-range PICs all have 14-bit pro gram
words with ei ther flash or OTP pro gram mem ory. Those with flash pro gram mem ory
also have EEPROM data mem ory and sup port in ter rupts. Some mem bers of the
mid-range group have USB, I2C, LCD, USART, and A/D con vert ers. Im ple men ta tions
range form 8 to 64 pins.

PIC16 De vices

This is by far the larg est mid–range PIC group. Cur rently over 80 ver sions of the PIC16
are listed in pro duc tion by Micro chip. Al though we do not cover the mid-range de vices

 Microcontrollers for Em bed ded Sys tems 9

in this book, we have se lected a few of its most prom i nent mem bers of the PIC16 fam -
ily to list their most im por tant fea tures. These are found in Ta ble 1.6.

Ta ble 1.6

PIC16 De vices

Micro chip doc u men ta tion re fers to an en hanced mid-range fam ily com posed of
PIC12FXXX and PIC16F1XX de vices. These de vices main tain com pat i bil ity with the
pre vi ous mem bers of the mid-range fam ily while pro vid ing ad di tional per for mance.
Their most im por tant new fea tures in clude mul ti ple in ter rupts, four teen ad di tional
in struc tions, up to 28 KB pro gram mem ory, and additional peripheral modules.

1.3.3 High-Per for mance PICs and DSPs
The high-per for mance PICs be long to the PIC18 and PIC32 groups. The mo ti va tion for
ex pand ing the PIC arquitecture and mod i fy ing the core of the mid-range PICs re late to
the fol low ing lim i ta tions:

• Small-size stack

• Sin gle in ter rupt vec tor

• Lim ited in struc tion set

• Small mem ory size

• Lim ited num ber of pe riph er als

• No high-level lan guage pro gram ma bil ity

The de vices in the PIC16 group have 16-bit pro gram words, flash pro gram mem -
ory, a lin ear mem ory space of up to 2 Mbytes, as well as pro to col-based com mu ni ca -
tions fa cil i ties. They all sup port in ter nal and ex ter nal in ter rupts and a much larger
in struc tion set than mem bers of the base line and mid-range fam i lies. The PIC18
fam ily is also a large one, with over sev enty dif fer ent vari a tions cur rently in pro duc -

10 Chap ter 1

 16C432 16C58 16C770 16F54 16F84A 16F946
Clock:

Maximum Frequency MHz 20 40 20 20 20 20

Memory:
 Program memory type OTP OTP OTP Flash Flash Flash
 K-bytes 3.5 3 3.5 0.75 1.75 14
 K-words 2 2 2 0.5 1 8
 Data EEPROM 0 0 0 0 64 256

Peripherals:
 I/O channels 12 12 16 12 13 53
 ADC channels 0 0 6 0 0 8
 Comparators 0 0 0 0 0 2
 Timers 1/8-bit 1/8-bit 2/8-bit 1/8-bit 1/8-bit 2/8-bit
 1/16-bit 1/16-bit
 Watchdog timer Yes Yes Yes Yes Yes Yes

Features:
 ICSP Yes No Yes No Yes Yes
 ICD No No No No 0 1
 Pin count 20 18 20 18 18 64
 Communications - - MPC/SPI - - AUSART
 Packages 20/CERDIP, 18/CERDIP 20/CERDIP 18/PDIP 18/PDIp 64/TQFP
 20/SSOP 18/PDIP 20/PDIP 18/SOIC 18/SOIC
 208mil 18/SOIC 20/SOIC 300mil 300mil
 300mil 300mil

tion. These de vices are fur nished in 18 to 80 pin pack ages. Micro chip de scribes the
PICs in this fam ily as high-per for mance with integrated A/D converters.

Dig i tal Sig nal Pro ces sor

The no tion of dig i tal sig nal pro cess ing starts with the con ver sion of an a log sig nal in -
for ma tion such as voice, im age, tem per a ture, or pres sure prim i tive data to dig i tal val -
ues that can be stored and ma nip u lated by a com put ing de vice. Con vert ing the data
from its prim i tive an a log form to a dig i tal for mat makes it much eas ier to an a lyze, dis -
play, store, pro cess, or con vert the data to an other for mat. Dig i tal sig nal pro cess ing is
based on the fact that com put ing and data pro cess ing op er a tions are eas ier to per form
on dig i tal data than on raw an a log sig nals.

The con cept of dig i tal sig nal pro cess ing can be il lus trated by means of a sat el -
lite-based Earth imag in ing sys tem (such as the Land sat EROS) shown in Figure 1.4.

Fig ure 1.4 Sche matic of a space-borne imaging sys tem.

The op ti cal-me chan i cal in stru ment onboard a space craft, shown in Fig ure 1.4,
con sists of sev eral sub sys tems. The scan ning mir ror col lects the ra di a tion, which is
im aged by an op ti cal sys tem onto a sen sor de vice. The sen sor per forms an an a -
log-to-dig i tal con ver sion and places the dig i tal val ues in a tem po rary stor age struc -
ture. Dur ing its or bit, the sat el lite reaches a lo ca tion in space from which it can
com mu ni cate with an Earth re ceiv ing sta tion. At this time, the trans mit ter and sup -
port cir cuitry send the dig i tal data to the re ceiv ing sta tion. The re ceiv ing sta tion

 Microcontrollers for Em bed ded Sys tems 11

scanning
mirror

digitizer and
transmitter

scanning
direction

scan line

imagereceiving
station

image data
processing

optical
system

sensor

data storage

pro cesses this data and for mats it into an im age. In this scheme, dig i tal sig nal pro -
cess ing can take place as the im age data is sensed by the in stru ment and tem po -
rarily stored on board the sat el lite, or when the raw data re ceived by the Earth
sta tion is con verted into an image that can be manipulated, viewed, stored, or
re-processed.

An a log-to-Dig i tal

Con ver sion from an a log-to-dig i tal form and vice versa are not for mally op er a tions of a
DSP. How ever, these con ver sions are so of ten re quired dur ing sig nal pro cess ing that
most DSP de vices in clude the an a log-to-dig i tal and dig i tal-to-an a log con ver sion hard -
ware.

An a log-to-dig i tal con ver sion is usu ally per formed by sam pling the sig nal at uni -
form time in ter vals and us ing the sam pled value as rep re sen ta tive of the re gion be -
tween the in ter vals. Fig ure 1.5 shows an ex am ple of an a log-to-dig i tal conversion by
sampling.

Fig ure 1.5 An a log-to-dig i tal conversion by sam pling.

In Fig ure 1.5 we see that the sam pled val ues are ac tu ally an ap prox i ma tion of the
an a log curve, as the vari a tions be tween each in ter val are lost in the con ver sion pro -
cess. There fore, the more sam pling pe ri ods, the more ac cu rate the ap prox i ma tion.
On the other hand, too small a sam pling rate tends to re duce the sig nif i cance of the
data by pro duc ing re peated values in the digital record.

12 Chap ter 1

80

70

60

50

40

30

20

10

 0

15 20 28 37 12 14 35 78 69 63 85 57 28

1 2 3 4 5 6 7 8 9 10 11 12 13

sampled digital values

sampling periods

analog signal

v
o

lt
a

g
e

 o
f

a
n

a
lo

g
 s

ig
n

a
l

Chap ter 2

PIC18 Ar chi tec ture

2.1 PIC18 Fam ily Over view
The PIC18 fam ily was de signed to pro vide ease of use (pro gram ma ble in C), high per -
for mance, and ef fort less in te gra tion with pre vi ous 8-bit fam i lies. In ad di tion to the
stan dard mod ules found in the PIC16 and pre vi ous fam i lies, the PIC18 in cludes sev -
eral ad vanced pe riph er als, such as CAN, USB, Ethernet, LCD and CTMU. Its prin ci pal
fea tures are

• Nanowatt tech nol ogy en sures low power con sump tion

• 83 in struc tions (16-bit wide)

• C lan guage op ti mized

• Up to 2 MB ad dress able pro gram mem ory

• 4KB max i mum RAM

• 32-level hard ware stack

• 8-bit file se lect reg is ter

• In te grated 8x8 hard ware mul ti plier

The per for mance of the PIC18 se ries is the high est in the Micro chip 8-bit ar chi -
tec ture. Fig ure 2.1 is a block di a gram of the PIC18 ar chi tec ture.

Fig ure 2.1 Block diagram of PIC18 ar chi tec ture.

13

Program Memory
(up to 2 MB)

CPU
16-bit instructions

83 instructions
12-bit file select registers
Interrupt context saving

16-level stack
Program counter
Reset capability

Internal oscillator
(up to 64 MHz)

Data EEPROM

Data memory
(up to 4 KB)

Enhanced indirect
addressing

Peripheral expansion
support

I/O and PERIPHERAL MODULES
ADC, CAN, EUSART, LCD, EEPROM, CCPWM, etc.

Al though the PIC16 se ries has been very suc cess ful in the microcontroller mar -
ket place, it also suf fers from lim i ta tions and con straints. Per haps the most sig nif i -
cant lim i ta tion is that the de vices of the PIC16 fam ily can only be pro grammed in
As sem bly lan guage. Other lim i ta tions re sult from the de vice's RISC de sign. For ex -
am ple, the ab sence of cer tain types of opcodes, such as the Branch in struc tion,
make it nec es sary to com bine a skip opcode fol lowed by a goto op er a tion in or der
to pro vide a con di tional, tar geted jump. Other lim i ta tions re late to the hard ware it -
self: small stack and a sin gle in ter rupt vec tor. As the com plex ity, mem ory size, and
the num ber of pe riph eral mod ules in creased, the limitations of the PIC16 series
became more evident.

In the PIC18 se ries, Micro chip re con sid ered its PIC16 de sign rules and pro duced
a com pletely new style microcontroller, with a much more com plex core, while lim -
it ing the changes to the pe riph eral mod ules. The de gree of change can be de duced
from the ex pan sion of the in struc tion set from 35 14-bit to 83 16-bit op er a tion codes.
Mem ory has gone from 14 to 128 KB; the stack from 8 lev els to 32 lev els. These
changes made it pos si ble to op ti mize the PIC18 se ries for C language programming.

2.1.1 PIC18FXX2 Group
At the pres ent time, Micro chip lists 193 dif fer ent de vices in the PIC18 fam ily. These de -
vices are avail able with pin counts from 28 to 100 and in the SOIC, DIP, PLCC, SPDIP,
QFN, SSOP, TQFP, QFN, and LQFP pack ages. For con sis tency with the tu to rial na ture
of this book, we have se lected the PIC18F4X2 group with iden ti cal DIP and SOIC
pinouts. Fig ure 2.2 shows the pin di a gram for the PIC18F4X2 de vices.

Fig ure 2.2 Pin diagram for PIC18F4X2 de vices.

14 Chap ter 2

18F442

18F452

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

MCLR/VPP

RAO/ANO

RA1/AN1

RA2/AN2A/REF-

RA3/AN3A/REF+

RA4/TOCKI

RA5/AN4/SS/LVDIN

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1/CLKI

OSC2/CLKO/RA6

RCO/T1OSO/TICK1

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RDO/PSPO

RD1/PSP1

RB7/PGD

RB6/PGC

RB5/PGM

RB4

RB3/CCP2*

RB2/INT2

RB1/INT1

RBO/INTO

Vdd

Vss

RD7/PSP7

RD6/PSP6

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2

40-PIN DIP FORMAT

 For learn ing and ex per i men ta tion the de vices in DIP pack ages are more con ve -
nient be cause they can be eas ily in serted in the ZIF (zero in ser tion force) sock ets
found in most pro gram ming de vices, de vel op ment boards, and bread boards. The de -
vices in Fig ure 1.1 and Fig ure 1.2 are so equipped. A PLCC (plas tic leaded chip car -
rier) pack age with 44 pins is also avail able for 18F442 and 18F452 devices. We do
not cover this option.

2.1.2 PIC18FXX2 De vice Group Over view

These de vices come in 28-pin and 40-pin pack ages, as well as in a 44-pin PLCC pack age
pre vi ously men tioned. The 28-pin de vices do not have a Par al lel Slave Port (PSP).
Also, the num ber of an a log-to-dig i tal (A/D) con verter in put chan nels is re duced to 5.
An over view of fea tures is shown in Ta ble 2.1

Ta ble 2.1

Prin ci pal Fea tures of De vices in the PIC18FXX2 Fam ily

FEATURES PIC18F242 PIC18F252 PIC18F442 PIC18F452

Operating Fre quency DC - 40 MHz DC - 40 MHz DC - 40 MHz DC - 40 MHz

Pro gram Mem ory

(Bytes) 16K 32K 16K 32K

Pro gram Mem ory

 (In struc tions) 8192 16384 8192 16384

Data Mem ory

(Bytes) 768 1536 768 1536
Data EEPROM

Mem ory (Bytes) 256 256 256 256
In ter rupt Sources 17 17 18 18

I/O Ports A, B, C A, B, C A, B, C, D, E A, B, C, D, E

Tim ers 4 4 4 4

Cap ture/Cornpare

/PWM Modules 2 2 2 2
Se rial Com mu ni ca tions

------------------------- MSSP --
 Ad dress able

 USART
Par al lel Communications

- - PSP PSP
10-bit An a log-to-

Dig i tal Mod ule 5 chan nels 5 chan nels 8 chan nels 8 chan nels
RESETS (and De lays)

---------------------------- POR, BOR, Re set -------------------------------
In struc tion, Stack Full,

 Stack Un der flow,
 (PWRT, OST)
Pro gram ma ble Low

Volt age De tect Yes Yes Yes Yes
Pro gram ma ble

Brown-out Re set Yes Yes Yes Yes
In struc tion Set 75 In struc tions 75 In struc tions 75 In struc tions 75 In struc tions

Pack ages 28-pin DIP 28-pin DIP 40-pin DIP 40-pin DIP QFP

28-pin SOIC 28-pin SOIC PLCC 44-pin PLCC 44-pin
SOIC SOIC SOIC SOIC

 PIC18 Ar chi tec ture 15

From Ta ble 2.1 the fol low ing gen eral fea tures of the PIC18FXX2 de vices can be
de duced:

1. Op er at ing fre quency is 40 MHz for all de vices. They all have a 75 opcode in struc -
tion set.

2. Pro gram mem ory ranges from 16K (8,192 in struc tions) in the PIC18F2X2 de vices
to 32K (16,384 in struc tions) in the PIC18F4X2 de vices.

3. Data mem ory ranges for 768 to 1,536 bytes.

4. Data EEPROM is 256 bytes in all de vices.

5. The PIC18F2X2 de vices have three I/O poerts (A, B, and C) and the PIC18F4X2 de -
vices have five ports (A, B, C, D, and E).

6. All de vices have four tim ers, two Cap ture/Com pare/PWM mod ules, MSSP and
adressable USART for se rial com mu ni ca tions and 10-bit an a log-to-dig i tal mod -
ules.

7. Only PIC18F4X2 de vices have a par al lel port.

2.1.3 PIC18F4X2 Block Di a gram
The block di a gram of the 18F4X2 microcontrollers, which cor re spond to the 40-pin
de vices of Fig ure 2.2, is shown in Fig ure 2.3.

Fig ure 2.3 PIC18F4X2 block di a gram.

16 Chap ter 2

CPU
oscillators

ports
internal modules

Program memory
address

Data memory
address

2.1.4 Cen tral Pro cess ing Unit
In Fig ure 2.3 the dashed rect an gle la beled CPU (central pro cess ing unit) con tains the
8-bit Arith me tic Logic Unit, the Work ing reg is ter la beled WREG, and the 8-bit-by-8-bit
hard ware mul ti plier, de scribed later in this chap ter. The CPU re ceives the in struc tion
from pro gram mem ory ac cord ing to the value in the In struc tion reg is ter and the ac tion
in the In struc tion De code and Con trol block. An in ter rupt mech a nism with sev eral
sources (not shown in Fig ure 2.3) is also part of the PIC18FXX2 hard ware.

The Sta tus Reg is ter

The Sta tus reg is ter, not shown in Fig ure 2.3, is part of the CPU and holds the in di vid ual
sta tus bits that re flect the op er at ing con di tion of the in di vid ual el e ments of the de vice.
Fig ure 2.4 shows the bit struc ture of the Sta tus reg is ter.

Figure 2.4 Sta tus register bitmap.

Pro gram Coun ter Reg is ter

The 21-bit wide Pro gram Coun ter reg is ter spec i fies the ad dress of the next in struc tion
to be ex e cuted. The reg is ter map ping of the Pro gram Coun ter reg is ter is shown in Fig -
ure 2.5.

 PIC18 Ar chi tec ture 17

 - - - N OV Z DC C

7 6 5 4 3 2 1 0bits:

bit 4 N: Negative bit
 1 = Arithmetic result is negative
 0 = Arithmetic result is positive
bit 3 OV: Overflow bit
 1 = Overflow in signed arithmetic
 0 = No overflow occurred
bit2 Z: Zero bit
 1 = The result of an operation is zero
 0 = The result of an operation is not zero
bit 1 DC: Digit carry/borrow bit for ADDWF, ADDLW, SUBLW,
 and SUBWF instructions. For borrow the polarity
 is reversed.
 1 = A carry-out from the 4th bit of the result
 0 = No carry-out from the 4th bit of the result
 For rotate instructions (RRF and RLF) this bit
 is loaded with either bit 4 or bit 3 of the
 source register.
bit 0 C: Carry/borrow bit for ADDWF, ADDLW, SUBLW, and
 SUBWF instructions. For borrow the polarity
 is reversed.
 1 = A carry-out from the most significant bit
 0 = No carry-out from the most significant bit
 For rotate instructions (RRF and RLF) this bit
 is loaded with either bit 4 or bit 3 of the
 source register.

Fig ure 2.5 Reg is ter map of the Pro gram Coun ter.

As shown in Fig ure 2.5, the low byte of the ad dress is stored in the PCL reg is ter,
which is read able and writeable. The high byte is stored in the PCH reg is ter. The up -
per byte is in the PCU reg is ter, which con tains bits <20:16>. The PCH and PCU reg is -
ters are not di rectly read able or writeable. Up dates to the PCH reg is ter are
per formed through the PCLATH reg is ter. Up dates to the PCU reg is ter are per formed
through the PCLATU register.

The Pro gram Coun ter ad dresses byte units in pro gram mem ory. In or der to pre -
vent the Pro gram Coun ter from be com ing mis aligned with word in struc tions, the
LSB of PCL is fixed to a value of '0' (see Fig ure 2.5). The Pro gram Coun ter in cre -
ments by 2 to the ad dress of the next se quen tial in struc tions in the program
memory.

The CALL, RCALL, GOTO, and pro gram branch in struc tions write to the Pro gram
Coun ter di rectly. In these in struc tions, the con tents of PCLATH and PCLATU are not
trans ferred to the pro gram coun ter. The con tents of PCLATH and PCLATU are trans -
ferred to the Pro gram Coun ter by an op er a tion that writes PCL. Sim i larly, the up per
2 bytes of the Pro gram Coun ter will be trans ferred to PCLATH and PCLATU by an
op er a tion that reads PCL.

Hard ware Mul ti plier

All PIC18FXX2 de vices con tain an 8 x 8 hard ware mul ti plier in the CPU. Be cause mul -
ti pli ca tion is a hard ware op er a tion it com pletes in a sin gle in struc tion cy cle. Hard -
ware mul ti pli ca tion is un signed and pro duces a 16-bit re sult that is stored in a 16-bit
prod uct reg is ter pair la beled PRODH (high byte) and PRODL (low byte).

Hard ware mul ti pli ca tion has the fol low ing ad van tages:

• Higher com pu ta tional per for mance

• Smaller code size of mul ti pli ca tion al go rithms

The per for mance in crease al lows the de vice to be used in ap pli ca tions pre vi ously re -
served for Dig i tal Sig nal Pro ces sors.

In ter rupts

PIC18FXX2 de vices sup port mul ti ple in ter rupt sources and an in ter rupt pri or ity
mech a nism that al lows each in ter rupt source to be as signed a high or low pri or ity
level. The high-pri or ity in ter rupt vec tor is at OOOOO8H and the low-pri or ity in ter rupt
vec tor is at 000018H. High-pri or ity in ter rupts over ride any low-pri or ity in ter rupts that
may be in prog ress. Ten reg is ters are re lated to in ter rupt op er a tion:

18 Chap ter 2

PCU
Always 0

PCH PCL

Bits 20 15 7 0

• RCON

• INTCON

• INTCON2

• INTCON3

• PIR1, PIR2

• PIE1, PIE2

• IPR1, IPR2

Each in ter rupt source (ex cept INTO) has three con trol bits:

• A Flag bit in di cates that an in ter rupt event has oc curred.

• An En able bit al lows pro gram ex e cu tion to branch to the in ter rupt vec tor ad dress
when the flag bit is set.

• A Pri or ity bit to se lect high-pri or ity or low pri or ity for an in ter rupt source.

In ter rupt pri or ity is en abled by set ting the IPEN bit {mapped to the RCON<7>
bit}. When in ter rupt pri or ity is en abled, there are 2 bits that en able in ter rupts glob -
ally. Set ting the GIEH bit (1NTCON<7>) en ables all in ter rupts that have the pri or ity
bit set. Set ting the GIEL bit (INTCON<6>) en ables all in ter rupts that have the pri or -
ity bit cleared. When the in ter rupt flag, the en able bit, and the ap pro pri ate global in -
ter rupt en able bit are set, the in ter rupt will vec tor to ad dress OOOOO8h or
000018H, de pend ing on the pri or ity level. In di vid ual in ter rupts can be dis abled
through their corresponding enable bits.

When the IPEN bit is cleared (de fault state), the in ter rupt pri or ity fea ture is dis -
abled and the in ter rupt mech a nism is com pat i ble with PIC mid-range de vices. In
this com pat i bil ity mode, the in ter rupt pri or ity bits for each source have no ef fect
and all in ter rupts branch to address OOOOO8H.

When an in ter rupt is han dled, the Global In ter rupt En able bit is cleared to dis able
fur ther in ter rupts. The re turn ad dress is pushed onto the stack and the Pro gram
Coun ter is loaded with the in ter rupt vec tor ad dress, which can be OOOOO8H or
000018H. In the In ter rupt Ser vice Rou tine, the source or sources of the in ter rupt can
be de ter mined by test ing the in ter rupt flag bits. To avoid recursive in ter rupts, these
bits must be cleared in soft ware be fore re-en abling in ter rupts. The “re turn from in -
ter rupt“ in struc tion, RETFIE, ex its the in ter rupt rou tine and sets the GIE bit {GIEH
or GIEL if pri or ity lev els are used), which re-enables interrupts.

Sev eral ex ter nal in ter rupts are also sup ported, such as the INT pins or the
PORTB in put change in ter rupt. In these cases, the in ter rupt la tency will be three to
four in struc tion cy cles. In ter rupts and in ter rupt pro gram ming are the sub ject of
Chapter 8.

2.1.5 Spe cial CPU Fea tures

Sev eral CPU fea tures are in tended for the fol low ing pur poses:

 PIC18 Ar chi tec ture 19

• Mmax i mize sys tem re li abil ity

• Min i mize cost through the elim i na tion of ex ter nal com po nents

• Pro vide power-sav ing op er at ing modes

• Of fer code pro tec tion

These spe cial fea tures are re lated to the fol low ing func tions and com po nents:

• SLEEP mode

• Code pro tec tion

• ID lo ca tions

• In-cir cuit serial pro gram ming

• SLEEP mode

SLEEP mode is de signed to of fer a very low cur rent mode dur ing which the de -
vice is in a power-down state. The ap pli ca tion can wakeup from SLEEP through the
fol low ing mech a nisms:

1. Ex ter nal RESET

2. Watch dog Timer Wake-up

3. An in ter rupt

The Watch dog Timer is a free run ning on-chip RC os cil la tor, that does not re quire
any ex ter nal com po nents. This RC os cil la tor is sep a rate from the RC os cil la tor of
the OSC1/CLKI pin. That means that the WDT will run, even if the clock on the
OSC1/CLKI and OSC2/CLKO/ RA6 pins of the de vice has been stopped, for ex am ple,
by ex e cu tion of a SLEEP instruction.

Watch dog Timer

A Watch dog Timer time-out (WDT) gen er ates a de vice RESET. If the de vice is in
SLEEP mode, a WDT causes the de vice to wakeup and con tinue in nor mal op er a tion
(Watch dog Timer Wake-up). If the WDT is en abled, soft ware ex e cu tion may not dis -
able this func tion. When the WDTEN con fig u ra tion bit is cleared, the SWDTEN bit en -
ables/dis ables the op er a tion of the WDT. Val ues for the WDT postscaler may be
as signed us ing the con fig u ra tion bits.

The CLRWDT and SLEEP in struc tions clear the WDT and the postscaler (if as -
signed to the WDT) and pre vent it from tim ing out and gen er at ing a de vice RESET
con di tion. When a CLRWDT in struc tion is ex e cuted and the postscaler is as signed
to the WDT, the postscaler count will be cleared, but the postscaler as sign ment is
not changed.

The WDT has a postscaler field that can ex tend the WDT Re set pe riod. The
postscaler is se lected by the value writ ten to 3 bits in the CONFIG2H reg is ter dur ing
de vice pro gram ming.

20 Chap ter 2

Wake-Up by In ter rupt

When global in ter rupts are dis abled (the GIE bit cleared) and any in ter rupt source has
both its in ter rupt en able bit and in ter rupt flag bit set, then one of the fol low ing will oc -
cur:

When an in ter rupt oc curs be fore the ex e cu tion of a SLEEP in struc tion, then the
SLEEP in struc tion be comes a NOP. In this case, the WDT and WDT postscaler will
not be cleared, the TO bit will not be set, and PD bits will not be cleared.

If the in ter rupt con di tion oc curs dur ing or af ter the ex e cu tion of a SLEEP in struc -
tion, then the de vice will im me di ately wakeup from SLEEP. In this case, the SLEEP
in struc tion will be com pletely ex e cuted be fore the wake-up. There fore, the WDT
and WDT postscaler will be cleared, the TO bit will be set, and the PD bit will be
cleared.

Even if the flag bits were checked be fore ex e cut ing a SLEEP in struc tion, it may
be pos si ble for these bits to set be fore the SLEEP in struc tion com pletes. Code can
test the PD bit in or der to de ter mine whether a SLEEP in struc tion ex e cuted. If the
PD bit is set, the SLEEP in struc tion was ex e cuted as a NOP. To en sure that the WDT
is cleared, a CLRWDT in struc tion should be ex e cuted be fore a SLEEP instruction.

Low Volt age De tec tion

For many ap pli ca tions it is de sir able to be able to de tect a drop in de vice volt age be low
a cer tain limit. In this case, the ap pli ca tion can de fine a low volt age win dow in which it
can per form house keep ing tasks be fore the volt age drops be low its de fined op er at ing
range. The Low Volt age De tect fea ture of the PIC18FXX2 de vices can be used for this
pur pose. For ex am ple, a volt age trip point for the de vice can be spec i fied so that when
this point is reached, an in ter rupt flag is set. The pro gram will then branch to the in ter -
rupt's vec tor ad dress and the in ter rupt han dler soft ware can take the cor re spond ing
ac tion. Be cause the Low Volt age De tect cir cuitry is com pletely un der soft ware con -
trol, it can be “turned off” at any time, thus sav ing power.

Im ple ment ing Low Volt age De tect re quires set ting up a com para tor that reads the
ref er ence volt age and com pares it against the pre set trip-point. This trip-point volt -
age is soft ware pro gram ma ble to any one of six teen val ues by means of the 4 bits la -
beled LVDL3:LVDLO. When the de vice volt age be comes lower than the pre se lected
trip-point, the LVDIF bit is set and an in ter rupt is generated.

De vice Con fig u ra tion

Sev eral de vice con fig u ra tions can be se lected by pro gram ming the con fig u ra tion bits.
These bits are mapped, start ing at pro gram mem ory ad dress 300000H. Note that this
ad dress is lo cated in the con fig u ra tion mem ory space (300000H to 3F0000H), which is
only ac cessed us ing ta ble read and ta ble write op er a tions. When the con fig u ra tion bits
are pro grammed, they will read as '0; when left unprogrammed they will read as '1'.

 PIC18 Ar chi tec ture 21

MPLAB de vel op ment tools pro vide an __CONFIG di rec tive, to gether with a set of
de vice-spe cific operands, that sim plify se lect ing and set ting the de sired con fig u ra -
tion bits. This topic is ex plored in the book's chap ters re lated to programming.

2.2 Mem ory Or ga ni za tion
De vices of the PIC18FXX2 fam ily con tain three in de pend ent mem ory blocks:

• Pro gram Mem ory

• Data Mem ory

• Data EEPROM

Be cause the de vice uses a sep a rate buss, the CPU can con cur rently ac cess the
data and pro gram mem ory blocks.

2.2.1 Pro gram Mem ory
The Pro gram Coun ter reg is ter is 21 bit wide and there fore ca pa ble of ad dress ing a
max i mum of 2-Mbyte pro gram mem ory space. Ac cess ing a lo ca tion be tween the phys -
i cally im ple mented mem ory and the 2-Mbyte max i mum ad dress will read all ze roes.
The PIC18F242 and PIC18F442 de vices can store up to 8K of sin gle-word in struc tions.
The PIC18F252 and PIC18F452 de vices can store up to 16K of sin gle-word in struc -
tions. The RESET vec tor ad dress is at OOOOH and the in ter rupt vec tor ad dresses are
at 0008H and 0018H. Fig ure 2.6 shows the mem ory map for the PIC18FXX2 fam ily.

Fig ure 2.6 Pro gram memory map for the PIC18FXX2 fam ily.

22 Chap ter 2

Stack Level 1
.
.
.
.

Stack Level 31

Stack Level 1
.
.
.
.

Stack Level 31

RESET Vector

PIC18F442/242 PIC18F452/252

RESET Vector

PC bits <20:0> PC bits <20:0>

0000H

0008H

0018H

3FFFH
4000H

0000H

0008H

0018H

7FFFH
8000H

1FFFFFH
200000H

1FFFFFH
200000H

High Priority Interrupt Vector High Priority Interrupt Vector

Low Priority Interrupt Vector Low Priority Interrupt Vector

On-Chip
Program Memory

On-Chip
Program Memory

Read '0'

Read '0'

2.2.2 18FXX2 Stack
The PIC18FXX2 stack is 31 ad dress deep and al lows as many com bi na tions of
back-to-back calls and in ter rupts to oc cur. When a CALL or RCALL in struc tion is ex e -
cuted, the Pro gram Coun ter is pushed onto the stack. When a CALL or RCALL in struc -
tion is ex e cuted, or an in ter rupt is ac knowl edged, the Pro gram Coun ter is pulled off
the stack. This also takes place on a RETURN, RETLW, or RETFIE in struc tion.
PCLATU and PCLATH reg is ters are not af fected by any of the RETURN or CALL in -
struc tions.

The stack con sists of a 31-word deep and 21-bit wide RAM struc ture. The cur rent
stack po si tion is stored in a 5-bit Stack Pointer reg is ter la beled STKPTR. This reg is -
ter is in i tial ized to OOOOOB af ter all RESETS. There is no RAM mem ory cell as so ci -
ated with Stack Pointer value of OOOOOB. When a CALL type in struc tion ex e cutes
(PUSH op er a tion), the stack pointer is first in cre mented and the RAM lo ca tion
pointed to by STKPTR is writ ten with the con tents of the PC. Dur ing a RETURN type
in struc tion (POP op er a tion), the con tents of the RAM lo ca tion pointed to by
STKPTR are trans ferred to the PC and then the stack pointer is decremented.

The stack space is a unique mem ory struc ture and is not part of ei ther the pro -
gram or the data space in the PIC18FXX2 de vices. The STKPTR reg is ter is read able
and writeable, and the ad dress on the top of the stack is also read able and writeable
through SFR reg is ters. Data can also be pushed to or popped from the stack us ing
the top-of-stack SFRs. Sta tus bits in di cate if the stack pointer is at, or be yond the 31
lev els provided.

Stack Op er a tions

Fig ure 2.7 shows the bit struc ture of the STKPTR reg is ter. The STKPTR reg is ter con -
tains the stack pointer value, as well as a stack full and stack un der flow) sta tus bits.
The STKPTR reg is ter can be read and writ ten by the user. This fea ture al lows op er at -
ing sys tem soft ware to per form stack main te nance op er a tions. The 5-bit value in the
stack pointer reg is ter ranges from 0 through 31, which cor re spond to the avail able
stack lo ca tions. The stack pointer is in cre mented by push op er a tions and dec re ment -
ed when val ues are popped off the stack. At RESET, the stack pointer value is set to 0.

Fig ure 2.7 STKPTR reg is ter bit map.

 PIC18 Ar chi tec ture 23

STKOVF STKUNF SP4 SP3 SP2 SP1 SP0

7 6 5 4 3 2 1 0bits:

bit 7 STKOVF:
 1 = Stack became full or overflowed
 0 = Stack has not overflowed
bit 6 STKUNF:
 1 = Stack underflow occurred
 0 = No stack underflow occurred
bit 5 Unimplemented: Read as 0
bit 4-0 SP4:SP0: Stack Pointer location

The STKOVF bit is set af ter the pro gram coun ter is pushed onto the stack 31
times with out pop ping any value off the stack. No tice that some Micro chip doc u -
men ta tion re fers to a STKFUL bit, which ap pears to be a syn onym for the STKOVF
bit. To avoid con fu sion, we only use the STKOVF des ig na tion in this book.

The STKOVF bit can only be cleared in soft ware or by a Power-On Re set (POR)
op er a tion. The ac tion that takes place when the stack be comes full de pends on the
state of the STVREN (Stack Over flow Re set En able) con fig u ra tion bit. The STVREN
bit is bit 0 of the CONFIG4L reg is ter. If the STVREN bit is set, a stack full or stack
over flow con di tion will cause a de vice RESET. Oth er wise, the RESET ac tion will
not take place. When the stack pointer has a value of 0 and the stack is popped, a
value of zero is en tered to the Pro gram Coun ter and the STKUNF bit is set. In this
case, the stack pointer re mains at 0. The STKUNF bit will re main set un til cleared in
soft ware or a POR oc curs. Re turn ing a value of zero to the Pro gram Coun ter on an
un der flow con di tion has the ef fect of vectoring the pro gram to the RESET vec tor.
User code can pro vide logic at the RESET vec tor to ver ify the stack condition and
take the appropriate actions.

Three reg is ters, la beled TOSU, TOSH and TOSL, hold the con tents of the stack lo -
ca tion pointed to by the STKPTR reg is ter. The ad dress map ping of these reg is ters is
shown in Fig ure 2.8.

Fig ure 2.8 Ad dress map ping of the stack con tents reg is ters.

Us ers can im ple ment a soft ware stack by ma nip u lat ing the con tents of the TOSU,
TOSH, and TOSL reg is ters. Af ter a CALL, RCALL, or in ter rupt, user soft ware can
read the value in the stack by read ing the TOSU, TOSH, and TOSL. These val ues can
then be placed on a user-de fined soft ware stack. At re turn time, user soft ware can
re place the TOSU, TOSH, and TOSL with the stored val ues. At this time, global in ter -
rupts should have been dis abled in or der to pre vent in ad ver tent stack changes.

Fast Reg is ter Stack

A fast re turn from in ter rupts is avail able in the PIC18FXX2 de vices. This ac tion is
based on a Fast Reg is ter Stack that saves the STATUS, WREG, and BSR reg is ters. The
fast ver sion of the stack is not read able or writable and is loaded with the cur rent
value of the three reg is ters when an in ter rupt takes place. The FAST RETURN in struc -
tion is then used to re store the work ing reg is ters and ter mi nate the in ter rupt.

24 Chap ter 2

TOSU TOSH TOSL

Bits 20 15 7 0

The fast reg is ter stack op tion can also be used to store and re store the STATUS,
WREG, and BSR reg is ters dur ing a sub rou tine call. In this case, a fast call and fast
re turn in struc tion are ex e cuted. This is only pos si ble if no in ter rupts are used.

In struc tions in Mem ory

Pro gram mem ory is struc tured in byte-size units but in struc tions are stored as two
bytes or four bytes. The Least Sig nif i cant Byte of an in struc tion word is al ways stored
in a pro gram mem ory lo ca tion with an even ad dress, as shown in Fig ure 2.5. Fig ure 2.9
shows three low-level in struc tions as they are en coded and stored in pro gram mem ory

 Fig ure 2.9 In struc tion en cod ing.

The CALL and GOTO in struc tions have an ab so lute pro gram mem ory ad dress em -
bed ded in the in struc tion. Be cause in struc tions are al ways stored on word bound -
aries, the data con tained in the in struc tion is a word ad dress. This word ad dress is
writ ten to Pro gram Coun ter bits <20:1>, which ac cesses the de sired byte ad dress.
No tice in Fig ure 2.9 that the in struc tion

GOTO 000006H

is en coded by stor ing the num ber of sin gle-word in struc tions that must be added to
the Pro gram Coun ter (03H). All pro gram branch in struc tions are en coded in this man -
ner.

2.2.3 Data Mem ory

Data mem ory is im ple mented as static RAM. Each reg is ter in the data mem ory has a
12-bit ad dress, al low ing up to 4096 bytes of data mem ory in the PIC18FXX2 de vices.
Data mem ory con sists of Spe cial Func tion Reg is ters (SFRs) and Gen eral Pur pose
Reg is ters (GPRs). The SFRs are used for con trol and sta tus op er a tions and for im ple -
ment ing the pe riph eral func tions. The GPRs are for user data stor age. Fig ure 2.10 is a
map of data mem ory in the PIC18FXX2 de vices.

 PIC18 Ar chi tec ture 25

00000H

00002H

00004H

00006H

00008H

0000AH

0000CH

0000EH

00010H

00012H

00014H

0FH 55H

EFH 03H

00H 00H

C1H 23H

04H 56H

MOVLW 055H

GOTO 000006H

MOVFF 12H, 456H

LSB = 1 LSB = 0
Word

Address

LOCATIONS IN PROGRAM MEMORY:

INSTRUCTIONS:

Fig ure 2.10 Data mem ory map in PIC18FXX2.

 In Fig ure 2.10, GPRs start at the first lo ca tion of Bank 0 and grow to higher mem -
ory ad dresses. Mem ory is di vided into 255-byte units called banks. Seven banks are
im ple mented in the PIC18F452/252 de vices and four banks in the PIC18F442/242 de -
vices. A read op er a tion to a lo ca tion in an unimplemented mem ory bank al ways
returns zeros.

The en tire data mem ory may be ac cessed di rectly or in di rectly. Di rect ad dress ing
re quires the use of the BSR reg is ter. In di rect ad dress ing re quires the use of a File
Se lect Reg is ter (FSRn) and a cor re spond ing In di rect File Op er and (INDFn). Ad -
dress ing op er a tions are dis cussed in Chap ter 11 in the context of LCD
programming.

Each FSR holds a 12-bit ad dress value that can be used to ac cess any lo ca tion in
the Data Mem ory map with out bank ing. The SFRs start at ad dress F80H in Bank 15
and ex tend to ad dress 0FFFH in ei ther de vice. This means that 128 bytes are as -
signed to the SFR area al though not all lo ca tions are im ple mented. The in di vid ual
SFRs are dis cussed in the con text of their spe cific func tion al ity. Fig ure 2.11 shows
the names and ad dresses of the Special Function Registers.

26 Chap ter 2

Access RAMAccess RAM

SFRSFR

GPRGPR

GPRGPR

GPRGPR

GPR

GPR

GPR

UnusedUnused

Unused
(read 00H)

Unused
(read 00H)

Bank 1Bank 1

Bank 2Bank 2

Bank 3

Bank 4

Bank 5

Bank 15Bank 15

Bank 6
to
Bank 14

Bank 3
to
Bank 14

Bank 0Bank 0

PIC18F442/242 PIC18F452/252

080H
FFFH

080H
FFFH

000H
07FH

000H
07FH

00H

FFH

00H

FFH

Fig ure 2.11 PIC18FXX2 Spe cial Func tion Reg is ters map.

2.2.4 Data EEPROM Mem ory
EEPROM stands for Elec tri cally Eras able Pro gram ma ble Read-Only Mem ory. This
type of mem ory is used in com put ers and em bed ded sys tems as a non vol a tile stor age.
You find EEPROM in flash drives, BIOS chips, and in mem ory fa cil i ties such flash
mem ory and EEPROM data s tor age mem ory found in PICs and other
microcontrollers.

EEPROM mem ory can be erased and pro grammed elec tri cally with out re mov ing
the chip. The pre de ces sor tech nol ogy, called EPROM, re quired that the chip be re -
moved from the cir cuit and placed un der ul tra vi o let light in or der to erase it. In em -
bed ded sys tems, the typ i cal use of se rial EEPROM on-board mem ory, and EEPROM
ICs, is in the stor age of pass words, codes, con fig u ra tion set tings, and other in for ma -
tion to be re mem bered after the system is turned off.

 PIC18 Ar chi tec ture 27

Data EEPROM is read able and writable dur ing nor mal op er a tion. EEPROM data
mem ory is not di rectly mapped in the reg is ter file space. In stead, it is in di rectly ad -
dressed through the SFRs. Four SFRs used to read and write the pro gram and data
EEPROM mem ory. These registers are

• EECON1

• EECON2

• EEDATA

• EEADR

In op er a tion, EEDATA holds the 8-bit data for read/write and EEADR holds the
ad dress of the EEPROM lo ca tion be ing ac cessed.

All de vices of the PIC18FXX2 fam ily 256 bytes of data EEPROM with an ad dress
range from Oh to FFh. EEPROM ac cess and pro gram ming are dis cussed in Chapter
10.

2.2.5 In di rect Ad dress ing
The in struc tion set of most pro ces sors, in clud ing the PICs, pro vide a mech a nism for
ac cess ing mem ory operands in di rectly. In di rect ad dress ing is based on the fol low ing
ca pa bil i ties:

1. The ad dress of a mem ory op er and is loaded into a reg is ter. This reg is ter is called
the pointer.

2. The pointer reg is ter is then used to in di rectly ac cess the mem ory lo ca tion at the
ad dress it “points to.”

3. The value in the pointer reg is ter can be mod i fied (usu ally in cre mented or dec re -
ment ed) so as to al low ac cess to other mem ory operands.

In di rect ad dress ing is use ful in ac cess ing data ta bles in ma nip u lat ing soft ware
stacks.

In the PIC18FXX2 ar chi tec ture, in di rect ad dress ing is im ple mented us ing one of
three In di rect File Reg is ters (la beled INDFx) and the cor re spond ing File Se lect Reg -
is ter (la beled FSRx). Any in struc tion us ing an INDFx reg is ter ac tu ally ac cesses the
reg is ter pointed to by the FSRx. Read ing an INDF reg is ter in di rectly (FSR = 0) will
read OOH. Writ ing to the INDF reg is ter indirectly, results in a no operation.

The INDFx reg is ters are not phys i cal reg is ters in the sense that they can not be di -
rectly ac cessed by code. The FSR reg is ter is the pointer reg is ter that is in i tial ized to
the ad dress of a mem ory op er and. Once a mem ory ad dress is placed in FSRx, any
ac tion on the cor re spond ing INDFx reg is ter takes place at the mem ory lo ca tion
pointed at by FSR. For ex am ple, if the FSR0 reg is ter is in i tial ized to mem ory ad -
dress 0x20, then clear ing an INDF0 reg is ter has the ef fect of clear ing the mem ory lo -
ca tion at ad dress 0x20. In this case, the ac tion on the INDF0 reg is ter ac tu ally takes
place at the ad dress con tained in the FSR0 reg is ter. Now if FSR (the pointer reg is -
ter) is in cre mented and INDF is again cleared, the mem ory lo ca tion at ad dress 0x21
will be cleared. In di rect ad dress ing is covered in detail in the programming chapters
later in the book.

28 Chap ter 2

2.3 PIC18FXX2 Os cil la tor
In the op er a tion of any mi cro pro ces sor or microcontroller, it is nec es sary to pro vide a
“clock” sig nal in the form of a con tin u ously run ning, fixed-fre quency, square wave.
The op er a tion and speed of the de vice are en tirely de pend ent on this clock fre quency.
In ad di tion to the fetch/ex e cute cy cle of the CPU, other es sen tial tim ing func tions are
also de rived from this clock sig nal rang ing from tim ing and count ing op er a tions
pulses re quired in com mu ni ca tions. In many PIC microcontrollers, the in ter nal or ex -
ter nal com po nent that gen er ates this clock sig nal is called the os cil la tor.

Ev ery microcontroller or mi cro pro ces sor must op er ate with a clock sig nal of a
spec i fied fre quency. The prin ci pal clock sig nal is di vided in ter nally by a fixed value,
thus cre at ing a lower-fre quency sig nal. Each cy cle of this slower sig nal is called an
in struc tion cy cle by Micro chip. The in struc tion cy cle can be con sid ered the pri mary
unit of time in the ac tion of the CPU be cause it de ter mines how long an in struc tion
takes to ex e cute. The orig i nal clock sig nal is also used to cre ate phases or time
stages within the in struc tion cy cle or in other microcontroller op er a tions. In
PIC18FXX2 de vices, the main os cil la tor sig nal is di vided by four. For ex am ple, a
clock sig nal fre quency of 40 MHz produces an instruction cycle frequency of 10
MHz. Many microcontrollers, in clud ing PICs, pro vide an in ter nal os cil la tor sig nal;
how ever, this is not the case with the PIC18FXX2 de vices, which re quire an ex ter nal
de vice to pro vide the clock sig nal. The pins la beled OSC1 and OSC2 (see Fig ure 2.2)
are used with the os cil la tor function.

2.3.1 Os cil la tor Op tions

The PIC18FXX2 can be op er ated in eight dif fer ent oscillator modes. The con fig u ra tion
bits la beled FOSC2, FOSC1, and FOSCO al low se lect ing one of these eight modes dur -
ing start-up. Ta ble 2.2 shows the des ig na tions and de scrip tion of the eight os cil la tor
modes.

Ta ble 2.2

Os cil la tor Types

 CODE TYPE

LP Low-Power Crys tal
XT Crys tal/Res o na tor
HS High-Speed Crys tal/Res o na tor
HS + PLL High-Speed Crys tal/Res o na tor with PLL en abled
RC Ex ter nal Re sis tor/Ca pac i tor
RCIO Ex ter nal Re sis tor/Ca pac i tor withI/O pin en abled
EC Ex ter nal Clock
ECIO Ex ter nal Clock with I/O pin en abled

Crys tal Os cil la tor and Ce ramic Res o na tor

The des ig na tions XT, LP, HS or HS+PLL in Ta ble 2.2 re fer to modes in which a crys tal or
ce ramic res o na tor os con nected to the OSC1 and OSC2 pins to es tab lish a clock sig nal
for the de vice. The PIC18FXX22 re quires that crys tals be par al lel cut be cause se rial
cut crys tals can give fre quen cies out side the man u fac tur er's spec i fi ca tions. Fig ure
2.12 shows the wir ing and com po nents re quired for os cil la tor modes LP, XT, and HS.

 PIC18 Ar chi tec ture 29

Fig ure 2.12 Os cil la tor sche mat ics for LP, XT, and HS modes.

An ex ter nal clock may also be used in the HS, XT, and LP os cil la tor modes. In this
case, the clock is con nected to the de vice's OSC1 pin while the OSC2 pin is left
open.

RC Os cil la tor

The sim plest and least ex pen sive way of pro vid ing a clocked im pulse to the PIC is with
an ex ter nal cir cuit con sist ing of a sin gle re sis tor and ca pac i tor. This cir cuit is usu ally
called an RC os cil la tor. The ma jor draw back of the RC op tion is that the fre quency of
the pulse de pends on the sup ply volt age, the nor mal vari a tions in the ac tual val ues of
the re sis tor and ca pac i tor, and the op er at ing tem per a ture. This makes the RC os cil la -
tor op tion only suit able for ap pli ca tions that are tim ing in sen si tive. Fig ure 2.13 shows
the cir cuit re quired for the RC and RCIO os cil la tor modes.

Fig ure 2.13 RC and RCIO oscillator modes.

30 Chap ter 2

OSC1

XTAL
or
RESONATOR

C1

CAPACITOR SELECTION (C1 and C2)
FOR CERAMIC RESONATORS

CAPACITOR SELECTION (C1 and C2)
FOR CRYSTAL OSCILLATOR

Mode Freq C1 and C2

XT 455 kHz 68 - 100 pF
 2.0 MHz 15 - 68 pF
 4.0 MHz 15 - 68 pF

HS 8.0 MHz 10 - 68 pF
 16.0 MHz 10 - 22 pF

Mode Freq C1 and C2

LP 32.0 kHz 33 pF
 200 kHz 15 pF

XT 200 kHz 22 - 68 pF
 1.0 MHz 15 pF
 4.0 MHz 15 pF

HS 4.0 MHz 15 pF
 8.0 Mhz 15 - 33 pF
 20.0 MHz 15 - 33 pF
 25.0 Mhz 15 - 33 pF

C2 OSC2

PIC18FXX2

OSC1

 3 k Rext 100 k

Cext 20pF

OSC2

FOSC/4

Vdd

PIC18FXX2

The two vari a tions of the RC op tion are des ig nated RC and RCIO. In the RC op -
tion, the OSC2 pin is left open. In the RCIO vari a tion, the OSC2 pin pro vides a sig nal
with the os cil la tor fre quency di vided by 4 (FOSC/4 in Fig ure 2.13). This sig nal can
be used for test ing or to syn chro nize other cir cuit components.

Ex ter nal Clock In put

The EC and ECIO Os cil la tor modes are used with an ex ter nal clock source con nected
to the OSC1 pin. Fig ure 2.14 shows the cir cuit for the EC os cil la tor mode.

Fig ure 2.14 Ex ter nal clock os cil la tor mode.

In the EC mode (Fig ure 2.14), the os cil la tor fre quency di vided by 4 is avail able on
the OSC2 pin. This sig nal may be used for test pur poses or to syn chro nize other cir -
cuit com po nents.

The ECIO os cil la tor is sim i lar to the EC mode ex cept that the OSC2 pin be comes
an ad di tional gen eral-pur pose I/O source; spe cif i cally, the OSC2 pin be comes bit 6
of PORTA (RA6).

Phase Locked Loop Os cil la tor Mode

With the Phase Locked Loop (PLL) a cir cuit is pro vided as a pro gram ma ble op tion.
This is con ve nient for us ers who want to mul ti ply the fre quency of the in com ing crys -
tal os cil la tor sig nal by 4, as in Fig ure 2.12. For ex am ple, if the in put clock fre quency is
10 MHz and the PLL os cil la tor mode is se lected, the in ter nal clock fre quency will be 40
MHz. The PLL mode is se lected by means of the FOSC<2:0> bits. This re quires that the
os cil la tor con fig u ra tion bits are pro grammed for the HS mode. Oth er wise, the sys tem
clock will come di rectly from OSC1.

2.4 Sys tem Re set
The PIC18FXX2 doc u men ta tion re fers to the fol low ing eight pos si ble types of RESET.

1. Power-On Re set (POR)

2. Mas ter Clear Re set dur ing nor mal op er a tion (MCLR)

3. Re set dur ing SLEEP (MCLR)

4. Watch dog Timer Re set

5. Pro gram ma ble Brown-Out Re set

6. Ac tion of the RESET In struc tion

7. Stack Full Re set

8. Stack Un der flow Re set

 PIC18 Ar chi tec ture 31

OSC1

OSC2

FOSC/4

Exterior
Clock
Pulse

PIC18FXX2

The sta tus of most reg is ters is un known af ter Power-on Re set (POR) and un -
changed by all other RESETS. The re main ing reg is ters are forced to a “RESET state”
on Power-on Re set, MCLR, WDT Re set, Brown out Re set, MCLR Re set dur ing SLEEP,
and by the RESET instruction.

2.4.1 Re set Ac tion
Most reg is ters are not af fected by a WDT wake-up, as this is viewed as the re sump tion
of nor mal op er a tion. Sta tus bits from the RCON reg is ter, Rl, TO, PD, POR, and BOR,
are set or cleared dif fer ently in the var i ous RESET ac tions. Soft ware can read these
bits to de ter mine the type of RESET. Ta ble 2.3 shows the RESET con di tion for some
Spe cial Func tion Reg is ters.

Ta ble 2.3

RESET State for some SFRs

Some cir cuits in clude a hard ware re set mech a nism that al lows the user to force a
RESET ac tion, usu ally by ac ti vat ing a switch that brings low the MCLR line. The
same cir cuit holds high the MCLR line dur ing de vice op er a tion by ty ing it to the Vdd
source. Fig ure 2.15 shows a pos si ble sche matic for a pushbutton re set switch on the
MCLR line.

Fig ure 2.15 RESET switch on the MCLR line.

32 Chap ter 2

PIC18FXX2

+5V

R
=

1
0

KPB SW

MCLR

Power-On Reset

Power-On Re set (POR)

A Power-on Re set pulse is gen er ated on-chip when a Vdd rise is de tected. Us ers can
take ad van tage of the POR cir cuitry by ty ing the MCLR pin to Vdd ei ther di rectly or
through a re sis tor, as shown in Fig ure 2.15. This cir cuit elim i nates ex ter nal RC com -
po nents usu ally needed to cre ate a Power-on Re set de lay.

Power-Up Timer (PWRT)

The Power-up Timer (PWRT) pro vides a fixed nom i nal time-out from POR. The PWRT
op er ates on an in ter nal RC os cil la tor. The chip is kept in RESET as long as the PWRT is
ac tive. This ac tion al lows the Vdd sig nal to rise to an ac cept able level. A con fig u ra tion
bit is pro vided to en able/dis able the PWRT.

Os cil la tor Start-Up Timer (OST)

The Os cil la tor Start-up Timer (OST) pro vides a de lay of 1024 os cil la tor cy cles from
the time of OSC1 in put un til af ter the PWRT de lay is over. This en sures that the pro ces -
sor fetch/ex e cute cy cle does not start un til the crys tal os cil la tor or res o na tor has
started and sta bi lized. The OST time-out is in voked only for XT, LP, and HS modes and
only on Power-on Re set or wake-up from SLEEP.

PLL Lock Time-Out

When the Phase Locked Loop Os cil la tor Mode is se lected, the time-out se quence fol -
low ing a Power-on Re set is dif fer ent from the other oscillator modes. In this case, a
por tion of the Power-up Timer is used to pro vide a fixed time-out that is suf fi cient for
the PLL to lock to the main os cil la tor fre quency. This PLL lock time-out (TPLL) is typ i -
cally 2 ms and fol lows the os cil la tor start-up time-out (OST),

Brown-Out Re set (BOR)

A tem po rary re duc tion in elec tri cal power (brown-out con di tion) can ac ti vate the
chip's brown-out re set mech a nism. A con fig u ra tion bit (BOREN) can be cleared to dis -
able or set to en able the Brown-out Re set cir cuitry. If Vdd falls be low a pre de fined
value for a pre de ter mined pe riod, the brown-out sit u a tion will re set the chip. The chip
will re main in Brown-out Re set un til Vdd rises above the pre de fined value.

Time-Out Se quence

On power-up, the time-out se quence fol lows this or der:

1. Af ter the Power-on Re set (POR) time de lay has ex pired, the Power-up Time
(PWRT) time-out is in voked

2. The Os cil la tor Start-up Time (OST) is ac ti vated

The to tal time-out will vary based on the par tic u lar os cil la tor con fig u ra tion and
the sta tus of the PWRT. In RC mode with the PWRT dis abled, there will be no
time-out at all. Be cause the time-outs oc cur from the POR pulse, if MCLR is kept low
long enough, the time-outs will ex pire. Bring ing MCLR high will be gin ex e cu tion im -
me di ately. This is use ful for test ing pur poses or to syn chro nize more than one
PIC18FXXX de vice operating in parallel.

 PIC18 Ar chi tec ture 33

2.5 I/O Ports
PIC18FXX2 de vices come equipped with ei ther five or three ports. PIC18F4X2 de vices
have five ports and PIC18F2X2 de vices have three ports. Ports pro vide ac cess to the
out side world and are mapped to phys i cal pins on the de vice. Some port pins are mul ti -
plexed with al ter nate func tions of pe riph eral mod ules. When a pe riph eral mod ule is
en abled, that pin ceases to be a gen eral-pur pose I/O.

Ports are la beled with let ters of the al pha bet and are des ig nated as port A
(PORTA) to port E (PORTE). Port pins are bi-di rec tional, that is, each pin can be
con fig ured to serve ei ther as in put or out put. Each port has three reg is ters for its
op er a tion. These are

• A TRIS reg is ter that de ter mines data di rec tion

• A PORT reg is ter used to read the value stored in each port pin or to write val ues to
the port's data latch

• A LAT reg is ter that serves as a data latch and is use ful in read-mod ify-write op er a -
tions on the pin val ues

The sta tus of each line in the port's TRIS reg is ter de ter mines if the port's line is
des ig nated as in put or out put. Stor ing a value of 1 in the port's line TRIS reg is ter
makes the port line an in put line, while stor ing a value of 0 makes it an out put line.
In put port lines are used in com mu ni cat ing with in put de vices, such as switches,
keypads, and in put data lines from hard ware de vices. Out put port lines are used in
com mu ni cat ing with out put de vices, such as LEDs, seven-seg ment dis plays, liq -
uid-crys tal dis plays (LCDs), and data output line to hardware devices.

Port pins are bit mapped, how ever, they are read and writ ten as a unit. For ex am -
ple, the PORTA reg is ter holds the sta tus of the eight pins pos si bly mapped to port A,
while writ ing to PORTA will write to the port latches. Write op er a tions to ports are
ac tu ally read-mod ify-write op er a tions. There fore, the port pins are first read, then
the value is mod i fied, and then writ ten to the port's data latch.

As pre vi ously men tioned, some port pins are mul ti plexed; for ex am ple, pin RA4 is
mul ti plexed with the Timer0 mod ule clock in put, la beled TOCKI. In Fig ure 2.2 the
port pin is shown as RA4/T0CKI. Other port pins are mul ti plexed with an a log in puts
and with other pe riph eral func tions. The de vice data sheets con tain in for ma tion re -
gard ing the func tions as signed to each de vice pin.

2.5.1 Port Reg is ters

In PIC18FXX2 de vices, ports are la beled PORTA, PORTB, PORTC, PORTD, and
PORTE. PORTD and PORTE are only avail able in PIC18F4X2 de vices. The char ac ter -
is tics of each port are de tailed in the de vice's data sheet. For ex am ple, PORTA is a 7-bit
wide, bi-di rec tional port. The cor re spond ing Data Di rec tion reg is ter is TRISA. If soft -
ware sets a TRISA bit to 1, the cor re spond ing PORTA pin will serve as an in put pin.
Clear ing a TRISA bit (= 0) will make the cor re spond ing PORTA pin an out put. It is easy
to re mem ber the func tion of the TRIS reg is ters be cause the num ber 1 is rem i nis cent of
the let ter I and the num ber 0 of the let ter O.

34 Chap ter 2

 Read ing the PORTA reg is ter reads the sta tus of the pins, whereas writ ing to it
will write to the port latch. The Data Latch reg is ter (LATA) is also mem ory mapped.
Read-mod ify-write op er a tions on the LATA reg is ter read and write the latched out -
put value for PORTA. The RA4 pin is mul ti plexed with the Timer0 mod ule clock in -
put to be come the RA4/TOCKI pin. This pin is a Schmitt Trig ger in put and an open
drain out put. All other RA port pins have TTL in put lev els and full CMOS out put
drivers.

All other PORTA pins are mul ti plexed with an a log in puts and the an a log VREF+
and VREF- in puts. The op er a tion of each pin is se lected by clear ing/set ting the con -
trol bits in the ADCON1 reg is ter (A/D Con trol Reg is ter). The TRISA reg is ter con trols
the di rec tion of the PORTA pins. This is so even when the port pins are be ing used
as analog inputs.

2.5.2 Par al lel Slave Port
The Par al lel Slave Port is im ple mented on the 40-pin de vices only, that is, those with
the PIC18F4X2 des ig na tion. In these de vices, PORTD serves as an 8-bit wide Par al lel
Slave Port when the con trol bit labled PSPMODE (at TRISE<4>) is set. It is
asynchronously read able and writable through the RD con trol in put pin (REO/RD)
and WR con trol in put pin (RE1/WR).

The Par al lel Slave Port can di rectly in ter face to an 8-bit mi cro pro ces sor data bus.
In this case, the mi cro pro ces sor can read or write the PORTD latch as an 8-bit latch.
Pro gram ming and op er a tion of the Par al lel Slave Port is dis cussed later in this book.

2.6 In ter nal Mod ules
In elec tron ics a mod ule can be loosely de fined as an as sem bly of elec tronic cir cuits or
com po nents that per forms as a unit. All PIC microcontrollers con tain in ter nal mod -
ules to per form spe cific func tions or op er a tions. In this sense we can re fer to the
Timer mod ule, the Cap ture/Com pare/PWM mod ule, or the An a log-to-Dig i tal Con -
verter mod ule. By def i ni tion, a mod ule is an in ter nal com po nent.

A pe riph eral or pe riph eral de vice, on the other hand, is an ex ter nal com po nent,
such as a printer, a mo dem, or a Liq uid Crys tal Dis play (LCD). Microcontrollers of -
ten com mu ni cate with pe riph eral de vices through their I/O ports or through their in -
ter nal mod ules. We make this clar i fi ca tion be cause some times in the lit er a ture we
can find ref er ences to the “pe riph eral com po nents” or the “pe riph er als” of a
microcontroller when actually referring to modules.

2.6.1 PIC18FXX2 Mod ules
Most PIC microcontrollers con tain at least one in ter nal mod ule, and many de vices
con tain ten or more dif fer ent mod ules. The fol low ing are the stan dard mod ules of the
PIC18FXX2 fam ily of de vices:

• Timer0 mod ule: 8-bit/16-bit timer/coun ter with 8-bit pro gram ma ble prescaler

• Timerl mod ule: 16-bit timer/coun ter

• Timer2 mod ule: 8-bit timer/coun ter with 8-bit pe riod reg is ter

 PIC18 Ar chi tec ture 35

• Timer3 mod ule: 16-bit timer/coun ter

• Two Cap ture/Com pare/PWM (CCP) mod ules

• Mas ter Syn chro nous Se rial Port (MSSP) mod ule with two modes of op er a tion

• Uni ver sal Re ceiver and Trans mit ter (USART)

• 10-bit An a log-to-Dig i tal Con verter (A/D)

• Con trol ler Area Net work (CAN)

• Com para tor Mod ule

• Parallel Slave Port (PSP) mod ule

The struc ture and de tails of the in ter nal mod ules are dis cussed in the pro gram -
ming chap ters later in this book.

36 Chap ter 2

Chap ter 3

Pro gram ming Tools and Soft ware

3.1 En vi ron ment

In or der to learn and prac tice pro gram ming microcontrollers in em bed ded sys tems,
you will re quire a de vel op ment and test ing en vi ron ment. This en vi ron ment will usu -
ally in clude the fol low ing el e ments:

1. A soft ware de vel op ment en vi ron ment in which to cre ate the pro gram's source
file and gen er ate an ex e cut able pro gram that can later be loaded into the hard -
ware de vice. This en vi ron ment of ten in cludes debuggers, li brary man ag ers, and
other aux il iary tools.

2. A hard ware de vice called a “pro gram mer” that trans fers the ex e cut able pro gram
to the microcontroller it self. In the pres ent con text, this pro cess is usu ally called
“burn ing” or “blow ing” the PIC.

3. A cir cuit or dem on stra tion board in which the pro gram (al ready loaded onto a
PIC microcontroller) can be tested in or der to lo cate de fects or con firm its func -
tion al ity.

In the pres ent chap ter, we dis cuss some of the pos si ble vari a tions in these el e -
ments for PIC18F pro gram ming and sys tem de vel op ment.

3.1.1 Em bed ded Sys tems

An em bed ded sys tem is de signed for a spe cific pur pose, in con trast to a com puter sys -
tem, which is a gen eral-pur pose ma chine. The em bed ded sys tem is in tended for ex e -
cut ing spe cific and pre de fined tasks, for ex am ple, to con trol a mi cro wave oven, a TV
re ceiver, or to op er ate a model rail road. In a gen eral-pur pose com puter, on the other
hand, the user may se lect among many soft ware ap pli ca tions. For ex am ple, the user
may run a word pro ces sor, a Web browser, or a da ta base man age ment sys tem on the
desk top. Be cause the soft ware in an em bed ded sys tem is usu ally fixed and can not be
eas ily changed, it is called “firm ware.”

37

At the heart of an em bed ded sys tem is a microcontroller (such as a PIC), some -
times sev eral of them. These de vices are pro grammed to per form one, or, at most, a
few tasks. In the most typ i cal case an em bed ded sys tem also in cludes one or more
“pe riph eral” cir cuits that are op er ated by ded i cated ICs or by func tion al ity con -
tained in the microcontroller it self. The term “em bed ded sys tem” re fers to the fact
that the pro gram ma ble de vice is of ten found in side an other one; for in stance, the
con trol cir cuit is em bed ded in a mi cro wave oven. Fur ther more, em bed ded sys tems
do not have (in most cases) gen eral-pur pose de vices such as hard disk drives, video
con trol lers, print ers, and net work cards.

The con trol for a mi cro wave oven is a typ i cal em bed ded sys tem. The con trol ler
in cludes a timer (so that var i ous op er a tions can be clocked), a tem per a ture sen sor
(to pro vide in for ma tion re gard ing the oven's con di tion), per haps a mo tor (to op tion -
ally ro tate the oven's tray), a sen sor (to de tect when the oven door is open), and a
set of pushbutton switches to se lect the var i ous op tions. A pro gram run ning on the
em bed ded microcontroller reads the com mands and data in put through the key -
board, sets the timer and the ro tat ing ta ble, de tects the state of the door, and turns
the heat ing el e ment on and off as re quired by the user's se lec tion. Many other daily
de vices, in clud ing au to mo biles, dig i tal cam eras, cell phones, and home ap pli ances,
use em bed ded sys tems and many of them are PIC-based.

3.1.2 High- and Low-Level Lan guages
All microcontrollers can be pro grammed in their na tive ma chine lan guage. The term
“ma chine lan guage” re fers to the prim i tive codes, in ter nal to the CPU, that ex e cute the
fun da men tal op er a tions that can be per formed by a par tic u lar pro ces sor. The pro ces -
sor's fetch/ex e cute cy cle re trieves the ma chine code from pro gram mem ory and per -
forms the nec es sary ma nip u la tions and cal cu la tions. For ex am ple, the in struc tion
rep re sented by the bi nary opcode

 00000000 00000100

clears the watch dog timer reg is ter in the PIC18FXX de vices.

Pro gram ming, loosely de fined, re fers to se lect ing, con fig ur ing, and stor ing in pro -
gram mem ory a se quence of prim i tive opcodes so as to per form a spe cific func tion
or task. The ma chine lan guage pro gram mer has to man u ally de ter mine the op er a -
tion code for each in struc tion in the pro gram and places these codes, in a spe cific
or der, in the des ig nated area of pro gram mem ory.

As sem bly lan guage is based on a soft ware pro gram that rec og nizes a sym bolic
lan guage where each ma chine code is rep re sented by a mne monic in struc tion and a
pos si ble op er and. A pro gram, called an “as sem bler,” reads these in struc tions and
operands from a text file and gen er ates the cor re spond ing ma chine codes. For ex -
am ple, in or der to en code the in struc tion that clears the watch dog (00000000
00000100 bi nary in the pre vi ous ex am ple), the as sem bly lan guage pro gram mer in -
serts in the text file the key word

CLRWDT

The as sem bler pro gram reads the pro gram mer's text file, parses these mne monic
keywords and their pos si ble operands, and stores the bi nary opcodes in a file for later

38 Chap ter 3

ex e cu tion. Be cause as sem bly lan guage ref er ences the pro ces sor opcodes, it is a ma -
chine-spe cific lan guage. An as sem bler pro gram op er ates only on de vices that have a
com mon ma chine lan guage, al though some mi nor pro ces sor-spe cific vari a tions can,
in some cases, be se lec tively en abled. Be cause of their as so ci a tion with the hard ware,
ma chine lan guage and as sem bly lan guage are usu ally re ferred to as “low-level lan -
guages.”

High-level pro gram ming lan guages, such as C, Pascal, and For tran, pro vide a
stron ger level of ab strac tion from the hardaware de vice. It is gen er ally ac cepted
that com pared to low-level lan guages, high-level pro gram ming is more nat u ral, eas -
ier to learn, and sim pli fies the pro cess of de vel op ing pro gram lan guages. The re sult
is a sim pler and more un der stand able de vel op ment en vi ron ment that co mes at
some pen al ties re gard ing per for mance, hard ware con trol, and pro gram size.

Rather than deal ing with reg is ters, mem ory ad dresses, and call stacks, a
high-level lan guage deals with vari ables, ar rays, arith me tic or Boolean ex pres sions,
sub rou tines and func tions, loops, threads, locks, and other ab stract con cepts. In a
high-level lan guage, the de sign fo cuses on us abil ity rather than op ti mal pro gram ef -
fi ciency. Un like low-level as sem bly lan guages, high-level lan guages have few, if any,
el e ments that trans late di rectly into the ma chine's na tive opcodes.

The term “ab strac tion pen alty” is some times used in the con text of high-level lan -
guages in ref er ence to lim i ta tions that are ev i dent when com pu ta tional re sources
are lim ited, max i mum per for mance is re quired, or hard ware con trol is man dated. In
some cases, the best of both worlds can be achieved by cod ing the non crit i cal por -
tions of a pro gram mostly in a high-level lan guage while the crit i cal por tions are de -
vel oped in as sem bly lan guage. This re sults in mixed-lan guage pro grams, which are
dis cussed later in this book.

It should be noted that many ar gue that mod ern de vel op ments in high-level lan -
guages, based on well-de signed com pil ers, pro duce code com pa ra ble in ef fi ciency
and con trol to that of low-level lan guages. An other ad van tage of high-level lan -
guages is that their de sign is in de pend ent of ma chine struc tures, and the hard ware
fea tures of a spe cific de vice re sult in code that can be eas ily ported to dif fer ent sys -
tems. Fi nally we should ob serve that the terms “low-level” and “high-level” lan -
guages are not cast in stone: to some, as sem bly lan guage with the use of mac ros and
other tools be comes a high-level lan guage, while C is some times cat e go rized as
low-level due to its com pact size, di rect mem ory ad dress ing, and low-level
operands.

As pre vi ously men tioned, the ma jor ar gu ment in fa vor of high-level lan guages is
their ease of use and their faster learn ing curve. The ad van tages of as sem bly lan -
guage, on the other hand, are better con trol and greater ef fi ciency. It is true that ar -
gu ments that fa vor high-level lan guages find some jus ti fi ca tion in the com puter
world, but these rea sons are not al ways valid in the world of microcontroller pro -
gram ming. In the first place, the microcontroller pro gram mer is not al ways able to
avoid com pli ca tions and tech ni cal de tails by re sort ing to a high-level lan guage be -
cause the pro grams re late closely to hard ware de vices and to elec tronic cir cuits.
These de vices and cir cuits must be un der stood at their most es sen tial level if they

 Pro gram ming Tools and Soft ware 39

are to be con trolled and op er ated by soft ware. For ex am ple, con sider a
microcontroller pro gram that must pro vide some sort of con trol baseded on the ac -
tion of a ther mo stat. In this case, the pro gram mer must be come fa mil iar with tem -
per a ture sen sors, an a log-to-dig i tal con ver sions, mo tor con trols, and so on. This is
true whether the pro gram will be writ ten in a low- or a high-level lan guage. For
these rea sons we have con sid ered both high-level and low-level pro gram ming of the
microcontrollers is dis cussed in this book.

3.1.3 Lan guage-Spe cific Soft ware

De vel op ing pro grams in a par tic u lar pro gram ming lan guage re quires a set of match ing
soft ware tools. These soft ware de vel op ment tools are ei ther ge neric, that is, suit able
for any pro gram ming lan guage, or multi-lan guage. For tu nately, for PIC pro gram ming,
all the nec es sary soft ware tools are fur nished in a sin gle de vel op ment en vi ron ment
that in cludes ed i tors, as sem blers, com pil ers, debuggers, li brary man ag ers, and other
util i ties. This de vel op ment pack age, called MPLAB, dis cussed in the fol low ing sec -
tions.

3.2 Micro chip's MPLAB
MPLAB is the name of the PIC as sem bly lan guage de vel op ment sys tem pro vided by
Micro chip. The pack age is fur nished as an in te grated de vel op ment en vi ron ment
(IDE) and can be down loaded from the com pany's website at www.microhip.com.
The MPLAB pack age is fur nished for Win dows, Linux, and Mac OS sys tems. At the
time of this writ ing, the cur rent MPLAB ver sion is 8.86.

3.2.1 MPLAB X

A new im ple men ta tion of MPLAB is named MPLAB X. This new pack age, avail able
free on the Micro chip website, is de scribed by Micro chip as “an in te grated en vi ron -
ment to de velop code for em bed ded microcontrollers.” This def i ni tion matches the
one for the con ven tional MPLAB; how ever, the MPLAB X pack age brings many
changes to the con ven tional MPLAB en vi ron ment. In the first place, MPLAB X is based
on the open source NetBeans IDE from Or a cle. This has al lowed Micro chip to add
many fea tures and to be able to quickly up date the soft ware in the con text of a more
ex ten si ble ar chi tec ture. Micro chip also states that MPLAB X pro vides many new fea -
tures that will be es pe cially ben e fi cial to us ers of 16- and 32-bit mi cro pro ces sor fam i -
lies, where pro grams can quickly be come ex tremely com plex.

Be cause MPLAB X is still con sid ered “work in prog ress,” we have not used it in
de vel op ing the pro grams that are part of this book. Fur ther more, the ex panded fea -
tures of this new en vi ron ment have added com pli ca tions in learn ing and us ing this
pack age. For the pro ces sors con sid ered in this book, and the scope of the de vel -
oped soft ware, we have con sid ered these new fea tures an un nec es sary com pli ca -
tion.

3.2.2 De vel op ment Cy cle

The de vel op ment cy cle of an em bed ded sys tem con sists of the fol low ing steps

40 Chap ter 3

1. De fine sys tem spec i fi ca tions. This step in cludes list ing the func tions that the sys -
tem is to per form and de ter min ing the tests that will be used to val i date their op -
er a tions.

2. Se lect sys tem com po nents ac cord ing to the spec i fi ca tions. This step in cludes lo -
cat ing the microcontroller that best suits the sys tem.

3. De sign the sys tem hard ware. This step in cludes draw ing the cir cuit di a grams.

4. Im ple ment a pro to type of the sys tem hard ware by means of bread boards, wire
boards, or any other flex i ble im ple men ta tion tech nol ogy.

5. De velop, load, and test the soft ware.

6. Im ple ment the fi nal sys tem and test hard ware and soft ware.

The com mer cial de vel op ment of an em bed ded sys tem is hardly ever the work of a
sin gle tech ni cian. More typ i cally, it re quires the par tic i pa tion of com puter, elec tri -
cal, elec tronic, and soft ware en gi neers. Note that, in the pres ent con text, we con -
sider com puter pro gram mers as soft ware en gi neers. In ad di tion, pro fes sional
pro ject man ag ers are usu ally in charge of the de vel op ment team.

3.3 An In te grated De vel op ment En vi ron ment
The MPLAB de vel op ment sys tem, or in te grated de vel op ment en vi ron ment, con sists
of a sys tem of pro grams that run on a PC. This soft ware pack age is de signed to help de -
velop, edit, test, and de bug code for the Micro chip microcontrollers. In stall ing the
MPLAB pack age is usu ally straight for ward and sim ple. The pack age in cludes the fol -
low ing com po nents:

1. MPLAB ed i tor. This tool al lows cre at ing and ed it ing the as sem bly lan guage
source code. It be haves very much like any Win dows™ ed i tor and con tains the
stan dard ed i tor func tions, in clud ing cut and paste, search and re place, and undo
and redo func tions.

2. MPLAB as sem bler. The as sem bler reads the source file pro duced in the ed i tor
and gen er ates ei ther ab so lute or relocatable code. Ab so lute code ex e cutes di -
rectly in the PIC. Relocatable code can be linked with other sep a rately as sem -
bled mod ules or with li brar ies.

3. MPLAB linker. This com po nent com bines mod ules gen er ated by the as sem bler
with li brar ies or other ob ject files, into a sin gle ex e cut able file in .hex for mat.

4. MPLAB debuggers. Sev eral debuggers are com pat i ble with the MPLAB de vel op -
ment sys tem. Debuggers are used to sin gle-step through the code, break point at
crit i cal places in the pro gram, and watch vari ables and reg is ters as the pro gram
ex e cutes. In ad di tion to be ing a pow er ful tool for de tect ing and fix ing pro gram
er rors, debuggers pro vide an in ter nal view of the pro ces sor, which is a valu able
learn ing tool.

5. MPLAB in-cir cuit em u la tors. These are de vel op ment tools that al low per form ing
ba sic de bug ging func tions while the pro ces sor is in stalled in the cir cuit.

Fig ure 3.1 is a screen im age of the MPLAB pro gram. The ap pli ca tion on the ed i tor
win dow is one of the pro grams de vel oped later in this book.

 Pro gram ming Tools and Soft ware 41

Fig ure 3.1 Screen snapshot of MPLAB IDE version 8.64.

3.3.1 In stall ing MPLAB

In the nor mal in stal la tion, the MPLAB ex e cut able will be placed in the fol low ing path:

C:\Pro gram Files\Micro chip\MPASM Suite

Al though the in stal la tion rou tine rec om mends that any pre vi ous ver sion of
MPLAB be re moved from the sys tem, we have found that it is un nec es sary, con sid er -
ing that sev eral ver sions of MPLAB can peace fully co ex ist.

42 Chap ter 3

 Once the de vel op ment en vi ron ment is in stalled, the soft ware is ex e cuted by
click ing the MPLAB IDE icon. It is usu ally a good idea to drag and drop the icon
onto the desk top so that the pro gram can be eas ily activated.

With the MPLAB soft ware in stalled, it may be a good idea to check that the ap pli -
ca tions were placed in the cor rect paths and fold ers. Fail ure to do so pro duces as -
sem bly-time fail ure er rors with cryp tic mes sages. To check the cor rect path for the
soft ware, open the Pro ject menu and se lect the Set Lan guage Tool Lo ca tions com -
mand. Fig ure 3.2 shows the com mand screen.

Fig ure 3.2 MPLAB 8.64 set language tool locations screen.

In the Set Lan guage Tool Lo ca tions win dow, make sure that the file lo ca tion co in -
cides with the ac tual in stal la tion path for the soft ware. If in doubt, use the
<Browse> but ton to nav i gate through the in stal la tion di rec to ries un til the ex e cut -
able pro gram is lo cated. In this case, mpasmwin.exe. Fol low the same pro cess for
all the executables in the tool pack ages that will be used in de vel op ment. For as -
sem bly lan guage pro grams this is the Micro chip MPASM Toolsuite shown in Fig ure
3.2

3.3.2 Cre at ing the Pro ject
In MPLAB, a pro ject is a group of files gen er ated or rec og nized by the IDE. Fig ure 3.3
shows the struc ture of an as sem bly lan guage pro ject.

 Pro gram ming Tools and Soft ware 43

Fig ure 3-3 MPLAB project files.

Fig ure 3.3 shows an as sem bly lan guage source file (prog1.asm) and an op tional
pro ces sor-spe cific in clude file that are used by the as sem bler pro gram (MPASM) to
pro duce an ob ject file (prog1.o). Op tion ally, other sources and other in clude files
may form part of the pro ject. The re sult ing ob ject file, as well as one or more op tional
li brar ies, and a de vice-spe cific script file (de vice.lkr), are then fed to the linker pro -
gram (MPLINK), which gen er ates a ma chine code file (prog1.hex) and sev eral sup -
port files with list ings, er ror re ports, and map files. It is the .hex file that is used to
blow the PIC.

Other files, in ad di tion to those in Fig ure 3.3, may also be pro duced by the de vel op -
ment en vi ron ment. These vary ac cord ing to the se lected tools and op tions. For ex am -
ple, the as sem bler or the linker can be made to gen er ate a file with the ex ten sion
.cod, which con tains sym bols and ref er ences used in de bug ging.

Pro jects can be cre ated us ing the <New> com mand in the Pro ject menu. The pro -
gram mer then pro ceeds to con fig ure the pro ject man u ally and add to it the re quired
files. An al ter na tive op tion, much to be pre ferred when learn ing the en vi ron ment is
us ing the <Pro ject Wiz ard> com mand in the pro ject menu. The wiz ard will prompt
you for all the de ci sions and op tions that are re quired, as fol lows

44 Chap ter 3

prog1.asm

PxxFyy.inc

sup.lib device.lkr

prog1.lst prog1.mapprog1.hex prog1.err

prog1.o

MPASM
(assembler)

MPLINK
(linker)

MPLIB
(librarian)

1. De vice se lec tion. Here the pro gram mer se lects the PIC hard ware for the pro ject,
for ex am ple, 18F452.

2. Se lect a lan guage toolsuite. The pur pose of this screen is to make sure that the
proper de vel op ment tools are se lected and their lo ca tion is cor rect.

3. Next, the wiz ard prompts the user for a name and di rec tory. The Browse but ton
al lows for nav i gat ing the sys tem. It is also pos si ble to cre ate a new di rec tory at
this time.

4. In the next step, the user is given the op tion of add ing ex ist ing files to the pro ject
and re nam ing these files if nec es sary. Be cause most pro jects re use a tem plate, an
in clude file, or other prexisting re sources, this can be a use ful op tion.

5. Fi nally the wiz ard dis plays a sum mary of the pro ject pa ram e ters. When the user
clicks on the <Fin ish> but ton the pro ject is cre ated and pro gram ming can be gin.

Fig ure 3.4 is a snap shot of the fi nal wiz ard screen.

Fig ure 3-4 Fi nal screen of the Pro ject Cre ation Wiz ard.

3.3.3 Set ting the Pro ject Build Op tions

The <Build Op tions: Pro ject> com mand in the Pro ject menu al lows the user to cus -
tom ize the de vel op ment en vi ron ment. For pro jects to be coded in assembly lan guage,
the MPASM As sem bler Tab on the Build Op tions for Pro ject screen is one of the the
most used. The screen is shown in Fig ure 3.5.

 Pro gram ming Tools and Soft ware 45

Fig ure 3-5 MPASM assembler tab in the build options screen.

The MPASM As sem bler tab al lows per form ing the fol low ing customizations:

1. Dis able/en able case sen si tiv ity. Nor mally, the as sem bler is case-sen si tive. Dis -
abling case sen si tiv ity turns all vari ables and la bels to up per case.

2. Se lect the de fault ra dix. Num bers with out for mat ting codes are as sumed to be
hex, dec i mal, or oc tal ac cord ing to the se lected op tion. As sem bly language pro -
gram mers usu ally pre fer the hex a dec i mal ra dix.

3. The macro def i ni tion win dows al lows add ing macro di rec tives. The use of
macros is not dis cussed in this book.

4. The Use Al ter nate Set tings textbox is pro vided for com mand line com mands in
non-GUI en vi ron ments.

5. The Re store De faults box turns off all cus tom con fig u ra tions.

6. Se lect ing Out put in the Cat e go ries win dow pro vides com mand line con trol op -
tions in the out put file.

46 Chap ter 3

3.3.4 Add ing a Source File

The code and struc ture of an assembly lan guage pro gram is con tained in a text file re -
ferred to as the source file. The name of the source file is usu ally de scrip tive of its pur -
pose or func tion. At this point in the pro ject, the pro gram mer will usu ally im port an
ex ist ing file or a tem plate that serves as a skel e ton for the pro ject's source file, the
name of the pro ject or a vari a tion on this name. Al ter na tively, the source file can be
coded from scratch, al though the use of a tem plate saves con sid er able ef fort and
avoids er rors.

Click on the Add New File to Pro ject com mand in the Pro ject menu to cre ate a
new source file from scratch. Make sure that the new file is given the .asm ex ten sion
and the de vel op ment en vi ron ment will au to mat i cally save it in the Source Files
group of the Pro ject Di rec tory. At this time, a blank ed i tor win dow will be opened
and you can start typ ing the source code for your pro gram.

Se lect the Add Files to Pro ject com mand in the Pro ject menu to im port an ex ist -
ing file or a tem plate into the pro ject. In ei ther case, you may have to re name the im -
ported file and re move the old one from the pro ject. If this pre cau tion is not taken,
an ex ist ing file may be over writ ten and its con tents lost. For ex am ple, to use the
tem plate file names PIC18F_Tem plate.asm in cre at ing a source file named
PIC18F_Test1.asm, pro ceed as fol lows:

1. Make sure that the Pro ject win dow is dis played by se lect ing the Pro ject com -
mand in the View menu.

2. Right-click the Source Files op tion in the Pro ject win dow and se lect the Add
Files...

3. Find the file PIC18F_Tem plate.asm di a log and click on the file name and then the
Open but ton. At this point, the se lected file ap pears in the Source Files box of the
Pro ject win dow.

4. Dou ble click the file name (PIC18F_Tem plate.asm) and MPLAB will open the Ed -
i tor Win dow with the file loaded.

5. Re name the tem plate file (PIC18F_Tem plate.asm) by se lect ing the Ed i tor win -
dow, then the Save As com mand in the MPLAB File menu. En ter the name un der
which the file is to be saved (PIC18F_Test1.asm in this walkthrough). Click on
the Save but ton.

6. At this point, the file is re named but not in serted in the Pro ject. Right-click the
Source Files op tion in the Pro ject win dow and se lect the Add Files... Click on the
PIC18F_Test1.asm file name and on the Open but ton. The file PIC18F_Test1.asm
now ap pears in the Source Files op tion of the Pro ject win dow.

7. Right-click on the PIC18F_Tem plate.asm file name in the Pro ject win dow and se -
lect the Re move com mand. This re moves the tem plate file from the pro ject.

In many cases the MPLAB en vi ron ment con tains du pli cate com mands that pro -
vide al ter na tive ways for achiev ing the same re sults, as is the case in the pre vi ous
walkthrough and in oth ers listed in this book. When there are sev eral ways to ob tain
the same re sult, we have tried to se lect the more in tu itive, sim pler, and faster one.

 Pro gram ming Tools and Soft ware 47

3.3.5 Build ing the Pro ject
Once all the op tions have been se lected, the in stal la tion checked, and the as sem bly
lan guage source file writ ten or im ported, the de vel op ment en vi ron ment can be made
to build the pro ject. Build ing con sists of call ing the as sem bler, the linker, and any
other sup port pro gram in or der to gen er ate the files shown in Fig ure 3.3 and any oth -
ers that may re sult from a par tic u lar pro ject or IDE con fig u ra tion. The build pro cess is
ini ti ated by se lect ing the <Build All> com mand in the Pro ject menu. Once the build ing
con cludes, a screen la beled Out put is dis played show ing the re sults of the build op er a -
tion. If the build suc ceeded, the last line of the Out put screen will show this re sult. Fig -
ure 3.6 shows the MPLAB pro gram screen af ter a suc cess ful build in the pre ced ing
walkthrough.

Fig ure 3-6 MPLAB pro gram screen show ing the Build All command result.

3.3.6 .hex File

The build pro cess re sults in sev eral files, de pend ing on the op tions se lected dur ing
pro ject def i ni tion. One of these files is the ex e cut able, which con tains the ma chine
codes, ad dresses, and other pa ram e ters that de fine the pro gram. This is the file that is
“blown” in the PIC. The lo ca tion of the .hex file de pends on the op tion se lected dur ing
pro ject cre ation (see Fig ure 3.5). The Di rec to ries tab of the Build Op tions for Pro ject
di a log box con tains a group la beled Build Di rec tory Pol icy, as shown in Fig ure 3.7.

48 Chap ter 3

Fig ure 3-7 The Di rec to ries Tab in Build Op tions for Pro ject.

The ra dio but tons in this group al low se lect ing two op tions:

1. As sem ble and com pile in the source-file di rec tory and link in the out put di rec -
tory.

2. As sem ble, com pile, and link in the pro ject di rec tory.

The out put di rec tory can be se lected by click ing the New but ton in the Di rec to -
ries and Search Path box, and then click ing the file name con tin u a tion but ton, la -
beled with el lip ses. The ex e cut able (.hex) file and all other files gen er ated by the
build pro cess will be placed ac cord ingly.

 Pro gram ming Tools and Soft ware 49

3.3.7 Quickbuild Op tion

While learn ing pro gram ming or dur ing pro to type de vel op ment, we some times need to
cre ate a sin gle ex e cut able file with out deal ing with the com plex ity of a full-fledged
pro ject. For these cases, MPLAB pro vides a Quickbuild op tion in the Pro ject menu.
The re sult ing .hex file can be used to blow a PIC in the con ven tional man ner and con -
tains all the nec es sary de bug ging in for ma tion. We have used the Quickbuild op tion for
most of the PIC18F as sem bly lan guage pro grams de vel oped in this book. The typ i cal
com mand se quence for us ing the Quickbuild op tion is as fol lows:

1. Make sure the cor rect PIC de vice is se lected by us ing the Con fig ure>Se lect De -
vice com mand.

2. Make sure the Quickbuild op tion is ac tive by se lect ing Pro ject>Set Ac tive Pro -
ject>None. This places the en vi ron ment in the Quickbuild mode.

3. Open an ex ist ing as sem bly lan guage file in the ed i tor win dow us ing the
File>Open com mand se quence. If cre at ing a new pro gram from scratch, use the
File>New com mand to open the ed i tor win dow and type in the as sem bly code.
Then use the File>Save op tion to save the file with the .asm ex ten sion. In ei ther
case the file must have the .asm ex ten sion.

4. Se lect Pro ject>Quickbuild file.asm to as sem ble your ap pli ca tion, where file.asm
is the name of your ac tive as sem bly file.

5. If the as sem bly pro ceeds with out er rors, the .hex file will be placed in the same di -
rec tory as the .asm source file.

3.4 MPLAB Sim u la tors and Debuggers

In the con text of MPLAB doc u men ta tion, the term “debugger” is re served for hard -
ware debuggers while the soft ware ver sions are called “sim u la tors.” Al though this
dis tinc tion is not al ways clear, we will abide by this ter mi nol ogy in or der to avoid con -
fu sion. The reader should note that there are MPLAB func tions in which the IDE con -
sid ers a sim u la tor as a debugger.

The MPLAB stan dard sim u la tor is called MPLAB SIM. SIM is part of the In te -
grated De vel op ment En vi ron ment and can be se lected at any time. The hard ware
debuggers cur rently of fered by Micro chip are ICD 2, ICE 2000, ICE 4000, and
MPLAB REAL ICE. In ad di tion, Micro chip of fers sev eral hard ware de vices that
serve si mul ta neously as a pro gram mer and a debugger. The ones com pat i ble with
the PIC18F fam ily are called PICKit2 and PICKit3.

A sim u la tor, as the term im plies, al lows du pli cat ing the ex e cu tion of a pro gram
one in struc tion at a time, and also view ing file reg is ters and sym bols de fined in the
code. Debuggers, on the other hand, al low ex e cut ing a pro gram one step at a time or
to a pre de fined break point while the PIC is in stalled in the tar get sys tem. This
makes pos si ble not only view ing the pro ces sor's in ter nals, but also the state of cir -
cuit com po nents in real-time.

50 Chap ter 3

The best choice for a debugger usu ally de pends on the com plex i ties and pur pose
of the pro gram un der de vel op ment. As debuggers get more so phis ti cated and pow -
er ful, their price and com plex ity in crease. In this sense, the pow er ful debugger that
may be suit able for a com mer cial pro ject may be over kill for de vel op ing sim ple ap -
pli ca tions or for learn ing pro gram ming. The soft ware debugger fur nished with
MPLAB (MPLAB Sim) is of ten suit able for all ex cept the most com plex and elab o -
rate cir cuits. In the sec tion that fol lows we pres ent an over view of MPLAB Sim.
Later in this chap ter we pres ent a brief over view of some pupolar hard ware
debuggers.

3.4.1 MPLAB SIM
Micro chip doc u men ta tion de scribes the SIM pro gram as a dis crete-event sim u la tor.
SIM is part of the MPLAB IDE and is se lected by click ing on the Se lect Tool com mand
in the Debugger menu. The com mand of fers sev eral op tions, one of them be ing
MPLAB SIM. Once the SIM pro gram is se lected, a spe cial de bug toolbar is dis played.
The toolbar and its func tions is shown in Fig ure 3.8.

Fig ure 3.8 SIM toolbar.

In or der for the sim u la tor to work the pro gram must first be suc cess fully built.
The most com monly used sim u la tor meth ods are sin gle-step ping though the code
and break points. A break point is a la beled lo ca tion at a pro gram line at which the
sim u la tor will stop and wait for user ac tions.

Us ing Break points

Break points pro vide a way of in spect ing pro gram re sults at a par tic u lar place in the
code. Sin gle-step ping is ex e cut ing the pro gram one in struc tion at a time. The three
step but tons are used in sin gle-step ping. The first one al lows break ing out of a sub rou -
tine or pro ce dure. The sec ond one is for by pass ing a pro ce dure or sub rou tine while in
step mode. The third one sin gle-steps into what ever line fol lows.

 Pro gram ming Tools and Soft ware 51

Breakpoint list
Reset
Step out (of subroutine)
Step over (subroutine)
Step into (subroutine)
Animate
Halt
Run (to breakpoint)

Break points are set by dou ble-click ing at the de sired line while us ing the ed i tor.
The same ac tion re moves an ex ist ing break point. Lines in which break points have
been placed are marked, on the left doc u ment mar gin, by a let ter “B” en closed in a
red cir cle. Right-click ing while the cur sor is on the pro gram ed i tor screen pro vides a
con text menu with sev eral sim u la tor-re lated com mands. These in clude com mands
to set and clear break points, to run to the cur sor, and to set the pro gram coun ter to
the code lo ca tion at the cur sor.

Watch Win dow

The View menu con tains sev eral com mands that pro vide use ful fea tures dur ing pro -
gram sim u la tion and de bug ging. These in clude com mands to pro gram mem ory, file
reg is ters, EEPROM, and spe cial func tion reg is ters. One com mand in par tic u lar, called
<Watch>, pro vides a way of in spect ing the con tents of FSRs and GPRs on the same
screen. The <Watch> com mand dis plays a pro gram win dow that con tains ref er ence to
all file reg is ters used by the pro gram. The user then se lects which reg is ters to view and
these are shown in the Watch win dow. The Watch win dow is shown in Fig ure 3.9.

Fig ure 3-9 Use of Watch win dow in MPLAB SIM.

The con tents of the var i ous reg is ters can be ob served in the Watch win dow when
the pro gram is in the sin gle-step or break point mode. Those that have changed since
the last step or break point are dis played in red (not seen in Fig ure 3.9). The user can
click on the cor re spond ing ar rows in the Watch win dow to dis play all the sym bols
or reg is ters. The <Add Sym bol> or <Add FSR> but ton is then used to dis play the se -
lected reg is ter. Four dif fer ent Watch win dows can be en abled, la beled Watch 1 to
Watch 4 at the bot tom of the screen in Fig ure 3.9.

Sim u la tor Trace

An other valu able tool avail able from the View menu is the one la beled <Sim u la tor
Trace>. The Sim u la tor Trace pro vides a way for re cord ing the step-by-step ex e cu tion
of the pro gram so it can be ex am ined in de tail. To make sure that the sys tem is set up
for sim u la tor trac ing,you can se lect the Degugger>Set tings>OSC/Trace com mand in
the Sim u la tor Trace op tion of the View menu. The de fault set tings for sim u la tor trac -
ing is shown in Fig ure 3.10.

52 Chap ter 3

Fig ure 3.10 De fault oscillator settings for Trace command.

To set up for trac ing, right-click on the white space of the ed i tor win dow and se -
lect Add Fil ter-in Trace or the Add Fil ter-out Trace by right-click ing the de sired op -
tion. In the Fil ter-In Trace mode you se lect the code that is traced, and there fore
dis played in the Trace win dow, by right-click ing on the ed i tor win dow and se lect ing
the Add Fil ter-in Trace op tion. You may also se lect a por tion of the pro gram code by
first high light ing the de sired code area. In the fil ter-out trace mode, you ex clude
text from trac3e by high light ing the text to be ex cluded be fore se lect ing the Add Fil -
ter-out Trace op tion. A sec tion of the code des ig nated for trac ing can be re moved by
high light ing it and the se lect ing the Re move Fil ter Trace op tion. To re move the en -
tire code des ig nated for trac ing, you right-click and then se lect the Re move All Fil -
ter Traces op tion. Fig ure 3.11 is a screen snapshot of the Simulator Trace window.

 Fig ure 3.11 Sim u la tor Trace win dow snapshot.

 Pro gram ming Tools and Soft ware 53

3.4.2 MPLAB Stim u lus

Most microcontroller ap pli ca tions in ter act with hard ware de vices for in put or out put
op er a tions. For ex am ple, a sim ple pro gram or pro gram sec tion uses an LED to re port
the state (pressed or un-pressed) of a pushbutton switch. If this pro gram is be ing de -
bugged with a hard ware debugger, it is pos si ble to me chan i cally ac ti vate the
pushbutton switch in or der to test its op er a tion. When us ing a soft ware debugger,
there is no such thing as a pushbutton switch to press at ex e cu tion time. The MPLAB
Stim u lus fea ture pro vides a way of sim u lat ing hard ware in puts or changes in val ues in
reg is ters or mem ory while de bug ging with Sim.

The ac tion or change de tected by the soft ware can be one of the fol low ing:

1. A change in level or a pulse to an I/O pin of a port.

2. A change in the val ues in an SFR (Spe cial Func tion Reg is ter) or other data mem -
ory.

3. A spe cific in struc tion is reached or a cer tain time has passed in the sim u la tion.

4. A pre de fined con di tion is sat is fied.

Micro chip de fines two types of stim u lus:

1. Asyn chron ous: For ex am ple, a one-time change to the I/O pin or reg is ter is trig -
gered by a fir ing but ton on the stim u lus GUI within the MPLAB IDE.

2. Syn chro nous: For ex am ple, a pre de fined se ries of sig nal/data changes to an I/O
pin, SFR or GPR, such as a clock cy cle.

Stim u lus Di a log

Use the Stim u lus Di a log win dow to de fine the terms and con di tions in which an ex ter -
nal stim uli takes place. This di a log is used for cre at ing both asyn chron ous and syn -
chro nous stim u lus on a stim u lus work book. The work book is the in ter nal MPLAB file
where a set of stim u lus set tings are saved. Ad vanced us ers can ex port stim u lus work -
book set tings to an SCL file for later ac cess.

To cre ate a new work book, se lect the Stim u lus com mand in the Debugger menu,
then se lect New Work book. To open an ex ist ing work book to mod ify it or add new
en tries se lect the Open Work book op tion. For this com mand to work, a stim u lus
work book must have been pre vi ously cre ated and saved. The new stim u lus win dow
is shown in Fig ure 3.12.

The Asynch tab is used to en ter asyn chron ous, user-gen er ated stim u lus to the
work book. Stim u lus are en tered row-by-row. Usu ally, the Pin/SFR col umn is first ac -
ti vated and a port, pin, or SFR se lected from the drop-down list. For ex am ple, a pro -
gram that uses a cir cuit in which a pushbutton switch is wired to port B, line 0, will
se lect RB0 from the list. Then the ac tion for that spe cific stim u lus must be se lected
in the Ac tion col umn. The choices are Set High, Set Low, Tog gle, Pulse High, and
Pulse Low. Once the Ac tion has been se lected, the Fire but ton dis plays a > sym bol
to in di cate that the action can be triggered.

54 Chap ter 3

Fig ure 3.12 A blank Stim u lus work book.

The Width and Units col umns are used to de fine the num ber of units and the unit
type for “Pulse” ac tions. The Units col umn al lows se lect ing in struc tion cy cles, nano -
sec onds, mi cro sec onds, mil li sec onds, and sec onds. In reg u lar stim u lus, the Com -
ments col umn is used to spec ify a com ment for the spe cific en try in the work book.

An sam ple de bug ging ses sion with MPLAB Sim is of fered in Ap pen dix B.

3.4.3 MPLAB Hard ware Debuggers

A more pow er ful and ver sa tile de bug ging tool is a hard ware or in-cir cuit debugger.
Hard ware debuggers al low trac ing, breakpointing, and sin gle-step ping through code
while the PIC is in stalled in the tar get cir cuit. The typ i cal in-cir cuit debugger re quires
sev eral hard ware com po nents, as shown in Fig ure 3.13.

Fig ure 3.13 Com po nents of a typ i cal hardware debugger.

 Pro gram ming Tools and Soft ware 55

Power cable

Emulator pod

Processor
module

Cable to
circuit

Adapter

Transition
socket

Logic
probe

connector

Communications cable

The em u la tor pod with power sup ply and com mu ni ca tions ca ble pro vides the ba sic
com mu ni ca tions and func tion al ity of the debugger. The com mu ni ca tions line be tween
the PC and the debugger can be an RS-232, a USB, or a par al lel port line. The pro ces sor
mod ule fits into a slot at the front of the pod mod ule. The pro ces sor is de vice spe cific
and pro vides these func tions to the debugger. A flex ca ble con nects the pro ces sor mod -
ule to an in ter change able de vice adapter that al lows con nect ing to the sev eral PICs
sup ported by the sys tem. The tran si tion socket al lows con nect ing the de vice adapter to
the tar get hard ware. A sep a rate socket al lows con nect ing logic probes to the debugger.

Micro chip pro vides two mod els of in-cir cuit hard ware debuggers, which they call In
Cir cuit Em u la tors, or ICEs. The ICE 2000 is de signed to work with most PICs of the
mid-range and lower se ries, while the ICE 4000 is for the PIC18x high-end fam ily of
PICs. Micro chip also fur nishes in-cir cuit debuggers des ig nated as ICD 2 and ICD 3. The
pur pose of these de vices is to pro vide sim i lar fea tures as their full-fledged in-cir cuit
em u la tors (ICE) at much re duced prices. How ever, a dis ad van tage of the ICD 2 and
ICD 3 sys tems is that they re quire the ex clu sive use of some hard ware and soft ware re -
sources in the tar get and that the sys tem be fully func tional. The ICEs, on the other
hand, pro vide mem ory and clock so that the pro ces sor can run code even if it is not
con nected to the ap pli ca tion board.

Some Micro chip in-cir cuit debuggers (such as ICD 2 and ICD 3 and their less-ex pen -
sive ver sions PICkit 2 and PICkit 3) also serve as in-cir cuit pro gram mers. With these de -
vices, the firm ware in the tar get sys tem can be pro grammed and re pro grammed
with out any other hard ware com po nents or con nec tions. For this rea son we dis cuss
the Micro chip in-cir cuit debuggers, pre vi ously men tioned, in the con text of de vel op -
ment pro gram mers later in this chap ter.

3.4.4 An Im pro vised Debugger

The func tion al ity of an ac tual hard ware debugger can some times be re placed with a lit tle
in ge nu ity and a few lines of code. Most PICs are equipped with EEPROM mem ory. Pro -
gram mers (cov ered in the fol low ing sec tion) have the abil ity to read all the data stored in
the PIC, in clud ing EEPROM. These two facts can be com bined in or der to ob tain runtime
in for ma tion with out re sort ing to the cost and com pli ca tions of a hard ware debugger. For
ex am ple, if a de fec tive ap pli ca tion is sus pected of not find ing the ex pected value in a PIC
port, the de vel oper can write a few lines of code to store the port value on an EEPROM
mem ory cell. An end less loop fol low ing this op er a tion makes sure that the stored value is
not changed. Now the PIC is in serted in the cir cuit and the ap pli ca tion ex e cuted. When
the end less loop is reached, the PIC is re moved from the cir cuit and placed back in the
pro gram mer. The value stored in EEPROM can now be in spected so as to de ter mine the
runtime state of the ma chine. In many cases, this sim ple trick al lows us to lo cate an oth er -
wise elu sive bug.

3.5 De vel op ment Pro gram mers
In the con text of microcontroller tech nol ogy, a pro gram mer is a de vice that al lows trans -
fer ring the pro gram onto the chip. This is usu ally called “burn ing” a PIC or, more com -
monly, “blow ing” a PIC. De vel op ment pro gram mers are used for con fig ur ing and test ing
an ap pli ca tion and for any other non-pro duc tion uses. Pro duc tion pro grammers are used
in man u fac tur ing. In the pres ent con text, we re fer to de vel op ment pro gram mers.

56 Chap ter 3

Most pro gram mers have three com po nents:

1. A soft ware pack age that runs on the PC.

2. A ca ble con nect ing the PC to the pro gram mer.

3. A hard ware pro gram ming de vice.

Doz ens of PIC de vel op ment pro gram mers are avail able on the Internet. The pro -
gram mer “cot tage in dus try” started when Micro chip re leased to the pub lic the pro -
gram ming spec i fi ca tions of the PIC with out re quir ing con tracts or a nondisclosure
agree ment. The com mer cial de vel op ment pro gram mers avail able on line range from
a “no parts” PIC pro gram mer that has been around since 1998, to so phis ti cated de -
vices cost ing hun dreds of dol lars and pro vid ing many ad di tional fea tures and re fine -
ments. Some PIC pro gram mers are de signed to in ter act with the MPLAB
de vel op ment en vi ron ment while oth ers are stand-alone gad gets. For the av er age
PIC user, a nice USB pro gram mer with a ZIF socket and the re quired soft ware can
be pur chased for about $50.00. Build-it-your self ver sions are also avail able for
about half this amount. Fig ure 3.14 shows the hard ware com po nents of a USB PIC
pro gram mer from Ett Cor po ra tion.

Fig ure 3.14 ET-PGM PIC pro gram mer.

An in ter est ing fea ture of the Ett pro gram mer in Fig ure 3.14 is its com pat i bil ity
with the PICkit 2 and PICkit 3 pack ages from Micro chip.

 Pro gram ming Tools and Soft ware 57

3.5.1 Micro chip PICkit 2 and PICkit 3
The PICkit 2 and PICkit 3 pack ages from Micro chip are low-cost debuggers that also
serve as de vel op ment pro gram mers. They are com pat i ble with the fol low ing de vice
fam i lies:

1. Base line de vices such as PIC10FXX, PIC12FXX, and PIC16FXX

2. Midrange de vices such as PIC12FXXX, PIC16FXXX, and PIC16HVXXX

3. PIC18F, PIC18F_J_, and PIC18F_K_ de vices

4. PIC24 de vices

5. dsPIC33 de vices

The PICkit 2/3 de vices al low de bug ging and pro gram ming of PIC and dsPIC
microcontrollers us ing the MPLAB graph i cal user in ter face. The PICkit 2/3 pro gram -
mers are con nected to a PC via a USB in ter face, and to the tar get cir cuit via a Micro -
chip de bug (RJ-11) con nec tor. Fig ure 3.15 shows the PICkit 2 pro gram mer.

Fig ure 3.15 PICkit 2 programmer from Micro chip.

The con nec tor uses two de vice I/O pins and the re set line to im ple ment in-cir cuit
de bug ging and In-Cir cuit Se rial Pro gram ming.

The fol low ing fea tures are claimed for the PICkit 3 de vice:

• Full-speed USB at 12 Mbits/s

• Real-time ex e cu tion

• MPLAB IDE com pat i ble

• Built-in overvoltage/short cir cuit mon i tor

• Firm ware upgradeable from PC/Web down load

• Fully en closed

• Sup ports low volt age to 2.0 volts (2.0V to 6.0V range)

58 Chap ter 3

• Di ag nos tic LEDs (power, busy, er ror)

• Read/write pro gram and data mem ory of microcontroller

• Erase pro gram mem ory space with ver i fi ca tion

• Freeze pe riph er als at break point

The PICkit 2/3 in ter face ex e cutes when the debugger/pro gram mer is se lected.
The in ter face soft ware al lows the fol low ing op er a tions:

1. Se lect ing the pro ces sor fam ily

2. Read ing the hex file in the de vice

3. Check ing that the de vice is blank

4. Eras ing the de vice

5. Ver i fy ing the de vice

6. Writ ing hex code to the hard ware

7. Im port ing and ex port ing hex files

8. Read ing EEPROM Data in the de vice

9. En abling code and data pro tec tion

Fig ure 3.16 is a screen snap shot of the PICkit 2 pro gram mer ap pli ca tion.

Fig ure 3.16 PICkit 2 ap pli ca tion.

 Pro gram ming Tools and Soft ware 59

By de sign, the PICkit 2/3 pro gram mers re quire a di rect con nec tion to the tar get
sys tem via an RJ-11 tele phone con nec tor and ca ble. In the cir cuit, two lines from
the RJ-11 must be wired to the ap pro pri ate PIC pins. While in the de vel op ment pro -
cess, this re quire ment of ten be comes an in con ve nience be cause we must pro vide
the re quired hard ware in ev ery cir cuit. Some PIC pro gram mers (such as the ET
PGM PIC pro gram mer in Fig ure 3.14) al low blow ing a PIC di rectly by in sert ing it
into a socket pro vided in the pro gram mer hard ware. By also us ing a ZIF socket in
the tar get de vice, it is easy to re move the PIC, blow it in the pro gram mer, and then
re turn it to the tar get cir cuit for test ing. Nev er the less, it is a de vel oper's choice
whether to move the PIC from the pro gram mer to the tar get cir cuit or to use in cir -
cuit pro gram ming by wir ing the cir cuit board di rectly to the pro gram mer.

3.5.2 Micropro USB PIC Pro gram mer
An other pop u lar PIC pro gram mer is Model 3128 from Micropro. This de vice con nects
to the USB port and co mes equipped with a 40-pin ZIF socket, as shown in Fig ure 3.17.

Fig ure 3.17 USB PIC programmer by Micropro.

3.5.3 MPLAB ICD 2 and ICD 3 In-Cir cuit Debuggers/Pro gram mers

At a higher end than the PICkit 2 and PICkit 3 de vices, Micro chip pro vides the ICD 2
and its up grade ICD 3 in-cir cuit debuggers and pro gram mers. These prod ucts are fur -
nished in kits that in clude all the nec es sary com po nents, such as ca bles, PIC hard -
ware, power sup ply, and dem on stra tion board. Fig ure 3.18 shows the main mod ule of
the ICD 3 pack age.

60 Chap ter 3

Fig ure 3.18 Micro chip ICD 3 main mod ule.

Like all in-cir cuit debuggers/pro gram mers, the ICD 2 and ICD 3 de vices re quire
that the tar get cir cuit be con fig ured for in-cir cuit op er a tions. This means that the
PIC in the tar get cir cuit must sup port in-se rial op er a tions, and that the cir cuit it self
must con tain an RJ-11 fe male con nec tor wired to the pro ces sor's PGC, PGD, and
MCLR lines. This means that these pins can not be used as port pins for lines RB6
and RB7. Sev eral other hard ware re source on the PIC are re served for in-cir cuit op -
er a tions with ICD 2 and ICD 3 de vices, and some cir cuit de sign re stric tions must be
fol lowed.

3.6 Test Cir cuits and De vel op ment Boards
Microcontroller pro gram ming does not take place in a vac uum. In de vel op ing a PIC
ap pli ca tion that turns on an LED when a pushbutton switch is pressed, we would prob -
a bly want to test the code in a cir cuit that con tains all the hard ware. This in cludes the
PIC it self, the re quired sup port com po nents and wir ing to make the PIC op er ate, as
well an LED and a pushbutton switch con nected to the cor re spond ing PIC port lines.
This cir cuit can be con structed on a bread board, on a printed cir cuit board, or found
in a stan dard dem on stra tion board. Dem on stra tion boards can be pur chased com mer -
cially or de vel oped in-house. Lack ing a de vel op ment board, the other op tion is to
build the cir cuits one self, usu ally on a bread board or perf board, a time-con sum ing
but valu able ex pe ri ence.

3.6.1 Com mer cial De vel op ment Boards
A de vel op ment or dem on stra tion board is a cir cuit, typ i cally on a printed cir cuit
board. The board usu ally con tains an ar ray of con nected and connectable com po -
nents whose main pur pose is to serve as an ex per i men tal tool. Like pro gram mers, PIC
de vel op ment boards come in a wide range of prices and lev els of com plex ity. Most
boards tar get a spe cific set of PIC microcontroller fam i lies. Fig ure 3.19 shows the
LAB-X1 de vel op ment board.

 Pro gram ming Tools and Soft ware 61

Fig ure 3.19 LAB-X1 development board.

The LAX-X1 board as wel l as sev era l other mod e ls a re prod ucts o f
microEngineering Labs, Inc. Some of the sam ple pro grams de vel oped for this book
were tested on a LAB-X1 board. Sev eral de vel op ment boards are avail able from
Micro chip and other ven dors.

It is also pos si ble to de velop ex per i ment/demo boards in house to suit the par tic -
u lar hard ware op tions un der de vel op ment or for learn ing pur poses. The ad van tage
of these cus tom boards is that they serve to test, not only the soft ware, but also the
cir cuit de sign. Fig ure 3.20 shows a demo board de vel oped to test the PIC 18F452
microcontroller as well as many of the hard ware el e ments cov ered in the text.

 Fig ure 3.20 Cus tom demo board for the PIC 18F452.

62 Chap ter 3

Ap pen dix C con tains cir cuit di a grams and PCB files for read ers who may wish to
re pro duce this board. No tice that we have glued a pa per strip to the microcontroller
so as to make vis i ble some min i mal in for ma tion re gard ing the pin func tions. We
have found this method par tic u larly use ful in de vel op ing bread board cir cuits, dis -
cussed later in this chap ter.

3.6.2 Cir cuit Pro to type

A microcontroller is a cir cuit el e ment that, by it self, serves no use ful pur pose. In our
pre vi ous ti tles (Microcontroller Pro gram ming the Micro chip PIC and Em bed ded
Sys tem Cir cuits and Pro gram ming), we de vote con sid er able at ten tion to cir cuit
com po nents and their in te gra tion into elec tronic de vices. Be cause of the greater com -
plex ity of the microcontrollers dis cussed, the pres ent book con cen trates on pro gram -
ming. How ever, be cause microcontrollers live in elec tronic cir cuits, it is im pos si ble to
com pletely ig nore the hard ware el e ment.

The de vel op ment of an elec tronic cir cuit typ i cally fol lows sev eral well-de fined
stages dur ing which the prod uct pro gresses through in creas ingly re fined phases.
This pro gres sion en sures that the fi nal prod uct meets all the de sign re quire ments
and per forms as ex pected. The de signer or the en gi neer can not be too care ful in
avoid ing man u fac tur ing er rors that later force the scrap ping of mul ti ple com po -
nents or, at best, forces costly or un sightly cir cuit re pairs. A com mon norm fol lowed
by elec tronic firms is not to pro ceed to fab ri ca tion un til a fin ished and un mod i fied
pro to type has been exhaustively tested and eval u ated. Even the text and la bels on
the cir cuit board should be checked for spell ing er rors and to make sure that the fi -
nal place ment of hard ware com po nents will not hide some im por tant in for ma tion
printed on its sur face. The pos si ble de fects and er rors in an elec tronic cir cuit in -
cludes the fol low ing types:

• In cor rect se lec tion of com po nents

• De fec tive prod uct de sign or com po nent place ment

• De fec tive microcontroller pro gram ming

• De fects in wir ing and con nec tiv ity

The meth od ol ogy that uses a cy clic pro cess of prototyping, test ing, an a lyz ing,
and re fin ing a prod uct is known as it er a tive de sign. The prac ti cal ity of it er a tive de -
sign re sults from the as sump tion that changes to a prod uct are eas ier and less ex -
pen sive to im ple ment dur ing the early stages of the de vel op ment cy cle. The it er a tive
de sign model, also called the spi ral model, can be de scribed by the fol low ing steps:

1. The cir cuit is de signed on pa per, usu ally with the sup port of soft ware, as pre vi -
ously de scribed.

2. The pa per cir cuit is checked and eval u ated by ex perts other than the de signer or
de sign ers.

3. A prim i tive hard ware pro to type is de vel oped and tested. Breadboarding and
wire-wrap ping are the most com mon tech nol o gies used for this first-level pro to -
type.

 Pro gram ming Tools and Soft ware 63

4. The breadboarded or wire-wrapped pro to type is tested and eval u ated. If changes
to de sign are re quired, the de vel op ment pro cess re starts at Step 1.

5. A sec ond-level pro to type is de vel oped, usu ally by means of printed cir cuit
boards. This PCB pro to type is eval u ated and tested. If major mod i fi ca tions are
re quired, the de vel op ment pro cess is re started at Step 1.

6. A fi nal, third-level, pro to type is de vel oped us ing the same tech nol ogy and num -
ber of sig nal lay ers as will be used in the fi nal prod uct. If mod i fi ca tions and
changes are de tected dur ing fi nal test ing, the de vel op ment pro cess is re started at
Steps 1, 3, or 5 ac cord ing to the na ture of the de fect that must be rem e died.

7. If the fi nal pro to type passes all tests and eval u a tions, a short pro duc tion run is or -
dered. This short run al lows find ing prob lems in the man u fac tur ing stage that
can some times be rem e died by mak ing mod i fi ca tions to the orig i nal de sign or by
chang ing the se lected com po nent or com po nents.

The pre ced ing steps as sume a very con ven tional cir cuit and a sim ple and lim ited
de vel op ment pro cess. The mass pro duc tion of elec tronic com po nents must con -
sider many other factors.

 3.6.3 Bread board
One of the most use ful tools for the ex per i menter and de vel oper of em bed ded sys tems
is a bread board. The name orig i nated in the early days of ra dio am a teurs who would
use a wooden board (some times an ac tual bread board) with in serted nails or thumb -
tacks to test the wir ing and com po nents of an ex per i men tal cir cuit. The mod ern
bread board is usu ally called a solderless bread board be cause com po nents and wires
can be con nected to each other with out sol der ing them. The term “plugboard” is also
oc ca sion ally used. Fig ure 3.21 shows a pop u lated bread board for a mo tor driver cir -
cuit.

 Fig ure 3.21 Bread board with a motor driver circuit.

64 Chap ter 3

The main com po nent of a mod ern solderless bread board is a plas tic block with
per fo ra tions that con tact in ter nal, tin-plated, spring clips. These clips pro vide the
con tact points. The spac ing be tween holes is usu ally 0.1 inches, which is the stan -
dard spac ing for pins in many nonminiaturized elec tronic com po nents and in ICs in
dual inline (DIP) pack ages. Ca pac i tors, switches, re sis tors, and inductors can be in -
serted in the board by cut ting or bend ing their con tact wires. Most boards are rated
for 1 amp at 5 volts. Solderless bread boards come in dif fer ent sizes and de signs. The
one in Fig ure 3.22 has the plas tic in ter con nec tion com po nent mounted on a metal
base and in cludes fe male ba nana plug ter mi nals suit able for pro vid ing power to the
board. Sim pler boards con sist of a per fo rated plas tic block with the cor re spond ing
spring clips un der the per fo ra tions. These can some times serve as mod ules that can
be at tached to each other in or der to ac com mo date a more com plex cir cuit.

On the other hand, more so phis ti cated de vices, some times called dig i tal lab o ra to -
ries, in clude with the bread board sev eral cir cuits for pro vid ing power in dif fer ent
in ten si ties as well as sig nals with the cor re spond ing ad just ers and se lec tors, as well
as switches of sev eral types. Fig ure 3-22 shows the IDL_800 Digital Lab.

Fig ure 3.22 IDL-800 Dig i tal Lab breadboard.

Lim i ta tions of Bread boards

Al though bread boards are valu able tools in prototyping the cir cuit, the de sign com -
mu nity is di vided re gard ing their value. One of the com mon prob lems with bread -
boards is faulty con tacts. The spring-loaded clips, de signed to pro vide con nec tion
be tween com po nents, of ten fail. This can lead the op er a tor to be lieve that there is
some thing wrong with the cir cuit, when it is just a faulty con tact. An other prob lem is
that wire-based con nec tors are of ten lon ger than nec es sary, which in tro duces elec tri -
cal prob lems that may not be re lated to the cir cuit it self. In some sen si tive cir cuits, the

 Pro gram ming Tools and Soft ware 65

rout ing re quired by the board hard ware may pro duce in ter fer ence or spu ri ous sig nals.
The cir cuit de vel oper must take all these lim i ta tions into ac count when test ing bread -
board cir cuits.

An other mayor lim i ta tion is that solderless bread board can not eas ily ac com mo -
date sur face-mount com po nents. Fur ther more, many other stan dard com po nents
are not man u fac tured to meet the 0.1 inch spac ing of a stan dard bread board and are
also dif fi cult to con nect. Some times the cir cuit de vel oper can build a break out
adapter as small as a PCB that in cludes one or more rows of 0.1 inch pins. The
board-in com pat i ble com po nent can then be sol dered to the adapter and the adapter
plugged into the board. But the need to sol der com po nents to the adapter ne gates
some of the ad van tages of the bread board. How ever, with com po nents that are
likely to be re used, the adapter may be a vi a ble op tion.

For ex am ple, a 6P6C male tele phone plug con nec tor, of ten used in in-cir cuit de -
bug ging and pro gram ming of PIC microcontroller, does not fit a stan dard bread -
board. In this case we can build a break out adapter such as the one shown in Fig ure
3.23.

Fig ure 3.23 Bread board adapter for 6P6C con nec tor

Breadboarding Tools and Tech niques

Sev eral off-the-shelf tools are avail able to fa cil i tate breadboarding and oth ers can be
made in-house. One of the most use ful ones is a set of jumper wires of dif fer ent lengths
and color. These jumper kits are usu ally fur nished in a plas tic or ga nizer. Lon ger, flex i -
ble con nec tors are also avail able and come in handy when wir ing large or com plex cir -
cuits.

Wir ing mis takes with microcontroller pins are easy to make in breadboarding in -
te grated cir cuit com po nents. In this case the op er a tor must fre quently look up the
cir cuit di a gram or the com po nent sche mat ics to de ter mine the ac tion on each IC
pin. One so lu tion is to use a draw ing pro gram to pro duce a la beled draw ing of the
com po nent's pinout. The draw ing is scaled to the same size as the com po nent and
then printed on pa per or card board. A cut out is then glued, pref er a bly with a
nonper ma nent ad he sive, to the top part of the IC so that each pin clearly shows a
logo that is rem i nis cent of its func tion. Fig ure 3.24 shows a por tion of a bread board
with a la beled IC used in de vel op ing a cir cuit de scribed later in this book.

66 Chap ter 3

Fig ure 3.24 La beled IC in a bread board.

No tice in Fig ure 3.24 that the PIC 18F452 microcontroller is in serted in a de vice
called a ZIF (zero in ser tion force) socket. When the ZIF socket han dle is lifted, the
IC can be eas ily re moved. ZIF sock ets are of ten used in pro to types and demo boards
so that the com po nent can be eas ily re placed or re pro grammed.

3.6.4 Wire Wrap ping

An other pop u lar tech nique used in the cre ation of pro to types and in di vid ual boards is
wire wrap ping. In wire-wrapped cir cuits, a square, gold-plated post is in serted in a
per fo rated board. A sil ver-plated wire is then wrapped seven turns around the post,
which re sults in twenty-eight con tact points. The sil ver- and the gold-plated sur faces
cold-weld, pro duc ing con nec tions that are more re li able than the ones on a printed
cir cuit board, es pe cially if the board is sub ject to vi bra tions and phys i cal stress. The
use of wire-wrapped boards is com mon in the de vel op ment of tele com mu ni ca tions
com po nents but solderless bread boards have re placed wire wrap ping in con ven tional
pro to type de vel op ment.

3.6.5 Perfboards

Thin sheets of iso lat ing ma te rial with holes at 0.1-inch spac ing are also used in pro to -
type de vel op ment and test ing and in cre at ing one-of-a-kind cir cuits. The holes in the
perfboard con tain round or square cop per pads on ei ther one or both sides of the
board. In the perfboard, each pad is elec tri cally in su lated. Boards with in ter con -
nected pads are some times called stripboards. Com po nents in clud ing ICs, sock ets,
re sis tors, ca pac i tors, con nec tors, and the like, are in serted into the perfboard holes
and sol dered or wire wrapped on the board's back side. Fig ure 3.25 shows a cir cuit on
a perfboard.

 Pro gram ming Tools and Soft ware 67

 Fig ure 3.25 Cir cuit on a perfboard.

In this sec tion we have omit ted men tion ing cir cuit prototyping meth ods and tech -
niques that have be come ob so lete, such as point-to-point wir ing and through-hole
con struc tion.

3.6.6 Printed Cir cuit Boards

The meth ods and tech niques de scribed so far, in clud ing bread boards, wirewrapping,
and perfboards, are used in de vel op ing and test ing the elec tron ics of the cir cuit it self.
Once the cir cuit pro to type has been tested and eval u ated, the next step is usu ally the
pro duc tion of a cir cuit board that can house the com po nents in a per ma nent man ner
and thus be comes a pro to type of the fi nal prod uct. This typ i cally re quires a printed
cir cuit board, or PCB, where the com po nents can be me chan i cally housed and elec tri -
cally con nected. The PCB is also called a printed wir ing board (PWB) or a printed cir -
cuit as sem bly (PCA). Very few com mer cially made elec tronic de vices do not con tain
at least one PCB.

The base of a con ven tional PCB is a nonconductive lam i nate made from an ep oxy
resin, with etched con duc tive cop per traces that pro vide path ways for sig nals and
power. PCBs can be pro duced eco nom i cally in large or small vol umes, and even in -
di vid u ally. Pro duc tion op er a tions on the PCB in clude etch ing, drill ing, rout ing, cre -
at ing sol der-re sis tant lay ers, screen print ing, and in stal la tion of com po nents. All
these op er a tions can be au to mated in a pro duc tion set ting or done by hand by the
hob by ist or when cre at ing a pro to type. PCB tech nol ogy has flour ished be cause the
fi nal prod uct is in ex pen sive and re li able. Stan dards re gard ing PCB de sign, as sem -
bly, and qual ity con trol are pub lished by IPC. Fig ure 3.26 shows two im ages of a
PCB.

68 Chap ter 3

Fig ure 3-26 PCB draw ing and populated board. (Im age from Wikimedia
 Com mons.)

The im age on the left-hand side of Fig ure 3.26 shows the PCB as it ap pears in the
de sign soft ware. In this ex am ple, the board is dou ble sided, al though the im age for
the re verse side is not shown in the il lus tra tion. The board shown on the right-hand
side of Fig ure 3.26 shows the fin ished prod uct, pop u lated with sur face-mount and
through-the-hole com po nents. Ap pen dix C de scribes, step-by--step, the cre ation of
a PCB.

 Pro gram ming Tools and Soft ware 69

Chap ter 4

As sem bly Lan guage Pro gram

4.1 As sem bly Lan guage Code
A pro gram in PIC as sem bly lan guage con sists of an ASCII text file that in cludes the fol -
low ing el e ments:

• Ma chine opcodes (with pos si ble operands) rep re sent ing the hard ware in struc -
tions that are part of the pro ces sor's in struc tion set, in clud ing the keywords, sym -
bols, and the math e mat i cal and log i cal op er a tors rec og nized by the as sem bler.

• As sem bler di rec tives (in clud ing macro di rec tives) in the form of keywords rec og -
nized by the as sem bler pro gram or by other com po nents of the de vel op ment soft -
ware.

• La bels in di cat ing a lo ca tion in the as sem bly lan guage code.

• Ref er ences to other files that can be loaded or in cluded at as sem bly time.

• Com ments in the form of text lines, or por tions of text lines, that are ig nored by
the as sem bler but that serve to ex plain, doc u ment, or ga nize, or em bel lish the
code.

Pro gram ming in any lan guage can be made eas ier by us ing pre-de vel oped and
pre-tested code frag ments or sub rou tines to per form com mon or fre quent op er a -
tions. The col lec tion of these frag ments, sam ple pro grams, and sub rou tines con sti -
tute a pro gram mer's eq uity. The better or ga nized, coded, and tested this per sonal
li brary is the eas ier it will be to de velop a new ap pli ca tion. In pro gram ming, re us -
abil ity fos ters pro duc tiv ity, as is the case in so many other fields. Pro gram mers who
fail to dis cover this sim ple truth do not last very long in the pro fes sion.

4.1.1 A Cod ing Tem plate

Of the many code sam ples in the pro gram mer's tool box, the first one usu ally needed is
a gen eral cod ing tem plate to start the pro gram. This cod ing tem plate will vary con sid -
er ably ac cord ing to the pro gram re quire ments and the pro gram mer's style. Fur ther -
more, com pa nies of ten pro vide stan dard cod ing tem plates that the em ployed

71

pro gram mers are re quired to use. In any case, us ing a code tem plate to start a pro -
gram ming pro ject is al ways a good idea. The fol low ing is a very sim ple cod ing tem -
plate for ap pli ca tions that use the PIC18F452:

; File name: PIC18F_Tem plate.asm
; Date: June 25, 2012
; Copy right 2012 by Julio Sanchez and Maria P. Can ton
; Pro ces sor: PIC 18F452
;
;===
; def i ni tion and in clude files
;===

pro ces sor 18F452 ; De fine pro ces sor
#in clude <p18F452.inc>

; ==
; con fig u ra tion bits
;===

config WDT = OFF
config OSC = HS
config LVP = OFF
config DEBUG = OFF
config PWRT = ON

;
; Turn off bank ing er ror mes sages

errorlevel -302
;
;==
; vari ables in PIC RAM
;==
; Ac cess RAM lo ca tions from 0x00 to 0x7F
;var1 equ 0x000 ; Sam ple vari able dec la ra tions
;var2 equ 0x002
;==
; pro gram
;==

org 0 ; start at ad dress
goto main

; Space for in ter rupt han dlers
;=============================
; in ter rupt vec tors
;=============================

org 0x08 ; High-pri or ity vec tor
retfie 0x01 ; Fast re turn
org 0x18 ; Low-pri or ity vec tor
retfie

;==
; main pro gram en try point
;==
main:
; Tem plate as sumes that pro gram uses data in the ac cess bank
; only. Ap pli ca tions that use other banks will re set the
; BSR bits and should erase these lines

movlb 0 ; Ac cess bank to BSR reg is ter
; Pro gram code
;

end ;END OF PROGRAM

72 Chap ter 4

Pro gram Header

Most pro gram ming tem plates be gin with a header that pro vides in for ma tion about the
pro ject, the au thor or au thors, the de vel op ment en vi ron ment, and a copy right no tice.
Pro fes sional head ers of ten ex tend over sev eral pages and may in clude a mini-man ual
on the pro gram, the pro ject's de vel op ment his tory, a list ing of all found and fixed bugs
and other de fects, and even cir cuit di a grams in ASCII graphics.

Pro gram En vi ron ment Di rec tives

Fre quently found, fol low ing the header, is a list ing of def i ni tion di rec tives for the pro -
ces sor and the #in clude di rec tive for the pro ces sor's in clude file. The pro ces sor di rec -
tive al lows de fin ing the CPU in code. In this case, if the pro ces sor se lected with the
MPLAB <Con fig ure><De vice> com mand does not match, it is su per seded by the code
line.

The in cluded file or files can be lo cated in the cur rent work ing di rec tory, in the
source file di rec tory, or in the MPASM ex e cut able di rec tory. The syn tax for the in -
clude state ment can be as fol lows:

#in clude in clude_file
#in clude "in clude_file"
#in clude <in clude_file>

The file de fined by the #in clude state ment is read in as source code and be comes
part of the pro gram. If the file name in cludes spaces, then the file name must be en -
closed in quotes or brack ets.

Con fig u ra tion Bits

It is con ve nient to set the con fig u ra tion bits us ing the config di rec tive rather than writ -
ing to the high mem ory area where the con fig u ra tion bits are stored. Ta ble 4.1 shows
the operands rec og nized by the config di rec tive on the PIC18FXX de vices.

Ta ble 4.1

18F452 Con fig u ra tion Op tions

 DIRECTIVE ACTION:

OSC = LP, XT, HS, RC
OSC = EC (OSC2 as Clock Out)
OSC = HSPLL (HS-PLL En abled)
OSC = RCIO (RC-OSC2 as RA6)
OSCS = Os cil la tor switch ON/OFF
PWRT = Power-on timer ON/OFF
BOR = Brown-out re set ON/OFF
BORV = 45, 42, 27, 25 (4.5 to 2.5V)
WDT = Watch dog timer ON/OFF
WDTPS = Watch dog postscaler 1, 2, 4, 8, 16,

32, 64, 128
CCP2MUX = CCP2 MUX ON/OFF
STVR = Stack over flow re set ON/OFF
LVP = Low-volt age ICSP ON/OFFOFF
DEBUG = Back ground debugger ON/OFF
CP0 = Code pro tec tion ON/OFF

 con tin ues

 As sem bly Lan guage Pro gram 73

Ta ble 4.1

18F452 Con fig u ra tion Op tions (con tin ued)

 DIRECTIVE ACTION:

CPx = Code pro tec tion block x = 1/2/3
ON/OFF

CPB = Boot block code pro tec tion ON/OFF
CPD = Data EEPROM code pro tec tion ON/OFF
WRTx = Write block x pro tec tion x = 1/2/3

ON/OFF
WRTx = Boot block x pro tec tion x = B/C/D

ON/OFF
EBTRx = Ta ble Read Pro tec tion x = 0/1/2/3

ON/OFF
EBTRB = Boot block ta ble read pro tec tion

ON/OFF

The tem plate file sets the os cil la tor, watch dog timer, low volt age pro tec tion, and
back ground debugger bits.

Er ror Mes sage Level Con trol

Er rors can not be dis abled but the errorlevel di rec tive can be used to con trol the types
of mes sages that are dis played or printed. The most com mon use of the errorlevel di -
rec tive is to sup press the dis play of bank ing er rors. In the tem plate code, this is ac -
com plished with the fol low ing state ment:

errorlevel -302

Vari ables and Con stants

The tem plate does not de clare vari ables or con stants but does con tain a mes sage area
that de fines two sam ple lo cal vari ables named var1 and var2 re spec tively. The 127
RAM lo ca tions from 0x00 to 0x7f (in ac cess RAM) are suf fi cient for many pro grams.
Be cause of the sim pler cod ing and faster ex e cu tion speed the ac cess RAM area should
be used pref er a bly for pro gram vari ables. The tem plate uses the equ di rec tive to as -
sign vari able names to ad dresses in RAM. Sev eral other ways of re serv ing mem ory and
us ing RAM for vari ables are ex plored later in this book.

Code Area and In ter rupts

The 18FXX2 PICs have mul ti ple in ter rupt sources: a high-pri or ity in ter rupt with a vec -
tor at 008H and a low-pri or ity in ter rupt with a vec tor at 018H, while the start-up and re -
set vec tor is at ad dress 00H. In or der to ac com mo date this struc ture, the tem plate file
pro vides a jump over the in ter rupt vec tors as well as a code lo ca tion for in ter rupt han -
dlers. The la bel “main” marks the en try point for non-in ter rupt pro gram code. The
tem plate con cludes with the end di rec tory, which is re quired to in di cate the end of a
build op er a tion.

4.1.2 Pro gram ming Style
The pro gram de vel oper's main chal lenge is writ ing code that per forms the task at
hand and that is both sim ple and el e gant. In the pres ent con text, this means writ ing a
PIC as sem bly lan guage pro gram that as sem bles with out er rors (usu ally af ter some

74 Chap ter 4

tin ker ing), that is un der stand able, and can be main tained by its au thor and by other
pro gram mers. How we at tempt to achieve these goals de fines our pro gram ming style.
The task is by no means triv ial, es pe cially when pro gram ming in a low-level lan guage.

Source File Com ments

One of the first re al iza tions of a be gin ning pro gram mer is how quickly one for gets the
rea son ing that went into our code. A few weeks, even a few hours, af ter we de vel oped
a rou tine that, at the time, ap peared ob vi ous, is now cryp tic and un de ci pher able and
the logic be hind it de fies our un der stand ing. The only so lu tion to this vol a til ity of pro -
gram logic is to write sim ple code and good pro gram com ments that ex plain, not only
the el e men tary, but also the more elab o rate trains of thoughts and ideas be hind our
code.

In PIC as sem bly lan guage, the com ment sym bol is the semi co lon (;). The pres -
ence of a semi co lon in di cates to the as sem bler that ev ery thing that fol lows, to the
end of the line, must be ig nored. Us ing com ments ju di ciously and with good taste is
the mark of the ex pert soft ware en gi neer. Pro grams with few or con fus ing com -
ments fall into the cat e gory of “spa ghetti code.” In the pro gram mer's lingo, “spa -
ghetti code” re fers to a cod ing style that can not be de ci phered or un der stood,
rem i nis cent of the en tan gle ment in a bowl of cooked spa ghetti. The worse of fense
that can be said about a per son's pro gram ming style is that he or she pro duces spa -
ghetti code.

How we use com ments to ex plain our code or even to dec o rate it is a mat ter of
per sonal pref er ence. How ever, there are cer tain com mon-sense rules that should al -
ways be con sid ered:

• Do not use pro gram com ments to ex plain the pro gram ming lan guage or re flect on
the ob vi ous.

• Ab stain from hu mor in com ments. Com edy has a place in the world but it is not in
soft ware. By the same to ken, stay away from vul gar ity, ra cial or sex ist re marks,
and any thing that could be of fen sive or em bar rass ing. You can never an tic i pate
who will read your code.

• Write short, clear, read able com ments that ex plain how the pro gram works.

• Dec o rate or em bel lish your code us ing com ments ac cord ing to your taste.

Clearly com mented bitmaps, ban ners, and many other code em bel lish ments do
not add to the qual ity and func tion al ity of the code. It is quite pos si ble to write very
so ber and func tional pro grams with out us ing these gim micks. The de ci sion of how
to com ment and how much to dec o rate our pro grams is one of style.

4.2 De fin ing Data El e ments
Most PIC pro grams re quire the use of gen eral-pur pose file reg is ters. These reg is ters
are al lo cated to mem ory ad dresses re served for this pur pose in the PIC ar chi tec ture.
Data mem ory struc ture was dis cussed in Sec tion 2.2.2 and can be seen in Fig ure 2.10.
Be cause the ar eas at these mem ory lo ca tions are al ready re served for use as GPRs, the
pro gram can ac cess the lo ca tion ei ther by cod ing the ad dress di rectly or by as sign ing
to that ad dress a sym bolic name.

 As sem bly Lan guage Pro gram 75

4.2.1 equ Di rec tive
The equ (equate) di rec tory as signs a vari able name to a lo ca tion in RAM mem ory. For
ex am ple:

Var1 equ 0x0c ; Name var1 is as signed to lo ca tion 0x0c

Ac tu ally the name (in this case var1) be comes an alias for the mem ory ad dress to
which it is linked. From that point on the pro gram ac cesses the same vari able if it
ref er ences var1 or ad dress 0x0c, as fol lows:

movf var1,w,A ; Con tents of var1 to w in ac cess RAM

or

movf 0x0c,w,A ; Same vari able to w

In ad di tion to the equ di rec tive, PIC as sem bly lan guage rec og nizes the C-like #de -
fine di rec tive, so the name as sig na tion could also have been done as follows:

#de fine var1 0x0c

In ad di tion, the set di rec tive is an al ter na tive to equ, with the dis tinc tion that ad -
dresses de fined with set can be changed later in the code.

4.2.2 cblock Di rec tive
An other way of de fin ing mem ory data is by us ing one of the data di rec tives avail able in
PIC as sem bly lan guage. Al though there are sev eral of these, per haps the most use ful is
the cblock di rec tive. The cblock di rec tive spec i fies an ad dress for the first item, and
other items listed are al lo cated con sec u tively by the as sem bler. The group ends with
the endc di rec tive. The fol low ing code frag ment shows the use of the cblock/endc di -
rec tives:

; Re serve 20 bytes for string buffer
cblock 0x20
strData
endc

; Re serve three bytes for ASCII dig its
cblock 0x34
asc100
asc10
asc1
endc

Ac tu ally, the cblock di rec tive de fines a group of con stants that are as signed con -
sec u tive ad dresses in RAM. In the pre vi ous code frag ment, the al lo ca tion of 20 bytes
for the buffer named strData is il lu sory be cause no mem ory is re served. The il lu sion
works be cause the sec ond cblock starts at ad dress 0x34, which is 20 bytes af ter
strData. The cod ing also as sumes that the pro gram mer will ab stain from al lo cat ing
other vari ables in the buffer space.

 Al though most of the time named vari ables are to be pre ferred to hard-coded ad -
dresses, there are times when we need to ac cess an in ter nal el e ment of some
multi-byte struc ture. In these cases, the hard-coded form could be more con ve nient.

76 Chap ter 4

4.2.3 Ac cess to Banked Mem ory
Hav ing to deal with mem ory banks is one of the ag gra va tions of PIC mid-range pro -
gram ming. The de sign ers of the PIC 18FXX2 de vices have sim pli fied bank ing by cre at -
ing an ac cess bank that is more con ve nient to use and pro vides faster ex e cu tion.

In the 18FXX2 PICs banks are des ig nated start ing with bank 0. All PICs of this
fam ily con tain ei ther three or six mem ory banks, as shown in Fig ure 2.10. In all de -
vices bank 0 is des ig nated as ac cess RAM and com prises 128 bytes of Gen eral Pur -
pose Reg is ters (range 0x00 to 0x7f) as well as 128 bytes of Spe cial Func tion
Reg is ters (range 0x80 to 0xff). This leaves mem ory for two ad di tional GPR banks in
the PIC 18F442/242 de vices and four ad di tional GPR banks in the PIC18F452/252 de -
vices.

We have men tioned that many ap pli ca tions re quire no more mem ory than the 128
bytes avail able in the GPR ac cess bank. In these cases, code will make sure that the
“a” bit in the in struc tion word is set to 0, as in the in struc tion

movf var1,w,0 ; Con tents of var1 to w in ac cess RAM.

Be cause the in clude file for the 18FXX2 pro ces sors de fines that the con stant A
(mne monic for ac cess) is equal to 0, we could have also coded:

movf var1,w,A

By the same to ken, bits 0 to 3 in the BSR reg is ter hold the up per 4 bits of the
12-bit RAM ad dress. The movlb in struc tion is pro vided so that a lit eral value can be
moved di rectly into the bank se lect reg is ter (BSR) bits; for ex am ple,

movlb 2 ; Se lect bank 2

At this point, any in struc tions that ac cess RAM with the A bit set to 1 will ref er -
ence data in bank 2; for ex am ple,

movwf 0x10,1 ; Move w to reg is ter at bank 2:0x10

Note that in struc tions that use the a bit to de fine bank ac cess de fault to a = 1,
that is, to us ing the BSR bits in com put ing the data ad dress. For this rea son, pro -
grams that only use the ac cess bank can pre vent er rors and shorten the cod ing by
set ting the BSR reg is ter to this bank, as fol lows:

movlb 0 ; Se lect ac cess bank

We have in cluded this line in the tem plate with the note that ap pli ca tions that use
other banks will even tu ally su per sede this state ment.

4.3 Nam ing Con ven tions
One of the style is sues that a pro gram mer must de cide re lates to the nam ing con ven -
tions fol lowed for pro gram la bels and vari able names. The MPLAB as sem bler is case
sen si tive by de fault; there fore MY_PORT and my_port re fer dif fer ent reg is ters.

4.3.1 Reg is ter and Bit Names
We have seen that a pro gram mer can de fine all the stan dard and pro gram-spe cific reg -
is ters (SFRs and GPRs) us ing equ or #de fine di rec tives. A safer ap proach is to im port

 As sem bly Lan guage Pro gram 77

an in clude file (.inc ex ten sion) fur nished in the MPALB pack age for each dif fer ent
PIC. The in clude files have the names of all SFRs and bits used by a par tic u lar de vice.
These in clude files can be found in the MPLAB/MPASM Suite di rec tory of the in stalled
MPLAB soft ware. The fol low ing is a seg ment of the P18F452.INC file.

;==
; Ver ify Pro ces sor
;==
 IFNDEF __18F452
 MESSG "Pro ces sor-header file mis match. Ver ify se lected
 pro ces sor."
 ENDIF

;==
; 18Fxxx Fam ily EQUates
;==
FSR0 EQU 0
FSR1 EQU 1
FSR2 EQU 2
FAST EQU 1
W EQU 0
A EQU 0
ACCESS EQU 0
BANKED EQU 1
;==
; 16Cxxx/17Cxxx Sub sti tu tions
;==
 #de fine DDRA TRISA ; PIC17Cxxx SFR sub sti tu tion
 #de fine DDRB TRISB ; PIC17Cxxx SFR sub sti tu tion
 #de fine DDRC TRISC ; PIC17Cxxx SFR sub sti tu tion
 #de fine DDRD TRISD ; PIC17Cxxx SFR sub sti tu tion
 #de fine DDRE TRISE ; PIC17Cxxx SFR sub sti tu tion
;==
;
; Reg is ter Def i ni tions
;
;==
;----- Reg is ter Files ---
TOSU EQU H'0FFF'
TOSH EQU H'0FFE'
TOSL EQU H'0FFD'
STKPTR EQU H'0FFC'
PCLATU EQU H'0FFB'
PCLATH EQU H'0FFA'
PCL EQU H'0FF9'
TBLPTRU EQU H'0FF8'
TBLPTRH EQU H'0FF7'
TBLPTRL EQU H'0FF6'
TABLAT EQU H'0FF5'
PRODH EQU H'0FF4'
PRODL EQU H'0FF3'

INTCON EQU H'0FF2'
INTCON1 EQU H'0FF2'
INTCON2 EQU H'0FF1'
INTCON3 EQU H'0FF0'

INDF0 EQU H'0FEF'
POSTINC0 EQU H'0FEE'

78 Chap ter 4

POSTDEC0 EQU H'0FED'
PREINC0 EQU H'0FEC'
PLUSW0 EQU H'0FEB'
FSR0H EQU H'0FEA'
FSR0L EQU H'0FE9'
WREG EQU H'0FE8'

INDF1 EQU H'0FE7'
POSTINC1 EQU H'0FE6'
POSTDEC1 EQU H'0FE5'
PREINC1 EQU H'0FE4'
PLUSW1 EQU H'0FE3'
FSR1H EQU H'0FE2'
FSR1L EQU H'0FE1'
BSR EQU H'0FE0'

INDF2 EQU H'0FDF'
POSTINC2 EQU H'0FDE'
POSTDEC2 EQU H'0FDD'
PREINC2 EQU H'0FDC'
PLUSW2 EQU H'0FDB'
FSR2H EQU H'0FDA'
FSR2L EQU H'0FD9'
STATUS EQU H'0FD8'

TMR0H EQU H'0FD7'
TMR0L EQU H'0FD6'
T0CON EQU H'0FD5'
.
.
.

No tice that all names in the in clude file are de fined in cap i tal let ters. It is prob a -
bly a good idea to ad here to this style in stead of cre at ing al ter nate names in lower-
case. The C-like #in clude di rec tive is used to re fer, the in clude files at as sem bly
time; for ex am ple, the tem plate file con tains the following line:

#in clude <p18f452.inc>

4.4 PIC 18Fxx2 In struc tion Set
The PIC18FXX2 in struc tion set added sev eral fea tures to pre ex ist ing mid-range in -
struc tions. Thirty six new in struc tions were added, sta tus bit op er a tion were
changed, some reg is ter bit lo ca tions and names were changed, and one in struc tion
(clrw) is no lon ger sup ported. The to tal of sev enty-six in struc tions is di vided as fol -
lows:

· 31 byte-ori ented in struc tions
· 5 bit-ori ented in struc tions
· 22 con trol in struc tions
· 10 lit eral op er a tions
· 8 data and pro gram mem ory op er a tions

Three in struc tions re quire two pro gram mem ory lo ca tions. The re main ing sev -
enty-three in struc tions are en coded in a sin gle mem ory word (16 bits). Each sin gle
word in struc tion con sists of a 16-bit word di vided into an OPCODE, which spec i fies
the in struc tion type and one or more OPERANDS, which fur ther spec ify the in struc -
tion.

 As sem bly Lan guage Pro gram 79

4.4.1 Byte-Ori ented In struc tions

Most byte-ori ented in struc tions have three operands:

• The file reg is ter (spec i fied by the 'f' descriptor)

• The des ti na tion of the re sult (spec i fied by the 'd' descriptor)

• The ac cessed mem ory (spec i fied by the 'a' descriptor)

The file reg is ter descriptor 'f de ter mines the file reg is ter to be used by the in -
struc tion. The des ti na tion descriptor 'd' spec i fies where the re sult of the op er a tion
is to be placed. If 'd' is zero, the re sult is placed in the WREG reg is ter. If 'd' is one,
the re sult is placed in the file reg is ter spec i fied in the in struc tion. The descriptor 'a'
de ter mines whether the op er and is in banked or ac cess mem ory. Zero rep re sents ac -
cess mem ory, and one is used for banked mem ory.

4.4.2 Bit-Ori ented In struc tions

Bit-ori ented in struc tions have three operands:

• The file reg is ter (spec i fied by the 'f' descriptor)

• The bit in the file reg is ter (spec i fied by the 'b' descriptor)

• The ac cessed mem ory (spec i fied by the 'a' descriptor)

The file reg is ter and ac cess mem ory descriptors are the same as for the byte-ori -
ented in struc tions. The bit field des ig na tor 'b' se lects the num ber of the bit af fected
by the op er a tion. Ta ble 4.2 lists the byte- and bit-ori ented in struc tions.

4.4.3 Lit eral In struc tions

Lit eral in struc tions may use some of the fol low ing operands:

• A lit eral value to be loaded into a file reg is ter (spec i fied by 'k')

• The de sired FSR reg is ter to load the lit eral value into (spec i fied by 'f')

• No op er and re quired (spec i fied by '—')

Ta ble 4.3 lists the lit eral and data/pro gram mem ory op er a tions.

4.4.4 Con trol In struc tions

Con trol in struc tions may use some of the fol low ing operands:

• A pro gram mem ory ad dress (spec i fied by 'n')

• The mode of the Call or Re turn in struc tions (spec i fied by 's')

• The mode of the Ta ble Read and Ta ble Write in struc tions (spec i fied by 'm')

• No op er and re quired (spec i fied by '—')

80 Chap ter 4

Ta ble 4.2

PIC 18FXX2 Byte- and Bit-Ori ented In struc tions

All con trol in struc tions are a sin gle word, ex cept for three dou ble-word in struc -
tions. These three in struc tions are nec es sary so that all the re quired in for ma tion
can be in cluded in 32 bits. In the sec ond word, the 4-MSbs are 1's. If this sec ond
word is ex e cuted as an in struc tion (by it self), it will ex e cute as a NOP. Ta ble 4.4 lists
the con trol in struc tions.

 As sem bly Lan guage Pro gram 81

 Ta ble 4.3

 Lit eral and Data/Pro gram Mem ory Op er a tions

82 Chap ter 4

Ta ble 4.4

 Con trol Op er a tions

 As sem bly Lan guage Pro gram 83

Chap ter 5

PIC18 Pro gram ming in C Lan guage

5.1 C Com pil ers
The C pro gram ming lan guage was de vel oped at Bell Labs in the late 1960s and early
1970s by Den nis Ritchie. It was de signed to pro vide many of the fea tures of low-level
lan guages, thus be ing suit able for op er at ing sys tem and driver de vel op ment. Over the
years, C has be come the most widely used pro gram ming lan guage. Sev eral C com pil -
ers are avail able for PIC pro gram ming from Micro chip and from other ven dors.

The C com pil ers and ver sions of these com pil ers are spe cif i cally re lated to the
PIC fam i lies with which they are com pat i ble, as fol lows:

1. MPLAB C18 Com piler sup ports the PIC 18 MCUs.

2. MPLAB C30 Com piler sup ports PIC24 MCUs and dsPIC DSCs.

3. MPLAB C Com piler is spe cific for dsPIC DSCS

4. MPLAB C Com piler is spe cific for PIC24 MCUs.

5. MPLAB C Com piler is spe cific for PIC32 MCUs.

No tice that there is a C com piler that is com pat i ble with both PIC24 and dsPIC
de vices, while there are also spe cific com pil ers for ei ther the PIC24 and the dsPICs.
Also note that a com pany named HI-TECH has de vel oped a C com piler for the 10,
12, and 16 PICs in ad di tion to their PIC18 MCUs com piler.

5.1.1 C versus As sem bly Lan guage
An as sem bler pro gram per forms a one-to-one trans la tion of ma chine mne mon ics into
ma chine code. The C com piler, on the other hand, con verts the C lan guage in struc -
tions into groups of as sem bly lan guage state ments. In fact, a C com piler can be viewed
as an assembly lan guage ex pert sys tem becauses its im me di ate prod uct is an as sem -
bly lan guage file. This pro cess re sults in sev eral in ef fi cien cies:

85

1. C lan guage pro grams are larger and oc cupy more mem ory than the equiv a lent
ones in as sem bly lan guage.

2. C lan guage pro grams can never ex e cute faster than an equiv a lent one in as sem bly
lan guage and are usu ally quite slower.

3. The C lan guage does not have the full func tion al ity of the hard ware be cause it re -
quires func tions in li brar ies or the lan guage it self to im ple ment this func tion al ity.

On the other hand, the ad van tages of us ing a high-level lan guage such as C are
con ve nience, ease, and better per for mance in pro gram de vel op ment. By in su lat ing
the pro gram mer from the hard ware de tails, a high-level lan guage may make it eas ier
and faster to de velop an ap pli ca tion.

The de vel oper must be aware of these trade-offs when se lect ing a lan guage. How -
ever, the MPLAB C Com pil ers do al low writ ing pro grams that use both C and
assembly language. Mixed lan guage pro grams can be based on C lan guage ap pli ca -
tions that make use of mod ules con tain ing sub-rou tines writ ten in assembly lan -
guage, or assembly lan guage ap pli ca tions that ref er ence sub-rou tines writ ten in C.
In ad di tion, MPLAB C18 Com piler sup ports inline as sem bly code with some re stric -
tions. This al lows the pro gram mer to in clude as sem bly lan guage state ments and
code as part of a C lan guage ap pli ca tion.

5.1.2 MPLAB C18

MPLAB C18 C Com piler is a cross-com piler for the PC that is com pat i ble with the
Micro chip PIC18 fam ily of microcontrollers. The C18 com piler trans lates a text file in
C lan guage, and op tion ally other ob ject and li brary files pro vided at link time, into a
.hex file that can be ex e cuted by the tar geted PIC microcontroller. Ac cord ing to
Micro chip, the com piler can op ti mize code so that rou tines that were de vel oped to be
used with a spe cific C func tion can be eas ily ported to other C func tions.

Source code for the com piler is writ ten us ing stan dard ANSI C no ta tion. The
“build” pro cess em ployed by the com piler con sists of com pil ing source code frag -
ments into blocks, which are later linked with other blocks and placed into PIC18
mem ory. The com piler's “make” com mand makes the build pro cess more ef fi cient
by only in vok ing those por tions of the C source file that have changed since the last
build.

The two most im por tant as so ci ated tools of the MPLAB C18 com piler are the
linker and the as sem bler. The com piler and the as so ci ated tools can be in voked
from the com mand line from within the MPLAB IDE. In ei ther case, the re sult ing
.hex file can be used to blow a PIC and later ex e cute in the hard ware.

5.2 MPLAB C18 In stal la tion
The in stal la tion rou tine for MPLAB C18 fol lows the con ven tional steps, as fol lows:

1. A wel come screen is de ployed.

2. The user is prompted to ac cept the li cense agree ment.

3. A readme screen is dis played, which in cludes notes re gard ing com pat i bil ity, bug
fixes, and de vice sup port.

86 Chap ter 5

4. The user is prompted to ap prove or change the in stal la tion di rec tory.

5. The user is prompted to se lect pro gram com po nents or ap prove a stan dard se lec -
tion list.

6. Re quired and avail able disk space is dis played.

7. In stal la tion con cludes, pos si bly re quir ing a sys tem re start.

One im por tant pre req ui site of the C18 com piler in stal la tion is that the MPLAB
IDE has been pre vi ously in stalled in the sys tem. One of the rea sons for re quir ing
that MPLAB C18 in stal la tion be per formed last is that both pack ages in clude the
MPASM and MPLINK pro grams and the com piler must use the ones in cluded in its
own pack age. This is also the case with some MPLAB C18 linker scripts.

5.2.1 MPLAB Soft ware Com po nents

Dur ing in stal la tion, the pro gram prompts for the se lec tion of soft ware com po nents to
be in cluded. The fol low ing are of fered:

1. Executables for the com piler (MPASM) and the linker (MPLINK).

2. As sem bler files in clud ing the MPASM as sem bler and the header files for the de -
vices sup ported by MPLAB C18. These are in clude files with file names in the for -
mat: p18xxxx.inc.

3. Linker script files re quired by the MPLINK linker. There is one file for each sup -
ported PIC18 microcontroller. Each file pro vides a de fault mem ory con fig u ra -
tion for the pro ces sor and di rects the linker in the al lo ca tion of code and data in
the pro ces sor's mem ory.

4. Stan dard head ers for the stan dard C li brary and the pro ces sor-spe cific li brar ies.

5. Stan dard li brar ies con tain the stan dard C li brary, the pro ces sor-spe cific li brar ies
and the start-up mod ules.

6. Ex am ples and sam ple ap pli ca tions to as sist us ers in get ting started with the com -
piler pack age.

7. Li brary source code for the stan dard C li brary and the pro ces sor-spe cific li brar -
ies.

8. Pre pro cessor source code.

All these com po nents, ex cept the last one, are se lected by de fault dur ing the
com piler in stal la tion. In clu sion of the pre pro cessor source code re quires click ing
the box at tached to this item. Fig ure 5.1 is a screen snap shot of the com po nent se -
lec tion screen.

 PIC18 Pro gram ming in C Lan guage 87

Fig ure 5.1 MPLAB C18 component se lec tion screen.

5.2.2 Con fig u ra tion Op tions

The con fig u ra tion di a log box, dis played dur ing in stal la tion, pro vides checkboxes for
the fol low ing op tions:

1. Add MPLAB C18 to PATH en vi ron ment vari able. This op tion adds path of the
MPLAB C18 ex e cut able (mcc18.exe) and the MPLINK linker ex e cut able
(mplink.exe) to the be gin ning of the PATH en vi ron ment vari able. This al lows
MPLAB C18 and the MPLINK linker to be launched at the com mand prompt from
any di rec tory.

2. Add MPASM to PATH en vi ron ment vari able. Adds the path of the MPASM ex e cut -
able (mpasmwin.exe) to the be gin ning of the PATH en vi ron ment vari able. Do ing
this al lows the MPASM as sem bler to be launched at the com mand shell prompt
from any di rec tory.

3. Add header file path to MCC_INCLUDE en vi ron ment vari able. Adds the path of
the MPLAB C18 header file di rec tory to the be gin ning of the MCC_INCLUDE en -
vi ron ment vari able. MCC_INCLUDE is a list of semi co lon-de lim ited di rec to ries
that MPLAB C18 will search for a header file if it can not find the file in the di rec -
tory list spec i fied with the -I com mand-line op tion. Se lect ing this con fig u ra tion
op tion means it will not be nec es sary to use the -I com mand-line op tion when in -
clud ing a stan dard header file. If this vari able does not ex ist, it is cre ated.

4. Mod ify PATH and MCC_INCLUDE vari ables for all us ers. Se lect ing this con fig u -
ra tion will per form the mod i fi ca tions to these vari ables as spec i fied in the three
pre vi ous op tions for all us ers.

88 Chap ter 5

5. Up date MPLAB IDE to use this MPLAB C18. This op tion only ap pears if the
MPLAB IDE is in stalled. Se lect ing this op tion configures the MPLAB IDE to use
the newly in stalled MPLAB C18. This in cludes us ing the MPLAB C18 li brary di -
rec tory as the de fault li brary path for MPLAB C18 pro jects in the MPLAB IDE.

6. Up date MPLAB IDE to use this MPLINK linker. This op tion ap pears only if the
MPLAB IDE is in stalled. Se lect ing this op tion configures the MPLAB IDE to use
the newly in stalled MPLINK™ linker.

Fig ure 5.2 is a screen snap shot of the con fig u ra tion op tions screen.

Fig ure 5.2 MPLAB C18 con fig u ra tion op tions screen.

No tice that the last two con fig u ra tion op tions in the pre vi ous list do not ap pear in
the screen snap shot of Fig ure 5.2. This is be cause these op tions are only shown if
the cur rent user is logged on to a Win dows NT or Win dows 2000 com puter as an ad -
min is tra tor. This was not the case dur ing our sam ple in stal la tion.

5.2.3 Sys tem Re quire ments
Ac cord ing to Micro chip, the sys tem re quire ments for MPLAB C18 and the MPLAB IDE
are the fol low ing:

1. Intel Pentium class PC run ning Microsoft 32-bit Win dows op er at ing sys tem.

2. A min i mum of 250 MB hard disk space.

3. MPLAB IDE pre vi ously in stalled.

The de fault in stal la tion for MPLAB IDE may have pre set se lec tions. When in stall -
ing the IDE for use with MPLAB C18, there are some IDE com po nents that must be
se lected at a min i mum. These are

 PIC18 Pro gram ming in C Lan guage 89

MPLAB IDE De vice Sup port

8-bit MCUs

Micro chip Ap pli ca tions
MPLAB IDE

MPLAB SIM

MPASM Suite

The MPASM Suite is in stalled with MPLAB C18, so it does not need to be in stalled
with MPLAB IDE.

5.2.4 Ex e cu tion Flow
Flow of ex e cu tion re fers to the lan guage tools used dur ing com pi la tion and the files
that take part in this pro cess. The flow is shown in Fig ure 5.3.

 Fig ure 5.3 C18 com piler flow of ex e cu tion.

90 Chap ter 5

In the ex am ple of Fig ure 5.3, a pro gram is com posed of three files: two are C lan -
guage source files and one is in assembly lan guage. These three files are the in put
into the de vel op ment sys tem. The first stage con sists of gen er at ing the ob ject files.
The C com piler (MCC18) op er ates on the C lan guage sources, and the assembler
(MPASMWIN) on the as sem bly lan guage file. In the fol low ing stage the linker pro -
gram (MPLINK) re ceives as in put the ob ject files gen er ated by the As sem bler and
the C com piler, the li brary files pro duced by the Li brary Man ager ap pli ca tion
(MPLIB), and a linker script. With this in put, the Linker pro duces the ex e cut able file
(in .hex for mat) as well as sev eral sup port files in .cof (Com mon Ob ject File) and
.map for mats, which are used mostly in de bug ging.

5.3 C Com piler Pro ject

An MPLAB IDE pro ject is a group of re lated files as so ci ated with a par tic u lar ap pli ca -
tion and lan guage tool, such as MPLAB C18. Ev ery pro ject will have at least one source
file and one linker script. In ad di tion, a pro ject must also iden tify the tar get hard ware
and de fine reg is ter names and other iden ti fi ers. The header files that con tain this in -
for ma tion are typ i cally in cluded as source files and need not be added to the pro ject.

Dur ing the com pi la tion pro cess, the pro ject pro duces the fol low ing out put files:

• Ex e cut able code that can be loaded into the tar get microcontroller as firm ware.

• De bug ging files to help MPLAB IDE re late sym bols and func tion names from the
source files, with the ex e cut able code.

The sim plest ap pli ca tions con sist of a pro ject with a sin gle source file and one
linker script. This is the case in many of the sam ple pro grams de vel oped in this
book.

5.3.1 Cre at ing the Pro ject

An MPLAB pro ject is cre ated ei ther us ing the <Pro ject Wiz ard...> or the <New...> com -
mand in the Pro ject menu. The dialogs that fol low are iden ti cal in ei ther com mand;
how ever, us ing the <Pro ject Wiz ard...> com mand has the ad van tage of en sur ing that
all nec es sary subcommands are vis ited dur ing pro ject cre ation. The <Pro ject Wiz -
ard...> com mand pres ents the fol low ing dialogs:

1. Se lect hard ware de vice

2. Se lect a lan guage toolsuite

3. Cre ate the new pro ject

4. Add ex ist ing files to the pro ject

5. Dis play sum mary of cre ated pro ject

In the fol low ing sub-sec tions we con sider each of these pro ject cre ation dialogs
for a pro gram in C lan guage and tar get the 18f452 microcontroller.

 PIC18 Pro gram ming in C Lan guage 91

Se lect Hard ware De vice
Af ter the ini tial wel come screen, the MPLAB IDE pres ents Step One of the Pro ject
Wiz ard con sist ing of se lect ing a par tic u lar hard ware de vice for the pro ject. Fig ure
5.4 is a screen snap shot of the de vice se lec tion di a log of the pro ject cre ation wiz -
ard.

Fig ure 5.4 De vice selec tion di a log in pro ject wizard.

 Once the de vice has been se lected, the user presses the Next > but ton on the di a -
log screen.

Se lect the Lan guage Toolsuite

The sec ond step in the pro ject cre ation wiz ard con sists of se lect ing the lan guage to be
used in the pro ject. If the com piler was in stalled cor rectly, the di a log will show Micro -
chip C18 as the as the ac tive lan guage toolsuite. The toolsuite con tents win dow will
list the four pro grams re quired in pro ject de vel op ment; these are the As sem bler, the
Linker, the Com piler and the Li brar ian. Fig ure 5.5 is a screen snap shot of the lan guage
toolsuite se lec tion di a log.

If the language toolsuite se lec tion di a log does not match the one in Fig ure 5.5 it
will be nec es sary to make the nec es sary cor rec tions. If Micro chip C18 Toolsuite is
not se lected in the Ac tive Toolsuite win dow, you can ex pand the win dow and
choose it from the drop-down list. If the Micro chip C18 Toolsuite does not ap pear in
the drop-down win dow, then the com piler has not been in stalled cor rectly in the de -
vel op ment en vi ron ment. The four ex e cut ables re quired by the en vi ron ment should
be listed in the Toolsuite Con tents win dow. If one or more are miss ing, then the
com piler in stal la tion was not cor rect.

92 Chap ter 5

Fig ure 5.5 Lan guage toolsuite selec tion dialog in Pro ject Wiz ard.

The lo ca tion win dow of the di a log box shows the lo ca tion of each ex e cut able se -
lected in the Toolsuite Con tents win dow. The de fault lo ca tion for each of the
executables is as follows:

mpasmwin.exe at C:\MCC18\mpasm\mpasmwin.exe

mplink.exe at C:\MCC18\bin\mplink.exe

mcc18.exe at C:\MCC18\bin\mcc18.exe

mplib.exe at C:\MCC18\bin\mplib.exe

If the in stal la tion drive and di rec tory for the C18 Toolsuite were dif fer ent from
the de fault shown in Fig ure 5.5, then the paths to the executables would be dif fer -
ent. In this case, one can use the <Browse...> but ton to nav i gate to the cor rect path
and se lect it into the wiz ard win dow.

Cre ate a New Pro ject

The third step pro vided by the Pro ject Cre ation Wiz ard re lates to de fin ing the new pro -
ject. The di a log box also con tains a win dow for reconfiguring an ex ist ing pro ject that
is in ac tive dur ing nor mal new pro ject cre ation. The di a log box for the pro ject cre ation
step is shown in Fig ure 5.6.

 PIC18 Pro gram ming in C Lan guage 93

Fig ure 5.6 Pro ject creation dialog in the Pro ject Wiz ard

The di a log re quires that the path for the new pro ject be en tered on the in put line.
Al ter na tively, one can use the <Browse...> but ton to nav i gate through the file sys -
tem for the de sired lo ca tion. When us ing the <Browse...> op tion, the Save Pro ject
As di a log that fol lows con tains an in put box la beled that must be filled with the pro -
ject's name. Note that the Save Pro ject As di a log also per mits cre at ing a pro ject
folder at this time. Fig ure 5.7 is a screen snap shot of the Save Pro ject As di a log.

Fig ure 5.7 Save Pro ject As di a log in the Pro ject Wiz ard.

94 Chap ter 5

In the ex am ple in Fig ure 5.7, we used the <Cre ate New Folder> but ton in the in -
put box com mand line to cre ate a new pro ject folder, which we named Proj One.
Then we en tered the same name (Proj One) in the File Name in put box. Af ter click -
ing the Save but ton twice, we end up with a new pro ject Folder as well as a pro ject
file of the same name. As sign ing the same name to both the pro ject folder and the
pro ject file is of ten a con ve nient sim pli fi ca tion.

Add Files to the Pro ject

The fourth step in the Pro ject Cre ation Wiz ard al lows add ing one or more files to the
new pro ject. If the pro ject uses a tem plate file for the source code, it can be at tached
to the pro ject at this time. Al ter na tively, the source file or files can be added later.

In past ver sions of the MPLAB IDE, it was nec es sary to add a de vice-spe cific
linker script file to the pro ject. With the cur rent ver sion of MPLAB IDE, the linker
will find the ap pro pri ate file au to mat i cally. This means that add ing a linker script
dur ing pro ject cre ation only ap plies to the fol low ing cases:

1. Pro jects de vel oped with MPLAB IDE ver sions older than 8

2. Pro jects us ing the MPLAB As sem bler for PIC24 MCUs and dsPIC DSCs

3. Pro jects that re quire an ed ited linker script file

Also note that add ing a linker script file to the pro ject has no un de sir able ef fects;
so if in doubt, it is pref er a ble to add the script file. The Add Files di a log is shown in
Fig ure 5.8.

Fig ure 5.8 Add files dialog in the Pro ject Wiz ard.

 PIC18 Pro gram ming in C Lan guage 95

Once in the Add Files di a log, you can click on a file name to se lect that file. Al ter -
na tively, <Ctrl> + Click can be used to se lect more than one file. Click ing the
<Add>> > but ton dis plays the file name in the right-hand win dow pre ceded by a let -
ter icon. The let ter icon can be changed by click ing on it. The fol low ing file ad di tion
modes are avail able:

• [A] Auto – Al low MPLAB IDE to de ter mine whether the file's path should be rel a -
tive or ab so lute based upon the file's lo ca tion. If the pro ject di rec tory con tains the
file, the ref er ence is a rel a tive path. Oth er wise, the ref er ence is an ab so lute path.

• [U] User – Ref er ence the file with a rel a tive path. This is the pre ferred way to add
files cre ated spe cif i cally for a pro ject.

• [S] Sys tem – Ref er ence the file with an ab so lute path. There are cases when this
mode is use ful, but these paths of ten re quire cor rec tion when a pro ject is moved
from one sys tem to an other.

• [C] Copy – Copy a file to the pro ject di rec tory and add a rel a tive path to the cop ied
file. Op tion ally, edit the file name to re name the lo cal copy of the file. This mode
pro vides a con ve nient way to in cor po rate linker scripts and tem plate source files
into a pro ject with out in tro duc ing an ab so lute path.

It is pos si ble to use the Add Files di a log box to at tach a source tem plate file to
the pro ject with out over writ ing the tem plate or leav ing the de vel op ment en vi ron -
ment. The fol low ing steps are re quired:

1. Dou ble-click the tem plate file to open it in the MPLAB Ed i tor.

2. Se lect the Save As com mand from the MPLAB File Menu and en ter a new name
for the tem plate file. Make sure you have nav i gated to the de sired pro ject di rec -
tory.

3. Se lect the <Add Files to Pro ject> com mand in the Pro ject Menu. Se lect the newly
named file and click the <Open> but ton.

4. In the Pro ject Files dis play box, right-click on the file name of the orig i nal tem -
plate file and se lect Re move.

The files and struc ture of a pro ject can be seen in the MPLAB IDE Pro ject Win -
dow. The Pro ject Win dow is dis played by se lect ing the Pro ject com mand in the View
Menu. Once the Pro ject Win dow is dis played, dou ble-click ing on a source file name
ac ti vates the Ed i tor pro gram with the se lected file loaded. Fig ure 5.9 shows the
MPLAB Pro ject Win dow with a sin gle source file.

A file can be de leted from a pro ject by right-click ing the file name and then se -
lect ing the <Re move> com mand from the drop-down menu.

5.3.2 Se lect ing the Build Di rec tory

A com piler op er a tion con trol that is not of fered by the MPLAB Pro ject Wiz ard re fers to
the pro ject build op tions. Not set ting these op tions of ten has un ex pected re sults; for
ex am ple, the ex e cut able file that re sults from a suc cess ful build is placed in a folder
not ex pected by the user.

96 Chap ter 5

 Fig ure 5.9 MPLAB Pro ject Win dow.

The Build Op tions di a log is dis played by se lect ing <Build Op tions...> in the Pro -
ject Menu and then click ing on the Pro ject op tion. Of the var i ous tabs in the Build
Op tions For Pro ject di a log the most of ten re quired one is the tab la beled <Di rec to -
ries>, shown in Fig ure 5.10.

Fig ure 5.10 Build Op tions For Pro ject di a log.

 PIC18 Pro gram ming in C Lan guage 97

The Build Di rec tory Pol icy, on the lower part of the di a log screen, al lows se lect -
ing the des ti na tion of the files gen er ated dur ing as sem bly, com pi la tion, and link age.
If the lower ra dio but ton is se lected, then the out put is all placed in the Pro ject di -
rec tory. Oc ca sion ally we may wish to place all our executables in a sin gle di rec tory.
This can be ac com plished by click ing on the up per ra dio but ton la beled As sem -
ble/Com pile in source-file di rec tory, link in out put di rec tory.

To se lect or cre ate an out put di rec tory, make sure that Out put Di rec tory is se -
lected in the Show di rec to ries for: win dow. Then click the New but ton and the el lip -
ses on the large screen. At this time you can nav i gate to any ex ist ing di rec tory or
cre ate a new one by click ing the Make New Folder but ton. Once the out put di rec -
tory is de fined, all ex e cut able gen er ated by the linker will be placed in it.

5.4 A First Pro gram in C
In this sec tion and the sub-sec tions that fol low, we pres ent a C lan guage ver sion of the
LedPB_F18 pro gram de vel oped in Chap ter 4, Sec tion 4.5.2. This pre sen ta tion as sumes
some knowl edge of the C lan guage in the reader as im ple mented in the MPLAB C18
com piler and is fa mil iar with the MPLAB IDE. Ap pen dix A is a brief tu to rial on the lan -
guage to which the reader can re fer.

The pro gram's ver sion in C lan guage, called C_PBFlash_F18, mon i tors
pushbutton # 1 in DemoBoardA 18F452 (or equiv a lent cir cuit). These cir cuits were
dis cussed in Chap ter 4, Sec tion 4.5, and fol low ing.

• If the pushbutton is re leased, the four green LEDs wired to port C lines 0–3, are
flashed.

• If the pushbutton is held pressed, then the four red LEDs wired to port C lines 4–7
are flashed.

The source code list ing for the C_PBFlash_F18.c pro gram is as fol lows:

/* Pro ject name: C_PBFlash_F18
 Source files: C_PBFlash_F18.c
 Date: Au gust 17, 2012
 Copy right 2012 by Julio Sanchez and Maria P. Can ton
 Pro ces sor: PIC 18F452
 En vi ron ment: MPLAB IDE Ver sion 8.86

MPLAB C-18 Com piler

 TEST CIRCUIT: Demo Board 18F452 or cir cuit wired as
 fol lows:
 PORT PINS DIRECTION DEVICE
 C 0-3 Out put Green LEDs
 C 4-7 Out put Red LEDs

B 4 In put Pushbutton No.
 De scrip tion:
 A dem on stra tion pro gram to mon i tor pushbutton No. 1 in
 DemoBoard 18F452 (or equiv a lent cir cuit). If the pushbutton
 is re leased the four green LEDs wired to port C lines 0-3
 are flashed. If the pushbutton is held pressed then the
 our red LEDs wired to port C lines 4-7 are flashed.
*/
#in clude <p18f452.h>

98 Chap ter 5

#in clude <de lays.h>

#pragma config WDT = OFF
#pragma config OSC = HS
#pragma config LVP = OFF
#pragma config DEBUG = OFF

/* Func tion pro to types */
void FlashRED(void);
void FlashGREEN(void);

/**
 main pro gram
**/
void main(void)
{

// Initalize di rec tion reg is ters
TRISB = 0b00001000;// Port B, line 4, set for in put
TRISC = 0; // Port C set for out put
PORTC = 0; // Clear all port C lines

while(1)
{

// if(PORTBbits.RB4)
if(PORTB & 0b00010000) // Al ter na tive ex pres sion

FlashRED();
else

FlashGREEN();
}

}

/**
 lo cal func tions
***/
void FlashRED()
{

PORTC = 0x0f;
Delay1KTCYx(200);
PORTC = 0x00;
Delay1KTCYx(200);
re turn;

}
void FlashGREEN()
{

PORTC = 0xf0;
Delay1KTCYx(200);
PORTC = 0x00;
Delay1KTCYx(200);
re turn;

}

5.4.1 Source Code Anal y sis
The source code list ing be gins with a com mented header that re cords the pro gram's
name, files, au thors, data, de vel op ment en vi ron ments and soft ware, wir ing of the
dem on stra tion cir cuit, and de scribes the pro gram's op er a tion.

Fol low ing the header is a state ment line to in clude the pro ces sor's header file
(<p18f452.h>) and the header file for the de lays ry (<de lays.h>). Code is as fol lows:

 PIC18 Pro gram ming in C Lan guage 99

#in clude <p18f452.h>
#in clude <de lays.h>

Four #pragma config state ments are used to ini tial ize the con fig u ra tion bits listed
in Ta ble 4.1. The four con fig u ra tion bits re ferred by the pro gram turn off the watch -
dog timer, de fine a high-speed os cil la tor, turn off low-volt age pro tec tion, and turn
off the back ground debugger, as follows:

#pragma config WDT = OFF
#pragma config OSC = HS
#pragma config LVP = OFF
#pragma config DEBUG = OFF

The next group of pro gram lines are pro to types for the two lo cal func tions used
by the pro gram. By prototyping the func tions, we are able to list them af ter the
main() func tion. With out the pro to types, all lo cal func tions would have to be coded
be fore main(). Add ing aux il iary func tions af ter main() seems rea son able to many
pro gram mers. Code is as follows:

/* Func tion pro to types */
void FlashRED(void);
void FlashGREEN(void);

main() Func tion

In MPLAB C18, the main() func tion has void re turn type and void pa ram e ter list. In C
lan guage, the main() func tion de fines the pro gram's en try point; ex e cu tion starts
here. The first lines in main() are to ini tial ize the port di rec tions as re quired by the pro -
gram. Be cause the LEDs are wired to port C, its tris reg is ter (TRISC) is set for out put.
By the same to ken,be cause the pushbutton switch num ber 1 is wired to port B, line 4,
this line must be in i tial ized for in put. Code is as fol lows:

// Initalize di rec tion reg is ters
TRISB = 0b00001000;// Port B, line 4, set for in put
TRISC = 0; // Port C set for out put
PORTC = 0; // Clear all port C lines

No tice that we have taken ad van tage of a fea ture of MPLAB C18 that al lows de -
clar ing bi nary data us ing the 0b op er a tor.

In C lan guage we can cre ate an end less loop by de fin ing a con di tion that is al ways
true. Be cause in C true is equiv a lent to the nu meric value 1, we can code:

while(1)
{

if(PORTBbits.RB4)
FlashRED();

else
FlashGREEN();

}

100 Chap ter 5

This cod ing style pro vides a sim ple mech a nism for im ple ment ing a rou tine that
tests one or more in put de vices and pro ceeds ac cord ingly. Be cause pushbutton
switch num ber 1 is wired to port B line 4, code can test this bit to find out if the
pushbutton is in a re leased or pressed state. Test ing the state of a port bit is sim pli -
fied by the pres ence of mac ros in the C com piler that de fine the state of each in di -
vid ual bit in the port. The if state ment does this us ing the PORTBbits.RB4
ex pres sion. Al ter na tively, code can use a con ven tional C lan guage bitwise AND op -
er a tion on the port bits, as fol lows:

while(1)

{

if(PORTB & 0b00010000)

FlashRED();

else

FlashGREEN();

}

Lo cal Func tions

In ei ther case, the pre vi ous test de ter mines whether the pushbutton is pressed. If so,
then the red LEDs must be flashed. Oth er wise, the green LEDs must be flashed. The
flash ing is per formed by two sim ple pro ce dures called FlashRED() and
FlashGREEN(). The FlashRED() pro ce dure is coded as fol lows:

void FlashRED()

{

PORTC = 0x0f;

Delay1KTCYx(200);

PORTC = 0x00;

Delay1KTCYx(200);

re turn;

}

The FlashRED() func tion starts by turn ing off the four high-or der lines in Port C
and turn ing on the four low-or der lines. The hex a dec i mal op er and 0x0f sets the port
bits ac cord ingly.

The state ment that fol lows calls one of the de lay func tions in the de lays Gen eral
Soft ware Li brary. These de lay func tions (whoch are re vis ited in Chap ter 6) pro vide
a con ve nient mech a nism for im ple ment ing timed op er a tions in an em bed ded en vi -
ron ment. The de lay func tions are based on in struc tion cy cles and are, there fore, de -
pend ent on the pro ces sor's speed. The one used in the sam ple pro gram
(Delay1KTCYx()) de lays 1,000 ma chine cy cles for ev ery it er a tion. The num ber of
de sired it er a tions is en tered as a func tion ar gu ment in side the pa ren the sis. In this
case, 1,000 ma chine cy cles are re peated 200 times, which im ple ments a de lay of
200,000 ma chine cy cles. The func tion called FlashGREEN() pro ceeds in a sim i lar
man ner.

 PIC18 Pro gram ming in C Lan guage 101

Chap ter 6

C Lan guage in an Em bed ded En vi ron ment

6.1 MPLAB C18 Sys tem
The MPLAB C18 com piler was de signed to make it eas ier to de velop em bed ded ap pli -
ca tions that use the PIC microcontrollers of the PIC18XXXX fam ily. It uses the stan -
dard C lan guage as de fined in the ANSI stan dard X3.159-1989 with some
pro ces sor-spe cific ex ten sions and doc u mented de vi a tions in cases of con flict with ef -
fi cient sup port for the PICmicro MCUs. The com piler is doc u mented to sup port the
fol low ing fea tures:

• Com pat i ble with Micro chip's MPLAB IDE, al low ing source-level de bug ging with
sev eral MPLAB de bug ging tools and ap pli ca tions

• In te gra tion with the MPLAB IDE for easy-to-use pro ject man age ment and
source-level de bug ging

• Gen er a tion of relocatable ob ject mod ules for en hanced code re use

• Com pat i bil ity with ob ject mod ules gen er ated by the MPASM as sem bler, al low ing
com plete free dom in mix ing as sem bly and C pro gram ming in a sin gle pro ject

• Trans par ent read/write ac cess to ex ter nal mem ory

• Sup port for inline as sem bly

• Code gen er a tor en gine with multi-level op ti mi za tion

• Li brary sup port for PWM, SPI™, I2C™, UART, USART, string ma nip u la tion, and
math

• User-level con trol over data and code mem ory al lo ca tion

Re put edly, the MPLAC com piler makes de vel op ment of em bed ded sys tems ap pli -
ca tions eas ier and saves cod ing time. Ap pen dix A is a tu to rial on the fun da men tals
of C lan guage for those read ers who are new to C pro gram ming.

103

6.1.1 PIC18 Ex tended Mode
Some mem bers of the PIC18 fam ily pro vide sup port for an ad di tional mode of op er a -
tion some times re ferred to as the ex tended microcontroller mode. Ex tended mode in -
cludes mem ory han dling fa cil i ties that im prove com piler per for mance and changes to
the in struc tions set in the form of mod i fied op er a tion of some in struc tions and the ad -
di tion of eight new ones.

Not all PIC18 de vices sup port ex tended mode. The 18F452 which is the CPU cov -
ered in this book, does not sup port ex tended mode. In the de vices that do sup port
ex tended mode (such as the PIC 18F4620), the mode is con trolled by the cor re -
spond ing con fig u ra tion bit, as fol lows:

#pragma config XINST = ON [OFF]

CPUs that do not sup port ex tended mode gen er ate a com pile-time er ror on this
di rec tive. Us ing ex tended mode in MPLAB C18 also re quires check ing the ex tended
mode checkbox in the Pro j ec t>Bui ld Op t ions>Pro jec t and in the tab
MPASM/C17/C18 Suite. Be cause the CPU dis cussed in this book does not sup port
ex tended mode, the book con tains no other dis cus sion of this topic.

6.2 MPLAB C18 Li brar ies
A C lan guage li brary is a col lec tion of func tions usu ally in tended for a spe cific sub ject
area or pur pose, for ex am ple, a math li brary or a in put/out put li brary. A li brary is im -
ple mented as one or more files grouped for easy ref er ence and con ve nient link ing.
The MPLAB ap pli ca tions MPASM, MPLINK, and MPLIB pro vide sup port for cre at ing
and man ag ing li brar ies.

Af ter the in stal la tion of MPLAB C18, the li brary files (.lib ex ten sion) are lo cated
in the MCC18/lib di rec tory. These files can be linked to an ap pli ca tion di rectly. The
sources for these li brary files are found in the MCC18\src di rec tory. The sub di rec -
tory /tra di tional con tains the files for nonextended mode op er a tion and the di rec -
tory /ex tended con tains the files for ex tended mode. A third sub di rec tory named
/pmc_com mon con tains li brary sup port for power man age ment con trol func tions.
Brows ing through the li brary source files with the ex ten sions .c, .asm, and .h is a
source of valu able in for ma tion for the trained pro gram mer.

6.2.1 Start-Up Rou tines
The C18 com piler initializes a C ap pli ca tion by link ing-in a source file that con tains
what is usu ally called the start-up code. The source files (ex ten sion .c) for the start-up
code can be found in the di rec to ries MCC18/src/tradidional/startup and
MCC18/src/ex tended/startup. Which source is se lected de pends on the mode cho sen
for the ap pli ca tion. In pro grams that run in the 18F452 chip, only the nonextended
code is avail able.

Three dif fer ent source files are avail able for each mode. The ones in the tra di -
tional sub di rec tory are named c018.c, c018i.c, and c018iz.c The first one (c018.c)
gen er ates startup code that initializes the C lan guage stack and jumps to the ap pli -
ca tion's main() func tion. The sec ond one (c018i.c) also pro vides code to in i tial ized

104 Chap ter 6

data el e ments (idata). This is re quired if global or static vari ables are in i tial ized
when they are de fined. This sec ond file (c018i.c) is the start-up code gen er ated by
de fault by the linker scripts pro vided with MPLAB C18. The third one (c018iz.c)
initializes idata and ze ros vari ables that are not in i tial ized in their def i ni tions, as is
re quired for strict ANSI com pli ance.

You may ex plore the start-up code by se lect ing the MPLAB SIM debugger be fore
build ing your ap pli ca tion. This is ac com plished from the IDE Debugger menu by
click ing <Se lect Tool/MPLAB SIM>. When the pro gram is com piled, the ed i tor
screen will now con tain a tab for the start-up source used by the com piler (nor mally
c018i.c). The en try point of the start-up code will be dis played on the ed i tor screen,
as fol lows:

#pragma code _en try_scn=0x000000

void

_en try (void)

{

_asm goto _startup _endasm

}

#pragma code _startup_scn

void

_startup (void)

{

...

In Ap pen dix B we dis cuss the use of MPLAB SIM and show how you can step
through and in spect vari ables in the start-up rou tine. MPLAB C18 pro vides a batch
file named makestartup.bat that may be used to re build the start-up code and copy
the gen er ated ob ject files to the lib di rec tory.

6.2.2 On line Help for C18 and Li brar ies

The MPLAB C18 Com piler is fur nished with doc u men ta tion in pdf and HTML-for mat
files (.chm ex ten sion). Af ter com piler in stal la tion, the pdf files that doc u ment the lan -
guage and the li brar ies are found in the di rec tory MCC18\doc and the sub di rec tory
MCC18\doc\periph-lib. Ac cord ing to the Micro chip doc u men ta tion, the help files for
the C18 com piler and li brar ies should be ac ces si ble from within the IDE. Click ing
<Help/Top ics/Lan guage Tools> should dis play the names of all avail able help files, in -
clud ing the one for the C18 lan guage and the one for the C18 Li brar ies.

How ever, this is not al ways the case. Sev eral on line fo rums have re ported that
some ver sions of the IDE and the C18 com piler fail to in stall the help files cor rectly.
One ex pla na tion for this in stal la tion er ror is that the MPLAB IDE was in stalled af ter
the C18 com piler. An other ex pla na tion is that the user failed to check the boxes that
prompt for IDE up date dur ing com piler in stal la tion. Nev er the less, even when the
above-men tioned pre cau tions are taken, the help files are some times not in stalled
cor rectly.

 C Lan guage in an Em bed ded En vi ron ment 105

One pos si ble so lu tion is to edit the Win dows Reg is try and in sert a new ref er ence to
the miss ing doc u men ta tion and its lo ca tion in the sys tem. How ever, chang ing the Win -
dows Reg is try should only be done by very ex pe ri enced Win dows us ers be cause the op -
er a tion can be the cause of ma jor sys tem mal func tions.

A sim ple so lu tion, but not with out in con ve niences, is to open a browser win dow with
each of the re quired help files and keep these win dows on the desk top. In fact, some pro -
gram mers pre fer to use this method even for help files avail able from in side the IDE be -
cause it is eas ier and faster to ac cess the de sired in for ma tion if it is lo cated in a sep a rate
pro gram.

6.3 Pro ces sor-In de pend ent Li brar ies
MPLAB C18 fur nishes the stan dard C li brar ies by means of func tions that are sup ported by
all mem bers of the PIC18 ar chi tec ture. These func tions can be di vided into two groups:

• Func tions in Gen eral Soft ware Li brary

• Func tions in Math Li brar ies

The Gen eral Soft ware Li brary can be fur ther di vided into two groups of func tions: the
stan dard C li brary func tions and the de lay func tions. The source code for the first group
is found in the fol low ing di rec to ries:

• src\tra di tional\stdclib

• src\ex tended\stdclib

The source code for the de lay func tions is found in

• src\tra di tional\de lays

• src\ex tended\de lays

Here again the \tra di tional di rec to ries con tain the func tions for nonextended mode
op er a tion and the \ex tended di rec to ries con tain those for ex tended mode ex e cu tion.

6.3.1 Gen eral Soft ware Li brary

The func tions pro vided by the Gen eral Soft ware Li brar ies are clas si fied into the fol low ing
groups:

• Char ac ter Clas si fi ca tion Func tions

• Data Con ver sion Func tions

• Mem ory and String Ma nip u la tion Func tions

• De lay Func tions

• Re set Func tions

• Char ac ter Out put Func tions

In the sec tions that fol low we pres ent a list ing and a brief de scrip tion of the func tions
in the Gen eral Soft ware Li brary. The de tails of each of these con ver sion func tions can be
found in the MPLAB-C18-Li brar ies_59297f.pdf doc u ment avail able from the Micro chip
Website and in this book's soft ware re source.

106 Chap ter 6

Char ac ter Clas si fi ca tion Func tions

These are stan dard C lan guage li brary func tions de fined in the ANSI 1989 stan dard.
These func tions are listed and de scribed in Ta ble 6.1.

Ta ble 6.1

Char ac ter Clas si fi ca tion Fucntions

FUNCTION DESCRIPTION

isalm De ter mine if char ac ter is al pha nu meric.
isalpha De ter mine if char ac ter is al pha betic.
iscntrl De ter mine if char ac ter is a con trol char ac ter.
isdigit De ter mine if char ac ter is a dec i mal digit.
isgraph De ter mine if char ac ter is a graph i cal char ac ter.
islower De ter mine if char ac ter is a low er case al pha betic.
isprint De ter mine if char ac ter is print able.
ispunct De ter mine if char ac ter is a punc tu a tion char ac ter.
isspace De ter mine if char ac ter is white space.
isupper De ter mine if char ac ter is an up per case al pha betic.
isxdigit De ter mine if char ac ter is a hex a dec i mal digit.

Us ing any of these func tions re quires in clud ing the file ctype.h, as fol lows:

#in clude <ctype.h>

The ar gu ment passed to the func tions is an un signed char ac ter, and the re turn
type is a Boolean un signed char that is non-zero if the test is pos i tive and zero oth er -
wise. The fol low ing code frag ment shows call ing the isalpha function.

un signed char achar = 'A';
...
if(isalpha(achar))

The sam ple pro gram C_Char_Funcs.c in the book's soft ware re source calls eight
char ac ter clas si fi ca tion func tions on an un signed char ar gu ment and turns on an
LED on Port C if the test is pos i tive.

Data Con ver sion Func tions

The data con ver sion func tions are fa mil iar to C and C++ pro gram mers be cause they
are im ple mented in the stdlib stan dard C li brary. The im ple men ta tion of these func -
tions in MPLAB C18 is in con for mance with the re quire ments of the ANSI C 1989 stan -
dard. Ta ble 6.2 shows the data con ver sion func tions.

For ex am ple, the de scrip tion of the atob() func tion is as fol lows:

Func tion: Con vert a string to an 8-bit signed byte.
In clude: stdlib.h
Pro to type: signed char atob(const char * s);
Ar gu ments: s

Pointer to ASCII string to be con verted.
Re marks: This func tion con verts the ASCII string s into an 8-bit

signed byte (-128 to 127). The in put string must be in
base 10 (dec i mal ra dix) and can be gin with a char ac ter
in di cat ing sign ('+' or '-'). Over flow re sults are

 C Lan guage in an Em bed ded En vi ron ment 107

un de fined. This func tion is an MPLAB C18 ex ten sion to
the ANSI stan dard li brar ies.

Re turn Value: 8-bit signed byte for all strings in the range (-128 to
127).

File Name: atob.asm

Ta ble 6.2

Data Con ver sion Func tions

FUNCTION DESCRIPTION

atob String to an 8-bit signed byte.
atof String into a float ing point value.
atoi String to a 16-bit signed in te ger.
atol String into a long in te ger rep re sen ta tion.
btoa 8-bit signed byte to a string.
itoa 16-bit signed in te ger to a string.
ltoa Signed long in te ger to a string.
rand Gen er ate a pseudo-ran dom in te ger.
srand Set the pseudo-ran dom num ber seed.
tolower Char ac ter to a low er case al pha bet i cal ASCII char ac ter.
toupper Char ac ter to an up per case al pha bet i cal ASCII char ac ter.
ultoa Un signed long in te ger to a string.

Mem ory and String Ma nip u la tion Func tions

The func tions in this group cor re spond with those of the ANSI C string li brary as de -
fined by the 1989 stan dard, with some mi nor de vi a tions and ex ten sions. The func tions
are lo cated in the file string.h and the im ple men ta tion in the as so ci ated asm sources.
Ta ble 6.3 lists and de scribes the func tions in the li brary.

Ta ble 6.3

Mem ory and String Ma nip u la tion Func tions

 FUNCTION DESCRIPTION

memchr Search for a value in a spec i fied mem ory re gion.
memchrpgm

memcmp Com pare the con tents of two ar rays.
memcmppgm
memcmppgm2ram
memcmpram2pgm

memcpy Copy a buffer.
memcpypgm
memcpypgm2ram
memcpyram2pgm

memmove Copy a buffer. Source and des ti na tion may over lap.
memmovepgm
memmovepgm2ram
memmoveram2pgm

(con tinues)

108 Chap ter 6

Ta ble 6.3

Mem ory and String Ma nip u la tion Func tions (con tin ued)

 FUNCTION DESCRIPTION

memset Ini tial ize an ar ray with a sin gle re peated value.
memsetpgm

strcat Ap pend a copy of the source string to the end of the
strcatpgm des ti na tion string.
strcatpgm2ram
strcatram2pgm

strchr Lo cate the first oc cur rence of a value in a string.
strchrpgm

strcmp Com pare two strings.
strcmppgm
strcmppgm2ram
strcmpram2pgm

strcpy Copy a string from data or pro gram mem ory into data
strcpypgm mem ory.
strcpypgm2ram
strcpyram2pgm

strcspn Cal cu late the num ber of con sec u tive char ac ters at the
strcspnpgm be gin ning of a string that are not con tained in a set
strcspnpgmram of char ac ters.
strcspnrampgm

strlen De ter mine the length of a string.
strlenpgm

strlwr Con vert all up per case char ac ters in a string to
strlwrpgm low er case.

strncat Ap pend a spec i fied num ber of char ac ters from the
strncatpgm source string to the end of the des ti na tion string.
strncatpgm2ram
strncatram2pgm

strncmp Com pare two strings, up to a spec i fied num ber of
strncmppgm char ac ters.
strncmppgm2ram
strncmpram2pgm

strncpy Copy char ac ters from the source string into the
strncpypgm des ti na tion string, up to the spec i fied num ber of
strncpypgm2ram char ac ters.
strncpyram2pgm

strpbrk Search a string for the first oc cur rence of a
strpbrkpgm char ac ter from a set of char ac ters.
strpbrkpgmram
strpbrkrampgm

(con tin ues)

 C Lan guage in an Em bed ded En vi ron ment 109

Ta ble 6.3

Mem ory and String Ma nip u la tion Func tions (con tin ued)

 FUNCTION DESCRIPTION

strrchr Lo cate the last oc cur rence of a spec i fied char ac ter
strrchrpgm in a string.

strspn Cal cu late the num ber of con sec u tive char ac ters at the
strspnpgm be gin ning of a string that are con tained in a set of
strspnpgmram char ac ters.
strspnrampgm

strstr Lo cate the first oc cur rence of a string in side
strstrpgm an other string.
strstrpgmram
strstrrampgm

strtok Break a string into substrings or to kens, by
strtokpgm in sert ing null char ac ters in place of spec i fied
strtokpgmram de lim it ers.
strtokrampgm

strupr Con vert all low er case char ac ters in a string to
struprpgm up per case.

De lay Func tions

Very of ten microcontroller pro grams must in clude a time de lay, for ex am ple; to flash
an LED code must keep the port line high for a time pe riod and low for the fol low ing
time pe riod. The shorter the time de lay pe riod the faster the LED will flash. The 18F
PIC fam ily con tain so phis ti cated tim ers that can be used for this pur poses; in par tic u -
lar, the 18F452 has four timer mod ules la beled Timer0 to Timer3. These mod ules can
be pro grammed to im ple ment so phis ti cated and pow er ful tim ing op er a tions. Pro -
gram ming the timer mod ules is de scribed in Chap ter 9.

On the other hand, ap pli ca tions can pro duce a sim ple time de lay with out the
com pli ca tions of pro gram ming the timer mod ules by means of a do-noth ing scheme.
The NOP (no op er a tion) opcode serves this pur pose quite nicely be cause it de lays
one ma chine cy cle with out in tro duc ing any changes in the hard ware. The fol low ing
are code snip pets from a do-noth ing loop in the sam ple pro gram C_LEDs_Flash.c:

// DATA VARIABLES AND CONSTANTS
un signed int count;
#de fine MAX_COUNT 16000
...

while (count <= MAX_COUNT)
{

count++;
}

The ob jec tion to such a de lay loop is that it is dif fi cult to es ti mate the time de lay
that it will pro duce be cause it will de pend on the code gen er ated by the com piler.
This means that the pro gram mer would have to trial-and-er ror the value of the de lay

110 Chap ter 6

con stant to find a sat is fac tory de lay. The func tions in the C18 de lays li brary use mul -
ti ples of in struc tion cy cles to im ple ment the de lay pe riod. Once the pro ces sor op er -
at ing fre quency is known, the ac tual time de lay can be eas ily cal cu lated. Ta ble 6.4
lists the de lay func tions.

Ta ble 6.4

De lay Func tions

FUNCTION DESCRIPTION

Delay1TCY De lay one in struc tion cy cle.
Delay10TCYx De lay in mul ti ples of 10 in struc tion cy cles.
Delay100TCYx De lay in mul ti ples of 100 in struc tion cy cles.
Delay1KTCYx De lay in mul ti ples of 1,000 in struc tion cy cles.
Delay10KTCYx De lay in mul ti ples of 10,000 in struc tion cy cles.

Us ing the de lay func tion re quires in clud ing the file de lays.h in the pro gram. The
value of x in the name of the last four de lay func tions re fers to the rep e ti tion pa ram -
e ter passed to the func tion, for example:

Delay1KTCYx(200);

In this case 200 mul ti ples of 1,000 in struc tions (200,000 in struc tions) will be the
de lay that re sults from the func tion call. Once the in struc tion cy cle time is known,
cal cu lat ing a spe cific de lay is sim ple arith me tic. For ex am ple, to im ple ment a one-
sec ond de lay with a ma chine run ning at 10 MHz (10,000,000 cy cles per sec ond), we
would need to de lay 1,000,000 in struc tion cy cles, which re quires 1,000 calls to the
Delay1KTCYx() function.

Re set Func tions

The func tions in the re set li brary can be used by code to de ter mine the cause of a hard -
ware Re set or wake-up and to re con fig ure the pro ces sor sta tus fol low ing the Re set.
Ta ble 6.5 lists and de scribed the re set func tions.

Ta ble 6.5

Re set Func tions

FUNCTION DESCRIPTION

isBOR De ter mine if the cause of a Re set was the Brown-out
Re set cir cuit.

isLVD De ter mine if the cause of a Re set was a low-volt age
de tect con di tion.

isMCLR De ter mine if the cause of a Re set was the MCLR pin.
isPOR De tect a Power-on Re set con di tion.
isWDTTO De ter mine if the cause of a Re set was a Watch dog

Timer time-out.
isWDTWU De ter mine if the cause of a wake-up was the Watch dog

Timer.
isWU De tects if the microcontroller was just woken up from

Sleep from the MCLR pin or an in ter rupt.
StatusReset Set the POR and BOR bits.

 C Lan guage in an Em bed ded En vi ron ment 111

For pro grams to use any of the Re set func tions, they must in clude the re set.h
header file.

Char ac ter Out put Func tions

By de sign, the C lan guage is small and to keep it so, many of the in put and out put func -
tions that are part of other pro gram ming lan guages are not part of C. In stead, these
func tions are im ple mented in li brar ies that are linked-in by the com piler when ever
they are nec es sary. In C, the clas sic in put/out put li brary is named stdio.h, the name of
which orig i nates in stan dard in put and out put.

Al though the C lan guage stdio li brary in cludes func tions for both in put and out -
put, the C18 im ple men ta tion is lim ited to char ac ter out put op er a tions. The rea son
prob a bly re lates to how in put is ob tained di rectly from the hard ware in an em bed -
ded en vi ron ment, which typ i cally has no key board or mouse de vices. The char ac ter
in put func tions that are im ple mented in C18 are also of lim ited use ful ness be cause
mon i tors and print ers (for which these func tions were de signed) are not of ten part
of an em bed ded sys tem. It is not sur pris ing that sev eral ma jor books on em bed ded C
do not dis cuss the func tions in the C18 stdio li brary.

C lan guage in put/out put func tions are based on the no tion of a stream. A stream
may be a file, a ter mi nal, or any other phys i cal de vice. In C18, out put op er a tions are
based on the use of a des ti na tion stream, which can be a pe riph eral de vice, a mem -
ory buffer, or any other con sumer of data. The des ti na tion stream is de noted by a
pointer to an ob ject of type FILE. The MPLAB C18 com piler de fines two streams in
the stan dard li brary:

• _H_USER out put via the user-de fined out put func tion _user_putc

• _H_USART out put via the li brary out put func tion _usart_putc

Both streams are al ways open and do not re quire the use of func tions such as
fopen() and fclose(), as is the case in stan dard C. The global vari ables stdout and
stderr are de fined in stdio.h and have a de fault value of _H_USART. To change the
des ti na tion to _H_USER, you will code as fol lows:

stdout = _H_USER;

Ta ble 6.6 lists the char ac ter out put func tions in the C18 im ple men ta tion.

The pro gram named C_Printf_Demo.c in this book's soft ware pack age dem on -
strates the use of the printf() func tion and how its out put can be viewed us ing
MPLAB SIM. The fol low ing code frag ment from the pro gram C_Printf_Demo shows
the call to the fpring() func tion.

void main(void)
{

printf ("Hello, World\n");

while(1) {
Nop();
}

}

112 Chap ter 6

Ta ble 6.6

Char ac ter Out put Func tions

FUNCTION DESCRIPTION

fprintf For mat ted string out put to a stream.
fputs String out put to a stream.
printf For mat ted string out put to stdout.
putc Char ac ter out put to a stream
puts String out put to stdout.
sprintf For mat ted string out put to a data mem ory buffer.
vfprintf For mat ted string out put to a stream with the ar gu ments

for pro cess ing the for mat string sup plied via the printf
func tion.

vprintf For mat ted string out put to stdout with the ar gu ments for
pro cess ing the for mat string sup plied via the stdarg
fa cil ity.

vsprintf For mat ted string out put to a data mem ory buffer with the
ar gu ments for pro cess ing the for mat string sup plied via
the stdarg fa cil ity.

_usart_putc Sin gle char ac ter out put to the USART (USART1 for
de vices with more than one USART).

_user_putc Sin gle char ac ter out put in an ap pli ca tion-de fined man ner.

You can test the pro gram's out put func tion in the MPLAB IDE by load ing the
C_Prinff_Demo pro ject from the book's soft ware re source or cre ate your own pro -
ject with the code listed pre vi ously. In or der to pre pare the en vi ron ment, you must
first se lect <Debugger:Se lect Tool:MPLAB SIM>. Then <Debugger:Set tings...>. In
the di a log that fol lows, click on the Uart1 IO tab and then the De bug Op tions as
shown in Fig ure 6.1.

Fig ure 6.1 Screen snapshot of the Sim u la tor Set tings di a log.

 C Lan guage in an Em bed ded En vi ron ment 113

Fig ure 6.2 Se lect ing the memory and code mod els.

The next step is set ting the mem ory model to large code and small data. This is
done by se lect ing <Pro ject:Build Op tions:Pro ject> and then open ing the MPLAB
C18 win dow. In the Cat e go ries listbox, se lect Mem ory Model and Se lect the op tions
shown in Fig ure 6.2. At this point, the Out put win dow will in clude a tab la beled SIM
Uart1. To test the pro gram, you can now in sert a break point on the Nop() line in the
while() loop and run a sim u la tion. The SIM Uart1 tab in the Out put win dow will
show the “Hello, World” mes sage, as shown in Fig ure 6.3.

Fig ure 6.3 Pro gram out put in the SIM Uart1 win dow.

114 Chap ter 6

6.4 Pro ces sor-Spe cific Li brar ies
The pro ces sor-spe cific li brar ies that are part of MPLAB C18 con tain def i ni tions and
func tions that are com pat i ble with spe cific de vices of the PIC18 fam ily. The pro ces -
sor-spe cific li brar ies in clude all of the pe riph eral rou tines as well as the def i ni tions of
the Spe cial Func tion Reg is ter (SFR). The pe riph eral rou tines can be clas si fied into
two groups:

• Hard ware Pe riph eral Func tions

• Soft ware Pe riph eral Li brary

The Hard ware Pe riph eral Func tions pro vide sup port for spe cific hard ware com -
po nents of the de vice. The source code for these func tions is found in MPLAB C18
in stal la tion di rec tory (usu ally named MCC18) and in the sub di rec tories src\tra di -
tional\pmc and src\ex tended\pmc.

6.4.1 Hard ware Pe riph eral Li brary Func tions

The fol low ing pe riph er als are sup ported by MPLAB C18:

• A/D Con verter

• In put Cap ture

• i2C

• I/O Ports

• Microwire

• Pulse-Width Mod u la tion (PWM)

• SPI

• Timer

• USART

These func tions re fer to spe cific hard ware mod ules and spe cial func tion reg is ters in
the PIC microcontroller. The func tions al low en abling, con fig ur ing, chang ing the op -
er a tion mode, read ing from, writ ing to, and dis abling the spe cific de vice. For ex am -
ple, Ta ble 6.7 lists the func tions that re late to the Anolog-to-Dig i tal Con verter mod ule.

Ta ble 6.7

A/D Con verter Func tions

FUNCTION DESCRIPTION

BusyADC Is A/D con verter cur rently per form ing a con ver sion?
CloseADC Dis able the A/D con verter.
ConvertADC Start an A/D con ver sion.
OpenADC Con fig ure the A/D con verter.
ReadADC Read the re sults of an A/D con ver sion.
SetChanADC Se lect A/D chan nel to be used.

 C Lan guage in an Em bed ded En vi ron ment 115

The func tions in the Hard ware Pe riph er als Li brary are de scribed and ex plained
in the con text of the spe cific pro gram ming top ics in this book's chap ters.

6.4.2 Soft ware Pe riph er als Li brary Func tions
The Soft ware Pe riph er als Li brary con tains func tions that al low pro gram ming de vices
and com po nents fre quently found in PIC 18 cir cuits. The fol low ing de vices are sup -
ported:

• Ex ter nal LCD Func tions

• Ex ter nal CAN2510 Func tions

• Soft ware I2C Func tions

• Soft ware SPI Func tions

• Soft ware UART Func tions

Some of the func tions in the Soft ware Pe riph er als Li brary com ple ment those in
the Hard ware Pe riph er als Li brary, such as the I2C, SPI, and UART func tions. Other
func tions re fer to stand-alone de vices that are not part of the microcontroller hard -
ware, such as the LCD and CAN2510 func tions. The func tions in the Soft ware Pe -
riph er als Li brary are de scribed and ex plained in the con text of the spe cific
pro gram ming top ics in this book's chap ters.

6.4.3 Mac ros for Inline As sem bly
The pro ces sor-spe cific header file also de fines inline as sem bly mac ros that al low di -
rect en cod ing of fre quently used as sem bly lan guage in struc tions from C code. They
are pro vided as a con ve nience be cause any as sem bly lan guage opcode can be called
by inline as sem bly code.

For pro grams that use the 18F452 de vice, in or der to ac cess the inline as sem bly
in struc tions, the fol low ing header file ref er ence must be in cluded in the code:

#in clude <p18f452.h>)

Ta ble 6.8 lists the as sem bly lan guage in struc tion mac ros.

Ta ble 6.8

Mac ros for PICmicro MCU In struc tions

MACRO ACTION

Nop() Ex e cutes a no op er a tion (NOP)
ClrWdt() Clears the Watch dog Timer (CLRWDT)
Sleep() Ex e cutes a SLEEP in struc tion
Re set() Ex e cutes a de vice re set (RESET)
Rlcf Ro tates var to the left through the carry bit
Rlncf Ro tates var to the left with out go ing through the

carry bit
Rrcf Ro tates var to the right through the carry bit
Rrncf Ro tates var to the right with out go ing through the

carry bit
Swapf Swaps the up per and lower nib ble of var

116 Chap ter 6

The mac ros Rlcf(), RIncf(), Rrcf(), Rrncf(), and Swapf() have the fol low ing pro to -
type:

Macro (var, dest, ac cess)

In this case, var must be an 8-bit quan tity (i.e., char) and not lo cated on the stack.
dest is a switch that de ter mines where the re sult is stored. If dest = 0, the re sult is in
the W reg is ter; if dest = 1, the re sult is in var. If ac cess = 0, the ac cess bank will be
se lected, over rid ing the BSR value. If ac cess = 1, then the bank will be se lected as
per the BSR value.

6.4.4 Pro ces sor-Spe cific Header Files
The pro ces sor-spe cific header file is a C lan guage file that con tains ex ter nal dec la ra -
tions for the spe cial func tion reg is ters and es tab lishes struc tures and un ions that fa -
cil i tate ad dress ing hard ware de vices from C. For the 18F452 de vice, the header file is
called p18f452.h. For ex am ple, the fol low ing struc ture and un ions de fine the name
PORTA and var i ous la bel ing for the Port A bits. It is de clared as fol lows:

extern vol a tile near un signed char PORTA;
extern vol a tile near un ion {

struct {
un signed RA0:1;
un signed RA1:1;
un signed RA2:1;
un signed RA3:1;
un signed RA4:1;
un signed RA5:1;
un signed RA6:1;

} ;
struct {

un signed AN0:1;
un signed AN1:1;
un signed AN2:1;
un signed AN3:1;
un signed T0CKI:1;
un signed SS:1;
un signed OSC2:1;

} ;
struct {

un signed :2;
un signed VREFM:1;
un signed VREFP:1;
un signed :1;
un signed AN4:1;
un signed CLKOUT:1;

} ;
struct {

un signed :5;
un signed LVDIN:1;

} ;
} PORTAbits ;

The first state ment in the dec la ra tion spec i fies that PORTA is a byte (un signed
char). The extern mod i fier is re quired be cause the vari ables are de clared in the reg -
is ter def i ni tions file. The vol a tile mod i fier tells the com piler that PORTA may not re -

 C Lan guage in an Em bed ded En vi ron ment 117

tain the val ues as signed to it dur ing pro gram ex e cu tion. The near mod i fier spec i fies
that the port is lo cated in ac cess RAM. The dec la ra tion is fol lowed by a struc ture
with sev eral un ions that pro vide al ter na tive names for the Port A bits. For ex am ple,
bit num ber 3 can be ref er enced by code as:

PORTAbits.RA3

PORTAbits.AN3

PORTAbits.VREFM:1

Some of the bit fields are pad ded in the third and fourth struc tures be cause they
are not de fined in that con text. The Inline As sem bly mac ros dis cussed in Sec tion
6.4.3 are also lo cated in the p18f452.h header file. Many other struc ture/un ion def i -
ni tions are found in the pro ces sor-spe cific header files.

6.5 Math Li brar ies

The math e mat i cal op er a tions di rectly sup ported by the PIC18 de vices are lim ited to
ad di tion, sub trac tion, and mul ti pli ca tion of small in te gers. In te ger di vi sion must be
pro vided in soft ware, and there is no sup port for float ing-point num bers and op er a -
tions. The as sem bly lan guage pro gram mer that needs to deal with nu mer i cal cal cu la -
tions has in deed a chore in im ple ment ing float ing-point math e mat ics in soft ware.
For tu nately, the C18 pack age in cludes a math e mat i cal li brary (math.h) with the fol -
low ing sup port:

• 32-Bit Float ing-Point Math

• The C Stan dard Li brary Math Func tions

This means that de vel op ing PIC18 ap pli ca tions that re quire float ing-point cal cu -
la tions, or even sub stan tial in te ger arith me tic, prac ti cally man date the use of C18.
De vel op ing float ing-point op er a tions in PIC as sem bly is a ma jor en ter prise.

The float ing-point op er a tions pro vided by the math li brary in clude the fol low ing
prim i tives:

• Ad di tion, sub trac tion, mul ti pli ca tion, and di vi sion

• Con ver sions be tween floats and in te gers

The float ing-point im ple men ta tions in C18 com ply with the ANSI-IEEE 754 stan -
dard for sin gle pre ci sion floats with two ex cep tions: one is re gard ing the han dling
of sub nor mals and the sec ond one re lates to round ing op er a tions. Nei ther one is of
im por tance to most em bed ded sys tem ap pli ca tions. Ex tended and tra di tional
modes use the same float rep re sen ta tions, and the re sults of float op er a tions are the
same.

6.5.1 ANSI-IEEE 754 Bi nary Float ing-Point Stan dard

The ANSI-IEEE stan dard for bi nary float ing-point arith me tic was first re leased in
1979, and the fi nal ap proval came in 1985. Be cause then it has de fined the re quire -
ments of all float ing-point by es tab lish ing the fol low ing re quire ments:

118 Chap ter 6

• All im ple men ta tions must pro vide a con sis tent rep re sen ta tion of float ing-point
num bers.

• All im ple men ta tions must pro vide cor rectly rounded float ing-point op er a tions.

• All im ple men ta tions must pro vide con sis tent treat ment of ex cep tional sit u a tions
and er rors.

Ac cord ing to ANSI-IEEE 754 a sin gle pre ci sion float ing-point num ber (float vari -
able type in C lan guage) con sists of four parts:

1. A sign

2. A significand

3. A base

4. An ex po nent

These com po nents are of the form:

x = ±d0.d1.d2.d3 ··· d23 × 2E

where ± is the sign of the num ber;, d0,d1,d2,d3, ···; d23 are the 24 significand dig its; and
E is the ex po nent to which the base 2 is raised. Each di is a digit (0 or 1). The ex po nent
E is an in te ger in the range Emin to Emax, where Emin = mi nus 126 and Emax = 127.

Encodings

Sin gle-pre ci sion for mat num bers (float tyhpe) use a 32-bit word or ga nized as a 1-bit
sign, an 8-bit bi ased ex po nent e = E + 127, and a 23-bit frac tion, which is the frac tional
part of the significand.

The most-sig nif i cant bit of the significand (d0) is not stored be cause it can be in -
ferred from the value of the ex po nent, as fol lows: if the bi ased ex po nent value is 0,
then d0 = 0, oth er wise d0 = 1. This scheme saves one bit in the stor age of the num -
ber's significand and in creases the pre ci sion to 24 bits.

ANSI-IEEE 754 de fines and C18 sup ports sev eral nu meric types:

• Nor mals are num bers that can be cor rectly rep re sented in the for mat. The stan -
dard de fines the small est and larg est num bers that can be rep re sented.

• Sub nor mals are num bers smaller than the small est nor mal ized rep re sen ta tion
(2–126). C18 does not pro vide an op er a tion by which a float can cre ate a sub nor -
mal. Sub nor mals used in float ing-point op er a tions are au to mat i cally con verted to
a signed zero.

• NaNs (Not-a-Num ber) are used for en cod ing er ror pat terns and in valid op er a -
tions. Di vi sion by zero gen er ates a NaN. Any op er a tion with a NaN ar gu ment re -
turns a NaN.

Round ing

The ANSI-IEEE-754 stan dard de fines four round ing modes; how ever, C18 uses
round-to-near est in all round ing op er a tions. The C18 im ple men ta tion uses a mod i fi ca -
tion to ANSI-IEEE 754: The thresh old for round ing up is about 0.502 in C18 in stead of
ex actly 0.5 as de fined in the stan dard. This re sults in a small bias when round ing to -

 C Lan guage in an Em bed ded En vi ron ment 119

ward zero. Micro chip states that this mod i fi ca tion re sults in a sig nif i cant sav ings in
code space and ex e cu tion time with vir tu ally no con se quences for real-world cal cu la -
tions.

6.5.2 Stan dard Math Li brary Func tions
The op er a tions in the C18 stan dard math li brary in cludes the fol low ing types of op er a -
tions:

• Trig o no met ric func tions

• Hy per bolic func tions

• Ex po nen tial func tions

• Con ver sions and num ber split ting

• Log a rithms

• Square roots

The func tions are listed and de scribed in Ta ble 6.9.

Ta ble 6.9

Math Li brary Func tions

FUNCTION DESCRIPTION

acos Com pute the in verse co sine (arccosine).
asin Com pute the in verse sine (arcsine).
atan Com pute the in verse tan gent (arctangent).
atan2 Com pute the in verse tan gent (arctangent) of a ra tio.
ceil Com pute the ceil ing (least in te ger).
cos Com pute the co sine.
cosh Com pute the hy per bolic co sine.
exp Com pute the ex po nen tial ex.
fabs Com pute the ab so lute value.
floor Com pute the floor (great est in te ger).
fmod Com pute the re main der.
frexp Split into frac tion and ex po nent.
ieeetomchp Con vert an IEEE-754 for mat 32-bit float ing-point value

into the Micro chip 32-bit float ing point for mat.
ldexp Load ex po nent - com pute x * 2n.
log Com pute the nat u ral log a rithm.
log10 Com pute the com mon (base 10) log a rithm.
mchptoieee Con vert a Micro chip for mat 32-bit float ing-point value

into the IEEE-754 32-bit float ing-point for mat.
modf Com pute the modulus.
pow Com pute the ex po nen tial xy.
sin Com pute the sine.
sinh Com pute the hy per bolic sine.
sqrt Com pute the square root.
tan Com pute the tan gent.
tanh Com pute the hy per bolic tan gent.

6.5.3 Float ing-Point Math Sam ple Pro gram
The sam ple pro gram C_Floats_Demo.c in the book's soft ware pack age is a small dem -
on stra tion of float ing-point op er a tions us ing the C18 math li brary. The math e mat ics

120 Chap ter 6

are triv ial: an ar bi trary num ber is mul ti plied by Pi and then its square root is ob tained.
Mean ing ful code is as fol lows:

#in clude <p18f452.h>
#in clude <stdio.h>
#in clude <math.h>

#de fine PI 3.14159265359

#pragma config WDT = OFF
#pragma config OSC = HS
#pragma config LVP = OFF
#pragma config DEBUG = OFF

//**
// main pro gram
//**
void main(void)
{

float num1 = 22.334455;
int wholePart;
int fracPart;

// Mul ti ply times PI
num1 *= PI;
// Cal cu late square root of prod uct
num1 = sqrt(num1);

// Find in te ger and frac tional parts
wholePart = num1; // Get whole part
fracPart = (num1 - wholePart) * 100000; // Frac tional part
fracPart = fabs(fracPart); // Elim i nate neg a tive

printf ("Test ing float ing-point math\n");
printf ("%d.%03d\n", wholePart, fracPart);

while(1) {
Nop();

}
}

No tice that the con stant PI is cre ated with a #de fine state ment, thus sav ing vari -
able space in the ap pli ca tion.

In main(), the code cre ates three vari ables: one is a float type (num1) and the
other two are int types (wholePart and fracPart). Prod uct and square root are then
ob tained.

One dif fi culty in us ing float ing-point in the MPLAB IDE is that the C18 prinf()
func tion can not dis play float ing-point num bers. Ac cord ing to Micro chip, float -
ing-point dis play was not im ple mented be cause it would have added con sid er ably to
the size of the li brary. The in te ger part is ob tained with a sim ple cast of the float op -
er and into an int vari able. The frac tional part re quires sub tract ing the in te ger part
and then mul ti ply ing by a power of the base (10 in this case) to the de sired pre ci -
sion. To elim i nate pos si ble neg a tive frac tions, the fabs() func tion is called to get the

 C Lan guage in an Em bed ded En vi ron ment 121

ab so lute value. The two re sult ing in te ger types are dis played con ven tion ally us ing
printf(). The re sult can be seen by set ting a break point at the end of the pro gram in
dis play ing the SIM Uart1 win dow.

6.6 C18 Lan guage Spe cif ics
The pres ent sec tion re fers to the C18; we dis cuss the spe cific fea tures of the C18 im -
ple men ta tion that are ei ther vari a tions from or ex ten sions to the ANSI stan dard. Ac -
cord ing to Micro chip the MPLAB C18 com piler is a free-stand ing, op ti miz ing ANSI C
com piler spe cially adapted for the PIC18 fam ily of microcontrollers. The com piler de -
vi ates from ANSI stan dard X3.159-1989 only where the stan dard con flicts with ef fi -
cient PICmicro MCU sup port.

6.6.1 C18 In te ger Data Types

The C18 com piler sup ports the stan dard in te ger types de fined in the ANSI C stan dard
pre vi ously men tioned. In ad di tion no the stan dard types, C18 sup ports a 24-bit in te ger
type named short long int (or long short int), in both signed and un signed for mats. Ta -
ble 6.10 lists the spec i fi ca tions of the C18 in te ger types.

Ta ble 6.10

C18 In te ger Data Types

TYPE SIZE MINIMUM MAXIMUM

char 8 bits –128 127
signed char 8 bits –128 127
un signed char 8 bits 0 255
int 16 bits –32,768 32,767
un signed int 16 bits 0 65,535
short 16 bits –32,768 32,767
un signed short 16 bits 0 65,535
short long 24 bits –8,388,608 8,388,607
un signed short long 24 bits 0 16,777,215
long 32 bits –2,147,483,648 2,147,483,647
un signed long 32 bits 0 4,294,967,295

6.6.2 C18 Float ing-Point Data Types

C18 sup ports the def i ni tion of float ing-point types as float or dou ble, how ever both
types have iden ti cal size and lim its, as shown in Ta ble 6.11.

Ta ble 6.11

C18 Float ing-Point Size and Lim its

122 Chap ter 6

-

-

6.6.3 Endianness

Endianness re fers to the or der ing of mul ti ple-byte val ues and can be lit tle-endian
(low-byte at low mem ory ad dress) or big-endian (high-byte at low mem ory ad dress).
C18 uses the lit tle-endian for mat. For ex am ple, the hex value 0xAABBCCDD is stored
in mem ory (low-to-high ad dresses) as 0xDD, 0xCC, 0xBB, and 0xAA.

6.6.4 Stor age Classes

C18 sup ports the ANSI stan dard stor age classes named auto, extern, reg is ter, and
typedef. In ad di tion, C18 de fines a unique stor age class named over lay that is avail able
only in nonextended modes. The over lay stor age class may be ap plied to lo cal vari -
ables but not for mal pa ram e ters, func tion def i ni tions, or global vari ables. The over lay
stor age class will al lo cate the as so ci ated sym bols into a func tion-spe cific, static over -
lay sec tion. In other words, a vari able of over lay type is al lo cated stat i cally but
reinitialized on each func tion en try. For ex am ple,

void demo(void)

{

over lay int x = 5;

x++;

}

In this case, x will be in i tial ized to 5 upon ev ery en try to the func tion named demo(),
al though its stor age will be stat i cally al lo cated. If the over lay vari able is not in i tial ized
in its dec la ra tion, then its value upon func tion en try is un de fined.

6.6.5 static Func tion Ar gu ment

Func tion pa ram e ters have the stor age class auto or static. The de fault stor age class is
auto which de ter mines that func tion pa ram e ters are placed in the soft ware stack, thus
mak ing re en try pos si ble. The auto qual i fier can be over writ ten by means of the static
key word. Pa ram e ters for static-type func tions are al lo cated glob ally, im ped ing
reentrancy but re sult ing in smaller code and en abling di rect ac cess.

6.6.6 Stor age Qual i fi ers

C18 sup ports the stan dard ANSI C stor age qual i fi ers const and vol a tile. The const
qual i fier is used to des ig nate ob jects whose value does not change (con stants). Once a
vari able is qual i fied as const, the pro gram mer will not be al lowed to change its value.
The vol a tile qual i fier, on the other hand, informs the com piler that an ob ject can have
its value changed in ways not un der the con trol of the im ple men ta tion.

In ad di tion, the C18 com piler in tro duced four new qual i fi ers that bind to iden ti fi -
ers in a sim i lar man ner as const and vol a tile. These are named far, near, rom, and
ram.

far and near Qual i fi ers

The far qual i fier de notes a vari able that is lo cated in data mem ory and in a mem ory
bank. To ac cess a far vari able a bank switch ing in struc tion is re quired. The near qual i -
fier de notes that a vari able is lo cated in data mem ory and in ac cess RAM.

 C Lan guage in an Em bed ded En vi ron ment 123

When the far qual i fier re fers to a vari able that is lo cated in pro gram mem ory, then
the vari able can be any where in the sys tem's pro gram mem ory space. If it re fers to a
pointer, then the far pointer can ac cess up to and be yond 64K of pro gram mem ory
space. The near qual i fier is used to de note that a vari able lo cated in pro gram mem -
ory is found at an ad dress less than 64K. If it re fers to a pointer, then the near
pointer can ac cess only up to 64K of pro gram mem ory space.

rom and ram Qual i fi ers

The Har vard ar chi tec ture of the PIC microcontrollers uses sep a rate pro gram mem ory
and data mem ory ad dress buses. This means that the C18 com piler re quires ex ten -
sions to dis tin guish be tween data lo cated in pro gram mem ory and data lo cated in data
mem ory. The ANSI C stan dard al lows for code and data to be in sep a rate ad dress
spaces, but does not pro vide ways of lo cat ing data in the code space. The rom qual i fier
de notes that the ob ject is lo cated in pro gram mem ory, whereas the ram qual i fier de -
notes that the ob ject is lo cated in data mem ory. Point ers can point to ei ther data mem -
ory (ram point ers) or pro gram mem ory (rom point ers). Point ers are as sumed to be
ram point ers un less de clared as rom. Ta ble 6.12 shows the lo ca tion of ob jects based
on their stor age qual i fi ers.

Ta ble 6.12

Ob ject Lo ca tion Ac cord ing to Stor age Qual i fi ers

 ROM RAM

far Any where in pro gram mem ory Any where in data mem ory
(de fault)

near In pro gram mem ory with ad dress
less than 64K In ac cess mem ory

124 Chap ter 6

Chap ter 7

Pro gram ming Sim ple In put and Out put

7.1 Port-Con nected I/O
In this chap ter we de scribe very sim ple PIC-based cir cuits that con sist of very few
hard ware com po nents. The in put and out put de vices are con nected di rectly to 18F452
PIC ports. The pro cess ing rou tines dis cussed (both in assembly language and C18)
con sist of read ing from and writ ing to these ports.

7.1.1 A Sim ple Cir cuit and Code
We start with a PIC 18F452 sim ple ap pli ca tion and cir cuit to dem on strate port-based
sim ple in put and out put. The cir cuit con tains the fol low ing el e ments:

1. Power sup ply

2. Sup ply to the MCLR pin

3. Os cil la tor

4. Four red LEDs

5. Four green LEDs

6. One pushbutton switch

In ad di tion, the cir cuit re quires sev eral re sis tors and ca pac i tors, which can be seen in
the cir cuit sche mat ics. Demo board 18F452A, de vel oped in this chap ter, is com pat i ble
with the many ap pli ca tions dis cussed in the book..

7.1.2 Cir cuit Sche mat ics
The test cir cuit can be built on a bread board or a perfboard. Four red LEDs are wired
to port C lines RC0 to RC3. Four green LEDs are wired to port C lines RC4 to RC7. The
cir cuit can be sim pli fied by wir ing a sin gle red LED to port C line 0 and a sin gle green
LED to port C line 7. The neg a tive poles of the LEDs (flat pin) are con nected to ground
via a 330-ohm re sis tor. The pos i tive pins (round pin) are wired to the cor re spond ing
line of port C. Port C is trissed for out put. A pushbutton switch is wired to port B, line

125

RB4, and to the 5V source via a 10K re sis tor. This line of port B is trissed for in put. The
other con tact of the pushbutton switch is wired to the ground line. The os cil la tor is a
Murata Erie 20 MHz crys tal res o na tor and is wired to ground and to PIC lines OSC1 and
OSC2. The MCLR line is held high dur ing op er a tion by its con nec tion to the 5V source
via a 10K re sis tor. A pushbutton switch al lows bring ing MCLR low to re set the sys tem.
A sin gle LED con nected to ground serves to in di cate a power-on state. The 5V source
for the cir cuit is pro vided by a 9 to 12 V DC wall trans former that is reg u lated by a 7805
IC and the stan dard ca pac i tors. The cir cuit sche mat ics are shown in Fig ure 7.1.

Fig ure 7.1 Sche mat ics for a LED/pushbutton circuit.

7.1.3 As sem bler Sim ple I/O Pro gram
The sam ple pro gram LedPB_F18.asm, in the book's on-line soft ware pack age, ex er -
cises the cir cuit in Fig ure 7.1 or Demo Board 18F452A de scribed later in this chap ter.
The pro gram list ing is as fol lows:

; File name: LedPB_F18.asm
; Date: Sep tem ber 9, 2012
; No copy right
; Pro ces sor: PIC 18F452
;

126 Chap ter 7

5v regulated power supply

Osc

+5V

+5V

+5V

+5V

+5V

R
=

1
0

K

R=10K

R
=

3
8

0
 O

h
m

C=0.1mFEC=100mF

78L05

INOUT
9 -12 v DC+5 v DC

+

PUSHBUTTON
SWITCH

POWER
ON/OFF LED

RESET
SWITCH

R=330 Ohm
X 4

R=330 Ohm
X 4

GREEN LEDS

RED LEDS

1
8

F
4

5
2

MCLR

RA0

RA1

RA2

RA3

RA4

RA5

RE0

RE1

RE2

Vdd

Vss

OSC1

OSC2

RC0

RC1

RC2

RC3

RD0

RD1

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RBO

Vdd

Vss

RD7

RD6

RD5

RD4

RC7

RC6

RC5

RC4

RD3

RD2

; Port di rec tion and wir ing for this pro gram:
; PORT PINS DIRECTION DEVICE
; C 0-3 Out put Green LEDs
; C 4-7 Out put Red LEDs
; B 4 In put Pushbutton # 1
;
; De scrip tion:
; A dem on stra tion pro gram to mon i tor pushbutton # 1 in
; DemoBoard 18F452A (or equiv a lent cir cuit). If the pushbutton
; is re leased the four red LEDs wired to port C lines 0-3
; are flashed. If the pushbutton is held pressed then the
; four green LEDs wired to port C lines 4-7 are flashed.
;
;===
; def i ni tion and in clude files
;===

pro ces sor 18F452 ; De fine pro ces sor
#in clude <p18F452.inc>

; ==
; con fig u ra tion bits
;===

config OSC = HS ; As sumes high-speed res o na tor
config WDT = OFF ; No watch dog timer
config LVP = OFF ; No low volt age pro tec tion
config DEBUG = OFF ; No back ground debugger

;
; Turn off bank ing er ror mes sages

errorlevel -302
;
;==
; vari ables in PIC RAM
; Ac cess RAM lo ca tions from 0x00 to 0x7F
; De clare vari ables at 2 mem ory lo ca tions
j equ 0x000 ; Coun ters for de lay rou tine
k equ 0x001

;==
; pro gram
;==

org 0 ; start at ad dress
goto main

; Space for in ter rupt han dlers
;=============================
; in ter rupt in ter cept
;=============================

org 0x08 ; High-pri or ity vec tor
retfie
org 0x18 ; Low-pri or ity vec tor
retfie

;==
; main pro gram en try point
;==
main:
; Set BSR for bank 0 op er a tions

movlb 0 ; Bank 0
; Ini tial ize all lines in PORT C for out put

movlw B'00000000' ; 0 = out put
movwf TRISC ; Port C tris reg is ter

; Ini tial ize line 4 in PORT B for in put
movlw B'00010000' ; 1 = in put

 Pro gram ming Sim ple In put and Out put 127

movwf TRISB ; Port B tris reg is ter
;=============================
; COMMAND MONITORING LOOP
;=============================
; Pro gram loop to turn red and green LED banks on and off
flashLEDS:

call com mand ; Pro ce dure to test switch state
; Z flag set if PB#1 pressed

btfsc STATUS,Z
goto redLEDs
goto greenLEDs

greenLEDs:
; Turn on lines 0 to 3 in port C. All oth ers are off

movlw B'00001111' ; LEDS 0 to 3 ON
movwf PORTC,0
call de lay ; Lo cal de lay rou tine

; Turn off all lines in port C to flash off LEDs
movlw B'00000000' ; All LEDs OFF
movwf PORTC,0
call de lay
goto flashLEDS

redLEDs:
; Turn on lines 7 to 4 in port C. All oth ers are off

movlw B'11110000' ; LEDS 7 to 4 ON
movwf PORTC,0
call de lay ; Lo cal de lay rou tine

; Turn off all lines in port C to flash off LEDs
movlw B'00000000' ; All LEDs OFF
movwf PORTC,0
call de lay
goto flashLEDS

;============================
; test for push but ton 1
;============================
com mand:
; The com mand pro ce dure tests push but ton # 1 wired to port
; RB4 (ac tive low) to see if it is pressed or re leased.
; If line line is low then the switch pressed. In this case the
; Z flag is set and ex e cu tion re turns to the caller. Oth er wise
; the Z flag is cleared be fore ex e cut ing re turns

btfsc PORTB,4 ; Test bit 4
; The fol low ing goto ex e cutes if the the carry bit is set
; in di cat ing that the pushbutton is pressed

goto pbDown ; Jump taken if line bit set
 ; In di cat ing pushbutton is down
; At this point the pushbutton is re leased (line off)
; Clear zero flag in STATUS reg is ter to re port back to caller

bcf STATUS,Z
re turn

pbDown:
; Set Z flag

bsf STATUS,Z
re turn

;================================
; de lay sub rou tine
;================================
de lay:

128 Chap ter 7

movlw .200 ; w = 200 dec i mal
movwf j ; j = w

jloop:
movwf k ; k = w

kloop:
decfsz k,f ; k = k-1, skip next if zero
goto kloop
decfsz j,f ; j = j-1, skip next if zero
goto jloop
re turn

end ;END OF PROGRAM

7.1.4 As sem bler Source Code Anal y sis
The pro gram skel e ton is based on the assembly language cod ing tem plate de vel oped
in Sec tion 4.1.1. The pro gram header de fines the hard ware and soft ware en vi ron ment
and de scribes the ap pli ca tion. Code then de fines the pro ces sor and in cludes the file
p18f452.inc. The min i mal con fig u ra tion bits for the ap pli ca tion are set and the
errorlevel -302 di rec tive dis ables bank ing mes sages for the ap pli ca tion. This is pos si -
ble be cause the ap pli ca tion only uses ac cess RAM. Fol low ing, the two pro gram vari -
ables are de fined in bank 0 ad dresses, thus plac ing them in ac cess RAM.

Pro cess ing starts at the main la bel where the BSR reg is ter is set to bank 0. Be -
cause the de fault state is to se lect the bank ac cord ing to the state of the BSR bits,
the re main ing code can omit set ting or clear ing the “a” bit in the in struc tions. This
scheme sim pli fies the cod ing and works as long as the BSR bits are kept in the orig i -
nal state.

In the fol low ing lines, port C lines are in i tial ized for out put by writ ing ze ros to the
cor re spond ing TRIS reg is ter. Then line 4 of port B is in i tial ized for in put by writ ing a
one to that bit po si tion. Code is as fol lows:

main:
; Set BSR for bank 0 op er a tions

movlb 0 ; Bank 0
; Ini tial ize all lines in PORT C for out put

movlw B'00000000' ; 0 = out put
movwf TRISC ; port C tris reg is ter

; Ini tial ize line 4 in PORT B for in put
movlw B'00010000' ; 1 = in put
movwf TRISB ; port B tris reg is ter

Com mand Mon i tor ing Loop

Many em bed ded ap pli ca tions ap pli ca tions mon i tor for changes in one or more in put
line in or der to mod ify their ac tion. This mon i tor ing for a com mand or change of state
can be in ter rupt-driven or it can take place in a pro gram loop, usu ally called poll ing
rou tines. In ter rupt-driven com mand sys tems are dis cussed in Chap ter 8.

The cur rent pro gram uses an end less loop to poll the state of the pushbutton
switch. If it is re leased, then the green LEDs are flashed. If it is pressed (held down),
then the red LEDs are flashed. The ac tual test is per formed by an aux il iary pro ce -
dure named com mand. In this ex am ple, the la bel com mand re fers to a sub rou tine

 Pro gram ming Sim ple In put and Out put 129

(some times called a pro ce dure) that ap pears later in the pro gram. The call in struc -
tion trans fers con trol to the sub rou tine's la bel (in this case, com mand), which, in
turn, re turns ex e cu tion to the line fol low ing the call by means of a re turn in struc -
tion.

Tests in the com mand pro ce dure con sist of de ter min ing the state of pushbutton #
1, wired to port RB4. This port line is wired ac tive low. That means that the line re -
turns zero when the pushbutton is re leased; in other words, the RB4 line is low
when the switch is pressed. If pressed, the Z flag is set and ex e cu tion re turns to the
caller. Oth er wise, the Z flag is cleared be fore ex e cu tion re turns.

No tice that in the scheme used by this code, the pro ces sor's zero flag (Z) is used
to re port the con di tion of the switch. The bcf in struc tion, with the STATUS reg is ter
and the Z flag as operands, is used to clear the flag. The bsf in struc tion is used to set
the Z flag. The call ing rou tine tests the state of the Z STATUS bit to take the cor re -
spond ing con di tional jump. Code is as fol lows:

btfsc STATUS,Z
goto greenLEDs
goto redLEDs

This sim ple test-and-jump mech a nism is very com mon in PIC pro grams. The btfsc
in struc tion (mne mon ics stand for bit test file reg is ter skip if clear), de ter mines if
the fol low ing line is skipped or not. Fol low ing the test, ex e cu tion is di rected to ei -
ther one of two la bels. No tice that the la bels greenLEDs and redLEDs are ac cessed
by means of goto in struc tions. This means that ex e cu tion is trans ferred di rectly to
the la bel and it is not a subroutine call.

Ac tion on the LEDs

Turn ing on and off LEDs that are wired to a port trissed for out put con sist of writ ing
ones or ze ros to the cor re spond ing port lines. Be cause the red LEDs are wired to the
four high-or der bits of port C, code writes ones to these bits to turn on the LEDs and ze -
ros to turn them off, as fol lows:

; Turn on lines 7 to 4 in port C. All oth ers are off
movlw B'11110000' ; LEDS 7 to 4 ON
movwf PORTC,0
call de lay ; Lo cal de lay rou tine

; Turn off all lines in port C to flash off LEDs
movlw B'00000000' ; All LEDs OFF
movwf PORTC,0
call de lay

A De lay Rou tine

The rou tine named de lay, called by the pre vi ous code frag ment, is used to make the
LEDs flash by re main ing on or off for a frac tion of a sec ond be fore chang ing their
state. There are many ways of pro duc ing timed de lays in the PIC 18FXX2 de vices.
Later in the book you will find an en tire chap ter de voted to tim ing. The pres ent rou tine
is a sim ple wait-by-do ing-noth ing scheme that is sim ple to code and un der stand. Code
starts by mov ing the lit eral value 200 into the work reg is ter and then initializing two
coun ters (j and k) to this value, as fol lows:

130 Chap ter 7

de lay:
movlw .200 ; w = 200 dec i mal
movwf j ; j = w

The de lay it self con sists of two loops: an in ner one (the k loop that it er ates 200
times) and an outer j loop one (that also it er ates 200 times), The to tal num ber of
times that the in ner loop ex e cutes is 40,000 times. Both loops use the decfsz in struc -
tion (mne monic for dec re ment file reg is ter skip if zero) in or der to dec re ment the
coun ter reg is ter. When the reg is ter reaches zero, the next code line is skipped and
the loop terminates, as follows:

decfsz j,f ; j = j-1, skip next if zero
goto jloop
re turn

Note that it is good pro gram ming prac tice to use mean ing ful names for pro gram
la bels and vari ables. How ever, sim ple coun ter vari ables are of ten given low er case,
in sin gle-let ter names rem i nis cent of their use in math e mat ics, as is the case with
the vari ables j and k in the previous program.

7.2 C Lan guage Sim ple I/O Pro gram
The pro gram C_LED_PB.c in this book's soft ware pack age per forms the same op er a -
tion as the pro gram LED_PB.asm de scribed pre vi ously. Anal y sis of both code list ings
shows the dif fer ences be tween cod ing in ei ther lan guage. It is ob vi ous that the C lan -
guage ver sion is shorter and eas ier to code and un der stand. Fol low ing is the pro gram
list ing:

// Pro ject name: C_LED_PB
// Source files: C_LED_PB.c
// Date: Sep tem ber 9, 2012
// Pro ces sor: PIC 18F452
// En vi ron ment: MPLAB IDE Ver sion 8.86
// MPLAB C-18 Com piler
//
// TEST CIRCUIT: Demo Board 18F452 or cir cuit wired as
// fol lows:
// PORT PINS DIRECTION DEVICE
// C 0-3 Out put Green LEDs
// C 4-7 Out put Red LEDs
// B 4 In put Pushbutton No. 1
//
// Note: Pushbutton # 1 switch is wired ac tive low
//
// De scrip tion:
// A dem on stra tion pro gram to mon i tor pushbutton No. 1 in
// DemoBoard 18F452A (or equiv a lent cir cuit). If the pushbutton
// is held pressed then the four red LEDs wired to port C
// lines 0-3 are flashed.

#in clude <p18f452.h>
#in clude <de lays.h>

#pragma config WDT = OFF

 Pro gram ming Sim ple In put and Out put 131

#pragma config OSC = HS
#pragma config LVP = OFF
#pragma config DEBUG = OFF

/* Func tion pro to types */
void FlashRED(void);
void FlashGREEN(void);

//**
// main pro gram
//**
void main(void)
{
// Initialize di rec tion reg is ters
 TRISB = 0b00001000; // Port B, line 4, set for in put
// |
// |________ Pushbutton # 1

TRISC = 0; // Port C set for out put
PORTC = 0; // Clear all port C lines

while(1)
{

if(!PORTBbits.RB4)
FlashRED();

else
FlashGREEN();

}
}
//**
// lo cal func tions
//**

void FlashRED()
{

PORTC = 0x0f;
Delay1KTCYx(200);
PORTC = 0x00;
Delay1KTCYx(200);
re turn;

}
void FlashGREEN()
{

PORTC = 0xf0;
Delay1KTCYx(200);
PORTC = 0x00;
Delay1KTCYx(200);
re turn;

}

7.2.1 C Source Code Anal y sis
The C lan guage cod ing tem plate is sim i lar to the one de vel oped for as sem bly language
in Sec tion 4.1.1. The pro gram header de fines the de vel op ment dates, the hard ware
and soft ware en vi ron ment, and de scribes the ap pli ca tion. Code then se lects the pro -
ces sor and in cludes the file de lays.h, which is used in im ple ment ing tim ing us ing the li -
brary func tions de scribed in Sec tion 6.3.1. The min i mal con fig u ra tion bits for the
ap pli ca tion are set us ing the C lan guage #pragma config di rec tive with the de fined
operands. The pro to types for the two lo cal func tions are listed.

132 Chap ter 7

The next group of pro gram lines are pro to types for the two lo cal func tions used
by the pro gram. By prototyping the func tions we are able to list them af ter the
main() func tion. With out the pro to types, all lo cal func tions would have to be coded
be fore main(). Code is as fol lows:

/* Func tion pro to types */
void FlashRED(void);
void FlashGREEN(void);

main() Func tion

The in MPLAB C18 the main() func tion has void re turn type and void pa ram e ter list.
The C lan guage main() func tion de fines the pro gram's en try point; ex e cu tion starts
here. The first lines in main() are to ini tial ize the port di rec tions as re quired by the pro -
gram. Be cause the LEDs are wired to port C, its tris reg is ter (TRISC) is set for out put.
By the same to ken, be cause the pushbutton switch num ber 1 is wired to port B, line 4,
this line must be in i tial ized for in put. Code is as fol lows:

// Initalize di rec tion reg is ters
TRISB = 0b00001000;// Port B, line 4, set for in put
TRISC = 0; // Port C set for out put
PORTC = 0; // Clear all port C lines

No tice that we have taken ad van tage of a fea ture of MPLAB C18 that al lows de -
clar ing bi nary data us ing the 0b op er a tor.

In C lan guage, we can cre ate an end less loop by de fin ing a con di tion that is al -
ways ture. Be cause in C true is equiv a lent to the nu meric value 1, we can code:

while(1)
{

if(PORTBbits.RB4)
FlashRED();

else
FlashGREEN();

}

This cod ing style pro vides a sim ple mech a nism for im ple ment ing a rou tine that
tests one or more in put de vices and pro ceeds ac cord ingly. Be cause pushbutton
switch num ber 1 is wired to port B line 4, code can test this bit to find out if the
pushbutton is in a re leased or pressed state. Test ing the state of a port bit is sim pli -
fied by the pres ence of mac ros in the C com piler that de fine the state of each in di -
vid ual bit in the port. The if state ment does this us ing the PORTBbits.RB4
ex pres sion. Al ter na tively, code can use a con ven tional C lan guage bitwise AND op -
er a tion on the port bits, as follows:

while(1)
{

if(PORTB & 0b00001000)
FlashRED();

else
FlashGREEN();

}

 Pro gram ming Sim ple In put and Out put 133

In ei ther case, the test de ter mines that the pushbutton is pressed. If so, then the
red LEDs are flashed. Oth er wise, the green LEDs are flashed. The flash ing is per -
formed by two sim ple pro ce dures named FlashRED() and FlashGREEN(). The
FlashRED() pro ce dure is coded as fol lows:

void FlashRED()

{

PORTC = 0x0f;

Delay1KTCYx(200);

PORTC = 0x00;

Delay1KTCYx(200);

re turn;

}

The FlashRED() func tion starts by turn ing off the four high-or der lines in port C
and turn ing on the four low-or der lines. The hex a dec i mal op er and 0x0f sets the port
bits ac cord ingly.

The state ment that fol lows calls one of the de lay func tions in the de lay's Gen eral
Soft ware Li brary. These de lay func tions (which were vis ited in Chap ter 6) pro vide a
con ve nient mech a nism for im ple ment ing timed op er a tions in an em bed ded en vi ron -
ment. The de lay func tions are based on in struc tion cy cles and are, there fore, de -
pend ent on the pro ces sor's speed. The one used in the sam ple pro gram
(Delay1KTCYx()) de lays 1000 ma chine cy cles for ev ery it er a tion. The num ber of de -
sired it er a tions is en tered in side the func tion's pa ren the ses. In this case, 1,000 ma -
chine cy cles are re peated 200 times, which im ple ments a de lay of 200,000 ma chine
cy cles. The func tion named FlashGREEN() pro ceeds in a sim i lar man ner.

In main(), the tris reg is ters for ports B and C are in i tial ized and the port C latches
are cleared. The while() state ment is an end less loop that uses an if state ment with
the ex pres sion PORTBbits.RB4 to iden tify the cor re spond ing port bit.

7.3 Seven-Seg ment LED Pro gram ming

A seven -seg ment dis play can be con nected to out put ports on the PIC and used to dis -
play num bers and some dig its. The cir cuit in Fig ure 7.2 shows the wir ing used in the
sam ple pro grams de vel oped in this chap ter. This is also the same wir ing as that in
Demo Board 18F452A.

As the name in di cates, the seven-seg ment dis play has seven lin ear LEDs that al -
low form ing all the dec i mal and hex dig its and some sym bols and let ters. Once the
map ping of the in di vid ual bars of the dis play to the PIC ports has been es tab lished,
dig its and let ters can be shown by se lect ing which port lines are set and which are
not. For ex am ple, in the seven-seg ment LED of Fig ure 7.2, the digit 2 can be dis -
played by set ting seg ments a, b, g, e, and d. In this par tic u lar wir ing, these seg ments
cor re spond to port C lines 0, 1, 6, 4, and 5.

134 Chap ter 7

Fig ure 7.2 Seven-seg ment LED and DIP switch cir cuit.

7.3.1 Com puted Goto

In assembly language con ver sion of the dec i mal dig its and some let ters to port dis play
codes can be achieved by means of a lookup ta ble us ing a mech a nism some times
called a “com puted Goto.” The pro cess ing de pends on three spe cial fea tures of PIC18
as sem bly lan guage:

• The pro gram coun ter (PC) file reg is ters (la beled PCU, PCH, and PCL) hold the ad -
dress in mem ory of the cur rent in struc tion (see Fig ure 2.5 and Sec tion 2.1.4). Be -
cause each PIC18 in struc tion takes up two bytes, (ex cept for those that mod ify
the PC), one can jump to con sec u tive en tries in a ta ble by add ing two to the value
in the pro gram coun ter.

• The addwf in struc tion can be used to add a value in the w reg is ter to the PCL reg is -
ter.

• The retlw in struc tion re turns to the caller a lit eral value stored in the w reg is ter. In
the case of the retlw, the lit eral value is the in struc tion op er and.

 Pro gram ming Sim ple In put and Out put 135

18F452

+5v

R
=

1
0

K

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

RESET

+5v

7-seg LED a

7-seg LED b

7-seg LED c

7-seg LED d

Dip Sw 1

Dip Sw 2

Dip Sw 3

Dip Sw 4

7-seg LED g

7-seg LED f

7-seg LED e

+5v

+5v

4 Mhz Osc

a

PWR
ON

b

cd

e

220 Ohm

e

f

f

g

g

d

c

b

a

+5v

7-segment
LED

RJ-11 (6) MCLR/VPP

RAO/ANO

RA1/AN1

RA2/AN2A/REF-

RA3/AN3A/REF+

RA4/TOCKI

RA5/AN4/SS/LVDIN

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1/CLKI

OSC2/CLKO/RA6

RCO/T1OSO/TICK1

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RDO/PSPO

RD1/PSP1

RB7/PGD

RB6/PGC

RB5/PGM

RB4

RB3/CCP2*

RB2/INT2

RB1/INT1

R BO/INTO

Vdd

Vss

RD7/PSP7

RD6/PSP6

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2

+5v

+5v

R
=

1
0

K

R
=

1
0

K

PB switch
1

PB switch
2

RA2

RA3

RC0

RC1

RC3

RC6

RC4

RC5

RC2

RA4

10k R
X 4

DIP SW x 4

RA5

If the lookup ta ble is lo cated at a sub rou tine called getcode, then the pro cess ing
can be im ple mented as fol lows:

getcode:

addwf PCL,f ; Add value in w reg is ter to PCL

retlw 0x3f ; code for num ber 0

retlw 0x06 ; code for num ber 1

retlw 0x5b ; code for num ber 2

...

retlw 0x6f ; code for num ber 9

The call ing rou tine places in the w reg is ter the nu meric value whose code is de -
sired, and then calls the ta ble lookup as fol lows:

movlw .6 ; Code for num ber 3 (2 times off set in ta ble)

call getcode

movwf PORTC ; Dis play 3 in 7-seg ment dis play

This com puter goto scheme is very pop u lar in pro gram ming PIC16 and ear lier de -
vices, but it is not with out prob lems. We have seen that code uses the in struc tion:

addwf PCL,F

Code as sumes that twice the off set into the ta ble is stored in the W reg is ter at the
time the in struc tion ex e cutes. Keep in mind that the PCL reg is ter stores the low-or -
der byte of the in struc tion ad dress. So what hap pens if the ta ble is lo cated at ad -
dress 0x4f0 and the value in the W reg is ter is 0x40? Add ing 0x40 to 0x4f0 re sults in
0x530. In this case, the new ad dress re quires chang ing the PCH reg is ter be cause the
add op er a tion strad dled a code page bound ary. How ever, the addwf opcode does
not up date PCH so the re sult ing ad dress (0x430) is not the de sired one and the
computed goto will fail.

Sev eral more-or-less-com pli cated meth ods of avoid ing this flaw have been pub -
lished and can be found in the on line lit er a ture. It is pos si ble to write code that an -
tic i pates if a page bound ary will be crossed by es ti mat ing the ta ble size and the
ini tial PCL value. If so, the high part of the ad dress can be ad justed. A sim pler so lu -
tion is to place the ta ble at a known lo ca tion in mem ory where the PCL value is suf -
fi ciently low to ac com mo date the worst case. This method is used by the pro gram
de scribed in the fol low ing sub sec tion.

7.3.2 As sem bler Seven-Seg ment LED Pro gram

The sam ple pro gram DIPs_to_7Seg.asm in this book's soft ware re source mon i tors the
state of four tog gle (DIP) switches in port A lines 2 to 5 and dis plays the se lected hex a -
dec i mal digit on the seven-seg ment LED wired to port C.

Ac cess Bank Op er a tion

The main() func tion in the pro gram DIPs_to_7Seg.asm be gins as fol lows:

136 Chap ter 7

;==

; main pro gram en try point

;==

main:

; Set BSR for bank 0 op er a tions

 movlb 0 ; Bank 0

In this frag ment, code uses the movlb in struc tion to move a lit eral value to the
low nib ble in the Bank Se lect Reg is ter. The re sult is that the pro gram will use the ac -
cess bank (BSR = 0) in all in struc tions whether the ac cess bank bit is set to use the
BSR reg is ter (value = 1) or to the ac cess bank (value = 0). This sim pli fies mem ory
ad dress ing for ap pli ca tions that do not re quire more than 128 bytes of data space by
forc ing all op er a tions to take place in the ac cess bank. For ex am ple, a pro gram de -
fines a data el e ment at phys i cal address 0x20 (bank 0) as follows:

TEMP equ 0x020;

Code then pro ceeds to clear the BSR bit

movlb 0

Here af ter, all in struc tions re fer to the ac cess bank, whether the ac cess bank bit
(bit a) is set to A (value = 0) or to B (value = 1). The re sult is that bank ing has been
ef fec tively elim i nated and the pro gram ex e cutes in a flat data space that ex tends
from 0x0 to 0x7f. The sim pli fi ca tion is valid as long as data is not placed out side the
lim its of the ac cess bank. The fol low ing code lines show pos si ble variations:

movf TEMP,W,B ; Move from TEMP to W us ing BSR

; Because BSR = 0 ac cess bank is used

or

movf TEMP,W,A ; Move from TEMP to w in ac cess bank

or

movf TEMP,W ; Same ac tion with no BSR bit

; Ac cess bank is as sumed when BSR

; bit is bit omit ted.

In the re main ing part of the pro gram the a bit (bank se lect bit) is omit ted in the
source.

Port A for Dig i tal Op er a tion

The fol low ing code lines re late to the fact that the cir cuit used by this ap pli ca tion (see
Fig ure 7.2) is wired so that the four lines of the DIP switch are con nected to lines 2 to 5
in port A, and that port A de faults to an a log op er a tion. Con ver sion from an a log to dig i -
tal is en sured as fol lows:

 Pro gram ming Sim ple In put and Out put 137

; Init Port A for dig i tal op er a tion
 clrf PORTA,0
 clrf LATA,0
; ADCON1 is the con fig u ra tion reg is ter for the A/D
; func tions in Port A. A value of 0b011x sets all
; lines for dig i tal op er a tion
 movlw B'00000110' ; Dig i tal mode
 movwf ADCON1,0

At this point, port A lines op er ate as dig i tal in put sources and will cor rectly re -
port ac tion on the DIP switch. The code that fol lows sets port A lines 2 to 5 for in put
and port C lines for output.

; Port A. Set lines 2 to 5 for in put
movlw B'00111100' ; w = 00111100 bi nary
movwf TRISA,0 ; port A (lines 2 to 5) to in put

; Ini tial ize all lines in PORT C for out put
movlw B'00000000' ; 0 = out put
movwf TRISC,0 ; Port C tris reg is ter

DIP Switch Pro cess ing

The state of the DIP switch on Port A is ob tained by read ing the port value. In this sam -
ple pro gram code uses a lo cal vari able named TEMP in or der to avoid writ ing to Port A
in the re quired ma nip u la tions. In ad di tion, the DIP switch de vice is wired ac tive low,
there fore the bits must be in verted in or der to re flect their phys i cal state. Also, the bits
in port A wired to the DIP switch are 2 to 5; there fore the un used bits must be masked
out and the re main ing ones shifted right two po si tions. The bitwise ma nip u la tions per -
formed by the code are as fol lows:

;===============================
; DIP switch pro cess ing
;===============================
DIPState:
; Read Port A and move to TEMP reg is ter to avoid read/math
; op er a tions on Port A
 movf PORTA,W
 movwf TEMP
; Be cause board is wired ac tive low then all switch bits
; must be ne gated. This is done by XORing with 1-bits
 movlw b'11111111'
 xorwf TEMP,1 ; In vert all bits
; Mask off all un used bits
 movlw b'00111100'
 andwf TEMP,1
; Ro tate port value right, twice
 rrncf TEMP,1
 rrncf TEMP,1

.

.

.

 At this point, the lo cal vari able named TEMP holds the switch value in the range
0x0 to 0xf.

138 Chap ter 7

Seven-Seg ment Code with Com puted Goto

The pro gram uses a com puted goto (see Sec tion 7.3.1) in or der to ob tain the
seven-seg ment dis play code for the nu meric value en tered in the seven-seg ment LED.
In or der to avoid the ad dress ing prob lems men tioned in Sec tion 7.3.1, the ta ble con -
tain ing the seven-seg ment code is placed in a mem ory lo ca tion where a code page
bound ary will not be ex ceeded dur ing ta ble ac cess. Be cause the ta ble con sists of eigh -
teen en tries and each one oc cu pies 2 bytes in pro gram mem ory, a space of 36 bytes
must be avail able in the code page where the ta ble is lo cated. To en sure this, the ta ble
is placed as fol lows:

.

.

.
org 0x018 ; Low-pri or ity vec tor
retfie

;================================
; Ta ble to re turns 7-seg ment
; codes
;================================
 org $+2
;
codeTable:

addwf PCL,F ; PCL is pro gram coun ter latch
retlw 0x3f ; 0 code
retlw 0x06 ; 1
retlw 0x5b ; 2
retlw 0x4f ; 3
retlw 0x66 ; 4
retlw 0x6d ; 5
retlw 0x7d ; 6
retlw 0x07 ; 7
retlw 0x7f ; 8
retlw 0x6f ; 9
retlw 0x77 ; A
retlw 0x7c ; B
retlw 0x39 ; C
retlw 0x5b ; D
retlw 0x79 ; E
retlw 0x71 ; F
retlw 0x00 ; Pad ding

The org state ment for the ta ble leaves 2 bytes for the low-pri or ity in ter rupt vec tor
and places the ta ble at ad dress 0x1A, which cor re sponds to a dec i mal off set of 26
bytes into the code page. Be cause 26 plus 36 (length of ta ble) equals 62 and the code
page is 256 bytes, we are sure that there is suf fi cient space for the ta ble in the code
page and that page bound ary prob lems are avoided. Con tin u ing from the pre vi ous
code frag ment, the code for ac cess ing the ta ble is as fol lows:

.

.

.
; At this point the TEMP reg is ter con tains a 4-bit value
; in the range 0 to 0xf. In PIC18 de vices this value must
; be dou bled to ob tain off set into ta ble since the pro gram
; coun ter in cre ments by 2 to ac cess se quen tial in struc tions

movf TEMP,W ; Off set to W

 Pro gram ming Sim ple In put and Out put 139

addwf TEMP ; Add to TEMP
; Use value in TEMP to ob tain Seven-Seg ment dis play code

movf TEMP,W ; TEMP to W
call codeTable
movwf PORTC ; Dis play switch bits
goto DIPState ; Loop end

7.3.3 As sem bler Ta ble Lookup Sam ple Pro gram
The sam ple pro gram DIPs_to_7Seg_Tbl.asm in this book's soft ware re source mon i -
tors the state of four tog gle (DIP) switches in Port A lines 2 to 5 and dis plays the se -
lected hex a dec i mal digit on the seven-seg ment LED wired to Port C. This pro gram
uses a read op er a tion of a ta ble in pro gram mem ory in stead of the com puted goto
method of the pre vi ous pro gram. The ta ble ac cess tech nique has sev eral ad van tages
over the com puted goto:

1. The ta ble size is only lim ited by the amount of avail able RAM.

2. Each ta ble en try takes up 8 in stead of 16 bits.

3. The ta ble can be lo cated any where in the de vice's code mem ory space.

The sam ple pro gram ini tial iza tion and ini tial pro cess ing is iden ti cal to the pro -
gram DIPs_to_7Seg.asm pre vi ously dis cussed. The ta ble of seven-seg ment codes is
de fined as fol lows:

;================================
; Ta ble of 7-seg ment codes
;================================
Ta ble:

db 0x3f, 0x06, 0x5b, 0x4f, 0x66, 0x6d, 0x7d, 0x07
db 0x7f, 0x6f, 0x77, 0x7c, 0x39, 0x5b, 0x79, 0x71

The use of com mas with the db di rec tive has the ef fect of al lo cat ing sin gle bytes
for the data. Had ev ery data byte been de fined by means of an in di vid ual db di rec -
tive, the as sem bler would have al lo cated two bytes per entry.

The pro cess ing op er a tions listed be low as sume that the TEMP reg is ter al ready
holds the de sired off set into the ta ble, not dou ble the off set as in the pre vi ous pro -
gram. The next step in the code is to set the ta ble pointer to the ta ble ad dress. The
21-bit ta ble pointer is con tained in three dif fer ent reg is ters named TBLPTRU <4:0>,
TBLPTRH <7:0> and TBLPTRL <7:0>. The ad dress range of the 21-bit pointer is 2
Mbytes. The ex am ple code uses the LOW, HIGH, and UPPER op er a tors to ob tain the
three com po nents of the ad dress, as fol lows:

 movlw LOW Ta ble ; Get low ad dress of Ta ble
 movwf TBLPTRL ; Store in ta ble pointer low reg is ter
 movlw HIGH Ta ble ; Get high byte
 movwf TBLPTRH ; Store it
 movlw UPPER Ta ble ; Get up per byte
 movwf TBLPTRU ; Store it
 movf TEMP,W ; in dex to W

140 Chap ter 7

Now the off set of the de sired ta ble en try (stored in the vari able named TEMP)
must be added to the ta ble pointer. Code must take into ac count the pos si bil ity of
over flow ing the low and high pointer bytes. Pro cess ing is as follows:

; Add off set to ta ble pointer accomodating pos si ble over flow

 addwf TBLPTRL,f ; Add in dex to ta ble pointer low

 btfss STATUS,C ; Is there a carry?

 goto readTbl ; Go if no carry

 incf TBLPTRH,F ; Add one to high pointer

 btfss STATUS,C ; Test carry again

 goto readTbl

 incf TBLPTRU,F ; Add one to up per pointer

readTbl:

Read ing the ta ble value us ing the TBLPTR reg is ter re quires us ing the spe cial ta -
ble read in struc tion tblrd. The in struc tion can be for mat ted us ing four dif fer ent
operands, as shown in Table 7.1

Ta ble 7.1

For mats for the tblrd In struc tions

INSTRUCTION ACTION

tblrd * Read pro gram mem ory into TABLAT us ing TBLPTR.
No change to TBLPTR.

tblrd *+ Read pro gram mem ory into TABLAT us ing TBLPTR.
TBLPTR in cre mented af ter read op er a tion.

tblrd *- Read pro gram mem ory into TABLAT us ing TBLPTR.
TBLPTR dec re ment ed af ter read op er a tion.

tblrd +* Read pro gram mem ory into TABLAT us ing TBLPTR.
TBLPTR in cre mented be fore read op er a tion.

Note that all ver sions of the tblrd in struc tion read the ta ble en try into the ta ble
latch (TABLAT) reg is ter. The last three vari a tions are rem i nis cent of C language
pointer arith me tic and serve to up date the pointer when se quen tial reads are per -
formed. Once the ta ble en try has been read into TABLAT, this reg is ter can be moved
to the out put port di rectly (movwff) or through the W reg is ter, as shown be low.

readTbl:

 tblrd * ; Read byte from ta ble (into TABLAT)

 movf TABLAT,W ; Move TABLAT to W

 movwf PORTC ; Dis play switch bits

 goto DIPState

7.4 C Lan guage Seven-Seg ment LED Pro grams
In the sections that fol low we dis cuss the C language code for pro grams that read the
state of four DIP switches and dis play the cor re spond ing hex code in a seven-seg ment
LED. These are high-lelvel ver sions of the pro grams DIPs_to_7Seg.asm and
DIPs_to_7Seg_Tbl.asm pre sented pre vi ously.

 Pro gram ming Sim ple In put and Out put 141

7.4.1 Code Se lec tion by Switch Con struct
The sam ple pro gram C_DIPs_to_7Seg.c in this book's soft ware pack age reads the
state of four DIP switches on Port A lines 2 to 5 and dis plays the cor re spond ing hex a -
dec i mal code on the seven-seg ment LED wired to Port C lines 0 to 6. The sam ple pro -
gram uses a swuitch con struct to ob tain the seven-seg ment hex code. Af ter initializing
Port A for dig i tal in put and Port C for out put, the pro gram pro ceeds as follows:

un signed char DIPs = 0;
un signed char digitCode;

while(1)
{

// Read DIP switches and shift left
DIPs = (PORTA >> 2);
// DIPs are ac tive low. In vert bits
DIPs ^= 0xff; // All bits XORed
// Mask off high or der nib ble
DIPs &= 0x0f;

switch (DIPs)
{

case 0x0:
digitCode = 0x3f;
break;

case 0x1:
digitCode = 0x06;
break;

case 0x2:
digitCode = 0x5b;
break;

case 0x3:
digitCode = 0x4f;
break;

.

.

.
case 0x0f:

digitCode = 0x71;
break;

de fault:
digitCode = 0x00;
break;

}
// Dis play digit code

PORTC = digitCode;
}

}

The C language pro cess ing re quires no fur ther com ment.

7.4.2 Code Se lec tion by Ta ble Lookup
The sam ple pro gram C_DIPs_to_7Seg_Tbl.c also reads the state of four DIP switches
and dis plays the cor re spond ing hex digit on a seven-seg ment LED. In this case, the
pro gram finds the cor re spond ing hex code by look ing up in an ar ray-based ta ble. The
re sult ing source code and pro gram is more com pact and ef fi cient.

142 Chap ter 7

The ar ray of a hex codes can be placed in pro gram mem ory or in data mem ory.
Usu ally the pro gram mer chooses what ever mem ory space is more abun dant in the
pro gram. The rom and ram qual i fi ers that are part of the C18 im ple men ta tion (see
Sec tion 6.6.6) al low plac ing the ta ble in data or pro gram mem ory. If in pro gram
mem ory (rom qual i fier) then the dec la ra tion must be global be cause auto data can -
not be placed in rom. The sam ple pro gram de fines the global ta ble of seven-seg ment
codes as fol lows:

rom un signed char codeTable[]={0x3f, 0x06, 0x5b, 0x4f,
 0x66, 0x6d, 0x7d, 0x07,
 0x7f, 0x6f, 0x77, 0x7c,
 0x39, 0x5b, 0x79, 0x71};

/***
 main pro gram
**/

void main(void)
{

Once the port and tris reg is ters are in i tial ized code can ac cess the ta ble
as fol lows:

while(1)
{

// Read DIP switches and shift left
DIPs = (PORTA >> 2);
// DIPs are ac tive low. In vert bits
DIPs ^= 0xff; // All bits XORed
// Mask off high or der nib ble
DIPs &= 0x0f;
// Look up in ar ray ta ble and dis play code
PORTC = codeTable[DIPs];

}

7.5 A Dem on stra tion Board
Dem on stra tion (or demo) boards are a use ful tool in mas ter ing PIC pro gram ming.
Many are avail able com mer cially and, like pro gram mers, you will find a cot tage in dus -
try of PIC demo boards on the Internet. Con struct ing your own demo boards and cir -
cuits is not a dif fi cult task and is a valu able learn ing ex pe ri ence. Al ter na tively,
com po nents can be placed on a bread board or wire-wrapped onto a spe cial cir cuit
board. Printed cir cuit boards can be home-made or or dered through the Internet. Ap -
pen dix C con tains in struc tions on how to build your own PCBs. Fig ure 7.3 shows a
18F452 demo board with the fol low ing el e ments:

bank of eight LEDs: 4 green and 4 red
seven-seg ment LED
buzzer
Liq uid Crys tal Dis play
Two pushbutton switches
DIP switch with four tog gle arms
5K po ten ti om e ter
LM35 tem per a ture sen sor

 Pro gram ming Sim ple In put and Out put 143

NJU6355 real-time clock
Piezo buzzer
Re set switch
RJ-11 con nec tor to ex ter nal debugger
78L05 power sup ply

Fig ure 7.3 shows the wir ing di a gram for the Demo Board 18F452-A.

Fig ure 7.3 Wir ing di a gram for Demo Board 18F452-A.

144 Chap ter 7

18F452

DEMO BOARD 18F452-A

+5v

RA2

RA3

RA4

RA5

+5v +5v

+5v

+5v

R
=

1
0

K

R
=

1
0

K

R
=

1
0

K

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

RESET

+5v

7-seg a/LED 0 (red)

7-seg b/LED 1 (red)

7-seg c/LED 2 (red)

7-seg d/LED 3 (red)

Dip Sw 1

Dip Sw 2

Dip Sw 3

Dip Sw 4

LCD RS

LCD E

LCD RW

LED 7 (green)

7seg g/LED 6 (green)

7-seg f/LED 5 (green)

7-seg e/LED 4 (green)

LCD data 7

LCD data 6

LCD data 5

LCD data 4

RB0

RB1

RB2

RTC IO

RTC CE

RTC CLK

RTC DATA

RB3

LCD data 3

LCD data 2

LCD data 0

LCD data 1

+5v

+5v

Picvue LCD - PVC160206QYL04- 2 rows x 16

LCD wiring

Top view

4 Mhz Osc

C=0.1mFEC=100mF

78L05

INOUT
9 -12 v DC

330 Ohm

Regulated power supply

8 LEDs on Port C

+5 v DC

+

1

2

13

data 7
data 5
data 3
data 1

E
RS

data 6
data 4
data 2
data 0
RW

Vdd +5v

1

14

100 Ohm

2

a

PWR
ON

b

cd

e

220 Ohm

e

f

f

g

g

d

c

b

a

+5v

7-segment
LED

RC0

RC1

RC4

RC3

RC5

RC6

RC2

Shares PORTC
with LEDs

Piezo
Buzzer

RC2

8 LEDs on
PORT C

7-SEG LED
on PORT C

J3

J1/J2

PB switch
1

PB switch
2LM335Z

Temp. Sensor
(flat side view)

32.768 kHz
Crystal

NJU6355ED

+5v

1

2

3

4

8

7

6

5

+5v

DATA

CLK

CE

IO

X1

X2

GND

Real-time Clock (RB0-RB3)

RJ-11
(to CD2)

MCLR/Vpp

RJ-11 (6) 6 5 4 3 2 1

10k R
X 4

DIP SW x 4

MCLR/VPP

RAO/ANO

RA1/AN1

RA2/AN2A/REF-

RA3/AN3A/REF+

RA4/TOCKI

RA5/AN4/SS/LVDIN

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1/CLKI

OSC2/CLKO/RA6

RCO/T1OSO/TICK1

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RDO/PSPO

RD1/PSP1

RB7/PGD

RB6/PGC

RB5/PGM

RB4

RB3/CCP2*

RB2/INT2

RB1/INT1

R BO/INTO

Vdd

Vss

RD7/PSP7

RD6/PSP6

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2

+5v

Pot 5K

7.6.1 Power Sup ply
Most PIC-based cir cuits re quire a +5V power source. One pos si ble source of power is
one or more bat ter ies. There is an large se lec tion of bat tery types, sizes, and qual i ties.
The most com mon one for use in ex per i men tal cir cuits are listed in Ta ble 7.2.

Ta ble 7.2

Com mon Dry Cell Al ka line Bat tery Types

DESIGNATION VOLTS LENGTH DIAMETER

D 1.5 61.5 mm 34.2 mm
C 1.5 50 mm 26.2 mm
AA 1.5 50 mm 14.2 mm
AAA 1.5 44.5 mm 10.5 mm
AAAA 1.5 42.5 mm 8.3 mm

All the bat ter ies in Ta ble 7.2 pro duce 1.5 volts. This means that for a PIC
with a sup ply volt age from 2 to 6 volts, two to four bat ter ies will be ad e quate. Note
that in se lect ing the bat tery power source for a PIC-based cir cuit, other el e ments
be sides the microcontroller it self must be con sid ered, such as the os cil la tor. Hold -
ers for sev eral in ter con nected bat ter ies are avail able at electronic supply sources.

Al ter na tively, the power sup ply can be a trans former with 120VAC in put and 3 to
12VDC. These are usu ally called AC/DC adapt ers. The most use ful types for the ex -
per i menter are the ones with an ON/OFF switch and sev eral selectable out put volt -
ages. Color-coded al li ga tor clips at the out put wires are also a con ve nience.

Volt age Reg u la tor

A use ful de vice for a typ i cal PIC-based power source is a volt age reg u la tor IC. The
7805 volt age reg u la tor is ubiq ui tous in most PIC-based boards with AC/DC adapter
sources. The IC is a three-pin de vice whose pur pose is to en sure a sta ble volt age
source not to ex ceed the de vice rat ing. The 7805 is rated for 5V and will pro duce this
out put from any in put source in the range 8 to 35V. Be cause the ex cess volt age is dis si -
pated as heat, the 7805 is equipped with a me tal lic plate in tended for at tach ing a heat
sink. The heat sink is not re quired in a typ i cal PIC ap pli ca tion but it is a good idea to
main tain the sup ply volt age closer to the de vice min i mum rather than its max i mum.
The volt age reg u la tor cir cuit also re quires two ca pac i tors: one elec tro lytic and the
other one not. Fig ure 7.4 shows a power source cir cuit that uses the 7805 reg u la tor.

Fig ure 7.4 Volt age sta bi lizer cir cuit.

 Pro gram ming Sim ple In put and Out put 145

C=0.1mFEC=100mF

78L05

INOUT

9 -35v DC
input

+5v DC
output

+

Chap ter 8

In ter rupts

8.1 In ter rupt Mech a nism

An in ter rupt is an asyn chron ous sig nal for pro ces sor at ten tion that can orig i nate in
hard ware or in soft ware. The in ter rupt mech a nism pro vides a way to avoid wast ing
pro ces sor time by avoid ing in ef fec tive poll ing rou tines in closed loops. In ter rupts al -
low the pro ces sor to con tinue its work un til the event that trig gers the in ter rupt takes
place. It also en sures that the CPU will re ceive a sig nal when ever an event oc curs that
re quires its at ten tion.

In ter rupts are use ful in many pro gram ming sit u a tions; for ex am ple,

• Pre vent ing the CPU from be ing tied up while wait ing for a pro cess to be gin or ter -
mi nate. One com mon use for an in ter rupt is to no tify the pro ces sor that a data
trans fer can take place.

• Re spond ing to a hard ware con di tion such as the press ing of a switch, the trip ping
of a le ver, or ac tion on a sen sor.

• Re spond ing to time-crit i cal events such as an ac tion that must take place im me di -
ately on a power fail ure con di tion.

• Pro vid ing an exit from a rou tine or an ap pli ca tion on the oc cur rence of an er ror
con di tion.

• Keep ing track of time and up dat ing time-keep ing reg is ters.

• Task switch ing in op er at ing sys tems or multitasking en vi ron ments.

8.2 PIC18 In ter rupt Sys tem

The PIC 18 in ter rupt sys tem con sists of two vec tors. The high-pri or ity in ter rupt vec tor
is lo cated at ad dress 0x08 and the low-pri or ity vec tor is at 0x18. A high-pri or ity event
over rides a low-pri or ity event in prog ress. Each in ter rupt source can be as signed a
high-pri or ity or a low-pri or ity level.

147

The fol low ing code frag ment used in the as sem bler pro grams pre vi ously dis -
cussed shows how the tem plate pro vides links for the low-pri or ity and high-pri or ity
in ter rupt vectors.

;==
; pro gram
;==

org 0 ; start at ad dress
goto main

; Space for in ter rupt han dlers
;=============================
; in ter rupt in ter cepts
;=============================

org 0x008 ; High-pri or ity vec tor
retfie
org 0x018 ; Low-pri or ity vec tor
retfie

;==
; main pro gram en try point
;==
main:

...

8.2.1 Hard ware Sources
In the 18F PIC fam ily, in ter rupts can orig i nate in the fol low ing hard ware sources:

• Ex ter nal in ter rupt from the INT, INT1, and INT2 pins

• In ter rupt on change on RB7:RB4 pins

• Timer over flow on TMR0, TMR1, TMR2, AND TMR3

• USART in ter rupts

• SSP in ter rupt

• C bus col li sion in ter rupt

• A/D con ver sion com plete

• CCP in ter rupt

• LVD in ter rupt

• Par al lel Slave Port

• CAN in ter rupts

The first three in ter rupt sources are cov ered in the pres ent chap ter. The re main -
ing ones are dis cussed in the con text of the spe cific mod ules.

8.2.2 In ter rupt Con trol and Sta tus Reg is ters
Sev eral SFRs are de voted to con trol ling in ter rupts and recoding their sta tus. These
are the fol low ing reg is ters:

INTCON, INTCON2, INTCON3, PIR1, PIR2, PIE1, PIE2, IPR1, and IPR2.

148 Chap ter 8

Fig ure 8.1 INTCON register bitmap.

The INTCON reg is ter con tains a bit la beled GIE that serves to en able and dis able
global in ter rupts. If this bit is set, all in ter rupts are en abled. Some spe cific mem bers
of the PIC 18F fam ily have ad di tional INTCON, PIR, PIE, and IPR reg is ters to sup -
port their hard ware.

INTCON Reg is ters

The INTCON reg is ters contain var i ous bits that re late to in ter rupts and that al low en -
abling and dis abling, es tab lish ing pri or i ties, and de ter min ing in ter rupt sta tus. Fig ure
8.1 is a de scrip tive bitmap of the INTCON reg is ter. Note that the in ter rupt flag bits are
set when ever an in ter rupt con di tion takes place, re gard less of the state of its cor re -
spond ing en able bit or the global en able bit. User soft ware must en sure the ap pro pri -
ate in ter rupt flag bits are clear prior to en abling an in ter rupt. This fea ture al lows for
soft ware poll ing.

 In ter rupts 149

bit 7 GIE/GIEH: Global Interrupt Enable bit
 When IPEN = 0:
 1 = Enables all unmasked interrupts
 0 = Disables all interrupts
 When IPEN = 1:
 1 = Enables all high priority interrupts
 0 = Disables all interrupts
bit 6 PEIE/GIEL: Peripheral Interrupt Enable bit
 When IPEN = 0:
 1 = Enables all unmasked peripheral interrupts
 0 = Disables all peripheral interrupts
 When IPEN = 1:
 1 = Enables all low priority peripheral interrupts
 0 = Disables all low priority peripheral interrupts
bit 5 TMR0IE: TMR0 Overflow Interrupt Enable bit
 1 = Enables the TMR0 overflow interrupt
 0 = Disables the TMR0 overflow interrupt
bit 4 INT0IE: INT0 External Interrupt Enable bit
 1 = Enables the INT0 external interrupt
 0 = Disables the INT0 external interrupt
bit 3 RBIE: RB Port Change Interrupt Enable bit
 1 = Enables the RB port change interrupt
 0 = Disables the RB port change interrupt
bit 2 TMR0IF: TMR0 Overflow Interrupt Flag bit
 1 = TMR0 register has overflowed
 (must be cleared in software)
 0 = TMR0 register did not overflow
bit 1 INT0IF: INT0 External Interrupt Flag bit
 1 = The INT0 external interrupt occurred
 (must be cleared in software)
 0 = The INT0 external interrupt did not occur
bit 0 RBIF: RB Port Change Interrupt Flag bit
 1 = At least one of the RB7:RB4 pins changed state
 (must be cleared in software)
 0 = None of the RB7:RB4 pins have changed state
 Note: A mismatch condition will continue to set
 this bit. Reading PORTB will end the
 mismatch condition and allow the bit to
 be cleared.

GIE/
GIEH

bit 0bit 7

PEIE/
GIEL TMROIE INTOIE RBIE TMROIF INTOIF RBIF

Fig ure 8.2 INTCON2 reg is ter bitmap.

The IPEN bit re ferred to in Fig ure 8.1 is lo cated in the RCON reg is ter. This bit al -
lows en abling and dis abling pri or ity lev els of the in ter rupt sys tem. If the bit is set,
pri or ity lev els are en abled. Oth er wise, pri or ity lev els are dis abled. The INTCON2
and INTCON3 reg is ters in the 18F452 de vice per form ad di tional in ter rupt con trol,
pri or i ties, and sta tus func tions. Fig ure 8.2 is a de scrip tive bitmap of the INTCON2
reg is ter. Fig ure 8.3 is a bitmap of the INTCON3 reg is ter.

Fig ure 8.3 INTCON3 register bitmap.

150 Chap ter 8

REPU

bit 0bit 7

INTEDGO INTEDG1 INTEDG2 - TMROIP - RBIP

bit 7 RBPU: PORTB Pull-up Enable bit
 1 = All PORTB pull-ups are disabled
 0 = PORTB pull-ups are enabled by individual
 port latch values
bit 6 INTEDG0:External Interrupt0 Edge Select bit
 1 = Interrupt on rising edge
 0 = Interrupt on falling edge
bit 5 INTEDG1: External Interrupt1 Edge Select bit
 1 = Interrupt on rising edge
 0 = Interrupt on falling edge
bit 4 INTEDG2: External Interrupt2 Edge Select bit
 1 = Interrupt on rising edge
 0 = Interrupt on falling edge
bit 3 Unimplemented: Read as '1'
bit 2 TMR0IP: TMR0 Overflow Interrupt Priority bit
 1 = TMR0 Overflow Interrupt is high priority
 0 = TMR0 Overflow Interrupt is low priority
bit 1 Unimplemented: Read as '1'
bit 0 RBIP: RB Port Change Interrupt Priority bit
 1 = RB Port Change Interrupt is high priority
 0 = RB Port Change Interrupt is low priority

INT2IP

bit 0bit 7

INT1IP - INT2IE INT1IE INT2IF- INT1IF

bit 7 INT2IP: INT2 External Interrupt Priority bit
 1 = INT2 External Interrupt is a high priority event
 0 = INT2 External Interrupt is a low priority event
bit 6 INT1IP: INT1 External Interrupt Priority bit
 1 = INT1 External Interrupt is a high priority event
 0 = INT1 External Interrupt is a low priority event
bit 5 Unimplemented: Read as '0'
bit 4 INT2IE: INT2 External Interrupt Enable bit
 1 = Enables the INT2 external interrupt
 0 = Disables the INT2 external interrupt
bit 3 INT1IE: INT1 External Interrupt Enable bit
 1 = Enables the INT1 external interrupt
 0 = Disables the INT1 external interrupt
bit 2 Unimplemented: Read as '0'
bit 1 INT2IF: INT2 External Interrupt Flag bit
 1 = The INT2 external interrupt occurred
 (must be cleared in software)
 0 = The INT2 external interrupt did not occur
bit 0 INT1IF: INT1 External Interrupt Flag bit
 1 = The INT1 external interrupt occurred
 (must be cleared in software)
 0 = The INT1 external interrupt did not occur

The PIE Reg is ters

The reg is ters ge ner i cally re ferred to as PIE (Pe riph eral In ter rupts En able) pro vide in -
for ma tion and con trol over the in ter rupts re lated to pe riph eral de vices. The num ber
of PIE reg is ters is de vice de pend ent and so is their func tion. In the 18F452 there are
two PIE reg is ters la beled PIE1 and PIE2. Fig ure 8.4 is a de scrip tive bitmap of the PIE1
reg is ter. Fig ure 8.5 shows the PIE2 reg is ter.

Fig ure 8.4 PIE1 reg is ter bitmap

Fig ure 8.5 PIE2 register bitmap.

 In ter rupts 151

bit 0bit 7

--- EEIE BCLIE LVDIE TMR3IE CCP2IE

bit 7-5 Unimplemented: Read as '0'
bit 4 EEIE: Data EEPROM/FLASH Write Operation Interrupt Enable bit
 1 = Enabled
 0 = Disabled
bit 3 BCLIE: Bus Collision Interrupt Enable bit
 1 = Enabled
 0 = Disabled
bit 2 LVDIE: Low Voltage Detect Interrupt Enable bit
 1 = Enabled
 0 = Disabled
bit 1 TMR3IE: TMR3 Overflow Interrupt Enable bit
 1 = Enables the TMR3 overflow interrupt
 0 = Disables the TMR3 overflow interrupt
bit 0 CCP2IE: CCP2 Interrupt Enable bit
 1 = Enables the CCP2 interrupt
 0 = Disables the CCP2 interrupt

PSPIE

bit 0bit 7

ADIE RCIE TXIE SSPIE CCP1IE TMR2IE TMR1IE

bit 7 PSPIE(1): Parallel Slave Port Read/Write Interrupt Enable bit
 1 = Enables the PSP read/write interrupt
 0 = Disables the PSP read/write interrupt
bit 6 ADIE: A/D Converter Interrupt Enable bit
 1 = Enables the A/D interrupt
 0 = Disables the A/D interrupt
bit 5 RCIE: USART Receive Interrupt Enable bit
 1 = Enables the USART receive interrupt
 0 = Disables the USART receive interrupt
bit 4 TXIE: USART Transmit Interrupt Enable bit
 1 = Enables the USART transmit interrupt
 0 = Disables the USART transmit interrupt
bit 3 SSPIE: Master Synchronous Serial Port Interrupt Enable bit
 1 = Enables the MSSP interrupt
 0 = Disables the MSSP interrupt
bit 2 CCP1IE: CCP1 Interrupt Enable bit
 1 = Enables the CCP1 interrupt
 0 = Disables the CCP1 interrupt
bit 1 TMR2IE: TMR2 to PR2 Match Interrupt Enable bit
 1 = Enables the TMR2 to PR2 match interrupt
 0 = Disables the TMR2 to PR2 match interrupt
bit 0 TMR1IE: TMR1 Overflow Interrupt Enable bit
 1 = Enables the TMR1 overflow interrupt
 0 = Disables the TMR1 overflow interrupt

Note that if the de vice has a PIE reg is ter and IPEN = 0, the PEIE bit must be set to
en able the spe cific pe riph eral in ter rupt.

PIR Reg is ters

The Pe riph eral In ter rupt Re quest Reg is ters (la beled PIR) con tain the in di vid ual flag
bits for the pe riph eral in ter rupts. In the 18F452 de vice there are two reg is ters: PIR1
and PIR2. Fig ure 8.6 is a de scrip tive bitmap of the PIR1 reg is ter, Fig ure 8.7 of the PIR2
register.

Fig ure 8.6 PIR1 reg is ter bitmap.

IPR Reg is ters

The Pe riph eral In ter rupt Pri or ity Reg is ters (IPR) con tain the in di vid ual bits for set -
ting the pri or ity of the var i ous pe riph eral in ter rupts. In the 18F452, there are two IPR
reg is ters, la beled IPR1 and IPR2, re spec tively. For the pri or ity bits to take ef fect the
IPEN bit in the RCON reg is ter must be set. Fig ure 8.8 is a de scrip tive bitmap of the
IPR1 reg is ter and Fig ure 8.9 of the IPR2 reg is ter.

152 Chap ter 8

PSPIF

bit 0bit 7

ADIF RCIF TXIF SSPIF CCP1IF TMR2IF TMR1IF

bit 7 Parallel Slave Port Read/Write Interrupt Flag bit
 1 = A read or a write operation has taken place
 (must be cleared in software)
 0 = No read or write has occurred
bit 6 : A/D Converter Interrupt Flag bit
 1 = An A/D conversion completed
 (must be cleared in software)
 0 = The A/D conversion is not complete
bit 5 : USART Receive Interrupt Flag bit
 1 = The USART receive buffer, RCREG, is full
 (cleared when RCREG is read
 0 = The USART receive buffer is empty
bit 4 : USART Transmit Interrupt Flag bit
 1 = The USART transmit buffer, TXREG, is empty
 (cleared when TXREG is written)
 0 = The USART transmit buffer is full
bit 3 : Master Synchronous Serial Port Interrupt Flag bit
 1 = The transmission/reception is complete
 (must be cleared in software)
 0 = Waiting to transmit/receive
bit 2 : CCP1 Interrupt Flag bit
 Capture mode:
 1 = A TMR1 register capture occurred
 (must be cleared in software)
 0 = No TMR1 register capture occurred
 Compare mode:
 1 = A TMR1 register compare match occurred
 (must be cleared in software)
 0 = No TMR1 register compare match occurred
 PWM mode:
 Not used in this mode
bit 1 TMR2 to PR2 Match Interrupt Flag bit
 1 = TMR2 to PR2 match occurred (must be cleared in software)
 0 = No TMR2 to PR2 match occurred
bit 0 TMR1 Overflow Interrupt Flag bit
 1 = TMR1 register overflowed (must be cleared in software)
 0 = MR1 register did not overflow

PSPIF :

ADIF

RCIF

TXIF

SSPIF

CCP1IF

TMR2IF:

TMR1IF:

(1)

Fig ure 8.7 PIR2 reg is ter bitmap.

Fig ure 8.8 IPR1 reg is ter bitmap.

 In ter rupts 153

 bit 0bit 7

--- EEIF BCLIF LVDIF TMR3IF CCP2IF

bit 7-5 Read as '0'
bit 4 : Data EEPROM/FLASH Write Operation Interrupt Flag bit
 1 = The Write operation is complete
 (must be cleared in software)
 0 = The Write operation is not complete, or has not
 been started
bit 3 : Bus Collision Interrupt Flag bit
 1 = A bus collision occurred
 (must be cleared in software)
 0 = No bus collision occurred
bit 2 : Low Voltage Detect Interrupt Flag bit
 1 = A low voltage condition occurred
 (must be cleared in software)
 0 = The device voltage is above the Low Voltage Detect
 trip point
bit 1 : TMR3 Overflow Interrupt Flag bit
 1 = TMR3 register overflowed
 (must be cleared in software)
 0 = TMR3 register did not overflow
bit 0 : CCPx Interrupt Flag bit
 Capture mode:
 1 = A TMR1 register capture occurred
 (must be cleared in software)
 0 = No TMR1 register capture occurred
 Compare mode:
 1 = A TMR1 register compare match occurred
 (must be cleared in software)
 0 = No TMR1 register compare match occurred
 PWM mode:
 Not used in this mode

Unimplemented:
EEIF

BCLIF

LVDIF

TMR3IF

CCP2IF

PSPIP

bit 0bit 7

ADIP RCIP TXIP SSPIP CCP1IP TMR2IP TMR1IP

bit 7 Parallel Slave Port Read/Write Interrupt Priority bit
 1 = High priority
 0 = Low priority
bit 6 : A/D Converter Interrupt Priority bit
 1 = High priority
 0 = Low priority
bit 5 : USART Receive Interrupt Priority bit
 1 = High priority
 0 = Low priority
bit 4 : USART Transmit Interrupt Priority bit
 1 = High priority
 0 = Low priority
bit 3 : Master Synchronous Serial Port Interrupt Priority bit
 1 = High priority
 0 = Low priority
bit 2 : CCP1 Interrupt Priority bit
 1 = High priority
 0 = Low priority
bit 1 : TMR2 to PR2 Match Interrupt Priority bit
 1 = High priority
 0 = Low priority
bit 0 : TMR1 Overflow Interrupt Priority bit
 1 = High priority
 0 = Low priority

PSPIP :

ADIP

RCIP

TXIP

SSPIP

CCP1IP

TMR2IP

TMR1IP

(1)

Fig ure 8.9 IPR2 reg is ter bitmap.

8.2.3 In ter rupt Pri or i ties

Any in ter rupt in the 18F fam ily can be as signed a pri or ity level by clear ing or set ting
the cor re spond ing in ter rupt pri or ity bit in the its IPR reg is ter or the cor re spond ing
INTCON reg is ter. The in ter rupt pri or ity bits are set on a de vice re set; in other words,
all in ter rupts are as signed high-pri or ity at re set. The IPEN bit in the RCON reg is ter en -
ables pri or ity lev els for in ter rupts. If clear, all pri or i ties are high.

High-Pri or ity In ter rupts

A global in ter rupt en able bit labled GIE/GIEH and lo cated in the INTCON reg is ter is
set to en able all un masked in ter rupts or cleared to dis able them. When the GIE/GIEH
bit is en abled, and the pri or ity is high, and the in ter rupt's flag bit and en able bit are set,
then the in ter rupt will take place and ex e cu tion con tin ues at its vec tor address.

In di vid ual in ter rupts can be dis abled through their cor re spond ing en able/dis able
bits in the var i ous reg is ters pre vi ously listed. How ever, the in di vid ual in ter rupt flag
bits are set re gard less of the sta tus of the GIE/GIEH bit. The GIE/GIEH bit is cleared
on re set.

When the sys tem re sponds to a high-pri or ity in ter rupt, the GIE/GIEH bit is au to -
mat i cally cleared to dis able any fur ther in ter rupts, the re turn ad dress is pushed
onto the stack, and the PC is loaded with the ad dress of the in ter rupt vec tor. In the
in ter rupt ser vice rou tine the source of the in ter rupt can be de ter mined by test ing in -
ter rupt flag bits. To avoid re cur sive in ter rupts, these flag bits must be cleared be -
fore reenabling in ter rupts. Most flag bits are re quired to be cleared by the
ap pli ca tion soft ware, al though some are au to mat i cally cleared by the hardware.

154 Chap ter 8

 bit 0bit 7

--- EEIP BCLIP LVDIP TMR3IP CCP2IP

bit 7-5 Read as '0'
bit 4 : Data EEPROM/FLASH Write Operation Interrupt Priority bit
 1 = High priority
 0 = Low priority
bit 3 : Bus Collision Interrupt Priority bit
 1 = High priority
 0 = Low priority
bit 2 : Low Voltage Detect Interrupt Priority bit
 1 = High priority
 0 = Low priority
bit 1 : TMR3 Overflow Interrupt Priority bit
 1 = High priority
 0 = Low priority
bit 0 : CCP2 Interrupt Priority bit
 1 = High priority
 0 = Low priority

Unimplemented:
EEIP

BCLIP

LVDIP

TMR3IP

CCP2IP

The “re turn from in ter rupt” in struc tion, retfie, ter mi nates the in ter rupt rou tine
and sets the GIE/GIEH bit. This ac tion re-en ables the high-pri or ity in ter rupts.

Low-Pri or ity In ter rupts

Low-pri or ity in ter rupts are de fined by hav ing zero in their in ter rupt pri or ity reg is ter
IPRx. The IPEN bit must be set in or der to en able a low-pri or ity in ter rupt. When the
IPEN is set, the PEIE/GIEL bit in the INTCON reg is ter is not used to en able pe riph eral
in ter rupts. Its new func tion is to glob ally en able and dis able low-pri or ity in ter rupts
only. When the ser vice rou tine for a low-pri or ity in ter rupt ex e cutes, the PEIE/GIEL
bit is au to mat i cally cleared in hard ware in or der to dis able any fur ther low- pri or ity in -
ter rupts. The re turn ad dress is pushed onto the stack and the PC is loaded with
0x00018 in stead of 0x00008. All low-pri or ity in ter rupts vec tor at ad dress 0x00018.

In the in ter rupt ser vice rou tine, the source of the low-pri or ity in ter rupt can be de -
ter mined by test ing the low-pri or ity in ter rupt flag bits. The in ter rupt flag bit(s) must
be cleared be fore reenabling in ter rupts to avoid re cur sive in ter rupts. Most flag bits
are re quired to be cleared by the ap pli ca tion soft ware al though some are au to mat i -
cally cleared by the hard ware. On ter mi nat ing a low-pri or ity in ter rupt, the retfie in -
struc tion re sets the PEIE/GIEL bit. No tice that the GIE/GIEH bit's func tion has not
changed in the low-pri or ity in ter rupts be cause it still en ables/disables all in ter rupts;
how ever, it is only cleared by hard ware when ser vic ing a high-pri or ity in ter rupt.

An In ter rupt In ter rupt ing An other One

If a high-pri or ity in ter rupt takes place while a low-pri or ity in ter rupt is in prog ress, the
low-pri or ity in ter rupt will be in ter rupted re gard less of the state of the PEIE/GIEL bit.
This is due to the fact that the PEIE/GIEL bit is used to dis able/en able low-pri or ity in -
ter rupts only. In this case, the GIE/GIEH bit is cleared by hard ware to dis able any fur -
ther high- and low-pri or ity in ter rupts, the re turn ad dress is pushed onto the stack, and
the PC is loaded with 0x00008, which is the high-pri or ity in ter rupt vec tor. In the in ter -
rupt high-pri or ity ser vice rou tine, the source of the in ter rupt can be de ter mined by
test ing the in ter rupt flag bits. The in ter rupt flag bit(s) must be cleared in soft ware be -
fore reenabling in ter rupts to avoid re cur sive in ter rupts. Keep in mind that the GIEH
bit, when cleared, will dis able all in ter rupts regardless of pri or ity. On the other hand, a
low-pri or ity in ter rupt can not in ter rupt a high-pri or ity ISR. In this case the low-pri or ity
in ter rupt will be ser viced af ter all high-pri or ity in ter rupts have ter mi nated.

If a high-pri or ity and a low-pri or ity in ter rupt take place si mul ta neously, the
high-pri or ity in ter rupt ser vice rou tine is al ways ser viced first. In this case, the
GIE/GIEH bit is cleared by the hard ware and the de vice vec tors to lo ca tion 0x00008,
which is the high-pri or ity vec tor. In all cases, af ter the in ter rupt is ser viced, the cor -
re spond ing in ter rupt flag should be cleared to avoid a re cur sive in ter rupt. The retfie
in struc tion on a high-pri or ity in ter rupt han dler re sets the GIE/GIEH bit, and if no
other high-pri or ity in ter rupts are pend ing, the low-pri or ity in ter rupt is ser viced.

8.2.4 Con text Sav ing Op er a tions
The PIC 18F de vices pro vide a “fast con text sav ing” op tion that is coded as fol lows:

retfie 0x01

 In ter rupts 155

The spe cial op er and cre ates a shadow reg is ter that stores the val ues in the
WREG, BSR and STATUS reg is ter. The shadow reg is ters are only one level deep and
are not read able by soft ware. They are loaded with the cur rent value of their cor re -
spond ing reg is ter when the pro ces sor vec tors for a high-pri or ity in ter rupt. The val -
ues in the shadow reg is ters are re stored into the ac tual reg is ter when the spe cial
in struc tion (retfie 0x01) is encountered.

Fast con text sav ing can only be used if the high- and low-pri or ity in ter rupts are
en abled. Any in ter rupt, high or low-pri or ity, pushes val ues into the shadow reg is -
ters. Be cause both low- and high-pri or ity in ter rupts must be en abled, the shadow
reg is ters can not be used re li ably for low-pri or ity in ter rupts. The rea son is that a
high-pri or ity in ter rupt event will over write the shadow reg is ters if a low-pri or ity in -
ter rupt is in prog ress.

Con text Sav ing dur ing Low-Pri or ity In ter rupts

Low pri or ity in ter rupts may also use the fast sav ing op tion de scribed in the pre vi ous
sec tion; how ever, if both high- and low-pri or ity in ter rupts are ac tive, then the fast save
op tion can not be used with the low-pri or ity in ter rupt be cause a high-pri or ity event
will over write the shadow reg is ters. In this case, the low-pri or ity han dler can save and
re store the key reg is ters man u ally on the stack, as de scribed later in this chap ter.

 The fol low ing code frag ment shows the el e ments of an in ter rupt ser vice rou tine
to han dle both low- and high-pri or ity in ter rupts.

; Ac cess RAM lo ca tions from 0x00 to 0x7F
W_high equ 0x000 ; Tem po rary reg is ters
BSR__high equ 0x001
STATUS_high equ 0x002
W_low equ 0x003
BSR__low equ 0x004
STATUS_low equ 0x002

. org 0
goto main

;**************************************
; high-priority vec tor
;**************************************

org 0x08 ; High pri or ity vec tor
movwf W_high
movff BSR, BSR_high
movff STATUS, STATUS_high

;***************************************
; code for high-priority ISR here
; or jump to ISR rou tine
;***************************************

movff BSR_high, BSR
movf W_high, W
movff STATUS_high, STATUS
retfie 0x00

;**************************************
; low-priority vec tor
;**************************************

org 0x18 ; Low pri or ity vec tor
movwf W_low
movff BSR, BSR_low

156 Chap ter 8

movff STATUS, STATUS_low
;
;***************************************
; code for low-priority ISR here
; or jump to ISR rou tine
;***************************************
;

movff BSR_low, BSR
movf W_low, W
movff STATUS_low, STATUS
retfie 0x00

;==
; main pro gram en try point
;==
main:

8.3 Port B In ter rupts
Two types of in ter rupts are re lated to Port B:

1. Port B Ex ter nal In ter rupts la beled RB0, RB1, and RB2.

2. Port B In ter rupt On Change tied to Port B lines 4 to 7.

We have de vel oped a sim ple cir cuit that al lows test ing both types of Port B in ter -
rupts. The cir cuit, which can be im ple mented as a demo board, can be seen in Fig -
ure 8.10.

Fig ure 8.10 Port B in ter rupt testing cir cuit.

 In ter rupts 157

18F452

DEMO BOARD 18F452-I

+5v

+5v

+5v

+5v

R
=

1
0

K
R

=
1

0
K

R
=

1
0

K

R
=

1
0

K40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

+5v

R
=

1
0

K

RESET

+5v

+5v
4 MHz Osc

C=0.1mFEC=100mF

78L05

INOUT
9 -12 v DC

330 Ohm
x 4 RED

GREEN

GREEN

RED

Regulated power supply

+5 v DC

+

PB switch
2

PB switch
1

PB switch
0

PB switch
3

MCLR/VPP

RAO/ANO

RA1/AN1

RA2/AN2A/REF-

RA3/AN3A/REF+

RA4/TOCKI

RA5/AN4/SS/LVDIN

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1/CLKI

OSC2/CLKO/RA6

RCO/T1OSO/TICK1

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RDO/PSPO

RD1/PSP1

RB7/PGD

RB6/PGC

RB5/PGM

RB4

RB3/CCP2*

RB2/INT2

RB1/INT1

R BO/INTO

Vdd

Vss

RD7/PSP7

RD6/PSP6

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2

The four pushbutton switches on the in ter rupts demo board in Fig ure 8.10 are
wired to Port B lines. The switches la beled 0, 1, and 2 are wired to Port B lines 0 and
4, 1 and 5, and 2 and 6, re spec tively. Switch num ber 3 is wired to Port B line 7. Cir -
cuit out put is on Port A lines 0 to 3 which are wired to LEDs.

8.3.1 Port B Ex ter nal In ter rupt

This ex ter nal in ter rupt is trig gered by ei ther the ris ing or fall ing edge of the sig nal on
port B, lines 0, 1, and 2. The in ter rupts are la beled INT0, INT1, and INT2, re spec tively.
Whether the in ter rupt takes place on the ris ing or the fall ing edge of the sig nal de -
pends the set ting of the INTEDG0, INTEDG1, and INTEDG2 bits of the INTCON2 reg -
is ter (see Fig ure 8.2). When a valid edge ap pears on the RBx/INTx pin, the
cor re spond ing flag bit INTxF is set. This in ter rupt can be dis abled by clear ing the cor -
re spond ing en able bit INTxE. Flag bit INTxF must be cleared in soft ware in the In ter -
rupt Ser vice Rou tine be fore reenabling the in ter rupt.

The ex ter nal in ter rupts (INT0, INT1, and INT2) can wakeup the pro ces sor from
SLEEP. This hap pens if bit INTxE is set prior to go ing into SLEEP mode. If the
global in ter rupt en able bit GIE is set, the pro ces sor will branch to the in ter rupt vec -
tor fol low ing wake-up. In ter rupt pri or ity for INT1 and INT2 is de ter mined by the
value con tained in the in ter rupt pri or ity bits INT1IP and INT2IP in the INTCON3
reg is ter. The INT0 in ter rupt is always given high-pri or ity.

The Port B in ter rupts are use ful in de tect ing and re spond ing to ex ter nal events,
for ex am ple, in mea sur ing the fre quency of a sig nal or in re spond ing to a change in
the state of a hard ware de vice. A sim ple ap pli ca tion of this in ter rupt would be a cir -
cuit con tain ing an emer gency switch that can be pressed by the user. One pos si ble
ap proach is to check the state of the switch by con tin u ously poll ing the port to
which it is wired. But in a com plex pro gram, it may be dif fi cult to make sure that the
switch poll ing rou tine is called with suf fi cient fre quency so that an emer gency event
is de tected im me di ately, or that the switch is not re leased be fore it is polled. A more
ef fec tive so lu tion is to con nect the emer gency switch to an in ter rupt line in Port B
and set up the Port B ex ter nal in ter rupt source. With this scheme, when ever the
emer gency switch is ac ti vated, the pro gram im me di ately re sponds via the in ter rupt
mech a nism. Fur ther more, once the in ter rupt code has been de vel oped and de -
bugged, it will con tinue to func tion cor rectly no mat ter what changes are made to
the rest of the pro gram.

8.3.2 INT0 In ter rupt Demo Pro gram

The pro gram named RB0Int_Demo.asm in the book's soft ware pack age dem on strates
the INT0 in ter rupt. The pro gram uses the cir cuit shown in Fig ure 8.10. A pushbutton
switch is con nected to port RB0. The pushbutton tog gles a LED on port A, line 0. An -
other LED on port A, line 1, flashes on and off at 1/2 sec ond in ter vals.

cblock Di rec tive

The pro gram uses three vari ables in time de lay op er a tions. These vari ables are de -
fined in a sin gle block us ing the cblock di rec tive, as fol lows:

158 Chap ter 8

; Ac cess RAM lo ca tions from 0x00 to 0x7F
 cblock 0x000 ; Start of block
 j ; coun ter j
 k ; coun ter k
 count
 endc

The cblock di rec tive de fines a list of named se quen tial sym bols. Its pur pose is to
as sign se quen tial ad dresses to sev eral la bels. The list of vari able names ends with
the endc di rec tive. The ex pres sion fol low ing the cblock key word in di cates the ad -
dress for the first name in the block. If there is a pre vi ous cblock and no ad dress is
found, the block will be as signed an ad dress one higher than the last en try in the
pre vi ous cblock. If no ad dress is as signed to the first cblock, it will be as signed a
value of zero. The cblock di rec tive can not be used for relocatable code. A cblock is
of ten used to re place sev eral equ di rec tives.

An op tional in cre ment key word can be used af ter each la bel in the block; for ex -
am ple,

cblock 0x000 ; Start of block
 val1 :2
 val2 :4
 count
 endc

In this case, the name val2 is al lo cated 2 bytes from val1 and count is 4 bytes from val2.
Mul ti ple names may be given on the same line by sep a rat ing them with com mas. Two
names can be de fined at the same ad dress by giv ing the first one an in cre ment of zero.

Vectoring the In ter rupt

Our pro gram ming tem plate con tains code to vec tor the high- and low-pri or ity in ter -
rupts. The first one orig i nates at 0x08, and the low-pri or ity in ter rupt at 0x18. An in ter -
rupt han dler can be lo cated at these ad dresses but the high-pri or ity han dler will have
to re side from 0x08 to 0x18, which al lows a to tal of 16 in struc tions. Be cause the pro -
gram's en try point (main la bel) can be any where in its code space, there is no space re -
stric tion for cod ing the low-pri or ity in ter rupt at the 0x18 vec tor.

A more com mon and more rea son able ap proach is to lo cate the han dler else -
where in the pro gram's code and pro vide a jump (goto in struc tion) at vec tor
address , as in the fo l low ing code f rag ment f rom the sam p le pro gram
RB0Int_Demo.asm.

;==
; pro gram
;==

org 0 ; start at ad dress
goto main

; Space for in ter rupt han dlers
;=============================
; in ter rupt in ter cept
;=============================

org 0x008 ; High-pri or ity vec tor
 goto IntServ
;

 In ter rupts 159

org 0x018 ; Low-pri or ity vec tor
 retfie
;==
; main pro gram en try point
;==
main:

...

In this case the high-pri or ity han dler is lo cated at the la bel named IntServ. There is no
low-pri or ity in ter rupt so the low-pri or ity vec tor is left unimplemented.

Ini tial iza tion

The pro gram's cir cuit has four LEDs on Port A lines 0 to 3 and mon i tors a pushbutton
switch on Port B, line 0 (INT0 line). Code must ini tial ize the hard ware ac cord ingly.
Code is as fol lows:

main:
; Set BSR for bank 0 op er a tions
 movlb 0 ; Bank 0
; Init Port A for dig i tal op er a tion
 clrf PORTA,0
 clrf LATA,0
; ADCON1 is the con fig u ra tion reg is ter for the A/D
; func tions in Port A. A value of 0b011x sets all
; lines for dig i tal op er a tion
 movlw B'00000110' ; Dig i tal mode
 movwf ADCON1,0
; Port A lines to out put
 movlw B'00000000' ; w = 0
 movwf TRISA,0 ; port A to out put
; Ini tial ize all lines in PORT B for in put
 movlw B'11111111' ; 1 = in put
 movwf TRISB,0 ; Port B tris reg is ter

Be cause Port A on the 18F452 is by de fault an an a log port, soft ware must re con -
fig ure it for dig i tal op er a tion. This re quires set ting the cor re spond ing code in the
ADCON1 reg is ter. Then, Port A lines are trissed for out put and Port B for in put. In
this case, it does not mat ter if the un used lines are trissed ei ther way.

Set up INT0

The in ter rupt-re lated reg is ters must then be set so that the INT0 in ter rupt is rec og -
nized. This re quires set ting the in ter rupt pri or ity bit in the RCON reg is ter, en abling
INT0 and high-pri or ity in ter rupts in the INTCON reg is ter, and se lect ing fall ing edge
op er a tion so that the pushbutton switch gen er ates the in ter rupt when it is pressed.
Keep in mind that the switch is wired ac tive low so that the edge falls when it is
pressed. Code is as fol lows:

;===============================
; Set up interupt on Port B
;===============================
; Set in ter rupt pri or ity bit in RCON reg is ter
 bsf RCON,IPEN ; Set bit
 bcf INTCON,INT0IF ; Clear TMR0IF flag
; INTCON reg is ter in i tial ized as fol lows:
; (IPEN bit is set)

160 Chap ter 8

; |------------ en able high-priority in ter rupts
; | |--------- en able INT0
 movlw b'10010000
 movwf INTCON
; Set INTCON2 for fall ing edge op er a tion
; (but ton is ac tive low)
 bcf INTCON2,INTEDG0

At this point in the pro gram, a high-pri or ity in ter rupt will take place when ever
pushbutton num ber 0 on Port B, line 0, is pressed.

Pro gram Fore ground

In or der to dem on strate in ter rupt ac tion, the pro gram ex e cutes in an end less loop that
flashes the LED wired to Port B, line 1. To turn the Port B bit on and off, the pro gram
uses an XOR bitwise op er a tion be cause xoring with a one bit in verts the cor re spond -
ing bit in the other op er and. The de lay sub rou tine is a sim ple do-noth ing loop that is
called three times con sec u tively. Code is as fol lows:

;============================
; flash LED
;============================
; Pro gram flashes LED wired to port B, line 1
lights:

movlw b'00000010' ; Mask with bit 1 set
xorwf PORTA,F ; Com ple ment bit 1
call long_de lay ; Lo cal de lay rou tine
call long_de lay
call long_de lay
goto lights

;=============================
; long de lay sub-rou tine
;=============================
long_de lay

movlw D'200' ; w = 200 dec i mal
movwf j ; j = w

jloop:
movwf k ; k = w

kloop:
decfsz k,f ; k = k-1, skip next if zero
goto kloop
decfsz j,f ; j = j-1, skip next if zero
goto jloop
re turn

In ter rupt Ser vice Rou tine

The in ter rupt ser vice rou tine is lo cated at the la bel IntServ. Code is con sid er ably sim -
pli fied be cause we are us ing the fast con text sav ing op tion and the crit i cal reg is ters
are saved au to mat i cally on the stack.

The first step in the ISR is to make sure that the in ter rupt orig i nated in the INT0
pin. This is done by test ing the INT0IF flag in the INTCON reg is ter. If the flag is not
set, ex e cu tion jumps to the exit rou tine and pro cess ing does not take place. If it is
an INT0 in ter rupt, then the INT0IF flag is cleared by code.

 In ter rupts 161

The next step is to make sure that the in ter rupt oc curred on the fall ing edge of
the sig nal, that is, when the but ton was pressed. This is ac com plished by mak ing
sure that the bit mapped to the switch reg is ter is clear be cause it is wired ac tive low.
If not so, then a quick exit from the ISR takes place and ex e cu tion is aborted.

Switch Debouncing

Con tact bounce is a fact in elec tri cal switches. The switch el e ments are metal sur -
faces that are forced into con tact by an ac tu a tor. The strik ing ac tion of the con tacts
causes a rap idly pul sat ing elec tri cal cur rent in stead of a clean tran si tion. This is due to
mo men tum and elas tic ity as well as par a sitic in duc tance and ca pac i tance in the cir -
cuit. The re sult is a se ries of si nu soi dal os cil la tions.

Switch bounce of ten causes prob lems in cir cuits that are not de signed to cope
with os cil lat ing volt ages, par tic u larly in dig i tal de vices. Sev eral meth ods of hard -
ware switch debouncing have been de vel oped based on hys ter esis. Switches can
also be debounced in soft ware by add ing suf fi cient de lay be fore read ing the switch
so as to pre vent the bounce from be ing de tected.

The sam ple pro gram RB0Int_Demo.asm pres ently un der dis cus sion uses a sim ple
time de lay loop that en sures that a num ber of samplings of the switch at the de sired
level are re ceived be fore code as sumes that a spe cific switch ac tion has taken
place. In this im ple men ta tion, a coun ter is in i tial ized to a value of 10 and the port
read op er a tion is re peated as many times. If dur ing any read it er a tion the switch is
de tected to be in the op po site state, ex e cu tion of the ser vice rou tine is aborted and
the switch ac tion is as sumed to have been a bounce. Code is as fol lows:

movlw D'10' ; Num ber of rep e ti tions
movwf count ; To coun ter

wait:
; Check to see that port B bit 0 is still 0
; If not, wait un til it changes

btfsc PORTB,0 ; Is bit set?
goto exitISR ; Go if bit not 0

;
; At this point RB0 bit is clear

decfsz count,f ; Count this it er a tion
goto wait ; Con tinue if not zero

In ter rupt Ac tion

In this sim ple dem on stra tion, the ac tion taken in the in ter rupt ser vice rou tine con sists
of tog gling on and off the LED wired to port A, line 0. Here again, we use the ac tion of
the bitwise XOR op er a tion to turn the port bit to its op po site state, as fol lows:

; In ter rupt ac tion con sists of tog gling bit 0 of
; port A to turn LED on and off

movlw b'00000001' ; Xoring with a 1-bit pro duces
; the com ple ment

xorwf PORTA,f ; Com ple ment bit 2, port B .

The fi nal ac tion of the ser vice rou tine is to use the fast exit op tion of the retfie in -
struc tion, as fol lows:

162 Chap ter 8

retfie 0x01 ; Fast re turn

8.3.3 Port B Line Change In ter rupt

An other in ter rupt re lated to the port B reg is ter is de ter mined by a change in value in
any of port B lines 4 to 7. When this in ter rupt is en abled, any change in the sta tus of any
of the four port B pins (RB7, RB6, RB5, and RB4) can trig ger an in ter rupt. The in ter rupt
can be set up to take place when the sta tus changes from logic one to logic zero, or
vice-versa.

There are fea tures of the line change in ter rupt that limit its use ful ness. One of
them is that for this in ter rupt to take place, all four port B pins 4 to 7 must be de -
fined as in put. This means that an ap pli ca tion that wishes to use only one of the Port
B lines 4 to 7 as in put, it must also ini tial ize for in put the other three. An other lim i ta -
tion is that there is no con trol over which of the four lines gen er ates the in ter rupt.
This means that the de ter mi na tion of which line gen er ated the in ter rupt must be
made in side the han dler be cause the in ter rupt sources can not be en abled or dis -
abled in di vid u ally.

In spite of these lim i ta tion, the port B line change in ter rupt finds use in mon i tor -
ing up to four dif fer ent in ter rupt sources, typ i cally orig i nat ing in hard ware de vices.
When the in ter rupt is en abled, the cur rent state of the port B lines is con stantly
com pared to the old val ues. If there is a change in state in any of the four lines, the
in ter rupt is gen er ated.

Im ple men ta tion of the line change in ter rupt is not with out com pli ca tions. The
cir cuit and soft ware de signer must take into ac count the char ac ter is tics of the ex -
ter nal signal be cause only then can code be de vel oped that will cor rectly han dle the
var i ous pos si ble sources. Two pieces of in for ma tion that are nec es sary in this case
are

1 .The sig nal's ris ing edge and fall ing edges

2. The pulse width of the in ter rupt trig ger

Knowl edge of the sig nals' ris ing and fall ing edges is nec es sary to en sure that the
ser vice rou tine is only en tered for the de sired edge. For ex am ple, if the de vice is an
ac tive-low pushbutton switch, an in ter rupt will typ i cally be de sired on the sig nal's
fall ing edge, that is, when it goes from high to low.

Knowl edge of the sig nal's width is nec es sary in or der to de ter mine the pro cess ing
re quired by the ser vice rou tine. If the trig ger ing sig nal has a small pulse width com -
pared to the time of ex e cu tion of the in ter rupt han dler, then the in ter rupt line will
have re turned to the in ac tive state be fore the ser vice rou tine com pletes and a pos si -
ble false in ter rupt on the sig nal's fall ing edge is not pos si ble. On the other hand, if
the pulse width of the in ter rupt sig nal is large and the ser vice rou tine com pletes be -
fore the sig nal re turns to the in ac tive state, then the sig nal's fall ing edge can trig ger
a false in ter rupt. Fig ure 8.11 shows both sit u a tions.

 In ter rupts 163

 Fig ure 8.11 Sig nal pulse width and interrupt latency.

In Fig ure 8.11 the pe riod be tween the edge that trig gers the in ter rupt and the ter -
mi na tion of the in ter rupt han dler is some times called the “mis match pe riod.” The
mis match pe riod ends when the ser vice rou tine com pletes and the cor re spond ing
in ter rupt is reenabled. If this hap pens af ter the in ter rupt sig nal is re set, no pos si ble
false in ter rupt can take place and no spe cial pro vi sion is re quired in the han dler. In
fact, the in ter rupt han dler will run cor rectly as long as the ser vice rou tine takes lon -
ger to ex e cute than the in ter rupt fre quency. How ever, if the han dler ter mi nates be -
fore the sig nal re turns to its orig i nal state, then the han dler must make spe cial
pro vi sions to han dle a pos si ble false in ter rupt. In or der to do this the han dler must
first de ter mine if the in ter rupt took place on the ris ing or the fall ing sig nal edge,
which can be done by ex am in ing the cor re spond ing port B line. For ex am ple, if the
in ter rupt is to take place on the ris ing edge only, and the line is low, then it can be ig -
nored be cause it took place on the fall ing edge.

When an in ter rupt can take place on ei ther the ris ing or the fall ing edge of the
trig ger ing sig nal, the in ter rupt source must have a min i mum pulse width in or der to
en sure that both edges are de tected. In this case the min i mum pulse width is the
max i mum time from the edge that trig gered the in ter rupt to the mo ment when the
in ter rupt flag is cleared. Oth er wise, the in ter rupt will be lost be cause the in ter rupt
mech a nism is dis abled at the time it takes place.

Reentrant In ter rupts

The pre ced ing dis cus sion leads to the pos si bil ity of an in ter rupt tak ing place while the
ser vice rou tine of a pre vi ous in ter rupt is still in prog ress. These are called “reentrant”

164 Chap ter 8

Signal

Signal

CASE 1: relatively small pulse width

CASE 2: relatively large pulse width

Raising edge
triggers interrupt

Raising edge
triggers interrupt

Interrupt handler
progress

Interrupt handler
in progress

Service routine complete
Interrupt flag clear
No possible false interrupt

Service routine complete
Interrupt flag cleared

Falling edge can trigger
false interrupt

or “nested in ter rupts.” Sev eral events must take place in or der to make pos si ble
reentrant in ter rupts. One of them is that in ter rupts are reenabled be fore the han dler
ter mi nates. In ad di tion, the ser vice rou tine must be able to cre ate dif fer ent in stances
of the vari ables in use, usu ally al lo cated in the stack. The PIC in ter rupt mech a nism it -
self forces the con clu sion that reentrant in ter rupts are not rec om mended in PIC pro -
grams.

Mul ti ple Ex ter nal In ter rupts

One of the prac ti cal ap pli ca tions of the port B line change in ter rupt is in han dling sev -
eral dif fer ent in ter rupt sources. For ex am ple, a cir cuit con tain ing four pushbutton
switches that ac ti vate four dif fer ent cir cuit re sponses. If the switches are wired to the
cor re spond ing pins in port B (RB4 to RB7) and the line change in ter rupt is en abled,
then the in ter rupt will take place when any one of the four switches changes level, that
is, when any one of the in ter rupt lines go from high to low or from low to high. The in -
ter rupt han dler soft ware can eas ily de ter mine which of the switches changed state
and if the change took place on the sig nal's ris ing or fall ing edge. A propos soft ware
rou tines will then han dle each case. Later in this chap ter we de velop a sam ple pro -
gram that uses the port B line change in ter rupt to re spond to ac tion on four
pushbutton switches.

8.3.4 Port B Line Change In ter rupt Demo Pro gram

The sam ple pro gram RB4_to_RB7Int_Demo.asm in this book's soft ware re source, is a
sim ple dem on stra tion of the Port B line change in ter rupt. The pro gram uses the same
cir cuit shown in Fig ure 8.10, which has pushbutton switches con nected to Port B lines
RB4 to RB7 and LEDs on Port A lines RA0 to RA3. The in ter rupt han dler checks for ac -
tion on Port B lines 4 and 7 in or der to tog gle the state of an LED. If the pushbutton
switch wired to port RB4 is the one gen er at ing the in ter rupt, then the state of the LED
on Port A line 1 is tog gled. If the in ter rupt orig i nated in the pushbutton switch wired to
Port B, line 7, then the state of the LED wired to port A, line 0, is tog gled. In ter rupts
gen er ated by ac tion on Port B, lines 5 and 6, are ig nored by the code.

In the sam ple pro gram RB4_to_RB7Int_Demo.asm, we have not used the fast
con text sav ing op tion de scribed for the pre vi ous sam ple pro gram. Our pur pose has
been to show how the reg is ter con text can be saved man u ally al though, in this ap pli -
ca tion, the fast con text save would have been pos si ble and would have sim pli fied
the code. In the com ments that fol low, we fo cus on the fea tures of the pro gram
RB4_to_RB7Int_Demo.asm that are dif fer ent from the pro gram RB0Int_Demo.asm
pre vi ously dis cussed. For the un ex plained fea tures, the reader should re fer to the
pre ced ing sam ple pro gram.

Set ting Up the Line Change In ter rupt

The hard ware ini tial iza tion for Port A and Port B is the same for both pro grams. The
code for set ting up the Port B line change in ter rupt starts by clear ing the IPEN bit in
the RCON reg is ter. This bit en ables or dis ables the in ter rupt pri or ity mech a nism of the
PIC 18 fam ily. Dis abling in ter rupt pri or ity sim u lates a sys tem com pat i ble with the
mid-range PIC fam ily and is some times called the “com pat i bil ity mode.” In this case,
all in ter rupts are vectored to ad dress 0x08 as they oc cur.

 In ter rupts 165

Code must then pro ceed to en able in ter rupts and to en able the RB4 to RB7 line
change in ter rupt. This is ac com plished by set ting bits 3 and 7 in the INTCON reg is -
ter. The fall ing edge op er a tion is set by clear ing the INTEDG0 bit in the INTCON2
reg is ter. The RBIF flag in the INTCON reg is ter must also be cleared to al low the in -
ter rupt to take place. Code is as fol lows:

;===============================
; Set up line change interrupt
;===============================
; Dis able in ter rupt pri or ity lev els in the RCON reg is ter
; set ting up the mid range com pat i bil ity mode
 bcf RCON,IPEN ; Clear bit
 bcf INTCON,RBIF ; Clear RB4-7 change flag
; INTCON reg is ter in i tial ized as fol lows:
; (IPEN bit is clear)
; |------------ en able un masked in ter rupts
; | |-------- en able RB4-7 in ter rupt
 movlw b'10001000'
 movwf INTCON
; Set INTCON2 for fall ing edge op er a tion
; (but ton is ac tive low)
 bcf INTCON2,INTEDG0

The pro gram loop that fol lows the in ter rupt setup code is a do-noth ing rou tine
be cause the pro gram per forms no other ac tions out side of the in ter rupt han dler.

In ter rupt Ser vice Rou tine

The in ter rupt ser vice rou tine be gins by en sur ing that the cause of the in ter rupt was
the Port B line change. This is ac com plished by test ing the RBIF bit in the INTCON reg -
is ter. The bit must be set if this is a Port B line change event. If not, a quick exit from the
han dler takes place. Code is as fol lows:

IntServ:
; First test: make sure source is an RB4-7 in ter rupt

btfss INTCON,RBIF ; RBIF flag is in ter rupt
goto notRBIF ; Go if not RBIF or i gin

The next step is sav ing the con text reg is ters be cause we have opted not to use
the fast con text save op tion in this pro gram. For many ap pli ca tions, the con text that
must be saved in the han dler is lim ited to the w and the STATUS reg is ters. If the han -
dler uses any other reg is ter or vari able that is shared with the main code, then it
must also be saved. For ex am ple, sup pose a han dler that ac cesses a mem ory area
dif fer ent from the one used by the main pro gram. Be cause the BSR (bank se lect)
reg is ter will be changed in the han dler it must also be saved and re stored by the ISR.
This is not the case in the pres ent sam ple code so only the w and the STATUS
registers are preserved.

Sav ing the W and the STATUS reg is ters re quires us ing reg is ter vari ables, but the
pro cess re quires spe cial care. Sav ing the W reg is ter is sim ple enough: its value at
the start of the Ser vice Rou tine is stored in a lo cal vari able from which it is re stored
at ter mi na tion. Sav ing the STATUS reg is ter can not be done with MOVF in struc tion
be cause this in struc tion it self changes the zero flag. The so lu tion is to use the swapf

166 Chap ter 8

in struc tion, which does not af fect any of the flags. Of course, swapf in verts the nib -
bles in the op er and, so it must be re peated in or der to re store the orig i nal state. The
fol low ing code frag ment as sumes that file reg is ter vari ables named old_w and
old_sta tus were pre vi ously cre ated.

save_cntx:
movwf old_w ; Save w reg is ter
swapf STATUS,w ; STATUS to w
movwf old_sta tus ; Save STATUS

;
; In ter rupt han dler op er a tions go here
;

swapf old_sta tus,w ; Saved sta tus to w
movfw STATUS ; To STATUS reg is ter

; At this point all op er a tions that change the
; STATUS reg is ter must be avoided, but swapf does not.

swapf old_w,f ; Swap file reg is ter in it self
swapf old_w,w ; re-swap back to w

Once W and the STATUS reg is ter have been saved in vari ables, the ISR must de -
ter mine which Port B line orig i nated the in ter rupt. In this ex am ple Port B line 4 re -
quires one ac tion, Port B line 7 a dif fer ent one, and lines 4 and 5 are ig nored.
Be cause the in ter rupt mech a nism in the PIC 18F fam ily does not pro vide a way of
know ing which Port B line gen er ated the in ter rupt, code must keep re cord of the
Port B value dur ing the pre vi ous in ter rupt and test if it has changed in the pre vi ous
in ter cept. The sam ple pro gram uses two vari ables for this pur pose: a vari able
named bitsB47 holds the value in Port B dur ing the pre vi ous in ter rupt, and the vari -
able named temp to save the current Port B value.

Pro cess ing con sists of XORing the value in Port B dur ing the pre vi ous it er a tion of
the in ter rupt with the Port B pres ent value. The XOR op er a tion only re sults in a 1 bit
if the two operands have op po site val ues. So any 1 bit in the re sult in di cates a bit
that has changed from the pre vi ous in ter rupt it er a tion. Code is as fol lows:

; The in ter rupt ac tion takes place when any of port B bits
; 4 and 7 have changed sta tus.

movf PORTB,w ; Read port B bits
movwf temp ; Save read ing
xorwf bitsB47,f ; Xor with old bits, re sult in f

; Test each mean ing ful bit (4 and 7 in this ex am ple)
btfsc bitsB47,4 ; Test bit 4
goto bit4Chng ; Rou tine for changed bit 4

; At this point bit 4 did not change
btfsc bitsB47,7 ; Test bit 7
goto bit7Chng ; Rou tine for changed bit 7

; In valid port line change. Exit
goto pbRelease

The last line in the pre vi ous code snip pet en sures that any ac tion on the other
Port B lines is ig nored. If ei ther bit 4 or bit 7 of Port B has changed, then the in ter -
rupt han dler tog gles the state of the cor re spond ing LED on Port A. Also at this time,
code checks that the sig nal took place on the fall ing edge and ig nores the in ter rupt

 In ter rupts 167

if it did not. Tog gling the LED on Port A is ac com plished by XORing with a one bit in
the cor re spond ing mask. For change in Port B, bit 4, code is as follows:

;========================
; bit 4 change rou tine
;========================
; Check for sig nal fall ing edge, ig nore if not
bit4Chng:

btfsc PORTB,4 ; Is bit 4 high
goto pbRelease ; Bit is high. Ig nore

; Tog gling bit 1 of port A turns LED on and off
movlw b'00000010' ; Xoring with a 1-bit pro duces

; the com ple ment
xorwf PORTA,f ; Com ple ment bit 1, port A
goto pbRelease

The code pro vides two ex its for the in ter rupt han dler. One for the case in which
the W and STATUS reg is ters were saved in vari ables, and an other exit for when the
in ter rupt did not orig i nate in a Port B line change. In the first case, the cur rent
value of Port B is saved for the next it er a tion in the vari able bitsB47. Also, the vari -
ables old_w and old_STATUS that were used to pre serve the value of the W and
STATUS reg is ters at the start of the in ter rupt, are now used to re store these two reg -
is ters. swapf in struc tions are used to avoid chang ing the Z bit in the STATUS reg is -
ter. Code is as follows:;=========================

; exit ISR
;=========================
exitISR:
; Store new value of port B

movf temp,w ; This port B value to w
movwf bitsB47 ; Store

; Re store con text
swapf old_STATUS,w ; Saved STATUS to w
movwf STATUS ; To STATUS reg is ter
swapf old_w,f ; Swap file reg is ter in it self
swapf old_w,w ; re-swap back to w

; Re set,in ter rupt
notRBIF:

bcf INTCON,RBIF ; Clear INTCON bit 0
retfie

8.4 Sleep Mode and In ter rupts
The PIC microcontroller sleep mode pro vides a use ful mech a nism for sav ing power
that is par tic u larly use ful in bat tery-op er ated de vices.

The sleep mode is ac ti vated by ex e cut ing the sleep in struc tion, which sus pends
all nor mal op er a tions and switches off the de vice os cil la tor so no clock cy cles take
place. The sleep in struc tion takes no operands. The sleep mode is suit able for ap pli -
ca tions that are not re quired to run con tin u ously. For ex am ple, a de vice that re -
cords tem per a ture at day break can be de signed so that a light-sen si tive switch
gen er ates an in ter rupt that turns on the de vice each morn ing. Once the data is re -
corded, the de vice goes into the sleep mode until the next daybreak.

The fol low ing ac tions and states take place dur ing sleep mode:

168 Chap ter 8

• Watch dog Timer is cleared but keeps run ning

• The PD bit in the RCON reg is ter is cleared and the TO bit is set

• The os cil la tor driver is turned off

• The I/O ports main tain the sta tus dur ing sleep mode

To en sure the low est pos si ble cur rent con sump tion dur ing sleep, the fol low ing
pre cau tions should be taken:

• All I/O pins should be ei ther at VDD or VSS.

• No ex ter nal cir cuitry should draw cur rent from an I/O pin.

• Mod ules that are spec i fied to have a delta sleep cur rent should be dis abled.

• I/O pins that are hi-im ped ance in puts should be pulled high or low ex ter nally.

• The con tri bu tion from on-chip pull-ups on PORTB should be con sid ered.

• The MCLR pin must be at a valid high level.

Some fea tures of the de vice con sume a delta cur rent. These are en abled/dis abled
by con fig u ra tion bits. These in clude the Watch dog Timer (WDT), LVD, and
Brown-out Re set (BOR) cir cuitry modules.

8.4.1 Wake Up from SLEEP

Sev eral ac tions wake the con trol ler from SLEEP:

• The WDT times out

• A RESET

• In ter rupts from pe riph er als or ex ter nal sources

In ad di tion, the sleep mode ter mi nates by one of the fol low ing events:

1. Any de vice RESET such as MCLR pin

2. Watch dog Timer Wake-up (if WDT was en abled)

3. Any pe riph eral mod ule that can set its in ter rupt flag while in SLEEP, such as

 An ex ter nal INT pin

 A port pin

 Com para tors

 A/D con vert ers

 Timer1 and Timer 3

 LVD

 MSSP

 Cap ture and Com pare

 PSP read or write

 CCP1 and CCP2

 In ter rupts 169

 Ad dress able USART

 PORTB In ter rupt on Change

 Ex ter nal In ter rupts

 Par al lel Slave Port

 Volt age Ref er ence (bandgap)

 WDT

Ac tion on the MCLR pin will re set the de vice upon wake-up. The sec ond and third
events on the pre vi ous list will wake the de vice but do not re set and pro gram ex e cu -
tion is re sumed. The TO and PD bits in the RCON reg is ter can be used to de ter mine
the cause of de vice RESET. The PD bit is set on power-up and is cleared when
SLEEP is in voked. The TO bit is cleared if WDT time-out oc curred (and caused a
wake-up).

For the wake-up through an in ter rupt event to take place, the cor re spond ing in -
ter rupt en able bit must be set. Wake-up takes place re gard less of the state of the
GIE bit; but if the GIE bit is clear (dis abled), the de vice con tin ues ex e cu tion at the
in struc tion af ter the SLEEP in struc tion. If the GIE bit is set (en abled), the de vice ex -
e cutes the in struc tion af ter the SLEEP in struc tion and then branches to the in ter -
rupt ad dress. In cases where the ex e cu tion of the in struc tion fol low ing SLEEP is
not de sir able, the user should in sert a nop opcode af ter the sleep in struc tion.

8.4.2 Sleep_Demo Pro gram
The pro gram named Sleep_Demo in this book's on line soft ware pack age is a triv ial
dem on stra tion of us ing the RB0 in ter rupt to wake up the pro ces sor from the sleep
mode. The pro gram can be tested us ing the cir cuit in Fig ure 8.10. Sleep_Demo flashes
the LED on Port A, line 1, at one-half-sec ond in ter vals dur ing ten cy cles and then goes
into the sleep mode. Press ing the pushbutton switch on line RB0 gen er ates an in ter -
rupt that wakes the pro ces sor from the sleep mode. Much of the ini tial iza tion and in -
ter rupt pro cess ing is the same as pro gram RB0Int_Demo.asm de vel oped pre vi ously in
this chap ter. The fol low ing code frag ment shows the cod ing of the main loop in the
pro gram.

;===============================
; flash LED on and off 10 times
;===============================
wakeUp:
; Pro gram flashes LED wired to port A, line 1,
; 10 cy cles be fore en ter ing the sleep state

movlw D'20' ; Num ber of it er a tions
movwf count2 ; To coun ter

lights:
movlw b'00000010' ; Mask with bit 1 set
xorwf PORTA,f ; Com ple ment bit 1
call long_de lay
call long_de lay
call long_de lay
decfs zcount2,f ; Dec re ment coun ter
goto lights

; 20 it er a tions have taken place

170 Chap ter 8

sleep
nop ; Rec om mended!
goto wakeUp ; Re sume ex e cu tion

;=============================
; long de lay sub-rou tine
;=============================
long_de lay

movlw D'200' ; w = 200 dec i mal
movwf j ; j = w

jloop:
movwf k ; k = w

kloop:
decfsz k,f ; k = k-1, skip next if zero
goto kloop
decfsz j,f ; j = j-1, skip next if zero
goto jloop
re turn

In the Sleep_Demo pro gram the In ter rupt Ser vice Rou tine does noth ing be cause
the oc cur rence of an in ter rupt au to mat i cally wakes up the pro ces sor from the sleep
state. Its cod ing is as follows:

;===
; In ter rupt Ser vice Rou tine
;===
; Ser vice rou tine re ceives con trol when there is
; ac tion on pushbutton switch wired to port B, line 0
IntServ:
; Clear the INT0 Ex ter nal In ter rupt flag
 bcf INTCON,INT0IF
 retfie 0x01 ; Fast re turn

8.5 In ter rupt Pro gram ming in C Lan guage
The fact that in ter rupts are low-level pro gram el e ments makes them eas ier to un der -
stand and op er ate in a low-level lan guage (as sem bler) than in a high-level one (C18).
Nev er the less, the C18 com piler does pro vide func tion al ity for in ter rupts, and the nec -
es sary ma nip u la tions are not dif fi cult to im ple ment in code. The fol low ing #pragma di -
rec tives are used in im ple ment ing in ter rupts:

1 #pragma interruptlow fname

2. #pragma in ter rupt fname

3. #pragma code

The interruptlow pragma de clares a C18 func tion that will be a low-pri or ity in ter -
rupt ser vice rou tine. This rou tine will be placed at the low-pri or ity in ter rupt vec tor
at ad dress 0x018. The in ter rupt pragma de clares the in ter rupt to be a high-pri or ity
ser vice rou tine lo cated at the high-pri or ity vec tor at ad dress 0x08.

8.5.1 In ter rupt Ac tion
An in ter rupt sus pends the ex e cu tion of a run ning ap pli ca tion, saves the cur rent con -
text, and trans fers con trol to a ser vice rou tine. Once the ser vice rou tine has con -
cluded its ac tions, the pre vi ous con text is re stored and ex e cu tion of the ap pli ca tion

 In ter rupts 171

re sumes at the lo ca tion where the in ter rupt took place. The min i mal reg is ters that are
saved as con text and re stored at the con clu sion of the in ter rupt are WREG, BSR, and
STATUS. A high-pri or ity in ter rupt uses the shadow reg is ters to save and re store the
min i mal con text au to mat i cally, while a low-pri or ity in ter rupt re quires pro gram ac tion
to save the con text in the soft ware stack. As in the low-level rou tines, a high-pri or ity
in ter rupt ter mi nates with a fast “re turn from in ter rupt,” while a low-pri or ity in ter rupt
ter mi nates with a nor mal “re turn from in ter rupt.”

Con text in the Stack

When the con text is placed in the soft ware stack, the C com piler must use two MOVFF
in struc tions for each byte of con text pre served, ex cept for sav ing WREG, which re -
quires a MOVWF and a MOVF in struc tion. This means that in or der to pre serve the
min i mal con text reg is ters (WREG, BSR, and STATUS) dur ing a low-pri or ity in ter rupt,
an ad di tional ten words of stor age are nec es sary be yond the re quire ments of a
high-pri or ity in ter rupt.

In C language it is pos si ble to add a save clause to the pragma state ment that de -
fines the low- or high-pri or ity in ter rupt. This clause informs the C com piler that it
must gen er ate the nec es sary code for sav ing ad di tional reg is ters in the soft ware
stack and re stor ing them when the ISR ter mi nates. For ex am ple,

#pragma interruptlow MyISR save = PORTA, PORTC

This state ment di rects ex e cu tion to a ser vice rou tine named MyISR. The in ter rupt
mech a nism au to mat i cally saves the con text reg is ters WREG, BSR, and STATUS in the
soft ware stack. In this case, the save clause also di rects the com piler to save the reg is -
ters listed af ter the = sign, in this case PORTA and PORTC.

In ter rupt Data

In ter rupt ser vice rou tines cre ated by the C18 com piler use a tem po rary data sec tion
that is dis tinct from that used by nor mal C func tions. Dur ing the eval u a tion of ex pres -
sions in the in ter rupt ser vice rou tine, data is al lo cated in a spe cial sec tion and is not
over laid with the tem po rary lo ca tions of other func tions, in clud ing other in ter rupts.

The in ter rupt-cre at ing pragma al lows nam ing the spe cial data sec tion. For ex am -
ple,

void myInt(void);
...
#pragma in ter rupt myInt

void myInt(void)
{
// In ter rupt han dler code here
}

In this case, the tem po rary vari ables for in ter rupt ser vice rou tine name myInt will
be placed in the udata sec tion myInt_tmp. If no name is pro vided, then the tem po -
rary vari ables are cre ated in a udata sec tion named fname_tmp.

172 Chap ter 8

8.5.2 In ter rupt Pro gram ming in C18
In or der to im ple ment an in ter rupt han dler and vec tor ex e cu tion to the ap pro pri ate
ad dress, the fol low ing op er a tions are avail able:

1. Prototyping the ISR to make pos si ble lo cat ing its code any where in the pro gram

2. De fin ing the in ter rupt vec tor or vec tors

3. Us ing inline as sem bly at the vec tor ad dress to pro vide a jump to the han dler

4. Re stor ing the com piler's code lo cat ing priv i lege

5. De fin ing the han dler name and op tion ally sav ing ad di tional data

6. Cod ing the in ter rupt han dler

Not all of these op er a tions are re quired in ev ery han dler. For ex am ple, if the han -
dler can be lo cated be fore it is ref er enced then its prototyping (Step 1) will not be
nec es sary. How ever, the pos si bil ity of lo cat ing the han dler inline may be lim ited by
its byte size. This is true with the high-pri or ity han dler lo cated at vec tor ad dress
0x08. Be cause the vec tor ad dress for the low-pri or ity han dler must be at 0x18 there
is a space of 16 bytes be tween both vec tors. If we were to code a high-pri or ity han -
dler that was to be placed inline at ad dress 0x08, and if this han dler ex ceeded the
16-byte limit, then its code will in ter fere with the op er a tion of a low-pri or ity han dler
at vec tor ad dress 0x18. To avoid this pos si bil ity, it is safer prac tice to place a jump
to the ISR at the vec tor ad dress and lo cate the ser vice rou tine else where in the pro -
gram.

The fol low ing code frag ment, from the pro gram C_RB4-7LowInt_Demo de vel -
oped later in this chap ter, shows the cod ing and lo ca tion of the op er a tions listed
above:

.

.

.
// Prototyping the ISR (Step 1)
void low_ISR(void);

// Lo cat ing the in ter rupt vec tor (Step 2)
#pragma code low_vec tor = 0x18

// Im ple ment ing jump to the han dler (Step 3)
void low_in ter rupt(void)
{

_asm
goto low_ISR
_endasm

}

// Re stor ing code ad dress ing to C18 (Step 4)
#pragma code

// De fin ing the han dler (Step 5)
#pragma interruptlow low_ISR save = PROD

// Cod ing the in ter rupt han dler (Step 6)
void low_ISR(void)
{

 In ter rupts 173

int coun ter;
un signed char switches;

switches = PORTB;
PORTA = (switches >> 4);
// Short de lay to sta bi lize LEDs
for(coun ter = 0; coun ter < 2000; coun ter++) {

Nop();
Nop();

}
INTCONbits.RBIF = 0; // Clear flag

}

/***
 main pro gram
**/
void main(void)

.

.

.

In this code frag ment, the in ter rupt han dler is named low_ISR while the jump to
this han dler is lo cated at vec tor ad dress 0x18 and the C18 pro ce dure is named
low_in ter rupt. Note that these names are con ven tional and could be changed for
any other iden ti fier. The code list ing shows two in stances of the #pragma code
state ment: the first one en sures that the jump to the han dler is lo cated at the cor rect
vec tor ad dress (0x18). The sec ond in stance of the #pragma code state ment fol lows
the goto opcode and re turns ad dress ing to the C18 com piler.

The #pragma state ment in Step 5 names the ISR and pro vides a safe clause
(which is ac tu ally re dun dant in this case). The iden ti fier interruptlow in the
#pragma state ment is re quired when de fin ing the low-pri or ity in ter rupt. The key -
word for the high-pri or ity in ter rupt is in ter rupt. In pro grams that use both the high-
and low-pri or ity in ter rupts, sev eral #pragma code state ments will be nec es sary in
or der to make sure that the vec tors at 0x08 and 0x18 are pre served and that the cor -
re spond ing jumps to the han dlers are lo cated at these vec tors.

Sleep Mode and RB0 In ter rupt Demo Pro gram

The pro gram named C_RB0HighInt_Demo in this book's soft ware re source is a sim ple
dem on stra tion of us ing the RB0 in ter rupt to wake up the pro ces sor from the Sleep
mode. The pro gram is a C18 im ple men ta tion of the Sleep_Demo pro gram de vel oped in
as sem bly lan guage ear lier in this chap ter. The reader should re fer to Sec tion 8.4.2 for
in for ma tion on the Sleep mode. The C18 ver sion uses the Sleep() macro to im ple ment
the sleep opcode. The ac tual pro cess ing is triv ial be cause the RB0 in ter rupt wakes up
the pro ces sor from sleep with out any other ma nip u la tions.

De fin ing the high-level han dler and the ISR fol lows the same six steps de scribed
in Sec tion 8.5.2 for the low-level han dler. The only vari a tions are the iden ti fi ers and
the lo ca tion of the high-level vec tor at ad dress 0x08. The pro gram flashes LEDs on
port A, lines 0 to 3, on and off at half-sec ond in ter vals, for 10 cy cles. On the tenth cy -
cle, the pro gram en ters the SLEEP state and LED flash ing stops. Press ing the
pushbutton switch on line RB0 gen er ates an in ter rupt that ends the SLEEP and re -
peats the flash ing cy cle.

174 Chap ter 8

The Port B ex ter nal in ter rupt was dis cussed in Sec tion 8.3.1. The sam ple pro gram
RB0Int_Demo.asm de vel oped in Sec tion 8.3.2 is the equiv a lent code in as sem bly lan -
guage. The C18 pro gram sets up the in ter rupt by ma nip u lat ing the same reg is ters as
the as sem bly lan guage ver sion. C lan guage code is as fol lows:

void main(void)
{

un signed char flashes = 0;

// Init Port A for dig i tal op er a tion
PORTA = 0; // Clear port
LATA = 0; // and latch reg is ter
// ADCON1 is the con fig u ra tion reg is ter for the A/D
// func tions in Port A. A value of 0b011x sets all
// lines for dig i tal op er a tion
ADCON1 = 0b00000110;// Code for dig i tal mode
// Initialize di rec tion reg is ters
TRISA = 0x00; // Port A lines for out put
TRISB = 0xff; // Port B lines for in put
PORTB = 0x0; // Clear all Port B lines
PORTA = 0x0; // and Port A
// Setup RB0 in ter rupt
RCONbits.IPEN = 1; // Set in ter rupt pri or ity bit
INTCONbits.INT0IF = 0; // Clear flag
// Ini tial ize INTCON reg is ter for high-priority
// and INT0
INTCONbits.GIEH = 1; // High pri or ity en abled
INTCONbits.INT0IE = 1; // INT0 ac tive
// Set INTCON2 for fall ing edge of switch
INTCON2bits.INTEDG0 = 0;
.
.
.

Once the in ter rupt is in i tial ized, the pro gram en ters an end less loop that flashes
the LEDs on Port A and then goes into the sleep mode, as fol lows:

// End less loop to flash LEDs 10 times then go
// into sleep mode
while(1)
{

for(flashes = 0; flashes < 10; flashes++)
{

FlashLEDs();
}
Sleep(); // Macro for sleep opcode

}

The in ter rupt han dler re ceives con trol when ever the pushbutton con nected to
line 0 in Port B is pressed. The han dler is coded as fol lows:

// In ter rupt wakes up from sleep au to mat i cally.
// No ac tion is nec es sary ex cept re set ting the
// INT0 flag
void high_ISR(void)
{

INTCONbits.INT0IF = 0; // Clear flag
}

 In ter rupts 175

Port B In ter rupt on Change Demo Pro gram

The sec ond C18 sam ple pro gram dem on strates the Port B In ter rupt on Change. LEDs
on port A, lines 0 to 3 re flect the sta tus of the Port B lines 4 to 7 by turn ing off the cor re -
spond ing LED when the switch is down. The pro gram uses the low-pri or ity in ter rupt
vec tor and saves the con text in the soft ware stack Here again, the C18 pro gram is a
ver sion of the as sem bler pro gram RB4_to_RB7Int_Demo de vel oped in Sec tion 8.3.4.

The in ter rupt on change is im ple mented by fol low ing the same six steps de -
scribed in Sec tion 8.5.2. Code is as fol lows:

// Prototyping the ISR (Step 1)
void low_ISR(void);

// Lo cat ing the in ter rupt vec tor (Step 2)
#pragma code low_vec tor = 0x18

// Im ple ment ing jump to the han dler (Step 3)
void low_in ter rupt(void)
{

_asm
goto low_ISR
_endasm

}

// Re stor ing code ad dress ing to C18 (Step 4)
#pragma code

// De fin ing the han dler (Step 5)
#pragma interruptlow low_ISR save = PROD

// Cod ing the in ter rupt han dler (Step 6)
void low_ISR(void)
{

int coun ter;
un signed char switches;

switches = PORTB;
PORTA = (switches >> 4);
// Short de lay to sta bi lize LEDs
for(coun ter = 0; coun ter < 2000; coun ter++) {

Nop();
Nop();

}
INTCONbits.RBIF = 0; // Clear flag

}

Code for ac ti vat ing the IOC is based on ma nip u lat ing the hard ware in ter rupt reg -
is ters much like in the as sem bly lan guage ver sion. The one vari a tion we in tro duced
in the code is to dis able the IOC in ter rupt un til the sys tem is com pleted. This is ac -
com plished by set ting the in ter rupt flag. Code is as follows:

// Turn off IOC while seting up sys tem
INTCONbits.RBIF = 1; // In ter rupt off
// Ini tial ize INTCON reg is ter
INTCONbits.GIE = 1;// En able un masked in ter rupts
INTCONbits.GIEL = 1; // Low pri or ity in ter rupts
RCONbits.IPEN = 1; // Turn on pri or ity sys tem

176 Chap ter 8

INTCONbits.RBIE = 1; // Port B IOC en abled
INTCON2bits.RBIP = 0; // Int on change low-priority
// Set INTCON2 for fall ing edge of switch
INTCON2bits.INTEDG0 = 0;
// Turn on all 4 LEDS in Port A
PORTA = 0x0f;
// Turn on IOC
INTCONbits.RBIF = 0; // In ter rupt on
// Main pro gram does noth ing
while(1)
{

Nop();
}Other In ter rupt Demo Pro grams

As we dis cuss the mod ules and pe riph eral de vices of the 18F452 de vice, we will de -
velop dem on stra tion pro grams that ex er cise the cor re spond ing in ter rupts.

 In ter rupts 177

Chap ter 9

De lays, Coun ters, and Tim ers

9.1 PIC18 Fam ily Tim ers
Microcontroller tim ers in gen eral be long to one of two groups:

1. De lay tim ers used dur ing sys tem power-up, re set, and watch dog op er a tions

2. Timer-coun ters used in im ple ment ing and mea sur ing time pe ri ods and wave -
forms

9.2 De lay Tim ers
PIC18 microcontrollers have hard ware re sources that pro vide a de lay pe riod dur ing
re set op er a tions. Re set op er a tions were dis cussed in Sec tion 2.4 and fol low ing. The
tim ers as so ci ated with the re set ac tion are

1. Power-Up Timer (PWRT)

2. Os cil la tor Start-Up Timer

3. Phase Lock Loop (PLL) timer

4. Watch dog timer

9.2.1 Power-Up Timer (PWRT)

The Power-up Timer pro vides a fixed time-out pe riod from Power-On Re set (POR).
The timer op er ates on an in ter nal RC os cil la tor that keeps the chip in the RESET state.
This de lay al lows the Vdd sig nal to rise to an ac cept able level. The nom i nal de lay pe -
riod is doc u mented to take 72 ms but it is said to vary from chip to chip, due to dif fer -
ences in the Vdd and changes in tem per a ture. A con fig u ra tion bit is pro vided to
en able/dis able the PWRT, as fol lows:

PWRT = ON Power-up timer en abled

PWRT = OFF Power-up timer dis abled

179

The de fault state is dis abled but there is no rea son why the PWRT timer should
not be en abled for most ap pli ca tions.

9.2.2 Os cil la tor Start-Up Timer (OST)

The Os cil la tor Start-Up Timer (OST) en sures that 1,024 os cil la tor cy cles take place af -
ter the PWRT de lay is over and be fore the RESET stage ends. This de lay en sures that
the crys tal os cil la tor or res o na tor has started and is sta ble on power-up. The os cil la tor
time-out is in voked for the fol low ing os cil la tor op tions: XT, LP, and HS. The de lay
takes place on Power-on Re set, Brown-out Re set, or wake-up from SLEEP. It also
takes place on the tran si tion from Timer1 in put clock as the sys tem clock to the os cil -
la tor. The OST is dis abled for all re sets and wake-ups in RC and EC os cil la tor op tions.

The OST func tion counts os cil la tor pulses on the OSC1/CLKIN pin. The coun ter
starts in cre ment ing af ter the am pli tude of the sig nal reaches the os cil la tor in put
thresh olds. This ini tial de lay al lows the crys tal os cil la tor or res o na tor to sta bi lize
be fore the de vice ex its the OST de lay. The length of the time-out is a func tion of the
crys tal/res o na tor fre quency. For low-fre quency crys tals, this start-up time can be -
come quite long. That is be cause the time it takes the low-fre quency os cil la tor to
start os cil lat ing is lon ger than the power-up timer's de lay.

The time from when the power-up timer times out to when the os cil la tor starts to
os cil late is re ferred to as dead time. There is no min i mum or max i mum time for this
dead time be cause it is de pend ent on the time re quired for the os cil la tor cir cuitry to
have “good” os cil la tions.

9.2.3 Phase Locked Loop (PLL)

The Phase Locked Loop (PLL) cir cuit is a pro gram ma ble op tion that al lows mul ti ply -
ing by 4 the fre quency of the crys tal os cil la tor sig nal. Se lect ing the PLL op tion re sults
in an in put clock fre quency of 10 MHz of the in ter nal clock be ing mul ti plied to 40 MHz.

The PLL can only be en abled when the os cil la tor con fig u ra tion bits are pro -
grammed for HS mode. In all other modes, the PLL op tion is dis abled and the sys tem
clock will come di rectly from the OSC1 pin. The con fig u ra tion bit for HS and PLL
are se lected with the fol low ing state ment:

#pragma config OSC = HSPLL

When the Phase Locked Loop Os cil la tor Mode is se lected, the time-out se quence
fol low ing a Power-on Re set is dif fer ent from the other oscillator modes. In this case,
a por tion of the Power-up Timer is used to pro vide a fixed time-out that is suf fi cient
for the PLL to lock to the main os cil la tor fre quency. This PLL lock time-out (TPLL)
is typ i cally 2 ms and fol lows the os cil la tor start-up time-out (OST).

180 Chap ter 9

Power-Up De lay Sum mary

Two tim ers are used in con trol ling the power-up de lays: the Power-up De lay Timer
(PWRT) and the Os cil la tor Start-up Timer (OST). This du pli ca tion en sures that no ex -
ter nal re set cir cuitry is re quired for most ap pli ca tions. Their joint ac tion guar an tees
that the de vice is kept in RESET un til both, the de vice power sup ply and the clock, are
stable.

When the PLL is en abled (HSPLL os cil la tor mode), the Power-up Timer (PWRT) is
used to keep the de vice in RESET for an ex tra nom i nal de lay. This ad di tional de lay
en sures that the PLL is locked to the crys tal fre quency.

9.2.4 Watch dog Timer

The Watch dog Timer was dis cussed in Sec tion 2.1.5. In sum mary, the Watch dog Timer
is an in de pend ent timer with its own clock source. Its pur pose is to pro vide a mech a -
nism by which the pro ces sor can re cover from a soft ware er ror that im pedes pro gram
con tin u a tion, such as an end less loop. The Watch Dog Timer is not de signed to re cover
from hard ware faults, such as a brown-out.

 The hard ware of the Watch dog Timer is in de pend ent of the PIC's in ter nal clock.
Its time-out pe riod can range from ap prox i mately 18 mil li sec onds to 2.3 sec onds,
de pend ing on whether the prescaler is used. Ac cord ing to Micro chip, the Watch dog
Timer is not very ac cu rate and in the worst case sce nario, the time-out pe riod can
ex tend to sev eral sec onds. When the WDT times out, the TO flag in the STATUS reg -
is ter is cleared and the pro gram coun ter is re set to 0x000 so that the pro gram re -
starts. Ap pli ca tions can pre vent the re set by is su ing the clrwdt in struc tion be fore
the time-out pe riod ends. When clrwdt ex e cutes, the WDT time-out period re starts.

The clrwdt and sleep in struc tions clear the WDT and the postscaler (if as signed
to the WDT) and pre vent it from tim ing out and gen er at ing a de vice RESET con di -
tion. The WDT has a postscaler field that can ex tend the WDT Re set pe riod. The
postscaler is se lected by the value writ ten to three bits in the CONFIG2H reg is ter
dur ing de vice pro gram ming. When a clrwdr in struc tion is ex e cuted and the
postscaler is as signed to the WDT, the postscaler count will be cleared, but the
postscaler as sign ment is not changed.

Watch dog Timer Uses

Not much in for ma tion is avail able re gard ing the prac ti cal uses of the watch dog timer
in any of the PIC microcontrollers, but it is clear that there is more to it than just re -
start ing the coun ter with the clrwdt in struc tion. The timer is sup pos edly de signed to
de tect soft ware er rors that can hang up a pro gram, but how de tects these er rors and
which con di tions trig ger the WDT op er a tion is not clear from the in for ma tion cur -
rently avail able. For ex am ple, an ap pli ca tion that con tains a long de lay loop may find
that the Watchdog Timer forces an un timely break out of the loop. The Watch dog
Timer pro vides a pow er ful er ror-re cov ery mech a nism but its use re quires care ful con -
sid er ation of pro gram con di tions that could make the timer mal func tion.

 De lays, Coun ters, and Tim ers 181

9.3 Hard ware Timer-Coun ters
The PIC 18 fam ily of microcontrollers has fa cil i ties and de vices for con trol ling and
ma nip u lat ing time lapses in a pro gram. These are most fre quently re quired in tim ing,
mea sur ing, and count ing op er a tions. It is dif fi cult to imag ine an em bed ded ap pli ca -
tion of any com plex ity that does not re quire some form of count ing or tim ing. In some
of the pro grams pre vi ously de vel oped, we have pro vided a timed de lay us ing a
do-noth ing loop that wastes a se ries of ma chine cy cles. In the sec tions that fol low, we
in ves ti gate and ex pand the the ory and use of de lay loops and ex plore the use of
built-in tim ing and count ing cir cuits on the PIC 18F de vices. The fol low ing are pos si -
ble ap pli ca tions of the tim ing hard ware:

1. Mea sur ing and com par ing the ar rival time of an event

2. Gen er at ing a pe ri odic in ter rupt

3. Mea sur ing pe riod and pulse width

4. Mea sur ing the fre quency and duty cy cle of pe ri odic sig nals

5. Gen er at ing spe cific wave forms

6. Es tab lish ing a time ref er ence for an event

7. Count ing events

The most fre quently used mod ules in tim ing op er a tions are the four (or five)
hard ware tim ers of the PIC 18F fam ily, la beled Timer0 to Timer 3. and the Cap ture
Com pare and PWM mod ule (CCP). Timer0, Timer1, and Timer3 are 8- or 16-bit tim -
ers while Timer2 is an 8-bit timer. 16-bit tim ers have in ter nal reg is ters that op er ate
in the range 0 to 0xffff (0 to 65,535). 8-bit tim ers op er ate in the range 0 to 0xff (0 to
255). Timer2 and Timer4 use the sys tem's in ter nal clock as their clock source, while
the other tim ers can also use an ex ter nal clock sig nal.

In the remaider of the chap ter we dis cuss the four timer mod ules avail able in the
18F452.

9.4 Timer0 Mod ule
The ba sic timer fa cil ity on the PIC 18F fam ily is known as the Timer0 mod ule. It is de -
scribed as a free-run ning timer, as a timer/coun ter, or sim ply as TMR0. Timer0 can be
con fig ured as an 8- or 16-bit de vice. It can be made to run off the in ter nal timer or off an
ex ter nal one on the TOCKI pin. Its prin ci pal fea tures are as fol lows:

1 Soft ware selectable as an 8-bit or 16-bit timer/coun ter

2 Read able and writable

3. 8-bit soft ware pro gram ma ble prescaler

4. Clock source can be ex ter nal or in ter nal

5. In ter rupt-on-over flow from 0xff to 0x00 in 8-bit or on 0xffff in 16-bit mode

6. Edge se lect for ex ter nal clock

Con trol or Timer0 is mainly through the T0CON reg is ter shown in Fig ure 9.1.

182 Chap ter 9

Fig ure 9.1 Timer0 control reg is ter (T0CON) bitmap.

All bits in the T0CON reg is ter are read able and writeable.

The Timer0 mod ule is the first pe riph eral de vice dis cussed in this book. Pe riph -
eral de vices add spe cific func tion al ity to the microcontroller. Learn ing to pro gram
the Timer0 mod ule serves as an in tro duc tion to pro gram ming PIC 18F pe riph er als,
of which there is a long list. Fig ure 9.2 is a block di a gram of the Timer0 mod ule in 8-
bit mode.

Fig ure 9.2 Timer0 module bitmap.

 De lays, Coun ters, and Tim ers 183

TMR0ON

bit 0bit 7

T08BIT T0CS T0SE PSA T0PS2 T0PS1 T0PS0

bit 7 Timer0 On/Off Control bit
 1 = Enables Timer0
 0 = Stops Timer0
bit 6 : Timer0 8-bit/16-bit Control bit
 1 = Timer0 is configured as an 8-bit timer/counter
 0 = Timer0 is configured as a 16-bit timer/counter
bit 5 : Timer0 Clock Source Select bit
 1 = Transition on T0CKI pin
 0 = Internal instruction cycle clock (CLKO)
bit 4 : Timer0 Source Edge Select bit
 1 = Increment on high-to-low transition on T0CKI pin
 0 = Increment on low-to-high transition on T0CKI pin
bit 3 : Timer0 Prescaler Assignment bit
 1 = TImer0 prescaler is NOT assigned. Timer0 clock
 input bypasses prescaler.
 0 = Timer0 prescaler is assigned. Timer0 clock input
 comes from prescaler output.
bit 2-0 : Timer0 Prescaler Select bits
 111 = 1:256 prescale value
 110 = 1:128 prescale value
 101 = 1:64 prescale value
 100 = 1:32 prescale value
 011 = 1:16 prescale value
 010 = 1:8 prescale value
 001 = 1:4 prescale value
 000 = 1:2 prescale value

TMR0ON:

T08BIT

T0CS

T0SE

PSA

T0PS2:T0PS0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

TOSE

TOCS
(Clock source select) PSA

T0IF

Pout PSout

T0PS0-T0PS2
 (Prescaler)

TOCKI pin

Interrupt flag bit
set on overflow

Sync with
internal
clocks TMR0

data bus x 8

OSC/4 00

11

9.4.1 Timer0 Ar chi tec ture

Sev eral setup op er a tions are re quired in pro gram ming the Timer0 mod ule in its var i -
ous modes. The var i ous steps re quired for set ting up the Timer0 mod ule are as fol lows:

1. En able the timer.

2. Se lect the 8- or 16-bit mode.

3. Se lect the in ter nal or ex ter nal clock source.

4. If the timer is used as a coun ter, then code must se lect whether the in cre ment
takes place on the fall ing or the ris ing edge of the sig nal.

5. Turn the prescaler func tion on or off.

6. If the prescaler is on, then se lect the prescaler value.

16-bit Mode Op er a tion

Nor mally, ap pli ca tions will not change the timer mode once it has been se lected. Nev -
er the less, code can change be tween 8- and 16-bit modes by care fully con sid er ing
when in ter rupts are gen er ated dur ing coun ter roll over. Rules are as fol lows:

1. When Timer0 is changed from 8- to 16-bit mode on the same count ing cy cle as the
roll over con di tion oc curs, then no in ter rupt is gen er ated.

2. When Timer0 is changed from 16- to 8-bit mode on the same count ing cy cle as the
roll over con di tion oc curs, then an in ter rupt is gen er ated.

The high byte of the Timer0 coun ter (TMR0H) is not di rectly read able or writable
by code. In fact, TMR0H is not the high byte of the timer/coun ter, but a buf fered ver -
sion of this byte. TMR0H is up dated with the con tents of the high byte of Timer0
dur ing a read of the timer low byte (TMR0L). This de sign al lows code to read all 16
bits of Timer0 with out wor ry ing that a roll over con di tion did not oc cur be tween the
read of the high and low bytes. Code sim ply reads the low byte of Timer0, fol lowed
by a read of TMR0H, which con tains the value in the high byte at the time that the
low byte was read.

Writ ing to the high byte of Timer0 must take place through the TMR0H buffer reg -
is ter. In this case, Timer0 high byte is up dated with the con tents of TMR0H when a
write oc curs to TMR0L. This de sign al lows code to up date all 16 bits of Timer0 (high
and low bytes) at the same time. When per form ing a write of TMR0, the carry is held
off dur ing the write of the TMR0L reg is ter. Writes to the TMR0H reg is ter only mod -
ify the hold ing latch, not the timer. The op er a tion re quires the fol low ing steps:

1. Load the TMR0H reg is ter.

2. Write to the TMR0L reg is ter.

Some in struc tions (bsf and bcf) are used to read the con tents of a reg is ter, make
changes to that con tent, and write the re sult back to the reg is ter. This se quence is
known as a read-mod ify-write. With re gard to the TMR0L reg is ter, the read cy cle of
the read-mod ify-write op er a tion does not up date the TMR0H reg is ter; there fore the
TMR0H buffer re mains un changed. When the write cy cle takes place, then the con -
tents of TMR0H are placed in the high bytes of the Timer0 reg is ter.

184 Chap ter 9

The sam ple pro gram Timer0_De lay.asm de vel oped later in this chap ter shows the
setup and op er a tion of Timer0 in 16-bit mode as well as read ing and writ ing to the
TMR0H and TMR0L reg is ters. Many re ports of bugs in the Timer0 16-bit mode found
on the Internet are due to pro grams that have not fol lowed the cor rect read/write
se quence when ac cess ing the Timer0 high byte.

Timer and Coun ter Modes

Timer0 can op er ate in a timer or a coun ter mode. The timer mode is se lected by clear -
ing the T0CS bit in the T0CON reg is ter. With out a prescaler, in timer mode the Timer0
mod ule in cre ments on ev ery in struc tion cy cle. If the TMR0 reg is ter is writ ten, the in -
cre ment is in hib ited for the fol low ing two in struc tion cy cles. Code can work around
this by writ ing an ad justed value to the TMR0 reg is ter.

Coun ter mode is se lected by set ting the T0CS bit (T0CON reg is ter). In coun ter
mode, Timer0 in cre ments ei ther on ev ery ris ing or fall ing edge of the T0CKI pin. The
edge is de ter mined by the Timer0 Source Edge Se lect bit T0SE in the T0CON reg is -
ter. Clear ing the T0SE bit se lects the ris ing edge of the sig nal.

Timer0 In ter rupt

When the in ter rupt flag bit is set, Timer0 gen er ates an in ter rupt when the TMR0 reg is -
ter over flow. In the 8-bit mode, this takes place when the count goes from 0xff to 0x00.
In the 16-bit mode, the in ter rupt is gen er ated when the coun ter goes from 0xffff to
0x0000.

This in ter rupt over flow sets the TMR0IF bit in the INTCON reg is ter. The in ter rupt
can be dis abled by clear ing the TMR0IE bit in the INTCON reg is ter. The TMR0IF flag
bit must be cleared in soft ware in the in ter rupt ser vice rou tine. The TMR0 in ter rupt
can not awaken the pro ces sor from SLEEP, as the timer is shut off dur ing SLEEP.

Ex ter nal Clock Source

When an ex ter nal clock sig nal is se lected, the Timer0 hard ware must en sure that the
clock sig nal can be syn chro nized with the in ter nal clock.

When no prescaler is used, the ex ter nal clock in put is used in stead of the
prescaler out put. When a prescaler is used, the ex ter nal clock in put is di vided by
the prescaler so that the prescaler out put is sym met ri cal. For the ex ter nal clock to
meet the sam pling re quire ment, the rip ple-coun ter must be taken into ac count.
There fore, it is nec es sary for T0CKI to have a pe riod of at least 4TSCLK (and a small
RC de lay) di vided by the prescaler value. The only re quire ment on T0CKI high and
low time is that they do not vi o late the min i mum pulse width re quire ment. Be cause
the prescaler out put is syn chro nized with the in ter nal clock, there is a small de lay
from the time the ex ter nal clock edge oc curs to the time the Timer0 mod ule is ac tu -
ally in cre mented. The ac tual mag ni tude of this de lay can be ob tained from the de -
vices' data sheets.

 De lays, Coun ters, and Tim ers 185

Timer0 Prescaler

Timer0 con tains a prescaler that al lows con trol ling the timer's rate by act ing as a cy cle
di vider. The PSA bit in the T0CON reg is ter (Prescaler As sign ment Bit) al lows turn ing
the prescaler on and off.

Past er rors in some PIC18 data sheets have cre ated con fu sion re gard ing the ac -
tion of the PSA bit. For ex am ple, the 18F Fam ily Ref er ence Man ual (DS39513A)
states on page 13-7 that “Set ting the PSA bit will en able the prescaler.” In that same
doc u ment, the T0CON reg is ter bitmap shows that it is a value of 0 in the PSA bit that
as signs the prescaler to Timer0. Ac tu ally, this is the case. Re gard ing Timer0, the PSA
bit is ac tive low, so a value of 0 turns on the prescaler while a value of 1 turns off the
prescaler as sign ment.

The rate of the prescaler is de ter mined by bits 0:2 in the T0CON reg is ter as shown
in Fig ure 9.1. The 3-bit field al lows se lect ing eight dif fer ent prescaler rates: a value
of 0x7 en ables a 1:256 prescaler value while a value of 0x0 se lects a prescaler rate of
1:2. The prescaler se lect bits are read able and writable but the prescaler count can -
not be read or writ ten. All in struc tions that write to the Timer0 reg is ter, such as clrf
TMR0, bsf TMR0,x, movwf TMR0, and oth ers) will clear the prescaler count if the
prescaler has been en abled. How ever, writes to TMR0H do not clear the prescaler
count be cause writ ing to the latch does not change the con tents of Timer0. The
prescaler is cleared by writ ing to TMR0L.

9.4.2 Timer0 as a De lay Timer

One of the sim plest and most use ful ap pli ca tions of the Timer0 mod ule is as a sim ple
de lay timer. Two com mon tech niques are avail able:

1. Poll ing the value in the timer coun ter reg is ter to de tect when the coun ter rolls
over

2. En abling an in ter rupt that takes place when the coun ter rolls over

We be gin by in ves ti gat ing the first case, that is, Timer0 reg is ters are polled to im -
ple ment a de lay loop. Ap pli ca tions in which the Timer0 reg is ter is polled di rectly
are said to use a free run ning timer. There are two ad van tage in free run ning tim ers
over con ven tional de lay loops:

1. The prescaler pro vides a way of slow ing down the count.

2. The de lay is in de pend ent of the num ber of ma chine cy cles in the loop body.

These fac tors de ter mine that, in most cases, it is eas ier to im ple ment an ac cu rate time
de lay us ing the Timer0 mod ule than by count ing in struc tion cy cles.

Cal cu lat ing the time taken by each coun ter it er a tion con sists of di vid ing the
clock speed by 4. For ex am ple, a 18F452 PIC run ning on a 4 MHz os cil la tor clock, in -
cre ments the coun ter ev ery 1 MHz. If the prescaler is not used, the coun ter reg is ter
is in cre mented at a rate of 1 µs. or 1,000,000 times per sec ond. If the prescaler is set
to the max i mum di vi sor value (256), then each in cre ment of the timer takes place at
a rate of 1,000,000/256 µs, which is ap prox i mately 3.906 ms. This is the slow est pos -

186 Chap ter 9

si ble rate of the timer in a ma chine run ning at 4 MHz. It is of ten nec es sary to em ploy
sup ple men tary coun ters in or der to achieve larger de lays.

Re call that the timer reg is ter (TMR0) is both read able and writable. This makes
pos si ble sev eral tim ing tech niques; for ex am ple, code can set the timer reg is ter to
an ini tial value and then count up un til a pre de ter mined limit is reached. Sup pose
that we de fine that the dif fer ence be tween the limit and the ini tial value is 100; then
the rou tine will count 100 times the timer rate per beat.

As an other ex am ple, con sider a rou tine in 8-bit mode that al lows the timer to
start from zero and count up un re stricted. In this case, when the count reaches the
max i mum value (0xff), the rou tine would have in tro duced a de lay of 256 times the
timer beat rate. Now con sider the case in which the max i mum value (256) was used
in the prescaler and the timer ran at a rate of 1,000,000 beats per sec ond. This means
that each timer beat will take place at a rate of 1,000,000/256, or ap prox i mately
3,906 timer beats per sec ond. If now we de velop a rou tine that de lays ex e cu tion un -
til the max i mum value has been reached in the coun ter reg is ter, then the de lay can
be cal cu lated by di vid ing the num ber of beats per sec ond (3,906) by the num ber of
counts in the de lay loop. In this case, 3,906/256 re sults in a de lay of ap prox i mately
15.26 it er a tions of the de lay rou tine per sec ond.

A gen eral for mula for cal cu lat ing the num ber of timer beats per sec ond is as fol -
lows:

where T is the num ber of clock beats per sec ond, C is the sys tem clock speed in Hz, P is
the value stored in the prescaler, and R is the num ber of it er a tion, counted in the tmr0
reg is ter. The range of both P and R in this for mula is from 1 to 256. Also no tice that the
re cip ro cal of T (1/T) gives the time de lay, in sec onds, per it er a tion of the de lay rou tine.

Long De lay Loops

In the pre vi ous sec tion we saw that even when us ing the larg est pos si ble prescaler and
count ing the max i mum num ber of timer beats, the lon gest timer de lay that can be ob -
tained in a 4-MHz sys tem is ap prox i mately 1/15th sec ond. Con se quently, ap pli ca tions
that mea sure time in sec onds or in min utes must find ways of keep ing count of large
num ber of rep e ti tions of the timer beat.

In im ple ment ing coun ters for larger de lays we must be care ful not to in tro duce
round-off er rors. In the pre vi ous ex am ple, a timer cy cles at the rate of 15.26 times
per sec ond. The clos est in te ger to 15.25 is 15, so if we now set up a sec onds coun ter
that counts 15 it er a tions, the coun ter would in tro duce an er ror of ap prox i mately 2%.
Con sid er ing that each it er a tion of the timer con tains 256 in di vid ual beats, there are
3,906.25 in di vid ual timer beats per sec ond at the max i mum pre-scaled rate.

 De lays, Coun ters, and Tim ers 187

T
C

PR
=

4

This means that if we were to im ple ment a coun ter to keep track of in di vid ual
pre-scaled beats, in stead of timer it er a tions, the count would pro ceed from 0 to
3,906 in stead of from 0 to 15. Ap prox i mat ing 3,906.25 by the clos est in te ger (3,906)
in tro duces a much smaller round-off er ror than ap prox i mat ing 15.26 with 15. In this
same ex am ple, we could elim i nate the prescaler so that the timer beats at the clock
rate, that is, at 1,000,000 beats per sec ond. In this op tion a coun ter that counts from
0 to 1,000,000 would have no in trin sic er ror due to round-off. Which so lu tion is more
ad e quate de pends on the ac cu racy re quired by the ap pli ca tion and the ac cept able
com plex ity of the code.

De lay Ac cu racy Is sues

The ac tual im ple men ta tion of a de lay rou tine based on multi-byte coun ters pres ents
some dif fi cul ties. If the timer reg is ter (TMR0)is used to keep track of timer beats, then
de tect ing the end of the count pres ents a sub tle prob lem. Our pro gram could de tect
timer over flow read ing the tmr0 and test ing the zero flag in the sta tus reg is ter. Be -
cause the movf in struc tion af fects the zero flag, one could be tempted to code:

wait:
movf tmr0,w ; Timer value into w
btfss sta tus,z ; Was it zero?
goto wait

; If this point is reached tmr0 has over flowed

But there is a prob lem: the timer ticks as each in struc tion ex e cutes. Be cause the goto
in struc tion takes two ma chine cy cles, it is pos si ble that the timer over flows while the
goto in struc tion is in prog ress; there fore the over flow con di tion would not be de -
tected. One pos si ble so lu tion found in the Micro chip doc u men ta tion is to check for
less than a nom i nal value by test ing the carry flag, as fol lows:

wait1:
movlw 0x03 ; 3 to w
subwf TMR0,w ; Sub tract w - tmr0
btfsc sta tus,c ; Test carry
goto wait1

One ad just ment that is some times nec es sary in free run ning tim ers re sults from
the fact that when the TMR0 reg is ter is writ ten, the count is in hib ited for the fol low -
ing two in struc tion cy cles. Soft ware can usu ally com pen sate for the skip by writ ing
an ad justed value to the timer reg is ter. If the prescaler is as signed to timer0, then a
write op er a tion to the timer reg is ter de ter mines that the timer will not increment
for four clock cycles.

Black–Ammerman Method

A more el e gant and ac cu rate so lu tion has been de scribed by Ro man Black in a Web ar -
ti cle ti tled Zero-er ror One Sec ond Timer. Black cred its Bob Ammerman with the sug -
ges tion of us ing Bresenham's al go rithm for cre at ing ac cu rate PIC timer pe ri ods. In the
Black–Ammerman method, the coun ter works in the back ground, ei ther by poll ing or
in ter rupt-driven. In ei ther case, the timer count value is stored in a 3-byte reg is ter
which is dec re ment ed by the soft ware.

188 Chap ter 9

In their in ter rupt-driven ver sion, TMR0 gen er ates an in ter rupt when ever the
coun ter reg is ter over flows, that is, ev ery 256th timer beat (as sum ing no prescaler).
The in ter rupt han dler rou tine dec re ments the mid-or der reg is ter that holds the
3-byte timer count. This is ap pro pri ate be cause ev ery unit in the mid-or der reg is ter
rep re sents 256 units of the low-or der coun ter, which in this case is the tmr0 reg is ter.
If the mid-or der reg is ter underflows when dec re ment ed, then the high-or der one is
dec re ment ed. If the high-or der one underflows, then the count has reached zero and
the de lay ends. Be cause the coun ter is in ter rupt-driven, the pro ces sor can con tinue
to do other work in the fore ground.

An even more in ge nious op tion pro posed by Black is a back ground coun ter that
does not rely on in ter rupts. This is ac com plished by in tro duc ing a 1:2 de lay in the
timer by means of the prescaler. Be cause now the timer beats at one-half the in -
struc tion rate, 128 timer cy cles will be re quired for one com plete it er a tion at the full
in struc tion rate. By test ing the high-or der bit of the timer coun ter, the rou tine can
de tect when the count has reached 128. At that time, the mid-range and high-range
coun ter vari ables are up dated (as in the non-in ter rupt ver sion of the soft ware de -
scribed in the pre vi ous para graph). The high-or der bit of the timer is then cleared,
but the low-or der bits are not changed. This al lows the timer coun ter not to lose
step in the count, which re mains valid un til the next time the high-or der bit is again
set. Dur ing the pe riod be tween the up dat ing of the 3-byte coun ter and the next poll -
ing of the timer reg is ter, the pro gram can con tinue to per form other tasks.

De lays with 16-Bit Timer0

In many cases the com pli ca tions men tioned in the pre vi ous sec tions can be avoided
by run ning Timer0 in the 16-bit mode. For ex am ple, if the max i mum de lay that can be
ob tained in 8-bit mode, given a ma chine run ning at 4MHz, is 1/15th sec ond (0.0666 sec -
ond), then switch ing to 16-bit mode makes the max i mum de lay of ap prox i mately 17
sec onds.

9.4.3 Coun ter and Timer Pro gram ming
Soft ware rou tines that use the Timer0 mod ule range in com plex ity from sim ple, ap -
prox i mate de lay loops to configurable, in ter rupt-driven coun ters that must meet very
high tim ing ac cu racy re quire ments. When the time pe riod to be mea sured does not ex -
ceed the one that can be ob tained with the prescaler and the timer reg is ter count, then
the cod ing is straight for ward and the pro cess ing is un com pli cated. How ever, if this is
not the case, the fol low ing el e ments should be ex am ined be fore at tempt ing to de sign
and code a Timer0-based rou tine:

1. What is the re quired ac cu racy of the timer de lay?

2. Does the pro gram sus pend ex e cu tion while the de lay is in prog ress, or does the
ap pli ca tion con tinue ex e cut ing in the fore ground?

3. Can the timer be in ter rupt-driven or must it be polled?

4. Will the de lay be the same on all calls to the timer rou tine, or must the rou tine pro -
vide de lays of dif fer ent mag ni tudes?

5. How long must the de lay last?

 De lays, Coun ters, and Tim ers 189

In this sec tion we ex plore sev eral timer and coun ter rou tines of dif fer ent com -
plex ity and re quire ments. The first one uses the Timer0 mod ule as a coun ter. Later
we de velop a sim ple de lay loop that uses the timer0 reg is ter in stead of the do-noth -
ing in struc tion count cov ered pre vi ously. We con clude with an in ter rupt-driven
timer rou tine that can be changed to implement different delays.

Pro gram ming a Coun ter

The 18F452 PIC can be pro grammed so that port RA4/TOCKI is used to count events or
pulses by initializing the Timer0 mod ule as a coun ter. When in ter rupts are not used,
the pro cess re quires the fol low ing pre pa ra tory steps:

1. Port A, line 4, (RA4/TOCKI) is de fined for in put.

2. The Timer0 reg is ter (TMR0) is cleared.

3. The Watch dog Timer in ter nal reg is ter is cleared by means of the clrwdt in struc -
tion.

4. The T0CON reg is ter bits PSA and PSO:PS2 are in i tial ized if the prescaler is to be
used.

5. The T0CON reg is ter bit TOSE is set so as to in cre ment the count on the
high-to-low tran si tion of the port pin if the port source is ac tive low. Oth er wise
the bit is cleared.

6. The T0CON reg is ter bit TOCS is set to se lect ac tion on the RA4/TOCKI pin.

Once the timer is set up as a coun ter, any pulse re ceived on the RA4/TOCKI pin
that meets the re stric tions men tioned ear lier is counted in the TMR0L and TMR0H
reg is ters. If Timer0 is set in the 8-bit mode, then the TMR0H reg is ter is not used.
Soft ware can read and write to the Timer0 reg is ters in or der to ob tain or change the
event count. If the timer in ter rupt is en abled when the timer is de fined as a coun ter,
then an in ter rupt takes place ev ery time the coun ter over flows, that is, when the
count cy cles from 0xff to 0x00 or from 0xffff to 0x0000 ac cord ing to the ac tive
mode.

Timer0_as_Coun ter.asm Pro gram

The pro gram named Timer0_as_Coun ter.asm, listed later in this chap ter and con -
tained in this book's on line soft ware pack age, uses the cir cuits men tioned in the pre vi -
ous para graph to dem on strate the pro gram ming of the Timer0 mod ule in the coun ter
mode. The pro gram de tects and counts ac tion on DIP switch #3, wired to port
RA4/TOCKI. The value of the count in hex dig its in the range 0x00 to 0x0f is dis played
in the seven-seg ment LED con nected to Port B.

The lo ca tion and use of the code ta ble were dis cussed in Sec tions 7.3 and 7.4. The
main() func tion starts by se lect ing bank 0, initializing Port A for dig i tal op er a tions,
and trissing Port A for in put and Port C for out put as in sev eral pre ced ing pro grams.
Code first clears the watch dog time and the TMR0L reg is ter, and then pro ceeds as
fol lows:

;=================================
; Check value in TMR0L and dis play
;=================================
; Ev ery clos ing of DIP switch # 3 (con nected to line

190 Chap ter 9

; RA4/TOCKI) adds one to the value in the TMR0L reg is ter.
; Loop checks this value, ad justs to the range 0 to 15
; and dis plays the re sult in the seven-seg ment LED on
; port B
checkTmr0:

movf TMR0L,w ; Timer reg is ter to w
; Elim i nate four high or der bits

andlw b'00001111' ; Mask off high bits
; At this point the w reg is ter con tains a 4-bit value
; in the range 0 to 0xf. Use this value (in w) to
; ob tain seven-seg ment dis play code

call codeTable
movwf PORTC ; Dis play switch bits
goto checkTmr0

No tice that the pro gram pro vides no way of de tect ing when the count ex ceeds
the dis play able range. This means that no dis play up date takes place as the timer cy -
cles from bi nary 00001111 to bi nary 11111111.

A Timer/Coun ter Test Cir cuit

Ei ther the cir cuit in Fig ure 7.2 or the or Demo Board 18F452-A (in Fig ure 7.3) can be
used to dem on strate the Timer0_as_Coun ter pro gram. Both cir cuits have a seven-seg -
ment LED wired to lines RC0:RC6 and a DIP switch wired to Port A, line 4, which is the
RA4/T0CKI line. By se lect ing the coun ter mode of Timer0, any ac tion on the T0CKI line
will be re flected in the TMR0x reg is ters.

Timer0 _De lay.asm Pro gram

One of the sim plest uses of the Timer0 mod ule is to im ple ment a de lay loop. In this
case the Timer0 mod ule is in i tial ized to use the in ter nal clock by clear ing the TOCS bit
of the T0CON reg is ter. If the prescaler is to be used, the PSA bit is cleared and the de -
sired pre-scal ing is se lected by means of bits 2:0 of the T0CON reg is ter. Ei ther the cir -
cuit in Fig ure 7.2 or the or Demo Board 18F452-A (in Fig ure 7.3) can be used to
dem on strate a sim ple ap pli ca tion that uses Timer0 as a de lay timer. Both cir cuits have
eight LEDs wired to lines RC0:RC7.

The pro gram named Timer0_De lay.asm, listed later in this chap ter and con tained
in this book's on line soft ware pack age, uses a timer-based de lay loop to flash in se -
quence eight LEDs that dis play the bi nary val ues from 0x00 to 0xff. The de lay rou -
tine ex e cutes in the fore ground, so that pro cess ing is sus pended while the count is
in prog ress. The pro gram ex e cutes in the 16-bit mode so the code can dem on strate
the is sues re lated to read ing and writ ing to the 16-bit reg is ters TMR0L and TMR0H.
These is sues were dis cussed in Sec tion 9.6.1.

Set ting up Timer0 as a de lay coun ter re quires se lect ing the re quired bits in the
T0CON reg is ter. The fol low ing code frag ment shows the pro gram's ini tial iza tion
rou tine to set up the timer.

;==============================
; setup Timer0 as de lay timer
;==============================
 clrf TMR0H ; Clear high latch
 clrf TMR0L ; Write both bytes
 clrwdt ; Clear watch dog timer

 De lays, Coun ters, and Tim ers 191

; Setup the T0CON reg is ter
; |------------- On/Off con trol
; | 1 = Timer0 en abled
; ||------------ 8/16 bit mode se lect
; || 0 = 16-bit mode
; |||----------- Clock source
; ||| 0 = In ter nal clock
; ||||---------- Source edge se lect
; |||| 1 = high-to-low
; |||||--------- Prescaler as sign ment
; ||||| 1 = prescaler not as signed
; |||||||| ----- No prescaler
; ||||||||
 movlw b'10011000'
 movwf T0CON

The pre vi ous code snip pet starts by clear ing both coun ter reg is ters. This re quires
first clear ing the buffer reg is ter TMR0H and then the low-byte reg is ter TMROL. This
last write op er a tion up dates both the high and the low byte of the timer si mul ta -
neously. The bits se lected in the T0CON reg is ter en able the timer, se lect the 16-bit
mode, en able the clock source as the in ter nal clock, ac ti vate the sig nal edge in
high-to-low mode, while the prescaler is left unassigned.

The pro gram then pro ceeds to an end less loop that in cre ments the value in the
Port C reg is ter by one. Be cause Port C is wired to eight LEDs on the demo cir cuit,
the dis play shows the bi nary value in the port. The rou tine calls a pro ce dure that im -
ple ments a de lay in a do-noth ing loop that uses Timer0 over flow. Code is as fol lows:

;=================================
; end less loop call ing
; de lay routiney
;=================================
; Dis play Port C count on LEDs
showLEDs:
 incf PORTC,f ; Add one to reg is ter
 call tmr0_de lay ; De lay rou tine
 goto showLEDs
;=================================
; Timer0 de lay rou tine
;=================================
tmr0_de lay:
cy cle:
 movf TMR0L,w ; Read low byte to latch
 ; high byte
 movf TMR0H,w ; Now read high byte
 sublw 0xff ; Sub tract max i mum count
 btfss STATUS,Z ; Test zero flag
 goto cy cle
; Re set coun ter
 clrf TMR0H ; Clear high byte buffer
 clrf TMR0L ; Write both low and high
 re turn
 end

192 Chap ter 9

The de lay rou tine is the pro ce dure named tmr0_de lay. To make the code more
read able, we have added a sec ond la bel named cy cle at this same ad dress. The code
reads the high byte of the timer, then the low one (this up dates both bytes.) The
value 0xff is then sub tracted from the high byte. The sub trac tion re turns zero and
sets the zero flag if the value in TMR0H is also 0xff. If the test is true, then the goto
cy cle in struc tion is skipped, both timer reg is ters are cleared, and ex e cu tion re turns
to the caller. If the test is false, then the timer reg is ter test loop re peats. In a 4-MHz
test cir cuit the en tire cy cle takes ap prox i mately 15 sec onds.

A Vari able Time-Lapse Rou tine

A vari able time-lapse rou tine can be de signed so that it can be ad justed to pro duce de -
lays within a cer tain time range. Such a pro ce dure would be a use ful tool in a pro gram -
mer's li brary. In pre vi ous sec tions we have de vel oped de lay rou tines that do so by
count ing timer pulses. This same idea can be used to de velop a rou tine that can be ad -
justed so as to pro duce ac cu rate de lays within a cer tain range.

The rou tine it self can be im ple mented to vary ing de grees of so phis ti ca tion re -
gard ing the con trol pa ram e ters. One im ple men ta tion could re ceive the de sired time
lapse as pa ram e ters passed by the caller. An other op tion would be a pro ce dure that
reads the de sired time lapse from pro gram con stants. In the pro gram named
Timer0_VarDelay.asm listed later in this chap ter and con tained in this book's soft -
ware, we de velop a pro ce dure in which the de sired time de lay is loaded from three
con stants de fined in the source. These con stants con tain the val ues that are loaded
into lo cal vari ables as they rep re sent the de sired wait pe riod in ma chine cy cles. Us -
ing ma chine cy cles in stead of time units (such as mi cro sec onds or mil li sec onds) the
pro ce dure be comes eas ily adapt able to de vices run ning at dif fer ent clock speeds.
Be cause each PIC in struc tion re quires four clock cy cles, the de vice's clock speed in
Hz is di vided by four in or der to de ter mine the num ber of ma chine cy cles per time
unit.

For ex am ple, a pro ces sor equipped with a 4-MHz clock ex e cutes at a rate of
4,000,000/4 ma chine cy cles per sec ond, that is, 1,000,000 in struc tion cy cles per sec -
ond. To pro duce a one-quar ter sec ond de lay re quires a wait pe riod of 1,000,000/4 or
250,000 in struc tion cy cles. By the same to ken, an 18f452 run ning at 8 MHz ex e cutes
2,000,000 in struc tions per sec ond. In this case, a one-quar ter sec ond de lay would re -
quire wait ing 500,000 in struc tion cy cles.

Timer0_VarDelay.asm Pro gram

The pro gram ti tled Timer0_VarDelay.asm, listed later in this chap ter and con tained in
the book's soft ware pack age, uses timer0 to pro duce a vari able-lapse de lay. As pre vi -
ously de scribed, the de lay is cal cu lated based on the num ber of ma chine cy cles nec es -
sary for the de sired wait pe riod. The pro gram uses a vari a tion of the Black-Ammerman
method de scribed ear lier in this chap ter. Code re quires a prescaler of 1:2 so that each
timer it er a tion takes place at one-half the clock rate. This scheme sim pli fies us ing the
Timer0 beat as an it er a tion coun ter. Af ter initializing Port C for out put, the pro gram
sets or clears the T0CON reg is ter bits as fol lows:

;==============================
; setup Timer0 as coun ter

 De lays, Coun ters, and Tim ers 193

; 8-bit mode
;==============================
; Prescaler is as signed to Timer0 and initialzed
; to 2:1 rate
; Setup the T0CON reg is ter
; |------------- On/Off con trol
; | 1 = Timer0 en abled
; ||------------ 8/16 bit mode se lect
; || 1 = 8-bit mode
; |||----------- Clock source
; ||| 0 = in ter nal clock
; ||||---------- Source edge se lect
; |||| 1 = high-to-low
; |||||--------- Prescaler as sign ment
; ||||| 0 = prescaler as signed
; ||||||||------ Prescaler se lect
; |||||||| 1:2 rate
 movlw b'11010000'
 movwf T0CON
; Clear reg is ters
 clrf TMR0L
 clrwdt ; Clear watch dog timer

The con stants that de fine the time lapse pe riod are en tered in #de fine state ments
so they can be eas ily ed ited to ac com mo date other de lays and pro ces sor speeds. In
a 4-MHz sys tem, a de lay of one-half sec ond re quires 500,000 timer cy cles, while a de -
lay of one-tenth sec ond re quires a count of 10,000. Be cause this de lay value must be
en tered in three 1-byte vari ables, the value is con verted to hex a dec i mal so it can be
in stalled in three con stants; for ex am ple,

 1,000,000 = 0x0f4240 = one sec ond at 4MHz
 500,000 = 0x07a120 = one-half sec ond at 4MHz
 10,000 = 0x002710 = one-tenth sec ond at 4MHz

For ex am ple, val ues for one-half sec ond are in stalled in con stants as fol lows:

 500,000 = 0x07 0xa1 0x20
 ---- ---- ----
 | | |___ lowCnt
 | |________ midCnt
 |_____________ highCnt

Code can read these con stants and move them to lo cal vari ables at the be gin ning
of each timer cy cle, as in the fol low ing code frag ment

;==============================
; set reg is ter vari ables
;==============================
; Pro ce dure to ini tial ize lo cal vari ables for a
; de lay pe riod de fined in lo cal con stants highCnt,
; midCnt, and lowCnt.
setVars:

movlw highCnt ; From con stants
movwf countH
movlw midCnt
movwf countM

194 Chap ter 9

movlw lowCnt
movwf countL
re turn

The ac tual de lay rou tine is a vari a tion of the Black-Ammerman method de scribed
in Sec tion 9.4.2. In this case, a back ground coun ter is made pos si ble by in tro duc ing
a 1:2 timer de lay by means of the prescaler. This de lay makes the timer beat run at
one-half the in struc tion rate, that is, 128 timer cy cles rep re sent one com plete timer
cy cle. By test ing the high-or der bit of the timer coun ter (TMR0L in 8-bit mode), the
rou tine eas ily de tects when the count has reached 128. At that time, the mid-range
and high-range coun ter vari ables are up dated by dec re ment ing the coun ters, thus
tak ing care of pos si ble over flows. When the house keep ing has con cluded, the
high-or der bit of the timer is cleared, but the low-or der bits are not changed. Be -
cause the count is kept in the low-or der bits dur ing house keep ing op er a tions, the
timer coun ter does not lose step, which re mains valid until the next time the
high-order bit is again set.

In im ple ment ing this scheme, the TMR0L reg is ter pro vides the low-or der level of
the count. Be cause the coun ter counts up from zero, code must pre-in stall a value in
the coun ter reg is ter that rep re sents one-half the num ber of timer it er a tions
(prescaler is in 1:2 mode) re quired to reach a count of 128. For ex am ple, if the value
in the low coun ter vari able is 140, then

140/2 = 70
128 - 70 = 58

Be cause the timer starts count ing up from 58, when the count reaches 128,140 timer
beats would have elapsed. The for mula for cal cu lat ing the value to pre-in stall in the
low-level coun ter is as fol lows:

 Value in TMR0L = 128 - (x/2)

where x is the num ber of it er a tions in the low-level coun ter vari able.

Code is as fol lows:

;==================================
; vari able-lapse de lay pro ce dure
; us ing Timer0
;==================================
; ON ENTRY:
; Vari ables countL, countM, and countH hold
; the low-, mid dle-, and high-or der bytes
; of the de lay pe riod, in timer units
TM0delay:
; For mula:
; Value in TMR0L = 128 - (x/2)
; where x is the num ber of it er a tions in the low-level
; coun ter vari able
; First cal cu late xx/2 by bit shift ing
 rrncf countL,f ; Di vide by 2
; now sub tract 128 - (x/2)
 movlw d'128'

 De lays, Coun ters, and Tim ers 195

; Clear the bor row bit (mapped to Carry bit)
 bcf STATUS,C
 subfwb countL,w
; Now w has ad justed re sult. Store in TMR0L
 movwf TMR0L
; Rou tine tests timer over flow by test ing bit 7 of
; the TMR0L reg is ter.
cy cle:
 btfss TMR0L,7 ; Is bit 7 set?
 goto cy cle ; Wait if not set
; At this point TMR0 bit 7 is set
; Clear the bit
 bcf TMR0L,7 ; All other bits are pre served
; Sub tract 256 from beat coun ter by dec re ment ing the
; mid-or der byte
 decfsz countM,f
 goto cy cle ; Con tinue if mid-byte not zero
; At this point the mid-or der byte has over flowed.
; High-or der byte must be dec re ment ed.
 decfsz countH,f
 goto cy cle
; At this point the time cy cle has elapsed
 re turn

In ter rupt-Driven Timer

In ter rupt-driven tim ers and coun ters have the ad van tage over polled rou tines that the
time lapse count ing takes place in the back ground, which makes it pos si ble for an ap -
pli ca tion to con tinue to do other work in the fore ground. De vel op ing a timer rou tine
that is in ter rupt-driven pres ents no ma jor pro gram ming chal lenges. The ini tial iza tion
con sists of con fig ur ing the OPTION and the INTCON reg is ter bits for the task at hand.
In the par tic u lar case of an in ter rupt-driven timer, the fol low ing are nec es sary:

1. The ex ter nal in ter rupt flag (INTF in the INTCON Reg is ter) must be ini tially
cleared.

2. Global in ter rupts must be en abled by set ting the GIE bit in the INTCON register.

3. The timer0 over flow in ter rupt must be en abled by set ting the TOIE bit in the
INTCON reg is ter.

In the pres ent ex am ple pro gram, named Timer0_VarInt, the prescaler is not used
with the timer, so the ini tial iza tion code sets the PSA bit in the OPTION reg is ter in
or der to have the prescaler as signed to the Watch dog Timer. The fol low ing code
frag ment is from the Timer0_VarInt pro gram:

main:
; Set BSR for bank 0 op er a tions

movlb 0 ; Bank 0
; Ini tial ize all lines in PORT C for out put

movlw B'00000000' ; 0 = out put
movwf TRISC ; Port C tris reg is ter
movwf PORTC

;==============================
; setup Timer0 as coun ter
; 8-bit mode
;==============================

196 Chap ter 9

 bcf INTCON,TMR0IE
; Setup the T0CON reg is ter
; |------------- On/Off con trol
; | 1 = Timer0 en abled
; ||------------ 8/16 bit mode se lect
; || 1 = 8-bit mode
; |||----------- Clock source
; ||| 0 = in ter nal clock
; ||||---------- Source edge se lect
; |||| 1 = high-to-low
; |||||--------- Prescaler as sign ment
; ||||| 1 = prescaler not as signed
; |||||||| ----- Prescaler se lect
; |||||||| 1:2 rate

movlw b'11011000'
 movwf T0CON
; Clear reg is ters
 clrf TMR0L
 clrwdt ; Clear watch dog timer
;===============================
; Set up for Timer0 interupt
;===============================
; Dis able in ter rupt pri or ity lev els in the RCON reg is ter
; set ting up the mid range com pat i bil ity mode
 bsf RCON,IPEN ; En able in ter rupt pri or i ties
; INTCON reg is ter in i tial ized as fol lows:
; (IPEN bit is clear)
; |------------ high-pri or ity in ter rupts
; ||----------- low-pri or ity pe riph eral
; |||---------- timer0 over flow in ter rupt
; ||||--------- ex ter nal in ter rupt
; |||||-------- port change in ter rupt
; ||||||------- over flow in ter rupt flag
; |||||||------ ex ter nal in ter rupt flag
; ||||||||----- RB4:RB7 in ter rupt flag
 movlw b'10100000'
 movwf INTCON
; Set INTCON2 for fall ing edge op er a tion
 bcf INTCON2,INTEDG0
; Re-en able timer0 in ter rupt
 bsf INTCON,TMR0IE ; Ac ti vate Timer0 in ter rupt
 bcf INTCON,TMR0IF ; Clear in ter rupt f

As in the pro gram Timer0_VarDelay de vel oped pre vi ously in this chap ter, the
timer op er ates by dec re ment ing a 3-byte coun ter that holds the num ber of timer
beats re quired for the pro grammed de lay. In the case of the Timer0_VarInt pro gram,
the rou tine that initializes the reg is ter vari ables for a one-half sec ond de lay also
makes the ad just ment so that the ini tial value loaded into the tmr0 reg is ter is cor -
rectly ad justed. The code is as follows:

;==============================
; set reg is ter vari ables for
; one-half sec ond de lay
;==============================
; Pro ce dure to ini tial ize lo cal vari ables for a
; de lay of one-half sec ond on a 16F84 at 4 MHz.
; Timer is setup for a 500,000 clock beats as
; fol lows: 500,000 = 0x07 0xa1 0x20

 De lays, Coun ters, and Tim ers 197

; 500,000 = 0x07 0xa1 0x20
; ---- ---- ----
; | | |___ countL)
; | |________ countM
; |_____________ countH
onehalfSec:

movlw 0x07
movwf countH
movlw 0xa1
movwf countM
movlw 0x20
movwf countL

; The tmr0 reg is ter pro vides the low-or der level of
; the count. Because the coun ter counts up from zero,
; in or der to en sure that the ini tial low-level de lay
; count is cor rect, the value 256 - xx must be cal cu lated
; where xx is the value in the orig i nal countL vari able.

movf countL,w ; w holds low-or der byte
sublw d'256'

; Now w has ad justed re sult. Store in tmr0
movwft mr0
re turn

The in ter rupt ser vice rou tine in the Timer0_VarInt pro gram re ceives con trol
when the tmr0 reg is ter over flows, that is, when the count goes from 0xff to 0x00.
The ser vice rou tine then pro ceeds to dec re ment the mid-range coun ter reg is ter and
ad just, if nec es sary, the high-or der coun ter. If the count goes to zero, the han dler
tog gles the LED on port B, line 0, and re-initializes the coun ter vari ables by call ing
the onehalfSec pro ce dure de scribed pre vi ously. The in ter rupt han dler is coded as
fol lows:

;===
; In ter rupt Ser vice Rou tine
;===
; Ser vice rou tine re ceives con trol when the timer
; reg is ter tmr0 over flows, that is, when 256 timer beats
; have ellapsed
IntServ:
; First test if source is a timer0 in ter rupt

btfss INTCON,toif ; TOIF is timer0 in ter rupt
goto notTOIF ; Go if not RB0 or i gin

; If so clear the timer in ter rupt flag so that count con tin ues
bcf INTCON,toif ; Clear in ter rupt flag

; Save con text
movwf old_w ; Save w reg is ter
swapf STATUS,w ; STATUS to w
movwf old_sta tus ; Save STATUS

;=========================
; in ter rupt ac tion
;=========================
; Sub tract 256 from beat coun ter by dec re ment ing the
; mid-or der byte

decfsz countM,f
goto exitISR ; Con tinue if mid-byte not zero

; At this point the mid-or der byte has over flowed.
; High-or der byte must be dec re ment ed.

decfsz countH,f
goto exitISR

198 Chap ter 9

; At this point count has ex pired so the pro grammed time

; has ellapsed. Ser vice rou tine turns the LED on line 0,

; port B on and off at ev ery con clu sion of the count.

; This is done by xoring a mask with a one-bit at the

; port B line 0 po si tion

movlw b'00000001' ; Xoring with a 1-bit pro duces

; the com ple ment

xorwf portb,f ; Com ple ment bit 2, port B

; Re set one-half sec ond coun ter

call onehalfSec

;=========================

; exit ISR

;=========================

exitISR:

; Re store con text

swapf old_sta tus,w ; Saved sta tus to w

movfw STATUS ; To STATUS reg is ter

swapf old_w,f ; Swap file reg is ter in it self

swapf old_w,w ; re-swap back to w

; Re turn from in ter rupt

notTOIF:

retfie

No tice that one of the ini tial op er a tions of the ser vice rou tine is to clear the TOIF
bit in the INTCON reg is ter. This ac tion reenables the timer in ter rupt and pre vents
count ing cy cles from be ing lost. Be cause the in ter rupt is gen er ated ev ery 256 beats
of the timer, there is no risk that by en abling the timer in ter rupt flag a reentrant in -
ter rupt will take place.

The in ter rupt-based timer pro gram named Timer0_VarInt can be tested ei ther on
the cir cuit in Fig ure 7.2 or the or Demo Board 18F452-A (in Fig ure 7.3).

9.5 Other Timer Mod ules
The PIC 18F fam ily of microcontrollers pro vide ei ther three or four timer mod ules in
ad di tion to Timer0. These are des ig nated Timer1, Timer2, Timer3, and Timer4 mod -
ules. The pro gram ming and ap pli ca tion of these other timer mod ules are sim i lar to
that of the Timer0 mod ule pre vi ously de scribed. The main dif fer ence be tween Timer0
and the other three timer mod ules re late to the avail able clock sources and spe cial
fea tures that pro vide in ter ac tion with other hard ware mod ules. The Timer4 mod ule is
only avail able in some spe cific de vices of the PIC 18F fam ily.

9.5.1 Timer1 Mod ule

The Timer1 mod ule is a 16-bit de vice that can per form tim ing and count ing op er a tions.
It con tains two 8-bit reg is ters la beled TMR1H and TMR1L. Both reg is ters are read able
and writable. The reg is ter pair in cre ments from 0000H to FFFFH and then rolls over
back to 0000H. Timer1 can be en abled to gen er ate an in ter rupt on over flow of the
timer reg is ters. In this case, the in ter rupt is re flected in the in ter rupt flag bit TMR1IF.
The in ter rupt is en abled by set ting the set ting the TMR1IE in ter rupt en able bit.

Timer1 can op er ate in one of three modes:

 De lays, Coun ters, and Tim ers 199

1. As a syn chro nous timer

2. As a syn chro nous coun ter

3. As an asyn chron ous coun ter

The op er at ing mode is se lected by clock se lect bit, TMR1CS (T1CON reg is ter),
and the syn chro ni za tion bit, T1SYNC. In the timer mode, Timer1 in cre ments ev ery
in struc tion cy cle. In the coun ter modes, it in cre ments on ev ery ris ing edge of the ex -
ter nal clock in put pin T1OSI. Timer1 is turned on and off by means of the TMR1ON
con trol bit in the T1CON reg is ter.

Timer1 has an in ter nal re set in put that can be gen er ated by a CCP mod ule as well
as the ca pa bil ity of op er at ing off an ex ter nal crys tal. When the Timer1 os cil la tor is
en abled (T1OSCEN is set), the T1OSI and T1OSO pins be come in puts and their cor -
re spond ing TRIS val ues are ig nored. Fig ure 9.3 shows the bitmap of the Timer1 con -
trol reg is ter (T1CON.)

Fig ure 9.3 Timer1 control reg is ter (T1CON) bitmap.

Timer1 in Timer Mode

Timer1 is set in timer mode by clear ing the TMR1CS (T1CON reg is ter) bit (see Fig ure
9.3). In the timer mode the in put clock to the timer is the pro ces sor's main clock at
FOSC/4. In this mode, the syn chro nize con trol bit, T1SYNC (T1CON reg is ter), has no
ef fect be cause the in ter nal clock is al ways syn chro nized.

200 Chap ter 9

RD16

bit 0bit 7

- T1CKPS1 T1CKPS2 T1OSCEN T1SYNC TMR1CS TMR1ON

bit 7 Rd16: 16-bit Read/Write Mode Enable bit
 1 = Enables register Read/Write in one 16-bit operation
 0 = Enables register Read/Write in two 8-bit operations
bit 6 Unimplemented:
bit 5:4 T1CKPS1:T1CKPS0: Timer1 Input Clock Prescale Select bits
 11 = 1:8 Prescale value
 10 = 1:4 Prescale value
 01 = 1:2 Prescale value
 00 = 1:1 Prescale value
bit 3 T1OSCEN: Timer1 Oscillator Enable bit
 1 = Timer1 oscillator is enabled
 0 = Timer1 oscillator is turned off
bit 2 T1SYNC: Timer1 External Clock Input Synchronization Select
 When TMR1CS = 1:
 1 = Do not synchronize external clock input
 0 = Synchronize external clock input
 When TMR1CS = 0
 Timer1 uses the internal clock
bit 1 TMR1CS: Timer1 Clock Source Select bit
 1 = External clock from pin T1OSO/T13CKI (rising edge)
 0 = Internal clock at FOSC/4
bit 0 TMR1ON: Timer1 On bit
 1 = Timer1 enabled
 0 = Timer1 stopped

Timer1 in Syn chro nized Coun ter Mode

Syn chro nized coun ter mode is se lected by set ting the TMR1CS bit (see Fig ure 9.3). In
this mode, the timer in cre ments on ev ery ris ing edge of in put sig nal on the T1OSI pin
(when the Timer1 os cil la tor en able bit (T1OSCEN) is set) or the T1OSO/T13CKI pin
(when the T1OSCEN bit is cleared.) If the T1SYNC bit is cleared, then the ex ter nal
clock in put is syn chro nized with in ter nal phase clocks. Dur ing SLEEP mode, Timer1
will not in cre ment even if the ex ter nal clock is pres ent, be cause the syn chro ni za tion
cir cuit is shut off. The prescaler, how ever, will con tinue to in cre ment.

Ex ter nal Clock In put Tim ing in Syn chro nized Mode

When Timer1 is set to use an ex ter nal clock in put in syn chro nized coun ter mode, it
must meet the fol low ing re quire ments:

1. There is a de lay in the ac tual in cre ment ing of TMR1 af ter syn chro ni za tion.

2. When the prescaler is 1:1, the ex ter nal clock in put is the same as the prescaler
out put.

3. The syn chro ni za tion of T1CKI with the in ter nal phase clocks is ac com plished by
sam pling the prescaler out put on al ter nat ing TSCLK clocks of the in ter nal phase
clocks. There fore, it is nec es sary for the T1CKI pin to be high for at least 2TSCLK
(and a small RC de lay) and low for at least 2TSCLK (and a small RC de lay).

4. When a prescaler other than 1:1 is used, the ex ter nal clock in put is di vided by the
asyn chron ous prescaler so that the prescaler out put is sym met ri cal.

5. In or der for the ex ter nal clock to meet the sam pling re quire ment, the prescaler
coun ter must be taken into ac count. There fore, it is nec es sary for the T1CKI pin
to have a pe riod of at least 4TSCLK (and a small RC de lay) di vided by the
prescaler value.

6. Fi nally, the T1CKI pin high and low times can not vi o late the min i mum pulse width
re quire ments.

Timer1 Read and Write Op er a tions

Timer1 read and write modes al low the 16-bit timer reg is ter to be read/writ ten as two
8-bit reg is ters or as one 16-bit reg is ter. The mode is se lected by means of the RD16 bit.
When the RD16 con trol bit (T1CON reg is ter) is set (see Fig ure 9.3), the ad dress for
TMR1H is mapped to a buffer reg is ter for the high byte of Timer1. This de ter mines that
a read from TMR1L will load the con tents of the high byte of Timer1 into the Timer1
high byte buffer. This scheme makes it pos si ble to ac cu rately read all 16 bits of Timer1
with out hav ing to de ter mine if a roll over took place when a read of the high byte was
fol lowed by a read of the low byte.

16-bit Mode Timer1 Write

As is the case with a read op er a tion, a write to the high byte of Timer1 must also take
place through the TMR1H buffer reg is ter. There fore Timer1 high byte is up dated with
the con tents of TMR1H when a write oc curs to TMR1L. This al lows writ ing all 16 bits
to both the high and low bytes of Timer1 in a sin gle op er a tion. Fig ure 9.4 shows the ar -
chi tec ture of the Timer1 when con fig ured for 16-bit Read/Write mode.

 De lays, Coun ters, and Tim ers 201

Fig ure 9.4 Timer1 block di a gram.

No tice in Fig ure 9.4 that the high byte of Timer1 is not di rectly read able or
writable in the 16-bit mode. In stead, all reads and writes take place through the
Timer1 high byte buffer reg is ter. Also notice that writes to TMR1H do not clear the
Timer1 prescaler.

16-bit Read-Mod ify-Write

Read-mod ify-write in struc tions, such as BSF and BCF, read the con tents of a reg is ter,
make the ap pro pri ate changes, and then place the re sult back into the same reg is ter.
When Timer1 is con fig ured in 16-bit mode, the read por tion of a read-mod ify-write in -
struc tion of TMR1L will not up date the con tents of the TMR1H buffer. The TMR1H
buffer will re main un changed. When the write of TMR1L por tion of the in struc tion
takes place, the con tents of TMR1H are placed into the high byte of Timer1.

Read ing and Writ ing Timer1 in Two 8-bit Op er a tions

When Timer1 is in Asyn chron ous Coun ter Mode for 16-bit op er a tions (RD16 = 1), the
hard ware en sures a valid read of TMR1H or TMR1L. How ever, read ing the 16-bit timer
in two 8-bit val ues (RD16 = 0) poses the prob lem of a pos si ble timer over flow be tween
the reads. For write op er a tions, the pro gram can stop the timer and write the de sired
val ues. Turn ing off the timer pre vents a write con ten tion that could oc cur when writ -
ing to the timer reg is ters while the reg is ter is in cre ment ing. On the other hand, read ing
may pro duce an un pre dict able value in the timer reg is ter and re quires spe cial care in
some cases. This hap pens be cause two sep a rate reads are re quired to read the en tire
16-bits.

The fol low ing code frag ment shows a rou tine to read the 16-bit timer value with -
out ex pe ri enc ing the timer over flow is sues pre vi ously men tioned. This scheme is
use ful if the timer can not be stopped.

; Read ing a 16-bit timer
; Code as sumes the vari ables named tmph and tmpl
; All in ter rupts are dis abled

movf TMR1H,w ; Read high byte

202 Chap ter 9

movwf tmph
movf TMR1L,w ; Read low byte
movwf tmpl
movf TMR1H,w ; Read high byte
subwf tmph,w ; Sub tract 1st read and 2nd read
btfsc STATUS,z ; is re sult = 0 ?
goto CONTINUE ; good 16-bit read

; TMR1L may have rolled over be tween the read of the high
; and low bytes. Read ing the high and low bytes now will
; read a good value.

movf TMR1H,w ; Read high byte
movwf TMPH
movf TMR1L, w ; Read low byte
movwf TMPL

CONTINUE:
; Code con tin ues at this la bel

Writ ing a 16-bit value to the 16-bit TMR1 reg is ter is straight for ward. First the
TMR1L reg is ter is cleared to en sure that there are many Timer1 clock/os cil la tor cy -
cles be fore there is a roll over into the TMR1H reg is ter. The TMR1H reg is ter is then
loaded, and then the TMR1L reg is ter, as shown in the fol low ing code fragment.

; Writ ing a 16-bit timer
; All in ter rupts are dis abled
; Code as sumes the vari ables names hi_byte and low_byte

clrf TMR1L ; Clear ing the low byte
; to en sure no roll over
; into TMR1H

movlw hi_byte ; Value to load into tmr1h
movwf TMR1H,f ; Write high byte
movlw lo_byte ; value to load into TMR1L
movwf TMR1L,f ; Write low byte

; re-en able the in ter rupt (if re quired)
; Code con tin ues here

9.5.2 Timer2 Mod ule
The Timer2 is an 8-bit timer with a prescaler, a postscaler, and a pe riod reg is ter. By us -
ing the prescaler and postscaler at their max i mum set tings it is pos si ble to ob tain a
time pe riod equal to the one of a 16-bit timer. Timer2 is de signed to be used as the
time-base for the PWM mod ule. Fig ure 9.5 IS a block di a gram of Timer2.

Fig ure 9.5 Timer2 block di a gram.

 De lays, Coun ters, and Tim ers 203

FOSC/4

T2CKPS1:T2CKPS0
EQ

Reset

T2OUTPS3:T2OUTPS0

TMR2
output

Sets flag bit
TMR2IFPrescaler

1:1 - 1:4 - 1:16

Posscaler
1:1 to 1:16

TMR2

Comparator

PR2

In Fig ure 9.5 note that the postscaler counts the num ber of times that the TMR2
reg is ter matched the PR2 reg is ter. This can be use ful in re duc ing the over head of
the in ter rupt ser vice rou tine on the CPU per for mance. Fig ure 9.6 is a bitmap of the
T2CON reg is ter.

Fig ure 9.6 Timer2 control reg is ter (T2CON) bitmap.

Timer Clock Source

The Timer2 mod ule has a sin gle source of in put clock, which is the de vice clock
(FOSC/4). How ever, the clock speed can be con trolled by se lect ing one of the three
prescale op tions (1:1, 1:4, or 1:16). This is ac com plished by means of the con trol bits
T2CKPS1:T2CKPS0 in the T2CON reg is ter (see Fig ure 9.6).

TMR2 and PR2 Reg is ters

The TMR2 reg is ter is read able and writable, and is cleared on all de vice re sets. Timer2
in cre ments from 0x00 un til it matches the pe riod reg is ter (PR2) and then re sets to
0x00 on the next in cre ment cy cle. PR2 is also a read able and writable reg is ter. The
TMR2 reg is ter is cleared and the PR2 reg is ter is set when a WDT, POR, MCLR, or a BOR
re set oc curs.

Pro gram ming Timer2 is sim pli fied by means of the in ter ac tion be tween the TMR2
and the PR2 reg is ter. On timer start-up the TMR2 reg is ter is in i tial ized to 0x00 and
the PR2 reg is ter to 0xff. In this state, TMR2 op er ates as a sim ple coun ter and re sets
as it reaches 0xff. Ap pli ca tion code can de fine a tim ing pe riod by set ting these reg is -
ters ac cord ingly. For ex am ple, to ob tain a time pe riod of 50 cy cles an ap pli ca tion
can set the PR2 reg is ter to 50 and then mon i tor when the TMR2 reg is ter over flows
(TMR2IF flag is set) or when a Timer2 in ter rupt is gen er ated.

204 Chap ter 9

bit 0bit 7

- TOUTPS3 TOUTPS2 TOUTPS1 TOUTPS0 TMR2ON T2CKPS1 T2CKPS0

bit 7 Unimplemented (reads as 0)

bit 6-3 TOUTPS3:TOUTPS0: Postscale select bits
 0000 = 1:1 Postscale
 0001 = 1:2 Postscale
 0010 = 1:3 Postscale
 .
 .
 .
 1111 = 1:16 Postscale

bit 2 TMR2ON: Timer2 ON
 1 = Timer2 is on
 0 = Timer2 is off

bit 1-0 T2KPS1:T2KPS0: Prescale select bits
 00 = Prescale is 1
 01 = Prescale is 4
 1x = Prescale is 16

If the PR2 reg is ter is cleared (set to 0x00), the TMR2 reg is ter will not in cre ment
and Timer2 will be dis abled. Timer2 can also be shut off by clear ing the TMR2ON
con trol bit (T2CON reg is ter). When Timer2 is not used by an ap pli ca tion it is rec om -
mended to turn it off be cause this min i mizes the power con sump tion of the mod ule.

Prescaler and Postscaler

Four bits serve to se lect the postscaler. This al lows the postscaler rate from 1:1 to
1:16. Af ter the postscaler over flows, the TMR2 in ter rupt flag bit (TMR2IF) is set to in -
di cate the Timer2 over flow. This is use ful in re duc ing the soft ware over head of the
Timer2 in ter rupt ser vice rou tine, be cause it will only ex e cute when the postscaler is
matched. The prescaler and postscaler coun ters are cleared when any of the fol low ing
oc curs:

1. Aa write to the TMR2 reg is ter

2. A write to the T2CON reg is ter

3. Any de vice re set (Power-on Re set, MCLR re set, Watch dog Timer Re set,
Brown-out Re set)

Dur ing sleep, TMR2 will not in cre ment. The prescaler will re tain the last prescale
count, ready for op er a tion to re sume af ter the de vice wakes from sleep.

Timer2 Ini tial iza tion

The fol low ing code frag ment shows the ini tial iza tion of the Timer2 mod ule, in clud ing
the prescaler and postscaler:

clrf T2CON ; stop timer2, prescaler = 1:1,
; postscaler = 1:1

clrf TMR2 ; clear timer2 reg is ter
clrf INTCON ; dis able in ter rupts
lrf PIE1 ; dis able pe riph eral in ter rupts
clrf PIR1 ; clear pe riph eral in ter rupts flags
movlw 0x72 ; postscaler = 1:15

; prescaler = 1:16
movwf T2CON ; timer2 is off
movlw pr2value ; value to load into the
movwf PR2 ; PR2 reg is ter.
bsf T2CON, TMR2CON ; timer2 starts to in cre ment

; the timer2 in ter rupt is dis abled, do poll ing on the
; over flow bit
t2_ovfl_wait

btfss PIR1, TMR2IF ; has tmr2 in ter rupt oc curred?
goto t2_ovfl_wait ; no, con tinue loop

; timer has over flowed
bcf PIR1, TMR2IF ; yes, clear flag and con tinue.

9.5.3 Timer3 Mod ule
The Timer3 mod ule is a 16-bit timer/coun ter con sist ing of two 8-bit reg is ters la beled
TMR3H and TMR3L. Both reg is ters are read able and writable. The reg is ter pair
(TMR3H:TMR3L) in cre ments from 0000h to FFFFh and rolls over to 0000h. The
Timer3 In ter rupt is gen er ated on over flow and is latched in the TMR3IF in ter rupt flag
bit. This in ter rupt can be en abled/dis abled by set ting/clear ing the TMR3IE in ter rupt
en able bit. Fig ure 9.7 is a block di a gram of the Timer3 mod ule.

 De lays, Coun ters, and Tim ers 205

Fig ure 9.7 Timer3 block diagram for 16-bit modes.

Timer3 can op er ate in one of three modes:

1. As a syn chro nous timer

2. As a syn chro nous coun ter

3. As an asyn chron ous coun ter

The fol low ing fea tures are char ac ter is tic of the Timer3 mod ule:

• TMR3 also has an in ter nal “re set in put,” that can be gen er ated by a CCP mod ule.

• TMR3 has the ca pa bil ity to op er ate off an ex ter nal crys tal/clock.

• TMR3 is the al ter nate time base for cap ture/com pare.

Fig ure 9.8 is a bitmap of the Timer3 Con trol Reg is ter.

Timer3 in cre ments ev ery in struc tion cy cle while in the timer mode. In coun ter
mode, it in cre ments on ev ery ris ing edge of the ex ter nal clock in put. The Timer3 in -
cre ment can be en abled or dis abled by set ting or clear ing con trol bit TMR3ON
(T3CON reg is ter in Fig ure 9.8). Timer3 also has an in ter nal “re set in put.” This re set
can be gen er ated by a CCP spe cial event trig ger (Cap ture/Com pare/PWM) mod ule.

When the Timer1 os cil la tor is en abled (T1OSCEN, in T1CON, is set), the T1OSCI1
and T1OSO2 pins are con fig ured as os cil la tor in put and out put, so the cor re spond -
ing val ues in the TRIS reg is ter are ig nored. The Timer3 mod ule also has a soft ware
pro gram ma ble prescaler. The op er at ing mode is de ter mined by clock se lect bit,
TMR3CS (T3CON reg is ter), and the syn chro ni za tion bit, T3SYNC (Fig ure 9.8).

206 Chap ter 9

TMR3H TMR3L

TMR3ON
(on/off)

T3CCPx

CLR

Set TMR3IF flag
bit on overflow

CCP special trigger

T1SYNC

SLEEP input

T3CKPA1:T3CKPS0

TMR3CS

TT1P

FOSC/4
internal
clock

Synchronized

clock input

Synchronize

Prescaler
1 - 2 - 4 - 8

det

0

1

1

0

TMR3

Fig ure 9.8 Timer3 control reg is ter (T3CON) bitmap.

Timer3 in Timer Mode

Timer mode is se lected by clear ing the TMR3CS bit (T3CON reg is ter in Fig ure 9.8). In
this mode, the in put clock to the timer is FOSC/4. The syn chro nize con trol bit,
T3SYNC (T3CON reg is ter in Fig ure 9.8), has no ef fect be cause the in ter nal clock is al -
ways syn chro nized.

Timer3 in Syn chro nized Coun ter Mode

The Timer3 coun ter mode is se lected by set ting bit TMR3CS (see Fig ure 9.8). In the
coun ter mode, the timer in cre ments on ev ery ris ing edge of in put on the T1OSI pin
(when en able bit T1OSCEN is set) or the T13CKI pin (when bit T1OSCEN is cleared). If
the T3SYNC bit is cleared, then the ex ter nal clock in put is syn chro nized with in ter nal
phase clocks. The syn chro ni za tion is done af ter the prescaler stage, which op er ates
asynchronously. No tice that Timer3 gets its ex ter nal clock in put from the same source
as Timer1. The con fig u ra tion of the Timer1 and Timer3 clock in put will be con trolled
by the T1OSCEN bit in the Timer1 con trol reg is ter.

Dur ing SLEEP mode, Timer3 will not in cre ment even if an ex ter nal clock is pres -
ent, as the syn chro ni za tion cir cuit is shut off. The prescaler, how ever, will con tinue
to in cre ment.

 De lays, Coun ters, and Tim ers 207

 bit 0bit 7

RD16 T3CPP2 T3CKPS1 T3CKPS0 T3CCP1 T3SYNC TMR3CS TMR3ON

bit 7 16-bit Read/Write Mode Enable bit
 1 = Enables register Read/Write in one 16-bit operation
 0 = Enables register Read/Write in twso 8-bit operations

bit 6,3 Timer3 and Timer1 CCPx Enable bits
 1x = Timer3 is clock source for capture/compare of CCP modules
 01 = Timer3 is clock source for capture/compare of CCP2
 Timer1 is clock source for capture/compare of CCP1
 00 = Timer1 is clock source for capture/compare of CCP modules

bit 5:4 Timer3 Input Clock Prescale Select bits
 11 = 1:8 Prescale value
 10 = 1:4 Prescale value
 01 = 1:2 Prescale value
 00 = 1:1 Prescale value

bit 2 ~ Timer3 External Clock Input Synchronization Select
 When TMR3CS = 1:
 1 = Do not synchronize external clock input
 0 = Synchronize external clock input
 When TMR3CS = 0
 Timer1 uses the internal clock

bit 1 Timer1 Clock Source Select bit
 1 = External clock form pin T1OSO/T13CKI (rising edge)
 0 = Internal clock at FOSC/4

bit 0 Timer3 On bit
 1 = Timer3 enabled
 0 = Timer3 stopped

Rd16:

T3CCP2:T3CCP1t:

T3CKPS1:T3CKPS0:

T3SYNC:

TMR3CS:

TMR3ON:

Ex ter nal Clock In put Tim ing

The ex ter nal clock in put used for Timer3 in syn chro nized coun ter mode must meet
cer tain re quire ments:

• When the prescaler is 1:1, the ex ter nal clock in put is the same as the prescaler out -
put. In this case, there is syn chro ni za tion of T1OSI/T13CKI with the in ter nal phase
clocks. There fore, it is nec es sary for T1OSI/T13CKI to be high for at least 2TSCLK
(and a small RC de lay) and low for at least 2TSCLK.

• When a prescaler other than 1:1 is used, the ex ter nal clock in put is di vided by the
asyn chron ous prescaler. In this case, the prescaler out put is sym met ri cal.

Timer3 in Asyn chron ous Coun ter Mode

When the ~T3SYNC bit is set, the ex ter nal clock in put is not syn chro nized. In this case,
the timer con tin ues to in cre ment asynchronously to the in ter nal phase clocks. The
timer will con tinue to run dur ing SLEEP and can gen er ate an in ter rupt on over flow
that will wake up the pro ces sor.

Be cause the coun ter can op er ate in sleep, Timer3 can be used to im ple ment a
true real-time clock. This also ex plains why in asyn chron ous coun ter mode, Timer3
can not be used as a time base for cap ture or com pare op er a tions.

Ex ter nal Clock In put Tim ing with Unsynchronized Clock

If the T3SYNC con trol bit is set, the timer will in cre ment com pletely asynchronously.
Also note that the con trol bit T3SYNC is not us able when the sys tem clock source co -
mes from the same source as the Timer1/Timer3 clock in put. This is be cause the
T1CKI in put will be sam pled at one quar ter the fre quency of the in com ing clock.

Timer3 Read ing and Writ ing

Timer3 al lows the 16-bit timer reg is ter to be read/writ ten as two 8-bit reg is ters or one
16-bit reg is ter. Which mode is se lected is de ter mined by the RD16 bit (see Fig ure 9.8).
Timer3 is con fig ured for 16-bit reads when the RD16 con trol bit (T3CON reg is ter) is
set. In this case, the ad dress for TMR3H is mapped to a buffer reg is ter. A read from
TMR3L will load the con tents of the high byte of Timer3 into the Timer3 high byte
buffer. This scheme pro vides a mech a nism to ac cu rately read all 16 bits of Timer3
with out hav ing to de ter mine whether a read of the high byte fol lowed by a read of the
low byte is valid due to a roll over be tween reads.

Writ ing in 16-Bit Mode

Writ ing the high byte of Timer3 must also take place through the TMR3H buffer reg is -
ter. In this case, the Timer3 high byte is up dated with the con tents of TMR3H when a
write oc curs to TMR3L. Here again, this al lows writ ing all 16 bits to both the high and
low bytes of Timer3 at once.

The high byte of Timer3 is not di rectly read able or writable in this mode. All
reads and writes must take place through the Timer3 high byte buffer reg is ter.
Writes to TMR3H do not clear the Timer3 prescaler. The prescaler is only cleared on
writes to TMR3L.

208 Chap ter 9

16-Bit Read-Mod ify-Write Op er a tion

In struc tions that per form read-mod ify-write, such as BSF or BCF, first read the con -
tents of a reg is ter, then make the ap pro pri ate changes, and fi nally place the re sult
back into the reg is ter. When Timer3 is con fig ured in 16-bit mode, the read por tion of a
read-mod ify-write in struc tion of TMR3L will not up date the con tents of the TMR3H
buffer. In this case, the TMR3H buffer re mains un changed. How ever, when the write
por tion of the in struc tion takes place, the con tents of TMR3H will be placed into the
high byte of Timer3.

Read ing in Asyn chron ous Coun ter Mode

The hard ware en sures a valid read op er a tion of TMR3H or TMR3L while the timer is
run ning from an ex ter nal asyn chron ous clock. How ever, read ing the 16-bit timer in
two 8-bit val ues poses prob lems be cause the timer may over flow be tween the reads.

Re gard ing write op er a tions it is rec om mended that code stop the timer and write
the de sired val ues, al though a write con ten tion may oc cur by writ ing to the timer
reg is ters, while the reg is ter is in cre ment ing. In this case an un pre dict able value may
re sult. Micro chip pro vides no in for ma tion on how to pre vent or how to cor rect this
pos si ble er ror.

Read ing the 16-bit value re quires some care be cause two sep a rate reads are re -
quired to read the en tire 16-bits. The fol low ing code snip pet shows read ing a 16-bit
timer value in cases when the timer can not be stopped and while avoid ing a timer
roll over er ror.

; All in ter rupts are dis abled

movf TMR3H, w ; Read high byte

movwf TMPH

movf TMR3L, w ; Read low byte

movwf TMPL

movf TMR3H, w ; Read high byte

subwf TMPH, w ; Sub 1st read with 2nd read

btfsc STATUS,Z ; Is re sult = 0

goto CONTINUE ; Good 16-bit read

; If the zero flag is not set, then TMR3L may have rolled

; over be tween the read of the high and low bytes. Read ing

; the high and low bytes now will pro duce a valid value.

movf TMR3H, w ; Read high byte

movwf TMPH

movf TMR3L, w ; Read low byte

movwf TMPL

CONTINUE:

; Pro gram con tin ues at this la bel

To write a 16-bit value to the 16-bit TMR3 reg is ter is straight for ward. First, the
TMR3L reg is ter is cleared to en sure that there are many Timer3 clock/os cil la tor cy -
cles be fore there is a roll over into the TMR3H reg is ter. The TMR3H reg is ter is then
loaded, and fi nally, the TMR3L reg is ter is loaded. The fol low ing code snip pet shows
the se quence of op er a tions.

 De lays, Coun ters, and Tim ers 209

; All in ter rupts are dis abled

clrf TMR3L ; Clear Low byte, En sures no

; roll over into TMR3H

movlw HI_BYTE ; Value to load into TMR3H

movwf TMR3H, F ; Write High byte

movlw LO_BYTE ; Value to load into TMR3L

movwf TMR3H, F ; Write Low byte

CONTINUE;

; Pro gram code con tin ues at this la bel

Timer1 Os cil la tor in Timer3

The 18F452 PIC has an al ter nate crys tal os cil la tor cir cuit that is built into the de vice
and is la beled the Timer1 Os cil la tor. The out put of this os cil la tor can be se lected as the
in put into Timer3. The Timer1 Os cil la tor is pri mar ily in tended to op er ate as a time
base for real-world tim ing op er a tions, that is, the os cil la tor is pri mar ily in tended for a
32-kHz crys tal, which is an ideal fre quency for real-time keep ing.

The fact that the SLEEP mode does not dis able the Timer1 fa cil i tates its use in
keep ing real-time. The Timer1 Os cil la tor is also de signed to min i mize power con -
sump tion, which can be a fac tor in real-time ap pli ca tions. The Timer1 Os cil la tor is
en abled by set ting the T1OSCEN con trol bit (T1CON reg is ter in Fig ure 9.8). Af ter
the Timer1 Os cil la tor is en abled, the user must pro vide a soft ware time de lay to en -
sure its proper start-up.

9.6 C-18 Timer Func tions
The C18 Hard ware Pe riph er als Li brary con tains func tions to en able, dis able, con fig -
ure, open, and close tim ers and to read and write to timer reg is ters. The func tions are
fur nished in four func tion groups:

• CloseTimerx, where x is any digit from 0 to 4, to dis able a spe cific timer.

• OpenTimerx, where x is any digit from 0 to 4, to con fig ure and en able a spe cific
timer.

• ReadTimerx, where x is any digit from 0 to 4, to read the value cur rently in the
timer reg is ters.

• WriteTimerx, where x is any digit from 0 to 4, to write a value into a spec i fied timer
reg is ter.

The timer-re lated func tions re quire in clud ing the timer.h header file. The func -
tions are de scribed in the fol low ing sub sec tions.

9.6.1 CloseTimerx Func tion

This func tion dis ables the in ter rupt and the spec i fied timer; for ex am ple,

CloseTimer0();

closes the Timer0 mod ule.

210 Chap ter 9

9.6.2 OpenTimerx Func tion
This func tion opens and configures a spe cific Timer de vice avail able in the hard ware.
The ar gu ments are bits that are log i cally anded to ob tain the de sired timer con fig u ra -
tion. The fol low ing ar gu ments are found in the tim ers.h file:

En able Timer0 In ter rupt:
TIMER_INT_ON In ter rupt en abled
TIMER_INT_OFF In ter rupt dis abled

Timer Width:
T0_8BIT 8-bit mode
T0_16BIT 16-bit mode

Clock Source:
T0_SOURCE_EXT Ex ter nal clock source (I/O pin)
T0_SOURCE_INT In ter nal clock source (TOSC)
Ex ter nal Clock Trig ger (for T0_SOURCE_EXT):
T0_EDGE_FALL Ex ter nal clock on fall ing edge
T0_EDGE_RISE Ex ter nal clock on ris ing edge

Prescale Value:
T0_PS_1_1 1:1 prescale
T0_PS_1_2 1:2 prescale
T0_PS_1_4 1:4 prescale
T0_PS_1_8 1:8 prescale
T0_PS_1_16 1:16 prescale
T0_PS_1_32 1:32 prescale
T0_PS_1_64 1:64 prescale
T0_PS_1_128 1:128 prescale
T0_PS_1_256 1:256 prescale

The fol low ing code snip pet opens and configures Timer0 to dis able in ter rupts,
en able the 8-bit data mode, use the in ter nal clock source, and se lect the 1:32
prescale.

// con fig ure timer0
OpenTimer0(TIMER_INT_OFF &

 T0_8BIT &
 T0_SOURCE_INT &
 T0_PS_1_32);

The C-18 func tions for spe cific tim ers may con tain sup port for other hard ware
de vices. For ex am ple, the ar gu ments in OpenTimer1, OpenTimer2, and OpenTimer3
func tions in clude in ter ac tion with CCP modules.

9.6.3 ReadTimerx Func tion
The ReadTimerx func tions al low read ing the value of the spec i fied timer reg is ter. The
x pa ram e ter can take val ues rep re sent ing any of the avail able timer mod ules, such as
ReadTimer0 to ReadTimer4. The func tion's pro to type is as fol lows:

un signed int ReadTimerx (void);

The func tion takes data from the avail able timer reg is ters as fol lows:

Timer0: TMR0L,TMR0H
Timer1: TMR1L,TMR1H
Timer2: TMR2
Timer3: TMR3L,TMR3H

 De lays, Coun ters, and Tim ers 211

Timer4: TMR4

When the ReadTimerx func tion is used in the 8-bit mode for a timer mod ule that
may be con fig ured in 16-bit mode (for ex am ple, timer0, timer1, and Timer3)), the
read op er a tion does not en sure that the high-or der byte will be zero. In this case,
code may cast the re sult to a char for cor rect re sults. For ex am ple,

// Read ing a 16-bit re sult from a 16-bit timer
// op er at ing in 8-bit mode:

un signed int re sult;
re sult = (un signed char) ReadTimer0();

9.6.4 WriteTimerx Func tion
The WriteTimerx func tions al low writ ing a value to the spec i fied timer reg is ter. The x
pa ram e ter can take val ues rep re sent ing any of the avail able timer mod ules, such as
WriteTimer0 to WriteTimer4. The func tion's pro to type is as fol lows:

void WriteTimerx (un signed int);

The func tion places data in the avail able timer reg is ters as fol lows:

Timer0: TMR0L,TMR0H
Timer1: TMR1L,TMR1H
Timer2: TMR2
Timer3: TMR3L,TMR3H
Timer4: TMR4

For ex am ple:

WriteTimer0(32795);

9.7 Sam ple Pro grams
The fol low ing pro grams dem on strate the pro gram ming dis cussed in this chap ter.

9.7.1 Timer0_as_Coun ter Pro gram

; File name: Timer0_as_Coun ter.asm
; Date: Oc to ber 3, 2012
; No copy right
; Pro ces sor: PIC 18F452
;
; Port di rec tion and wir ing for this pro gram:
; PORT PINS DIRECTION DEVICE
; C 0-6 Out put 7-seg ment LED
; A 3 In put DIP Sw
;
; De scrip tion:
; A dem on stra tion pro gram to count ac tions on DIP switch
; # 3 (wired to RA4/T0CKI pin) and dis play count on the
; seven seg ment LED wired to Port C.
; Cir cuit is DemoBoard 18F452-A or equiv a lent.
;

212 Chap ter 9

;===
; def i ni tion and in clude files
;===

pro ces sor 18F452 ; De fine pro ces sor
#in clude <p18F452.inc>

; ==
; con fig u ra tion bits
;===

config OSC = HS ; As sumes high-speed res o na tor
config WDT = OFF ; No watch dog timer
config LVP = OFF ; No low volt age pro tec tion
config DEBUG = OFF ; No back ground debugger

;
; Turn off bank ing er ror mes sages

errorlevel -302
;==
; pro gram
;==

org 0 ; start at ad dress
goto main

; Space for in ter rupt han dlers
;=============================
; in ter rupt in ter cept
;=============================

org 0x008 ; High-pri or ity vec tor
retfie
org 0x018 ; Low-pri or ity vec tor
retfie

;================================
; Ta ble to re turns 7-seg ment
; codes
;================================
 org $+2
; Note: Ta ble is placed in low pro gram mem ory at
; an ad dress where PCL = 0x1A. This pro vides space
; for 115 retlw in struc tions (at 2 bytes per
; in struc tion). 18 en tries are ac tu ally used in
; this ex am ple. By know ing the lo ca tion of the
; ta ble (at 0x1A in this case) we make sure that
; a code page bound ary is not strad dled while
; ac cess ing ta ble en tries because the in struc tion:
; addwf PCL,F
; does not up date the PCH reg is ter.
; Ad dresses (PCL value) in cre ment by two for
; each se quen tial in struc tion in the ta ble.
codeTable:

addwf PCL,F ; PCL is pro gram coun ter latch
retlw 0x3f ; 0 code
retlw 0x06 ; 1
retlw 0x5b ; 2
retlw 0x4f ; 3
retlw 0x66 ; 4
retlw 0x6d ; 5
retlw 0x7d ; 6
retlw 0x07 ; 7
retlw 0x7f ; 8
retlw 0x6f ; 9
retlw 0x00 ; Pad ding

 De lays, Coun ters, and Tim ers 213

;==
; main pro gram en try point
;==
main:
; Set BSR for bank 0 op er a tions

movlb 0 ; Bank 0
; Init Port A for dig i tal op er a tion
 clrf PORTA,0
 clrf LATA,0
; ADCON1 is the con fig u ra tion reg is ter for the A/D
; func tions in Port A. A value of 0b011x sets all
; lines for dig i tal op er a tion
 movlw B'00000110' ; Dig i tal mode
 movwf ADCON1,0
; Port A. Set lines 2 to 5 for in put

movlw B'00111100' ; w = 00111100 bi nary
movwf TRISA,0 ; port A (lines 2 to 5) to in put

; Ini tial ize all lines in PORT C for out put
movlw B'00000000' ; 0 = out put
movwf TRISC,0 ; Port C tris reg is ter

;==============================
; setup Timer0 as coun ter
;==============================
 clrf TMR0L
 clrwdt ; Clear watch dog timer
; Setup the T0CON reg is ter
; |------------- On/Off con trol
; | 1 = Timer0 en abled
; ||------------ 8/16 bit mode se lect
; || 1 = 8-bit mode
; |||----------- Clock source
; ||| 1 = T0CKI pin
; ||||---------- Source edge se lect
; |||| 1 = high-to-low
; |||||--------- Prescaler as sign ment
; ||||| 1 = prescaler NOT assigned
; |||||||| ----- Prescaler se lect
; ||||||||
 movlw b'11111000'
 movwf T0CON
;=================================
; Check value in TMR0L and dis play
;=================================
; Ev ery clos ing of DIP switch # 3 (con nected to line
; RA4/TOCKI) adds one to the value in the TMR0L reg is ter.
; Loop checks this value, ad justs to the range 0 to 15
; and dis plays the re sult in the seven-seg ment LED on
; port B
checkTmr0:

movf TMR0L,w ; Timer reg is ter to w
; Elimate four high or der bits

andlw b'00001111' ; Mask off high bits
; At this point the w reg is ter con tains a 4-bit value
; in the range 0 to 0xf. Use this value (in w) to
; ob tain seven-seg ment dis play code

call codeTable
movwf PORTC ; Dis play switch bits
goto checkTmr0
end

214 Chap ter 9

9.7.2 Timer0_De lay Pro gram

; File name: Timer0_De lay.asm
; Date: Oc to ber 4, 2012
; No copy right
; Pro ces sor: PIC 18F452
;
; Port di rec tion and wir ing for this pro gram:
; PORT PINS DIRECTION DEVICE
; C 0-7 Out put LEDs
;
; De scrip tion:
; Pro gram to dem on strate pro gram ming of the 18F452 Timer0
; mod ule. Pro gram flashes eight LEDs in se quence count ing
; from 0 to 0xff. Timer0 is used to de lay the count.
; Cir cuit is DemoBoard 18F452-A or equiv a lent.
;
;===
; def i ni tion and in clude files
;===

pro ces sor 18F452 ; De fine pro ces sor
#in clude <p18F452.inc>

; ==
; con fig u ra tion bits
;===

config OSC = HS ; As sumes high-speed res o na tor
config WDT = OFF ; No watch dog timer
config LVP = OFF ; No low volt age pro tec tion
config DEBUG = OFF ; No back ground debugger

;
; Turn off bank ing er ror mes sages

errorlevel -302
;
;==
; pro gram
;==

org 0 ; start at ad dress
goto main

; Space for in ter rupt han dlers
;=============================
; in ter rupt in ter cept
;=============================

org 0x008 ; High-pri or ity vec tor
retfie
org 0x018 ; Low-pri or ity vec tor
retfie

;==
; main pro gram en try point
;==
main:
; Set BSR for bank 0 op er a tions

movlb 0 ; Bank 0
; Init Port A for dig i tal op er a tion
 clrf PORTA,0
 clrf LATA,0
; ADCON1 is the con fig u ra tion reg is ter for the A/D
; func tions in Port A. A value of 0b011x sets all
; lines for dig i tal op er a tion
 movlw B'00000110' ; Dig i tal mode

 De lays, Coun ters, and Tim ers 215

 movwf ADCON1,0
; Port A. Set lines 2 to 5 for in put

movlw B'00111100' ; w = 00111100 bi nary
movwf TRISA,0 ; port A (lines 2 to 5) to in put

; Ini tial ize all lines in PORT C for out put
movlw B'00000000' ; 0 = out put
movwf TRISC,0 ; Port C tris reg is ter
clrf PORTC ; Turn off all LEDs

;==============================
; setup Timer0 as de lay timer
;==============================
 clrf TMR0H ; Clear high latch
 clrf TMR0L ; Write both bytes
 clrwdt ; Clear watch dog timer
; Setup the T0CON reg is ter
; |------------- On/Off con trol
; | 1 = Timer0 en abled
; ||------------ 8/16 bit mode se lect
; || 0 = 16-bit mode
; |||----------- Clock source
; ||| 0 = In ter nal clock
; ||||---------- Source edge se lect
; |||| 1 = high-to-low
; |||||--------- Prescaler as sign ment
; ||||| 1 = prescaler not as signed
; |||||||| ----- No prescaler
; ||||||||

movlw b'10011000'
movwf T0CON

;=================================
; end less loop call ing
; de lay routiney
;=================================
; Dis play Port C count on LEDs
showLEDs:

incf PORTC,f ; Add one to reg is ter
call tmr0_de lay ; De lay rou tine
goto showLEDs

;=================================
; Timer0 de lay rou tine
;=================================
tmr0_de lay:
cy cle:
 movf TMR0L,w ; Read low byte to latch
 ; high byte
 movf TMR0H,w ; Now read high byte
 sublw 0xff ; Sub tract max i mum count
 btfss STATUS,Z ; Test zero flag
 goto cy cle
; Re set coun ter
 clrf TMR0H ; Clear high byte buffer
 clrf TMR0L ; Write both low and high
 re turn
 end

9.7.3 Timer0_VarDelay Pro gram
; File name: Timer0_VarDelay.asm
; Date: Oc to ber 5, 2012
; No copy right

216 Chap ter 9

; Pro ces sor: PIC 18F452
;
; Port di rec tion and wir ing for this pro gram:
; PORT PINS DIRECTION DEVICE
; C 0-7 Out put LEDs
;
; De scrip tion:
; Us ing timer0 to pro duce a vari able-lapse de lay.
; The de lay is cal cu lated based on the num ber of ma chine
; cy cles nec es sary for the de sired wait pe riod. For
; ex am ple, a ma chine run ning at a 4 MHz clock rate
; ex e cutes 1,000,000 in struc tions per sec ond. In this
; case a 1/2 sec ond de lay re quires 500,000 in struc tions.
; The wait pe riod is passed to the de lay rou tine in three
; editable con stants which hold the high-, mid dle-, and
; low-or der bytes of the coun ter.
; The rou tine uses Timer0 in 8-bit mode.
;
;===
; def i ni tion and in clude files
;===

pro ces sor 18F452 ; De fine pro ces sor
#in clude <p18F452.inc>

; ==
; con fig u ra tion bits
;===

config OSC = HS ; As sumes high-speed res o na tor
config WDT = OFF ; No watch dog timer
config LVP = OFF ; No low volt age pro tec tion
config DEBUG = OFF ; No back ground debugger

;
;===
; timer con stant def i ni tions
;===
; Three timer con stants are de fined in or der to im ple ment
; a given de lay. For ex am ple, a de lay of one-half sec ond
; in a 4MHz ma chine, re quires a count of 500,000, while
; a de lay of one-tenth sec ond re quires a count of 10,000.
; These num bers are con verted to hex a dec i mal so they can
; be in stalled in three con stants, for ex am ple:
; 1,000,000 = 0x0f4240 = one sec ond at 4MHz
; 500,000 = 0x07a120 = one-half sec ond at 4MHz
; 10,000 = 0x002710 = one-tenth sec ond at 4MHz
; Val ues for one-half sec ond in stalled in con stants
; as fol lows:
; 500,000 = 0x07 0xa1 0x20
; ---- ---- ----
; | | |___ lowCnt
; | |________ midCnt
; |_____________ highCnt
;
#de fine highCnt 0x07
#de fine midCnt 0xa1
#de fine lowCnt 0x20
; Con stants can be ed ited for dif fer ent de lays
;===
; vari ables in PIC RAM
;===
; Lo cal vari ables

cblock 0x00 ; Start of block

 De lays, Coun ters, and Tim ers 217

; 3-byte aux il iary coun ter for de lay.
 countH ; High-or der byte

countM ; Me dium-or der byte
countL ; Low-or der byte
endc

; Turn off bank ing er ror mes sages
errorlevel -302

;
;==
; pro gram
;==

org 0 ; start at ad dress
goto main

; Space for in ter rupt han dlers
;=============================
; in ter rupt in ter cept
;=============================

org 0x008 ; High-pri or ity vec tor
retfie
org 0x018 ; Low-pri or ity vec tor
retfie

;==
; main pro gram en try point
;==
main:
; Set BSR for bank 0 op er a tions

movlb 0 ; Bank 0
; Ini tial ize all lines in PORT C for out put

movlw B'00000000' ; 0 = out put
movwf TRISC,0 ; Port C tris reg is ter

;==============================
; setup Timer0 as coun ter
; 8-bit mode
;==============================
; Prescaler is as signed to Timer0 and initialzed
; to 2:1 rate

; Setup the T0CON reg is ter
; |------------- On/Off con trol
; | 1 = Timer0 en abled
; ||------------ 8/16 bit mode se lect
; || 1 = 8-bit mode
; |||----------- Clock source
; ||| 0 = in ter nal clock
; ||||---------- Source edge se lect
; |||| 1 = high-to-low
; |||||--------- Prescaler as sign ment
; ||||| 0 = prescaler as signed
; |||||||| ----- Prescaler se lect
; |||||||| 1:2 rate

movlw b'11010000'
 movwf T0CON
; Clear reg is ters
 clrf TMR0L
 clrwdt ; Clear watch dog timer
;============================
; dis play loop
;============================
mloop:

218 Chap ter 9

; Turn on LED
bsf PORTC,0

; Ini tial ize coun ters and de lay
call setVars
call TM0delay

; Turn off LED
bcf PORTC,0

; Re-ini tial ize coun ter and de lay
call setVars
call TM0delay
goto mloop

;==================================
; vari able-lapse de lay pro ce dure
; us ing Timer0
;==================================
; ON ENTRY:
; Vari ables countL, countM, and countH hold
; the low-, mid dle-, and high-or der bytes
; of the de lay pe riod, in timer units
; Rou tine logic:
; The prescaler is as signed to timer0 and setup so
; that the timer runs at 1:2 rate. This means that
; ev ery time the coun ter reaches 128 (0x80) a to tal
; of 256 ma chine cy cles have elapsed. The value 0x80
; is de tected by test ing bit 7 of the coun ter
; reg is ter.
TM0delay:
; Note:
; The TMR0L reg is ter pro vides the low-or der level
; of the count. Because the coun ter counts up from zero,
; code must pre-in stall a value in the coun ter reg is ter
; that rep re sents the one-half the num ber of timer
; it er a tions (pre-scaler is in 1:2 mode) re quired to
; reach a count of 128. For ex am ple: if the value in
; the low coun ter vari able is 140
; then 140/2 = 70. 128 - 70 = 58
; In other words, when the timer coun ter reaches 128,
; 70 * 2 (140) timer beats would have elapsed.
; For mula:
; Value in TMR0L = 128 - (x/2)
; where x is the num ber of it er a tions in the low-level
; coun ter vari able
; First cal cu late xx/2 by bit shift ing

rrncf countL,f ; Di vide by 2
; now sub tract 128 - (x/2)

movlw d'128'
; Clear the bor row bit (mapped to Carry bit)

bcf STATUS,C
subfwb countL,w

; Now w has ad justed re sult. Store in TMR0L
movwf TMR0L

; Rou tine tests timer over flow by test ing bit 7 of
; the TMR0L reg is ter.
cy cle:

btfss TMR0L,7 ; Is bit 7 set?
goto cy cle ; Wait if not set

; At this point TMR0 bit 7 is set
; Clear the bit

bcf TMR0L,7 ; All other bits are pre served
; Sub tract 256 from beat coun ter by dec re ment ing the

 De lays, Coun ters, and Tim ers 219

; mid-or der byte
decfsz countM,f
goto cy cle ; Con tinue if mid-byte not zero

; At this point the mid-or der byte has over flowed.
; High-or der byte must be dec re ment ed.

decfsz countH,f
goto cy cle

; At this point the time cy cle has elapsed
re turn

;==============================
; set reg is ter vari ables
;==============================
; Pro ce dure to ini tial ize lo cal vari ables for a
; de lay pe riod de fined in lo cal con stants highCnt,
; midCnt, and lowCnt.
setVars:

movlw highCnt ; From con stants
movwf countH
movlw midCnt
movwf countM
movlw lowCnt
movwf countL
re turn
end

9.7.4 Timer0_VarInt Pro gram

; File name: Timer0_VarInt.asm
; Date: Oc to ber 7, 2012
; No copy right
; Pro ces sor: PIC 18F452
;
; Port di rec tion and wir ing for this pro gram:
; PORT PINS DIRECTION DEVICE
; C 0-7 Out put LEDs
;
; De scrip tion:
; Us ing timer0 to pro duce an in ter rupt-driven vari able
; lapse de lay. The de lay is cal cu lated based on the
; num ber of ma chine cy cles nec es sary for the de sired
; wait pe riod as in the pro gram Timer0_VariLapse.asm.
; The rou tine uses Timer0 in 8-bit mode.
;
;===
; def i ni tion and in clude files
;===

pro ces sor 18F452 ; De fine pro ces sor
#in clude <p18F452.inc>

; ==
; con fig u ra tion bits
;===

config OSC = HS ; As sumes high-speed res o na tor
config WDT = OFF ; No watch dog timer
config LVP = OFF ; No low volt age pro tec tion
config DEBUG = OFF ; No back ground debugger

;
;===
; timer con stant def i ni tions
;===

220 Chap ter 9

; Three timer con stants are de fined in or der to im ple ment
; a given de lay. For ex am ple, a de lay of one-half sec ond
; in a 4MHz ma chine, re quires a count of 500,000, while
; a de lay of one-tenth sec ond re quires a count of 10,000.
; These num bers are con verted to hex a dec i mal so they can
; be in stalled in three con stants, for ex am ple:
; 1,000,000 = 0x0f4240 = one sec ond at 4MHz
; 500,000 = 0x07a120 = one-half sec ond at 4MHz
; 10,000 = 0x002710 = one-tenth sec ond at 4MHz
; Val ues for one-half sec ond in stalled in con stants
; as fol lows:
; 500,000 = 0x07 0xa1 0x20
; ---- ---- ----
; | | |___ lowCnt
; | |________ midCnt
; |_____________ highCnt
;
#de fine highCnt 0x07
#de fine midCnt 0xa1
#de fine lowCnt 0x20
; Con stants can be ed ited for dif fer ent de lays
;===
; vari ables in PIC RAM
;===
; Lo cal vari ables

cblock 0x00 ; Start of block
; 3-byte aux il iary coun ter for de lay.

 countH ; High-or der byte
countM ; Me dium-or der byte
countL ; Low-or der byte

endc

; Turn off bank ing er ror mes sages
errorlevel -302

;
;==
; pro gram
;==

org 0 ; start at ad dress
goto main

; Space for in ter rupt han dlers
;=============================
; in ter rupt in ter cept
;=============================

org 0x008 ; High-pri or ity vec tor
goto IntServ

;
org 0x018 ; Low-pri or ity vec tor
retfie

;==
; main pro gram en try point
;==
main:
; Set BSR for bank 0 op er a tions

movlb 0 ; Bank 0
; Ini tial ize all lines in PORT C for out put

movlw B'00000000' ; 0 = out put
movwf TRISC ; Port C tris reg is ter
movwf PORTC

;==============================

 De lays, Coun ters, and Tim ers 221

; setup Timer0 as coun ter
; 8-bit mode
;==============================
 bcf INTCON,TMR0IE
; Setup the T0CON reg is ter
; |------------- On/Off con trol
; | 1 = Timer0 en abled
; ||------------ 8/16 bit mode se lect
; || 1 = 8-bit mode
; |||----------- Clock source
; ||| 0 = in ter nal clock
; ||||---------- Source edge se lect
; |||| 1 = high-to-low
; |||||--------- Prescaler as sign ment
; ||||| 1 = prescaler not as signed
; |||||||| ----- Prescaler se lect
; |||||||| 1:2 rate

movlw b'11011000'
movwf T0CON

; Clear reg is ters
 clrf TMR0L
 clrwdt ; Clear watch dog timer
;===============================
; Set up for Timer0 interupt
;===============================
; Dis able in ter rupt pri or ity lev els in the RCON reg is ter
; set ting up the mid range com pat i bil ity mode
 bsf RCON,IPEN ; En able in ter rupt pri or i ties
; INTCON reg is ter in i tial ized as fol lows:
; (IPEN bit is clear)
; |------------ high-pri or ity in ter rupts
; ||----------- low-pri or ity pe riph eral
; |||---------- timer0 over flow in ter rupt
; ||||--------- ex ter nal in ter rupt
; |||||-------- port change in ter rupt
; ||||||------- over flow in ter rupt flag
; |||||||------ ex ter nal in ter rupt flag
; ||||||||----- RB4:RB7 in ter rupt flag
 movlw b'10100000'
 movwf INTCON
; Set INTCON2 for fall ing edge op er a tion
 bcf INTCON2,INTEDG0
; Re-en able timer0 in ter rupt

bsf INTCON,TMR0IE ; Ac ti vate Timer0 in ter rupt
bcf INTCON,TMR0IF ; Clear in ter rupt flag

;============================
; dis play loop
;============================
; Re-ini tial ize coun ter and de lay
; call setDelay
 movlw b'00000001'
 movwf PORTC
 call setDelay
mloop:
 nop
 goto mloop

;==============================
; set reg is ter vari ables
;==============================

222 Chap ter 9

; Pro ce dure to ini tial ize lo cal vari ables for a
; de lay pe riod de fined in lo cal con stants highCnt,
; midCnt, and lowCnt.
setDelay:

movlw highCnt ; From con stants
movwf countH
movlw midCnt
movwf countM
movlw lowCnt
movwf countL

; The timer0 reg is ter pro vides the low-or der level
; of the count. Because the coun ter counts up from zero,
; in or der to en sure that the ini tial low-level de lay
; count is cor rect the value 256 - xx must be cal cu lated
; where xx is the value in the orig i nal countL reg is ter.

movf countL,w ; w holds low-or der byte
sublw .255

; Now w has ad justed re sult. Store in TMR0
movwf TMR0L
re turn

re turn
;===
; In ter rupt Ser vice Rou tine
;===
; This is a high-pri or ity in ter rupt so crit i cal reg is ters
; are saved and re store au to mat i cally
; Ser vice rou tine re ceives con trol when the timer
; reg is ter TMR0 over flows, that is, when 256 timer beats
; have elapsed
IntServ:
; First test if source is a timer0 in ter rupt

btfss INTCON,TMR0IF ; T0IF is timer0 in ter rupt
goto notTOIF ; Go if not RB0 or i gin

; If so clear the timer in ter rupt flag so that count con tin ues
bcf INTCON,TMR0IF ; Clear in ter rupt flag

;=========================
; in ter rupt ac tion
;=========================
; Sub tract 256 from beat coun ter by dec re ment ing the
; mid-or der byte

decfsz countM,f
goto exitISR ; Con tinue if mid-byte not zero

; At this point the mid-or der byte has over flowed.
; High-or der byte must be dec re ment ed.

decfsz countH,f
goto exitISR

; At this point count has ex pired so the pro grammed time
; has elapsed. Ser vice rou tine turns the LED on line 0,
; port B on and off at ev ery con clu sion of the count.
; This is done by XORing a mask with a one-bit at the
; port C line 0 po si tion

movlw b'00000001' ; Xoring with a 1-bit pro duces
; the com ple ment

xorwf PORTC,f ; Com ple ment bit 0, port C
; Re set de lay con stants

call setDelay
;=========================
; exit ISR
;=========================

 De lays, Coun ters, and Tim ers 223

exitISR:
notTOIF:

retfie 0x01
end ; END OF PROGRAM

9.7.5 C_Timer_Show Pro gram

// Pro ject name: C_Timer_Show
// Source files: C_Timer_Show.c
// Date: Jan u ary 17, 2013

// Pro ces sor: PIC 18F452
// En vi ron ment: MPLAB IDE Ver sion 8.86
// MPLAB C-18 Com piler
//
// TEST CIRCUIT: Demo Board 18F452A or cir cuit wired as
// fol lows:
// PORT PINS DIRECTION DEVICE
// C 0-3 Out put Green LEDs
// C 4-7 Out put Red LEDs
//
// De scrip tion:
// A dem on stra tion pro gram to dis play the low-or der byte of
// the timer reg is ter on the LEDs wired to PORT C.
//
// INCLUDED CODE
#in clude <p18f452.h>
#in clude <tim ers.h>

#pragma config WDT = OFF
#pragma config OSC = HS
#pragma config LVP = OFF
#pragma config DEBUG = OFF

// Pro to type
void TimerDelay (un signed int);

/***
 main pro gram
**/
void main(void)
{

un signed char timerVar = 0;
/* Initalize di rec tion reg is ters */
TRISC = 0;
PORTC = 0;
/* Con fig ure Timer0 to no in ter rupts, 16-bit data,
 in ter nal clock source and 1:1 prescaler */
OpenTimer0(

TIMER_INT_OFF &
T0_16BIT &

 T0_SOURCE_INT &
T0_PS_1_1);

while(1) {
TimerDelay(40000);
PORTC = timerVar;
timerVar++;

224 Chap ter 9

}
}

void TimerDelay (un signed int pe riod) {
un signed int timerCnt = 0;
// Re set the timer
WriteTimer0(0x0);
while (timerCnt < pe riod) {

timerCnt = ReadTimer0();
}
re turn;

}

 De lays, Coun ters, and Tim ers 225

Chap ter 10

Data EEPROM

10.1 EEPROM on the PIC18 Microcontrollers
Elec tri cally Eras able Pro gram ma ble Read-Only Mem ory (EEPROM) is used in dig i tal
de vices as non vol a tile stor age for data. EEPROM (usu ally pro nounced dou ble-e prom
or e-e prom) is found in flash drives, BIOS chips, in mem ory stor age de vices in many
types of microcontrollers and other dig i tal de vices. EEPROM is a semi-per ma nent
stor age that can be erased and re pro grammed elec tri cally with out re mov ing the chip
from its socket. The tech nol ogy used be fore the de vel op ment of EEPROM, named
EPROM, re quired that the chip be re moved from the cir cuit and placed un der ul tra vi o -
let light in or der to erase it. In ad di tion, EPROM re quired higher-than-TTL volt ages for
re pro gram ming while EEPROM does not. To the pro gram mer, EEPROM mem ory in a
microcontroller can be thought of as a very small hard disk drive or a nonremovable
flash drive. We start this chap ter with an over view of data EEPROM as im ple mented in
the 18F452 PICs.

10.1.2 On-Board Data EEPROM
To the PIC pro gram mer, EEPROM data mem ory can re fer ei ther to on-board EEPROM
mem ory and to EEPROM mem ory ICs that are fur nished as sep a rate cir cuit com po -
nents. EEPROM on-board data ex tends to ei ther 256 or 1024 bytes in the F18 PIC fam -
ily. Spe cif i cally in the 18F2XX and 18F4XX de vices, there are 256 bytes of EEPROM
mem ory. EEPROM mem ory is not mapped to the pro ces sor's code or data space but is
addressed through spe cial func tion reg is ters.

EEPROM el e ments are clas si fied ac cord ing to their elec tri cal in ter faces into se -
rial and par al lel. In the pres ent con text we deal only with se rial EEPROM be cause
this is the one used in the 18F se ries microcontrollers. The stor age ca pac ity of Se -
rial EEPROMs range from a few bytes to 128 ki lo bytes. In PIC tech nol ogy, the typ i -
cal use of se rial EEPROM on-board mem ory and EEPROM ICs is in the stor age of
pass words, codes, con fig u ra tion set tings, and other in for ma tion to be re mem bered
af ter the sys tem is turned off. For ex am ple, a PIC-based au to mated en vi ron ment
sen sor can use EEPROM mem ory to store daily tem per a tures, hu mid ity, air pres -

227

sure, and other val ues. Later on, this in for ma tion can be down loaded to a PC and
the EEPROM stor age erased and re used for new data. In per sonal com put ers,
EEPROM mem ory is used to store BIOS code, pass words, and other sys tem data.

Some early EEPROMs could be erased and re writ ten about 100 times be fore fail -
ing, but more re cent EEPROM tol er ate thou sands of erase-write cy cles. EEPROM
mem ory is dif fer ent from Ran dom Ac cess Mem ory (RAM) in that RAM can be re writ -
ten mil lions of times. Also, RAM is gen er ally faster to write than EEPROM and con -
sid er ably cheaper per unit of stor age. On the other hand, RAM is vol a tile, which
means that the con tents are lost when power is re moved.

PICs also use EEPROM-type mem ory in ter nally as flash pro gram mem ory and as
data mem ory. In the pres ent con text we deal with EEPROM data mem ory. Se rial
EEPROM mem ory is also avail able as sep a rate ICs that can be placed on the cir cuit
board and ac cessed through PIC ports. For ex am ple, the Micro chip 24LC04B
EEPROM IC is a 4K elec tri cally eras able PROM with a 2-wire se rial in ter face that
fol lows the I2C con ven tion. Pro gram ming se rial EEPROM ICs is not dis cussed in
this book.

10.2 EEPROM Pro gram ming
As pre vi ously stated, the 18F242, 18F252, 18F442, and 18F452 all con tain 256 bytes of
on-board data EEPROM. This mem ory is both read able and writable dur ing nor mal op -
er a tion. EEPROM mem ory is not mapped in the reg is ter file space but is in di rectly ad -
dressed through the Spe cial Func tion Reg is ters EECON1, EECON2, EEDATA, and
EEADR. The ad dress of EEPROM mem ory starts at lo ca tion 0x00 and ex tends to the
max i mum con tained in the PIC, in the case of the 18F452, 0xff. The fol low ing reg is ters
re late to EEPROM op er a tions:

• EEDATA holds the data byte to be read or writ ten.

• EEADR con tains the EEPROM ad dress to be ac cessed by the read or write op er a -
tion.

• EECON1 con tains the con trol bits for EEPROM op er a tions.

• EECON2 pro tects EEPROM mem ory from ac ci den tal ac cess. This is not a phys i -
cal reg is ter.

The CPU may con tinue to ac cess EEPROM mem ory even if the de vice is code pro -
tected, but in this case the de vice pro gram mer can not ac cess EEPROM mem ory.
Fig ure 10.1 is a bitmap of the EECON1 reg is ter in the 18F452.

10.2.1 Read ing EEPROM Data
To read a data mem ory lo ca tion in the 18F452 code must per form the fol low ing op er a -
tions on the EECON1 reg is ter:

1. Wwrite the ad dress to the EEADR reg is ter

2. Clear the EEPGD con trol bit

3. Clear the CFGS con trol bit

4. Set the con trol bit RD

228 Chap ter 10

Fig ure 10.1 18F452 EECON1 reg is ter bitmap.

The EEDATA reg is ter can be read by the next in struc tion. EEDATA will hold this
value un til an other read op er a tion, or un til it is writ ten to by the user (dur ing a write
op er a tion). The fol low ing pro ce dure can be used to read EEPROM data.

;=======================
; pro ce dure to read
; EEPROM data
;=======================
Read_EEPROM:
; On en try global vari able ee_ad dress con tains ad dress
; from which to read. On exit the W reg is ter con tains
; value re trieved from EEPROM

movff ee_ad dress, EEADR ; Store in ad dress
; reg is ter

bcf EECON1, EEPGD ; point to data mem ory

 Data EEPROM 229

EECON1

bit 0bit 7

WRERREEIF WR RD

bit 7 FLASH Program or Data EEPROM Memory Select bit
1 = Access FLASH Program memory
0 = Access Data EEPROM memory

bit 6 FLASH Program/Data EE or Configuration Select bit
1 = Access Configuration or Calibration registers
0 = Access FLASH Program or Data EEPROM memory

bit 5 Read as '0'

bit 4 FLASH Row Erase Enable bit
1 = Erase the program memory row addressed by TBLPTR

on the next WR command (cleared by completion of
 erase operation)

0 = Perform write only

bit 3 FLASH Program/Data EE Error Flag bit
1 = A write operation is prematurely terminated

(any MCLR or any WDT Reset during self-timed
 programming in normal operation)

0 = The write operation completed
When a WRERR occurs, the EEPGD or FREE bits are

 not cleared. This allows tracing of the error
 condition.

bit 2 FLASH Program/Data EE Write Enable bit
1 = Allows write cycles
0 = Inhibits write to the EEPROM

bit 1 Write Control bit
1 = Initiates a data EEPROM erase/write cycle or a

 program memory erase cycle or write cycle.
0 = Write cycle to the EEPROM is complete

bit 0 Read Control bit
1 = Initiates an EEPROM read
0 = Does not initiate an EEPROM read

EEPGD:

CFGS:

Unimplemented:

FREE:

WRERR:

 Note:

WREN:

WR:

RD:

bcf EECON1, CFGS ; ac cess pro gram flash or data
; EEPROM mem ory

bsf EECON1, RD ; EEPROM read
nop
movff EEDATA, WREG ; W = EEDATA
re turn

10.2.2 Writ ing EEPROM Data
Writ ing to an EEPROM data lo ca tion re quires the fol low ing op er a tions:

1. The ad dress is first writ ten to the EEADR reg is ter

2. Data is then writ ten to the EEDATA reg is ter

The ac tual writ ing se quence re quires first writ ing the value 0x55 to EECON2,
then writ ing 0xaa also to EECON2. In ad di tion, the WREN bit in EECON1 must have
been pre vi ously set to en able write op er a tions. The write will not ini ti ate if the
above se quence is not ex actly fol lowed. It is rec om mended that in ter rupts be dis -
abled dur ing the write op er a tion.

In this se quence, no tice that the WREN bit in EECON1 must be set to en able
writes. This pre vents ac ci den tal writes to data EEPROM due to un ex pected code ex -
e cu tion (as would be the case with a run away pro gram). The WREN bit should be
kept clear at all times, ex cept when up dat ing the EEPROM reg is ter. Af ter a write se -
quence has been ini ti ated, EECON1, EEADR, and EDATA can not be mod i fied. The
WR bit can not be set by code un less the WREN bit is set. The WREN bit must be set
on a pre vi ous in struc tion be cause both WR and WREN can not be set with the same
in struc tion. The WREN bit is not cleared by hard ware.

The WR (write con trol) bit of EECON1 plays an im por tant role in the write op er a -
tion. Set ting the WR bit ini ti ates a data EEPROM write cy cle. The op er a tion is
self-timed and the bit is cleared by hard ware once write is com plete. Be cause the
WR bit can only be set (not cleared) in soft ware, its sta tus in di cates if a write op er a -
tion can take place. In other words, code can make cer tain that the WR bit is cleared
in or der to pro ceed with the write op er a tion. The fol low ing pro ce dure can be used
to write one byte of data to an EEPROM ad dress.

;==========================
; pro ce dure to write one
; value to EEPROM
;==========================
; On en try global vari ables con tain the following data:
; ee_digit = value to be stored
; ee_ad dress = EEPROM ad dress in which to store
Write_EEPROM:
; Wait un til WR bit in EECON1 reg is ter clears be fore
; beginning write op er a tion
 nop
 btfsc EECON1, WR ; Test bit
 goto Write_EEPROM ; Loop if not cleared
; Write can now pro ceed

movff ee_ad dress, EEADR ; Get ad dress
movff ee_digit, EEDATA ; Data byte to write
bcf EECON1, EEPGD ; point to data mem ory

230 Chap ter 10

bcf EECON1, CFGS ; ac cess pro gram flash or data
 ; EEPROM

bsf EECON1, WREN ; en able writes
bcf INTCON, GIE ; dis able in ter rupts

; EEPROM re quired write se quence
movlw 0x55
movwf EECON2 ; write 55h
movlw 0xaa
movwf EECON2 ; write aah
bsf EECON1, WR ; set WR bit to be gin write
nop

;
; Write com pleted

bsf INTCON, GIE ; en able in ter rupts
bcf EECON1, WREN ; dis able writes on write com plete

 re turn

At the com ple tion of the write cy cle, the WR bit is cleared in hard ware and the
EEPROM Write Com plete In ter rupt Flag bit (EEIF) is set. Code may ei ther en able
this in ter rupt, or poll this bit. EEIF must be cleared by soft ware. Micro chip rec om -
mends that crit i cal ap pli ca tions should ver ify the write op er a tion by read ing
EEPROM mem ory af ter the write op er a tion has taken place in or der to make sure
that the cor rect value was stored. In this case, the read op er a tion can not take place
un til the WR bit is clear.

10.3 Data EEPROM Pro gram ming in C Lan guage
The C18 com piler for PIC18 de vices pro vides sup port for pro gram ming on-board
EEPROM. The header file con tain ing the nec es sary links is named eep.h and must be
in cluded in the code.

For the 18F fam ily of microcntrollers, three dif fer ent ver sions of the li brary func -
tions for EEPROM sup port are pro vided with the com piler. These are la beled
EEP_V1, EEP_V2, and EEP_V3, re spec tively. Dur ing pro gram build, the com piler se -
lects the cor rect ver sion ac cord ing to the hard ware. Ta ble 10.1 lists the pro ces sors
com pat i ble with each ver sion.

Ta ble 10.1

Ver sions of the EEPROM Li brary for 18F De vices

EEP_V1 18F1230, 18F1330

EEP_V2 18C242, 18C252, 18C442, 18C452, 18F242, 18F252, 18F442, 18F452,
 18F248, 18F258, 18F448, 18F458, 18F2439, 18F2539, 18F4439,
 18F4539, 18F1220, 18F1320, 18F2220, 18F2320, 18F4220, 18F4320,
 8F2420, 18F2520, 18F4420, 18F4520, 18F2423, 18F2523, 18F4423,
 18F4523, 18F2455, 18F2550, 18F4455, 18F4550, 18F2480, 18F2580,
 18F4480, 18F4580, 18F2221, 18F2321, 18F4221, 18F4321, 18F2331,
 18F2431, 18F4331, 18F4431, 18F23K20, 18F24K20, 18F25K20,
 18F43K20, 18F44K20, 18F45K20, 18F13K50, 18LF13K50, 18F14K50,
 18LF14K50

EEP_V3 18F1220, 18F1320, 18F6585, 18F6680, 18F8585, 18F8680, 18F2331,
 18F2431, 18F4331, 18F4431

 Data EEPROM 231

10.3.1 EEPROM Li brary Func tions
Three func tions are pro vided in the EEPROM C18 li brary:

Read_b_eep
Func tion: Read sin gle byte from In ter nal EEP
In clude: eep.h
Pro to type: un signed char Read_b_eep(un signed int

badd);
Ac tion: Re turns a value af ter read ing the lo ca tion

passed as pa ram e ter.
Re turns: Re turns the value read at the lo ca tion.
Code Ex am ple: Temp = Read_b_eep(0x0000);

Write_b_eep
Func tion: Write sin gle byte to In ter nal EEP
In clude: eep.h
Pro to type: void Write_b_eep(un signed int badd,un signed

char bdata);
Ac tion: Writes data in to the spec i fied lo ca tion

in the EEPROM
Code Ex am ple: Write_b_eep (0x0000,0x20);

Busy_eep
Func tion: Checks & waits the sta tus of ER bit in EECON1

reg is ter
In clude: eep.h
Pro to type: void Busy_eep (void);
Ac tion: Waits un til Write cy cle to the EEPROM is

com plete.
Code Ex am ple: Busy_eep ();

10.3.2 Sam ple Code
The fol low ing rou tine writes the bi nary dig its 1, 3, 5, 7, and 9 to EEPROM mem ory ad -
dress from 0x00 to 0x04.

eeaddress = 0x00;
eedata = 1;

while(eeaddress < 0x06) {
Busy_eep(); // Wait for ready
Write_b_eep (eeaddress, eedata);
eeaddress++;
eedata += 2;
}

No tice that the rou tine in cludes a call to the Busy_eep() func tion in or der to make
sure that the de vice is ready be fore writ ing each digit. Busy_eep() does not re turn un -
til the pre vi ous write op er a tion has com pleted. Omit ting this call in a loop that writes
sev eral data items will prob a bly re sult in a de fec tive op er a tion.

The fol low ing rou tine re cov ers the five dig its stored in EEPROM mem ory and dis -
plays them con sec u tively in PORT C.

232 Chap ter 10

eeaddress = 0x00; // Re set ad dress pointer
while(eeaddress <= 0x04) {

digit = Read_b_eep (eeaddress);
count = 0x00;
PORTC = digit;

while (count <= 50000){
count++;

}
eeaddress++;

}

The sam ple pro gram C_EEPROM_Demo listed later in this chap ter is a dem on -
stra tion of EEPROM op er a tion in C.

10.4 EEPROM Dem on stra tion Pro grams
The pro gram EEPROM_to_7Seg.asm listed later in this chap ter and con tained in the
book's soft ware pack age, is a dem on stra tion of EEPROM mem ory ac cess on the
18F452 PIC. The pro gram stores five dig its (1, 3, 5, 7, and 9) in the first 5 bytes of
EEPROM mem ory and then re trieves these dig its and dis plays them in the seven-seg -
ment LED. The pro gram can be tested in Demo Board 18F452A or an equiv a lent cir -
cuit.

The pro gram C_EEPROM_Demo.c also listed in this chap ter and con tained in the
book's oftware pack age is the C18 ver sion of the pro gram EEPROM_to_7Seg.

10.4.1 EEPROM_to_7Seg Pro gram
; File name: EEPROM_to_7Seg.asm
; Date: Jan u ary 23, 2013
; No copy right
; Pro ces sor: PIC 18F452
;
; Port di rec tion and wir ing for this pro gram:
; PORT PINS DIRECTION DEVICE
; C 0-6 Out put 7-seg ment LED
;
; De scrip tion:
; A dem on stra tion pro gram to store dig its in EEPROM mem ory,
; read them, and dis play them in the 7-seg ment LED.
; Test cir cuit is DemoBoard 18F452-A or equiv a lent.
;
;===
; def i ni tion and in clude files
;===

pro ces sor 18F452 ; De fine pro ces sor
#in clude <p18F452.inc>

; ==
; con fig u ra tion bits
;===

config OSC = HS ; As sumes high-speed res o na tor
config WDT = OFF ; No watch dog timer
config LVP = OFF ; No low volt age pro tec tion
config DEBUG = OFF ; No back ground debugger

;
; Turn off bank ing er ror mes sages

 Data EEPROM 233

errorlevel -302
;
;==
; vari ables in PIC RAM
;==
; Ac cess RAM lo ca tions from 0x00 to 0x7F
TEMP equ 0x000 ; Tem po rary reg is ter
ee_digit equ 0x001
ee_ad dress equ 0x002
coun ter equ 0x003
j equ 0x004
k equ 0x005
;==
; pro gram
;==

org 0 ; start at ad dress
goto main

; Space for in ter rupt han dlers
;=============================
; in ter rupt in ter cept
;=============================

org 0x008 ; High-pri or ity vec tor
retfie
org 0x018 ; Low-pri or ity vec tor
retfie

;================================
; Ta ble to re turns 7-seg ment
; codes
;================================
 org $+2
; Note: Ta ble is placed in low pro gram mem ory at
; an ad dress where PCL = 0x1A. This pro vides space
; for 115 retlw in struc tions (at 2 bytes per
; in struc tion). 18 en tries are ac tu ally used in
; this ex am ple. By know ing the lo ca tion of the
; ta ble (at 0x1A in this case) we make sure that
; a code page bound ary is not strad dled while
; ac cess ing ta ble en tries because the in struc tion:
; addwf PCL,F
; does not up date the PCH reg is ter.
; Ad dresses (PCL value) in cre ment by two for
; each se quen tial in struc tion in the ta ble.
codeTable:

addwf PCL,F ; PCL is pro gram coun ter latch
retlw 0x3f ; 0 code
retlw 0x06 ; 1
retlw 0x5b ; 2
retlw 0x4f ; 3
retlw 0x66 ; 4
retlw 0x6d ; 5
retlw 0x7d ; 6
retlw 0x07 ; 7
retlw 0x7f ; 8
retlw 0x6f ; 9
retlw 0x77 ; A
retlw 0x7c ; B
retlw 0x39 ; C
retlw 0x5b ; D
retlw 0x79 ; E
retlw 0x71 ; F

234 Chap ter 10

retlw 0x00 ; Pad ding
;==
; main pro gram en try point
;==
main:
; Set BSR for bank 0 op er a tions

movlb 0 ; Bank 0
; Init Port A for dig i tal op er a tion
 clrf PORTA,0
 clrf LATA,0
; ADCON1 is the con fig u ra tion reg is ter for the A/D
; func tions in Port A. A value of 0b011x sets all
; lines for dig i tal op er a tion
 movlw B'00000110' ; Dig i tal mode
 movwf ADCON1,0
; Port A. Set lines 2 to 5 for in put

movlw B'00111100' ; w = 00111100 bi nary
movwf TRISA,0 ; port A (lines 2 to 5) to in put

; Ini tial ize all lines in PORT C for out put
movlw B'00000000' ; 0 = out put
movwf TRISC,0 ; Port C tris reg is ter

;===============================
; Write dig its to EEPROM
;===============================
; The bi nary val ues for the dig its 1, 3, 5, 7, and 9 are
; stored in EEPROM mem ory ad dresses as fol lows:
; ADDRESS DIGIT
; 0x00 1
; 0x01 3
; 0x03 5
; 0x04 7
; 0x05 9
; Prime it er a tions coun ter
GET_AND_SHOW:
 movlw .5 ; Five dig its to write
 movwf coun ter
 movlw 0x01 ; First value to store
 movwf ee_digit ; To lo cal vari able
 movlw 0x00 ; First ad dress
 movwf ee_ad dress
NEXT_VALUE:
 call Write_EEPROM ; Lo cal pro ce dure
; Next digit and ad dress
 incf ee_digit,f
 incf ee_digit,f
 incf ee_ad dress,f
 decfsz coun ter,f
 goto NEXT_VALUE
; At this point all 5 val ues are written to EEPROM
; Now re trieve and dis play the stored val ues
 call De lay ; Lo cal pro ce dure
; Prime it er a tions coun ter
 movlw .5 ; Five dig its to write
 movwf coun ter
 movlw 0x00 ; First ad dress
 movwf ee_ad dress
SHOW_NEXT:
 call Read_EEPROM ; Lo cal pro ce dure
; WREG con tains value read from EEPROM
; Store in TEMP vari able

 Data EEPROM 235

 movff WREG,TEMP
; At this point the TEMP reg is ter con tains one of the
; bi nary dig its stored in EEPROM. In PIC18 de vices this
; value must be dou bled to ob tain off set into ta ble
; because the pro gram coun ter in cre ments by 2 to ac cess
; se quen tial in struc tions
 movff TEMP,WREG ; Off set to W
 addwf TEMP,f ; Add to TEMP
; Use value in TEMP to ob tain Seven-Seg ment dis play code
 movf TEMP,W ; TEMP to WREG
 call codeTable
 movff WREG,PORTC ; Dis play switch bits
 call De lay
 call De lay
 call De lay
 call De lay
; Bump to next value stored
; Next digit and ad dress
 incf ee_ad dress,f,0
 decfsz coun ter,f,0
 goto SHOW_NEXT
; At this point all 5 val ues have been read from EEPROM
; Loop to start of rou tine
 goto GET_AND_SHOW

;==
; LOCAL PROCEDURES
;==
;==========================
; pro ce dure to write one
; value to EEPROM
;==========================
; On en try global vari ables con tain the following data:
; ee_digit = value to be stored
; ee_ad dress = EEPROM ad dress in which to store
Write_EEPROM:
; Wait un til WR bit in EECON1 reg is ter clears be fore
; beginning write op er a tion
 nop
 btfsc EECON1, WR ; Test bit
 goto Write_EEPROM ; Loop if not cleared
; Write can now pro ceed

movff ee_ad dress, EEADR ; Get ad dress
movff ee_digit, EEDATA ; Data byte to write
bcf EECON1, EEPGD ; point to data mem ory
bcf EECON1, CFGS ; ac cess pro gram flash or data

 ; EEPROM
bsf EECON1, WREN ; en able writes
bcf INTCON, GIE ; dis able in ter rupts

; EEPROM re quired write se quence
movlw 0x55
movwf EECON2 ; write 55h
movlw 0xaa
movwf EECON2 ; write aah
bsf EECON1, WR ; set WR bit to be gin write

 nop
; Write com pleted

bsf INTCON, GIE ; en able in ter rupts
bcf EECON1, WREN ; dis able writes on write

 ; com plete (eeif set)

236 Chap ter 10

 re turn
;=======================
; pro ce dure to read
; EEPROM data
;=======================
Read_EEPROM:
; On en try global vari able ee_ad dress con tains ad dress
; from which to read. On exit the w reg is ter con tains
; value re trieved from EEPROM

movff ee_ad dress, EEADR ; Store in ad dress reg is ter
bcf EECON1, EEPGD ; point to data mem ory
bcf EECON1, CFGS ; ac cess pro gram flash or data

 ; EEPROM mem ory
bsf EECON1, RD ; EEPROM read

 nop
movff EEDATA, WREG ; W = EEDATA

 re turn

;===========================
; de lay sub-rou tine
;===========================
De lay:
 movlw .200 ; w = 200 dec i mal

movwf j,0 ; j = w
jloop:

movwf k,0 ; k = w
kloop:

decfsz k,f ; k = k-1, skip next if zero
goto kloop
decfsz j,f ; j = j-1, skip next if zero
goto jloop
re turn
end

10.4.2 C_EEPROM_Demo Pro gram
// Pro ject name: C_EEPROM_Demo
// Source files: C_EEPROM_Demo.c
// Date: Jan u ary 26, 2013

// Pro ces sor: PIC 18F452
// En vi ron ment: MPLAB IDE Ver sion 8.86
// MPLAB C-18 Com piler
//
// TEST CIRCUIT: Demo Board 18F452A or cir cuit wired as
// fol lows:
// PORT PINS DIRECTION DEVICE
// C 0-6 Out put 7 SEGMENT LED
//
// De scrip tion:
// A dem on stra tion pro gram to store dig its in EEPROM mem ory,
// read them, and dis play them in the 7-seg ment LED.
// Test cir cuit is DemoBoard 18F452-A or equiv a lent.
// This pro gram is the C 18 ver sion of EEPROM_to_7Seg.asm
//
// INCLUDED CODE
#in clude <p18f452.h>
#in clude <eep.h>

// DATA VARIABLES AND CONSTANTS

 Data EEPROM 237

un signed char eedata, digit;
un signed int eeaddress, count;
#de fine MAX_COUNT 50000

#pragma config WDT = OFF
#pragma config OSC = HS
#pragma config LVP = OFF
#pragma config DEBUG = OFF

// De fine ta ble in pro gram mem ory us ing the rom qual i fier
rom un signed char codeTable[]={0x3f, 0x06, 0x5b, 0x4f,

 0x66, 0x6d, 0x7d, 0x07,
 0x7f, 0x6f, 0x77, 0x7c,
 0x39, 0x5b, 0x79, 0x71};

/***
 main pro gram
**/
void main(void)
{

/* Initialize di rec tion reg is ters */
TRISC = 0;
PORTC = 0;

// Write dig its to EEPROM mem ory ad dresses 0x00 to 0x05
//===============================
// Write dig its to EEPROM
//===============================
// The bi nary val ues for the dig its 1, 3, 5, 7, and 9 are
// stored in EEPROM mem ory ad dresses as fol lows:
// eeaddress eedata
// 0x00 1
// 0x01 3
// 0x02 5
// 0x03 7
// 0x04 9
eeaddress = 0x00;
eedata = 1;

while(eeaddress < 0x06) {
Busy_eep();
Write_b_eep (eeaddress, eedata);
eeaddress++;
eedata += 2;
}

// Data is stored in mem ory. Re cover and dis play
while(1){

eeaddress = 0x00; // Re set ad dress pointer
while(eeaddress <= 0x04) {

digit = Read_b_eep (eeaddress);
count = 0x00;
PORTC = codeTable[digit];

while (count <= MAX_COUNT){
count++;

}
eeaddress++;

}
}
}

238 Chap ter 10

Chap ter 11

Liq uid Crys tal Dis plays

11.1 LCD

A Liq uid Crys tal Dis play (LCD) is a hard ware de vice fre quently used for al pha nu meric
out put in microcontroller-based em bed ded sys tems. LCDs are pop u lar be cause of
their re duced size, mod er ate cost, and be cause most LCDs can be mounted di rectly on
the cir cuit board. Ac cord ing to their in ter face, LCDs are clas si fied into se rial and par -
al lel. Se rial LCDs re quire less I/O re sources but ex e cute slower than their par al lel
coun ter parts. Al though se rial LCDs re quire less con trol lines, they are con sid er ably
more ex pen sive than the par al lel type. In this chap ter we dis cuss par al lel-driven LCD
de vices based on the Hitachi HD44780 char ac ter-based con trol ler, which is by far the
most pop u lar con trol ler for PIC-driven LCDs.

11.1.1 LCD Fea tures and Ar chi tec ture

The HD44780 is a dot-ma trix LCD con trol ler and driver. The de vice dis plays ASCII al -
pha nu meric char ac ters, Jap a nese kana char ac ters, and some sym bols. A sin gle
HD44780 can dis play up to one 8-char ac ter line or two 8-char ac ter lines. An avail able
ex ten sion driver makes pos si ble ad dress ing up to 80 char ac ters.

The HD4478 con tains a 9,920-bit char ac ter gen er a tor ROM that can pro duce a to -
tal of 240 char ac ters;. 208 char ac ters with a 5 times 8 dot res o lu tion and 32 char ac -
ters at a 5 × 10 dot res o lu tion. The de vice is also ca pa ble of stor ing 64 times 8-bit
char ac ters data in its char ac ter gen er a tor RAM. This cor re sponds to 8 cus tom char -
ac ters in a 5 times 8 dot res o lu tion or 4 char ac ters in a 5 times 10 dot resolution.

The con trol ler is pro gram ma ble in three dif fer ent duty cy cles: 1/8 for one line of 5
× 8 dots with cur sor, 1/11 for one line of 5 × 10 dots with cur sor, and 1/16 for two
lines of 5 × 8 dots with cur sor. The built-in com mands in clude clear ing the dis play,
hom ing the cur sor, turn ing the dis play on and off, turn ing the cur sor on and off, set -
ting dis play char ac ters to blink, shift ing the cur sor and the dis play left-to-right or
right-to-left, and read ing and writ ing data to the char ac ter gen er a tor and to display
data ROM.

239

11.1.2 LCD Func tions and Com po nents
The fol low ing hard ware el e ments form part of the HD44780 con trol ler:

• Two in ter nal reg is ters, la beled the data reg is ter and the in struc tion reg is ter

• Busy flag

• An ad dress coun ter

• RAM area of dis play data (DDRAM)

• Char ac ter gen er a tor ROM

• Char ac ter gen er a tor RAM

• Tim ing gen er a tion cir cuit

• Liq uid crys tal dis play driver cir cuit

• Cur sor and blink con trol cir cuit

The con trol ler it self is of ten re ferred to as the MPU in the Hitachi lit er a ture.

In ter nal Reg is ters

The HD44780 con tains an in struc tion reg is ter (IR) and a data reg is ter (DR). The IR is
used to store in struc tion codes, such as those to clear the dis play, de fine an ad dress,
or store a bitmap in char ac ter gen er a tor RAM. The IR can only be writ ten from the con -
trol ler. The data reg is ter (DR) is used to tem po rarily store data to be writ ten into
DDRAM or CGRAM as well as tem po rarily store data read from DDRAM or CGRAM.
Data placed in the data reg is ter is au to mat i cally writ ten into DDRAM or CGRAM by an
in ter nal operation.

Busy Flag

When the busy flag (BF) is 1, the HD44780U is in the in ter nal op er a tion mode, and the
next in struc tion will not be ac cepted. The busy flag is mapped to data bit 7. Soft ware
must in sure that the busy flag is re set (BF = 0) be fore the next in struc tion is en tered.

Ad dress Coun ter

The ad dress coun ter (AC) stores the cur rent ad dress used in op er a tions that ac cess
DDRAM or CGRAM. When an in struc tion con tains ad dress in for ma tion, the ad dress is
stored in the ad dress coun ter. Which RAM area is ac cessed, DDRAM or CGRAM, is
also de ter mined by the in struc tion that stores the ad dress in the AC. The AC is au to -
mat i cally in cre mented or dec re ment ed af ter each in struc tion that writes or reads
DDRAM or CGRAM data. The vari a tions and op tions in op er a tions that change the AC
are de scribed later in this chap ter.

Dis play Data RAM (DDRAM)

The dis play data RAM area (DDRAM) is used to store the 8-bit bitmaps that rep re sent
the char ac ters and graphics that are dis played. Dis play data is rep re sented in 8-bit
char ac ter codes. When equipped with the ex ten sion ,its ca pac ity is 80 times 8 bits, or
80 char ac ters. The mem ory not used for stor ing dis play char ac ters can be used by soft -
ware for stor ing any other 8-bit data. The map ping of DDRAM lo ca tions to the LCD dis -
play is dis cussed in Sec tion 11.2.4.

240 Chap ter 11

Fig ure 11.1 HD44780 character set.

Char ac ter Gen er a tor ROM (CGROM)

The char ac ter gen er a tor is a ROM that con tains the bitmaps for 208 char ac ters in 5
times 8 dot res o lu tion or 32 char ac ters in 5 times 10 dot res o lu tion. Fig ure 11.1 shows
the stan dard char ac ter set in the HD44780.

With a few ex cep tions, the char ac ters in the range 0x20 to 0x7f cor re spond with
those of the ASCII char ac ter set. The re main ing char ac ters are Jap a nese kana char -
ac ters and spe cial sym bols. The char ac ters in the range 0x0 to 0x1f which are the
ASCII con trol char ac ters do not re spond as such in the HD44780. So send ing a back -
space (0x08), a bell (0x07), or a car riage re turn (0x0d) code to the controller has no
effect.

Char ac ter Gen er a tor RAM (CGRAM)

The char ac ter gen er a tor RAM al lows the cre ation of cus tom ized char ac ters by de fin -
ing the cor re spond ing 5 times 8 bitmaps. Eight cus tom char ac ters can be stored in the
5 times 8 dot res o lu tion and four in the 5 times 10 res o lu tion. The cre ation and use of
cus tom char ac ters is ad dressed later in this chap ter.

Tim ing Gen er a tion Cir cuit

This cir cuit pro duces the tim ing sig nals for the op er a tion of in ter nal com po nents cir -
cuits such as DDRAM, CGROM, and CGRAM. The tim ing gen er a tion cir cuit is not ac -
ces si ble to the pro gram.

 Liq uid Crys tal Dis plays 241

High-order nibble

L
o
w
-
o
r
d
e
r

n
i
b
b
l
e

0x0

0x1

0x2

0x3

0x4

0x5

0x6

0x7

0x8

0x9

0xa

0xb

0xc

0xd

0xe

0xf

0
x
1

0
x
2

0
x
3

0
x
4

0
x
5

0
x
6

0
x
7

0
x
8

0
x
9

0
x
a

0
x
b

0
x
c

0
x
d

0
x
e

0
x
f

Liq uid Crys tal Dis play Driver Cir cuit

The liq uid crys tal dis play driver cir cuit con sists of 16 com mon sig nal driv ers and 40
seg ment sig nal driv ers. The cir cuit re sponds to the num ber of lines and the char ac ter
font se lected. Once this is done, the cir cuit per forms au to mat i cally and is not oth er -
wise ac ces si ble to the pro gram.

Cur sor/Blink Con trol Cir cuit

The cur sor and blink con trol cir cuit gen er ates both the cur sor and the char ac ter blink -
ing. The cur sor or the char ac ter blink ing is ap plied to the char ac ter lo cated in the data
RAM ad dress ref er enced in the ad dress coun ter (AC).

11.1.3 Con nec tiv ity and Pinout
LCDs are pow er ful and com plex de vices. For tu nately, the pro gram mer does not have
to deal with all the com plex i ties of LCD dis plays be cause the dis play hard ware is usu -
ally fur nished in a mod ule that in cludes an LCD con trol ler chip. For tu nately, most
LCDs used in microcontroller cir cuits are equipped with the same con trol ler: the
Hitachi HD44780 and its up graded ver sions up to the HD44780U. This con trol ler pro -
vides a rel a tively sim ple in ter face be tween a microcontroller and the dis play hard -
ware.

The fact that the HD44780 has be come al most ubiq ui tous in LCD con trol ler tech -
nol ogy does not mean that these de vices are with out com pli ca tions. The first dif fi -
culty con fronted by the cir cuit de signer is se lect ing the most ap pro pri ate LCD for
the ap pli ca tion, among doz ens (per haps hun dreds) of avail able con fig u ra tions, each
one with its own res o lu tion, in ter face tech nol ogy, size, graphics op tions, pin pat -
terns, and many other fea tures. For this rea son it is usu ally better to ex per i ment
with a sim ple LCD in a bread board cir cuit before attempting a final circuit in hard -
ware. The two com mon con nec tors used with the 44780-based LCDs have ei ther 14
pins in a sin gle row, each pin spaced 0.100 inches apart, or two rows of eight pins
each, also spaced 0.100" apart. In both cases the pins are la beled in the LCD board.
These con nec tors are shown in Fig ure 11.2.

 Fig ure 11.2 Typ i cal HD44780 con nec tor pinouts.

242 Chap ter 11

1

1

1314

2

14

In LCDs with a backlight op tions some times the con nec tors to have two ex tra
pins, usu ally num bered 15 and 16. Pin num ber 15 is con nected to a 5V source for the
backlight and pin num ber 16 to ground. Typ i cal LCD wir ing is shown in Table 11.1.

Ta ble 11.1

Hitachi HD44780 LCD Con trol ler Pin Out (80 char ac ters or less)

PIN NO. SYMBOL DESCRIPTION

1 Vss Ground
2 Vcc Vcc (Power sup ply +5V)
3 Vee Con trast con trol
4 RS Set/re set

0 = in struc tion in put
1 = data in put

5 R/W R/W (read/write se lect)
0 = write to LCD
1 = read LCD data

6 E En able. Clock sig nal to
ini ti ate data trans fer

7 DB0 Data bus line 0
8 DB1 Data bus line 1
9 DB2 Data bus line 2
10 DB3 Data bus line 3
11 DB4 Data bus line 4
12 DB5 Data bus line 5
13 DB6 Data bus line 5
14 DB7 Data bus line 7

The pinout in Ta ble 11.1 re fers to con trol lers that ad dress 80 char ac ters or less.
From the pinout in Ta ble 11.1 it is ev i dent that the in ter face to the LCD uses eight
par al lel lines (lines 7 to 14). How ever, it is also pos si ble to drive the LCD us ing just
four lines, which saves con nec tions on limited circuits.

The reader should be ware that LCDs are of ten fur nished in cus tom boards that
may or may not have other aux il iary com po nents. These boards are of ten wired dif -
fer ently from the ex am ples shown in Fig ure 11.2. In all cases the de vice' doc u men ta -
tion and the cor re spond ing data sheets should pro vide the ap pro pri ate wiring
information.

11.2 In ter fac ing with the HD44780
The Hitachi 44780 con trol ler al lows par al lel in ter fac ing ei ther us ing 4- or 8-bit data
paths. In the 4-bit mode, each data byte is di vided into a high-or der and a low-or der
nib ble and are trans mit ted se quen tially, the high-nib ble first. In the 8-bit par al lel mode
each data byte is trans mit ted from the PIC to the con trol ler as a unit. The ad van tage of
the 4-bit mode is greater econ omy of I/O lines on the PIC side. The dis ad van tage are
slightly more com pli cated pro gram ming and min i mally slower ex e cu tion speed. Our
first ex am ple and cir cuit uses the 8-bit data mode so as to avoid com pli ca tions. Once
the main pro cess ing rou tines are de vel oped, we will make the nec es sary mod i fi ca -
tions so as to make pos si ble the 4-bit data mode.

In ad di tion to the data trans mis sion mode, there are other cir cuit op tions to be
con sid ered. Two con trol lines be tween the microcontroller and the HD44780-driven

 Liq uid Crys tal Dis plays 243

LCD are nec es sary in all cases: one to the RS line to se lect be tween data and in struc -
tion in put modes, and an other one to the E line to pro vide the pulse that ini ti ates the
data trans fer. A third line, called the R/W con trol line, se lects be tween the read and
write modes of the LCD con trol ler. This line can be ei ther con nected or grounded. If
the R/W line is not con nected to a microcontroller port, then the HD44780 op er ates
only in the write data mode and all read op er a tions will be unavailable.

11.2.1 Busy Flag and Timed De lay Op tions

Be cause many ap pli ca tions need not read text data from con trol ler mem ory, the
write-only mode is of ten an op tion, es pe cially con sid er ing that microcontroller I/O
ports are of ten in short sup ply and that this op tion saves one port for other du ties.
How ever, there is a less ap par ent draw back to no be ing able to read LCD data, which is
that the ap pli ca tion will not be able to mon i tor the busy flag. The HD44780 busy flag is
mapped to data bit 7. If the busy flag is set then the con trol ler is busy in ter nally pro -
cess ing data. The busy flag clear in di cates that the con trol ler has con cluded its op er a -
tion and is ready to pro ceed with an other data op er a tion or com mand. Test ing the BF
flag re quires read ing bit 7, which means that not con nect ing the R/W line has the ef fect
that ap pli ca tions can not use the busy flag. In this case, pro grams can use time-de lay
rou tines to en sure that each op er a tion com pletes be fore the next one be gins.

To the cir cuit de signer, to read or not to read con trol ler data is a de ci sion with
sev eral trade-offs. Us ing time de lay rou tines to en sure that each con trol ler op er a -
tion has con cluded is a vi a ble op tion that, as al ready men tioned, saves one in ter face
line. On the other hand, code that re lies on tim ing rou tines is ex ter nally de pend ant
on the clocks and timer hard ware. This means that when code that re lies on tim ing
rou tines is ported to an other cir cuit, with a dif fer ent microcontroller, clocks, or
timer hard ware, the ac tual de lays could change and the rou tines may fail. Fur ther -
more, the use of de lay rou tines is not very ef fi cient be cause con trol ler op er a tions
usu ally terminate before the timed delay has expired.

On the other hand, code that reads the busy flag to de ter mine the ter mi na tion of a
con trol ler op er a tion is not with out dan gers. If, for any rea son, the con trol ler or the
cir cuit fails, then the pro gram can hangup in an end less loop wait ing for the busy
flag to clear. To be ab so lutely safe, the code would have to con tain an ex ter nal de lay
loop when test ing the busy flag, so that if the ex ter nal loop ex pires, then the pro -
cess ing can as sume that there is a hard ware prob lem and break out of the flag test
loop. The pro gram mer must de cide whether this safety mech a nism for read ing the
busy flag is nec es sary or not be cause its im ple men ta tion requires an additional
exception handler.

An other con sid er ation is that cir cuits de signed to read the HD44780 busy flag
have good drive ca pa bil i ties when sink ing the line, but not when sour cing the line.
This means that rou tines that read the state of the busy bit must in tro duce a 10-ms
de lay in or der to en sure that the sig nal has reached its logic high. Oth er wise code
could read a false “not busy” state.

244 Chap ter 11

11.2.2 Con trast Con trol
In ad di tion to the con trol lines that re quire pro ces sor in ter face, the HD44780 con tains
other con trol lines. One such line is used for the LCD con trast. The con trast con trol
line (usu ally la beled Vee) is con nected to pin num ber 3 (see Ta ble 11.1). The ac tual im -
ple men ta tion of the con trast con trol func tion var ies with the man u fac turer. In gen -
eral, a for an LCD with a nor mal tem per a ture range, the con trast con trol line can be
wired as shown in Fig ure 11.3.

Fig ure 11.3 Typ i cal contrast ad just ment cir cuit wir ing.

11.2.3 Dis play Backlight

Some LCDs are equipped with an LED backlight that serves to make the dis played
char ac ters more vis i ble. In dif fer ent LCDs the backlight is im ple mented dif fer ently.
Some man u fac tur ers wire the backlight di rectly to the LCD power sup ply (pin 1 and 2)
while oth ers pro vide ad di tional pins that al low turn ing the backlight on or off in de -
pend ently of the LCD dis play. Backlit dis plays with four teen pins usu ally be long to the
first type, while those with sixteen pins have in de pend ent backlight con trol. If the
backlight pins are ad ja cent to the other dis play pins then they are num bered 15 and 16.
In this case pin num ber 15 is wired, through a cur rent lim it ing re sis tor, to the +5V
source and pin 16 to ground. It is also pos si ble that the cur rent-lim it ing re sis tor is built
into the dis play. This in for ma tion is avail able in the de vice's data sheet.

One spe cial case to be aware of is that of some four-line dis plays that use pins 14
and 15 for other pur poses. In these sys tems, backlight con trol, if avail able, is pro -
vided by other pins.

11.2.4 Dis play Mem ory Map ping

The Hitachi HD44780 is a mem ory mapped sys tem in which char ac ters are dis played
by stor ing their ASCII codes in the mem ory cell as so ci ated with each digit's dis play
area. The area of con trol ler RAM mapped to char ac ter dis play mem ory has a ca pac ity
of 80 char ac ters. This area is known as dis play data RAM or DDRAM.

 Liq uid Crys tal Dis plays 245

HD44780

+5 V

10K Ohm

1

14

In or der to save cir cuitry, the com mon lines of the con trol ler out puts to the liq uid
crys tal dis play hard ware are mul ti plexed. The duty ra tio of a sys tem is the num ber
of mul ti plexed com mon lines, the most com mon be ing 1/16, al though 1/8 and 1/11
duty ra tios are also found in some sys tems. Be cause the duty ra tio mea sures the
num ber of mul ti plexed lines, it also de ter mines the dis play map ping. For ex am ple,
in a sin gle line by six teen char ac ter dis play with a 1/16 duty ra tio, the first eight
char ac ters are mapped to one set of con sec u tive mem ory ad dresses and the sec ond
eight char ac ters to an other set of ad dresses. The rea son is that in ev ery dis play line,
six teen com mon ac cess lines are mul ti plexed, in stead of eight. By the same to ken, a
two line by six teen-char ac ter dis play with a 1/16 duty ra tio re quires six teen com -
mon lines. In this case the ad dress of the sec ond lines is not a con tin u a tion of the
ad dress of the first line, but are in an other ad dress block not con tig u ous to the first
one. Ta ble 11.2 lists the mem ory ad dress map ping of some com mon LCD con fig u ra -
tions.

 Ta ble 11.2

Seven-Bit DDRAM Ad dress Map ping for Com mon LCDs

 CHAR AC TERS/ LINE CHAR AC TER FIRST IN NEXT IN LAST IN
 ROW NUMBER NUMBER GROUP GROUP GROUP

8/1 1 1 0x00 0x01 0x07

8/2 1 1 0x00 0x01 0x07
2 1 0x40 0x41 0x47

16/1 1 1 0x00 0x01 0x07
1 9 0x40 0x41 0x47

16/2 1 1 0x00 0x01 0x0f
2 1 0x40 0x41 0x4f

20/2 1 1 0x00 0x01 0x13
2 1 0x40 0x41 0x53

24/2 1 1 0x00 0x01 0x17
2 1 0x40 0x41 0x57

16/4 1 1 0x00 0X01 0x0f
2 1 0x40 0x41 0x4f
3 1 0x10 0x11 0x1f
4 1 0x50 0x51 0x5f

20/4 1 1 0x00 0x01 0x13
2 1 0x40 0x41 0x53
3 1 0x14 0x15 0x27
4 1 0x54 0x55 0x67

For ex am ple, in a typ i cal two-line by six teen char ac ter dis play, the ad dresses of
the six teen char ac ters in the first line are from 0x00 to 0x0F, while the ad dresses of
the char ac ters in the sec ond line are from 0x40 to 0x4F. Be cause there are 80 mem -
ory lo ca tions in the con trol ler's DDRAM, each line con tains stor age for a to tal of
forty char ac ters. The range of the en tire first line is from 0x00 to 0x27 (forty char ac -
ters to tal) but of these only six teen are ac tu ally dis played. The same ap plies to the

246 Chap ter 11

sec ond line of six teen char ac ters. In this case, the stor age area is in the range 0x28
to 0x4f, but here again, only 16 char ac ters are dis played. In the sin gle-line by six -
teen char ac ter dis play men tioned first, the ad dresses of the first eight char ac ters
would be a set from 0x00 to 0x07 and the ad dresses of the sec ond eight char ac ters
in the line are from 0x40 to 0x47.

No tice that sys tems that ex ceed a to tal of 80 char ac ters re quire two or more
HD44780 con trol lers. Al though the in for ma tion pro vided in Ta ble 11.2 cor re sponds
with the map ping in most LCDs, it is a good idea to con sult the data sheet of the spe -
cific hard ware in or der to cor rob o rate the ad dresses map ping in a par tic u lar de vice
be fore build ing the cir cuit.

Also im por tant is to no tice that Ta ble 11.2 con tains the seven low-or der bits of
the DDRAM ad dresses. HD44780 com mands to set the DDRAM ad dress for read or
write op er a tions re quire that the high-or der bit (bit num ber 7) be set. There fore, to
write to DDRAM mem ory ad dress 0x07, code will ac tu ally use the value 0x87; and to
write to DDRAM ad dress 0x43, code will use 0xc3 as the in struc tion operand.

11.3 HD44780 In struc tion Set
The HD44780 in struc tion set in cludes op er a tors to ini tial ize the sys tem and set op er a -
tional modes, to clear the dis play; to ma nip u late the cur sor; to set, re set, and con trol
au to matic dis play ad dress shift; to set and re set the in ter face pa ram e ters; to poll the
busy flag; and to read and write to CGRAM and DDRAM mem ory.

11.3.1 In struc tion Set Over view
Pin num ber 4 in Ta ble 11.1 se lects two modes of op er a tion on the HD44780 con trol ler:
in struc tion and data in put. When the in struc tion mode is en abled (RS pin is set low),
the con trol ler re ceives com mands that setup the hard ware and de ter mine its con fig u -
ra tion and mode of op er a tion. These com mands are part of the HD44780 in struc tion
set shown in Ta ble 11.3.

Ta ble 11.3

HD44780 In struc tion Set in 8-Bit Data Mode

 INSTRUCTION RS R/W B7 B6 B5 B4 B3 B2 B1 B0 TIME (MS)

Clear Dis play 0 0 0 0 0 0 0 0 0 1 1..64
Re turn home 0 0 0 0 0 0 0 0 1 # 1.64
En try mode set 0 0 0 0 0 0 0 1 I/D S 37
Dis play/Cur sor ON/OFF 0 0 0 0 0 0 1 D C B 37
Cur sor/dis play shift 0 0 0 0 0 1 S/C R/L # # 37
Func tion set 0 0 0 0 1 DL N F # # 37
Set CGRAM ad dress 0 0 0 1 --- ----- ad dress ---------- 37
Set DDRAM ad dress 0 0 1 -------------- ad dress ---------- 37
Read busy flag and
 ad dress reg is ter 0 1 BF----- -------- ad dress ---------- 0
Write data 1 0 ------------------- data ------------- 37
Read data 0 1 ------------------- data ------------- 37

Note: Bits la beled # have no ef fect.

 Liq uid Crys tal Dis plays 247

Clear ing the Dis play

The in struc tion clears the dis play with blanks by writ ing the code 0x20 into all
DDRAM ad dresses. It also re turns the cur sor to the home po si tion (top-left dis play
cor ner) and sets ad dress 0 in the DDRAM ad dress coun ter. Af ter this com mand ex e -
cutes, the dis play dis ap pears and the cur sor goes to the left edge of the dis play.

Re turn Home

Re turns the cur sor to home po si tion, which is the up per-leftmost po si tion of the first
char ac ter line. Sets DDRAM ad dress 0 in ad dress coun ter. Sets the dis play to its de -
fault sta tus if it was shifted. DDRAM con tents re main un changed.

En try Mode Set

Sets the di rec tion of cur sor move ment and the dis play shift mode. If B1 bit is set (I/D
bit in Ta ble 11.3)t, cur sor hand ing is set to the in cre ment mode, that is, left-to-right. If
this bit is clear then cur sor move ment is set to the dec re ment mode, that is,
right-to-left. If B0 bit is set (S bit in Ta ble 11.3), dis play shift is en abled. In the dis play
shift more, it ap pears as if the dis play moves in stead of the cur sor, Oth er wise dis play
shift is dis abled. Op er a tions that read or write to CGRAM and op er a tions that read
DDRAM will not shift the dis play.

Dis play and Cur sor ON/OFF

If B2 bit is set (D in Ta ble 11.3), dis play is turned on. Oth er wise it is turned off. When
the dis play is turned off data in DDRAM is not changed. If B1 bit is set (C in Ta ble 11.3),
the cur sor is turned on, oth er wise it is turned off. Op er a tions that change the cur rent
ad dress in the DDRAM ad dress reg is ter, like those to au to mat i cally in cre ment or dec -
re ment the ad dress, are not af fected by turn ing off the cur sor. The cur sor is dis played
as the eight line in the 5 x 8 char ac ter ma trix. If B0 (B in Ta ble 11.3), the char ac ter at
the cur rent cur sor po si tion blinks, oth er wise the char ac ter does not blink. Note that
char ac ter blink ing and cur sor are in de pend ent op er a tions and that both can be set to
work si mul ta neously.

Cur sor/Dis play Shift

Moves the cur sor or shifts the dis play ac cord ing to the se lected mode. The op er a tion
does not change the DDRAM con tents. Be cause the cur sor po si tion al ways co in cides
with the value in the ad dress reg is ter, the in struc tion pro vides soft ware with a mech a -
nism for mak ing DDRAM cor rec tions or to re trieve dis play data at spe cific DDRAM lo -
ca tions. Ta ble 11.4 lists the four avail able op tions:

Func tion Set

Sets the par al lel in ter face data length, the num ber of dis play lines, and the char ac ter
font. If B4 bit is set (DL bit in Ta ble 11.3), then the in ter face is set to 8 bits. Oth er wise it
is set to 4 bits. If B3 bit is zero (N bit in Ta ble 11.3), the dis play is in i tial ized for 1/8 or
1/11 duty cy cle. When the N bit is set, the dis play is set to 1/16 duty cy cle. Dis plays with
mul ti ple lines typ i cally use the 1/16 duty cy cle. The 1/16 duty cy cle on a one-line dis -
play ap pears as if it were a two-line dis play, that is, the line con sists of two sep a rate ad -
dress groups (see Ta ble 11.2).

248 Chap ter 11

Ta ble 11.4

Cur sor/Dis play Shift Op tions

 BITS
 S/C R/L OPERATION

 0 0 Cur sor po si tion is shifted left. Ad dress coun ter
 is dec re ment ed by one.
 0 1 Cur sor po si tion is shifted right. Ad dress coun ter
 is in cre mented by one.
 1 0 Cur sor and dis play are shifted left.
 1 1 Cur sor and dis play are shifted right.

If B2 bit is set (F in Ta ble 11.3), then the dis play res o lu tion is 5 times 10 pix els.
Oth er wise, the res o lu tion is 5 times 8 pix els. This bit is not sig nif i cant when the 1/16
duty cy cle is se lected, that is, when the N bit is set. The func tion set in struc tion
should be is sued dur ing con trol ler ini tial iza tion. No other in struc tion can be ex e -
cuted be fore this one, ex cept chang ing the in ter face data length.

Set CGRAM Ad dress

Sets the CGRAM (char ac ter gen er a tor RAM) ad dress to which data is sent or re ceived
af ter this op er a tion. The CGRAM ad dress is a six-bit field in the range 0 to 64 dec i mal.
Once a value is en tered in the CGRAM ad dress reg is ter, data can be read or writ ten
from CGRAM.

Set DDRAM A ddress

Sets the DDRAM (dis play data RAM) ad dress to which data is sent or re ceived af ter
this op er a tion. The DDRAM ad dress is a seven-bit field in the range 0 to 127 dec i mal.
Once a value is en tered in the DDRAM ad dress reg is ter, data can be read or writ ten
from CGRAM. DDRAM ad dress map ping was dis cussed pre vi ously in this chap ter.

Read Busy Flag and Ad dress Reg is ter

Reads the busy flag to de ter mine if an in ter nal op er a tion is in prog ress and reads the
ad dress coun ter con tents. The value in the ad dress reg is ter is re ported in bits 0 to 6.
Bit 7 (BF) is the busy flag bit. This bit is read only. The ad dress coun ter is in cre mented
or dec re ment ed by 1 (ac cord ing to the mode set) af ter the ex e cu tion of a data write or
read in struc tion.

Write Data

Writes eight data bits to CGRAM or DDRAM. Be fore data is writ ten to ei ther con trol ler
RAM area, soft ware must first is sue a set DDRAM ad dress or set CGRAM ad dress in -
struc tion (de scribed pre vi ously). These two in struc tions not only set the next valid
ad dress in the ad dress reg is ter, but also se lect ei ther CGRAM or DDRAM for writ ing
op er a tions. What other ac tions take place as data is writ ten to the con trol ler de pends
on the set tings se lected by the en try mode set in struc tion. If the di rec tion of cur sor
move ment or data shift is in the in cre ment mode, then the data write op er a tion will
add one to the value in the ad dress reg is ter. If the cur sor move ment is en abled, then
the cur sor will be moved ac cord ingly af ter the data write takes place. If the dis play
shift mode is ac tive, then the dis played char ac ters will be shifted ei ther right or left.

 Liq uid Crys tal Dis plays 249

Read Data

Reads eight data bits to CGRAM or DDRAM. Be fore data is read from ei ther con trol ler
RAM area, soft ware must first is sue a set DDRAM ad dress or set CGRAM ad dress in -
struc tion. These in struc tions not only set the next valid ad dress in the ad dress reg is -
ter, but also se lect ei ther CGRAM or DDRAM for writ ing op er a tions. Fail ing to set the
cor re spond ing RAM area re sults in read ing in valid data.

What other ac tions take place as data is read from the con trol ler RAM de pends
on the set tings se lected by the en try mode set in struc tion. If the di rec tion of cur sor
move ment or data shift is in the in cre ment mode, then the data read op er a tion will
add one to the value in the ad dress reg is ter. How ever, the dis play is not shifted by a
read op er a tion even if the display shift is active.

The cur sor shift in struc tion has the ef fect of chang ing the con tents of the ad dress
reg is ter. So if a cur sor shift pre cedes a data read in struc tion, there is no need to re -
set the ad dress by means of an ad dress set command.

11.3.2 18F452 8-Bit Data Mode Cir cuit
The pur pose of the cir cuit in Fig ure 11.4 is to pro vide a sim ple hard ware that can be
used to de velop and ex er cise LCD dis play func tions.

Fig ure 11.4 18F452 to LCD 8-bit mode cir cuit.

250 Chap ter 11

18F452

+5v

R
=

1
0

K

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

RESET

+5v

LCD RS

LCD E

LCD RW

LCD data 7

LCD data 6

LCD data 5

LCD data 4

LCD data 3

LCD data 2

LCD data 0

LCD data 1

+5v

Picvue LCD - 2 rows x 16

LCD wiring

20 Mhz Osc

C=0.1mFEC=100mF

78L05

INOUT
9 -12 v DC

Regulated power supply

+5 v DC

+

1

2

13

data 7
data 5
data 3
data 1

E
RS

data 6
data 4
data 2
data 0
RW

Vdd +5v

1

14

100 Ohm

2

MCLR/VPP

RAO/ANO

RA1/AN1

RA2/AN2A/REF-

RA3/AN3A/REF+

RA4/TOCKI

RA5/AN4/SS/LVDIN

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1/CLKI

OSC2/CLKO/RA6

RCO/T1OSO/TICK1

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RDO/PSPO

RD1/PSP1

RB7/PGD

RB6/PGC

RB5/PGM

RB4

RB3/CCP2*

RB2/INT2

RB1/INT1

R BO/INTO

Vdd

Vss

RD7/PSP7

RD6/PSP6

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2

 HD44780 pin out
13 GND
14 Vdd +5v
12 Contrast adjust
11 RS (register select)
10 R/W (read/write select)
9 E (signal enable)
8-1 Data bits

+5V +5V +5V

R
=

1
0

K

R
=

1
0

K

R
=

1
0

K

R
=

1
0

K

PB #1 PB #2 PB #3

PB #4

+5v

RJ-12

6 5 4 3 2 1

The cir cuit in Fig ure 11.4 uses 8-bit par al lel data trans mis sion in ter fac ing with an
18F452 microcontroller. Three con trol lines in ter face the microcontroller and the
LCD. As pre vi ously men tioned, the R/W line is not con sid ered nec es sary be cause it
is pos si ble to build a sys tem that does not read LCD data. Nev er the less, we have in -
cluded the R/W line be cause it will al low us to read the busy flag in syn chro niz ing
op er a tions. Ta ble 11.5 shows the con trol and data con nec tions for the circuit in
Figure 11.4.

Ta ble 11.5

Con nec tions for 18F452/LCD 8-Bit Data Mode Cir cuit

 18F452 LCD LINE
 PIN PORT BIT PIN NAME FUNCTION

1 RE0 4 RS Se lect in struc tion/data reg is ter

2 RE2 5 R/W Read/write se lect

18 RE1 6 E En able sig nal

13 RD7 14 BF Busy flag

6–13 RD0-RD7 7–14 Data Data lines

11.4 LCD Pro gram ming

Pro gram ming an LCD is a de vice-spe cific op er a tion. Be fore at tempt ing to write code,
the pro gram mer should be come fa mil iar with the cir cuit wir ing di a gram, the set-up
pa ram e ters, and the spe cific hard ware re quire ments. It is risky to make as sump tions
that a par tic u lar de vice con forms ex actly to the HD44780 in ter face; for tu nately, a
style sheet will usu ally con tain spec i fi ca tions that may not be in strict con for mance
with the stan dard. In ad di tion to the PIC setup and ini tial iza tion func tions, code to dis -
play a sim ple text mes sage on the LCD screen con sists of the fol low ing dis play-re lated
func tions:

1. De fine the re quired con stants, vari ables, and buff ers.

2. Set up and ini tial ize ports used by the LCD.

3. Ini tial ize the LCD to cir cuit and soft ware spec i fi ca tions.

4. Se lect DDRAM start ad dress on LCD.

5. Dis play text by trans fer ring char ac ters to LCD DDRAM.

If the LCD dis play con sists of mul ti ple lines, then Steps 4 and 5 are re peated for
each line. LCD ini tial iza tion and dis play op er a tions vary ac cord ing to whether the
in ter face is 4- or 8-bits and whether the code uses de lay loops of busy flag mon i tor -
ing to syn chro nize op er a tions. All of these vari a tions are con sid ered in the
examples in this chapter.

 Liq uid Crys tal Dis plays 251

11.4.1 De fin ing Con stants and Vari ables
In any pro gram, de fin ing and doc u ment ing con stants and fixed pa ram e ters should be
done cen trally, rather than hard-coded through the code. Cen tral iz ing these el e ments
makes it pos si ble to adapt code to cir cuit and hard ware changes.

Con stants

The 18F fam ily PICs pro vide two di rec tives for de fin ing con stants: the C-like #de fine
di rec tive and the equ (equate) di rec tive. Which one to use is, in most cases, a mat ter of
per sonal pref er ence. Per haps a gen eral guide line is to use the #de fine state ment to
cre ate lit eral con stants, that is, con stants that are not as so ci ated with pro gram reg is -
ters or vari ables. The equate di rec tive is then used to de fine reg is ters, flags, and lo cal
vari ables.

Ac cord ing to this scheme, an LCD dis play driver pro gram could use #de fine state -
ments to cre ate lit er als that are re lated to the wir ing di a gram or the spe cific LCD
val ues ob tained form the data sheet, such as the DDRAM ad dresses for each dis play
line, as in the fol low ing code fragment:

;===
; con stant def i ni tions
; for PIC-to-LCD pin wir ing and LCD line ad dresses
;===
; PORTE bit
#de fine E_line 1 1 ;|
#de fine RS_line 0 0 ;| -- from wir ing di a gram
#de fine RW_line 2 2 ;|
; LCD line ad dresses (from LCD data sheet)
#de fine LCD_1 0x80 ; First LCD line con stant
#de fine LCD_2 0xc0 ; Sec ond LCD line con stant

By the same to ken, the val ues as so ci ated with PIC reg is ter ad dresses and bit
flags are de fined us ing equates, as fol lows:

;===
; PIC reg is ter equates
;===
PORTA equ 0x05
PORTB equ 0x06
fsr equ 0x04
sta tus equ 0x03
indf equ 0x00
z equ 0x02

One ad van tage of this scheme is that con stants are eas ier to lo cate be cause they are
grouped by de vice. Those for the LCD are in #de fine di rec tives area and those for the
PIC hard ware in an area of equate di rec tives.

There are also draw backs to this ap proach, as sym bols cre ated in the #de fine di -
rec tive are not avail able for view ing in the MPLAB debuggers. How ever, if the use of
the #de fine di rec tive is re stricted to lit eral con stants, then their view ing dur ing a de -
bug ging ses sion will not be missed be cause it will not change dur ing pro gram ex e cu -

252 Chap ter 11

tion. MPLAB also sup ports the con stant di rec tive for cre at ing a con stant sym bol. Its
use is iden ti cal to the equ di rec tive but the lat ter is more commonly found in code.

11.4.2 Us ing MPLAB Data Di rec tives
The def i ni tion of data items changes when pro gram ming in ab so lute or relocatable
modes. Relocatable mode is dis cussed in Ap pen dix B, Sec tion B.4.1.

Data Def i ni tion in Ab so lute Mode

Of ten a pro gram ex e cut ing in ab so lute mode needs to de fine a block of se quen tial sym -
bols and as sign to each one a cor re spond ing name. In the PIC 18F452, the ad dress
space al lo cated to gen eral-pur pose reg is ters al lo cated by the user is 4096 bytes, start -
ing at ad dress 0x00. One pos si ble way of al lo cat ing user-de fined reg is ters is to use the
equ di rec tive to as sign ad dresses in the PIC SRAM space; for ex am ple,

Var1 equ 0x00
Var2 equ 0x01
Var3 equ 0x02
Buf1 equ 0x03 ; 10-byte buffer space
Var4 equ 0x0d ; Next vari able

Al though this method is func tional, it de pends on the pro gram mer cal cu lat ing the
lo ca tion of each vari able in the PIC's avail able SRAM space. Al ter na tively, MPLAP
pro vides a cblock di rec tive that al lows de fin ing a group of con sec u tive se quen tial
sym bols while re fer ring only to the ad dress of the first el e ment in the group. If no
ad dress is en tered in a cblock, then the as sem bler will as sign an ad dress of one
higher than the fi nal one in the pre vi ous cblock. Each cblock ends with the endc di -
rec tive. The fol low ing code frag ment show ing the use of the cblock di rec tive is from
one of the sam ple pro grams for this chap ter.

;===
; vari ables in PIC RAM
;===
; Re serve 16 bytes for string buffer

cblock 0x00
strData
endc

; Leave 16 bytes and con tinue with lo cal vari ables
cblock 0x10 ; Start of block
count1 ; Coun ter # 1
count2 ; Coun ter # 2
count3 ; Coun ter # 3
pic_ad ; Stor age for start of text area
J ; coun ter J
K ; coun ter K
in dex ; In dex into text ta ble
endc

No tice in the pre ced ing code frag ment that the al lo ca tion for the 16-byte buffer
space named strData is en sured by en ter ing the cor re spond ing start ad dress in the
sec ond cblock. The PIC microcontrollers do not con tain a di rec tive for re serv ing
mem ory ar eas in side a cblock, al though the res di rec tive can be used to re serve
mem ory for in di vid ual vari ables.

 Liq uid Crys tal Dis plays 253

Relocatable Code

Relocatable code builds cor rectly if data is de fined us ing the equ di rec tives pre vi ously
men tioned. How ever, the equ di rec tive is likely to gen er ate linker er rors. Ad di tion ally,
vari ables de fined with the equ di rec tive are not vis i ble to hard ware debuggers (see Ap -
pen dix B). MPLAB MASM sup ports sev eral di rec tives that are com pat i ble with
relocatable code and that make the vari able names vis i ble at de bug time. The ones
most of ten used are

udata de fines a sec tion of uninitialized data. Items de fined in a udata sec tion are not
in i tial ized and can be ac cessed only through their names.

udata_acs de fines a sec tion of uninitialized data that is placed in the ac cess area. In
PIC 18 de vices ac cess RAM is al ways used for data de fined with the udada_acs di -
rec tive. Ap pli ca tions use this area for the data items most of ten used.

udata_ovr de fines a sec tion of ovr uninitialized, over laid data. This data sec tion is
used for vari ables that can be de clared at the same ad dress as other vari ables in
the same mod ule or in other linked mod ules, such as tem po rary vari ables.

udata_shr de fines a sec tion of uninitialized, shared data. This di rec tive is used in
de fin ing data sec tions for PIC12/16 de vices.

idata de fines a sec tion of in i tial ized data. This di rec tive forces the linker to gen er ate
a lookup ta ble that can be used to ini tial ize the vari ables in this sec tion to the
spec i fied val ues. When linked with MPLAB C18 code, these lo ca tions are in i tial -
ized dur ing ex e cu tion of the start-up code. Is sues re gard ing the idata and
idata_acs di rec tives aare dis cussed in the next sub sec tion.

idata_acs de fines a sec tion of in i tial ized data that is placed in the ac cess area. In
PIC 18 de vices, ac cess RAM is al ways used for data de fined with the idada_acs di -
rec tive.

The fol low ing ex am ple shows the use of sev eral RAM al lo ca tion di rec tives:

udata_acs 0x10 ; Al lo cated at ad dress 0x10
j res 1 ; Data in ac cess bank
temp res 1

idata
ThisV db 0x29 ; In i tial ized data
Aword dw 0xfe01
* udata ; Al lo cated by the Linker
varx res 1 ; One byte re served
vary res 1 ; An other byte

The lo ca tion of a sec tion may be fixed in mem ory by sup ply ing the op tional ad -
dress, as in the udata_acs ex am ple listed pre vi ously. If more than one of a sec tion
type is spec i fied, each one must have a unique name. If a name is not pro vided, the
de fault sec tion names are .idata, .udata, .udata_acs, .udata_shr and .udata_ovr.

Is sues with In i tial ized Data

The di rec tives db, dw, data, and oth ers can be used when de fin ing in i tial ized data in an
idata or idata_acs sec tion of an assembly lan guage pro gram. The db di rec tive de fines
suc ces sive bytes of data while the dw di rec tive de fines suc ces sive words. The de fined
data can be in i tial ized; for ex am ple,

254 Chap ter 11

 idata_acs 0x010
Var1 db 1,2,3
Var2 dw 0x1234,0x5678
String data "This is a test",0

The pre vi ous data def i ni tion seem to im ply that an as sem bly language pro gram
can use the idata or idata_acs di rec tives to de fine data items and strings that can
later be ac cessed by their de fined names. In re al ity this is not the case be cause the
var i ous ver sions of the idata di rec tive do not ini tial ize data in the PIC's data mem -
ory. Fur ther more, MPLAB doc u men ta tion states that the linker will gen er ate a
lookup ta ble that can be used to ini tial ize vari ables de fined in the idata sec tion but
the lo ca tion of this data and access to it is not documented.

The is sue may be a moot one be cause the 18F PICs have avail able one Mbyte of
pro gram mem ory space, suf fi cient to holds 1,048,575 data bytes, while there are
only 4,095 bytes of data mem ory. This means that ap pli ca tions may usu ally find that
pro gram mem ory is more abun dant for stor ing pro gram strings, and other items,
than data memory.

11.4.3 LCD Ini tial iza tion
LCD ini tial iza tion de pends on the spe cific hard ware in use and on the cir cuit wir ing.
In for ma tion re gard ing the spe cific LCD can be ob tained from the de vice's data sheet.
Some times the data sheet in cludes ex am ples of ini tial iza tion val ues for dif fer ent con -
di tions and, in some cases, code list ings. The in for ma tion is usu ally suf fi cient to en -
sure cor rect ini tial iza tion.

Pop u lar LCD lit er a ture found on line of ten con tains ini tial iza tion “myths” for re -
quir ing that a cer tain mys tery code be used for no doc u mented rea son, or that a cer -
tain func tion be re peated a num ber of times. These code myths of ten re sult from
trial-and-er ror pro gram ming and are not based in fact. The pro gram mer should
make sure that the code is ra tio nal and that ev ery op er a tion is actually required and
documented.

Re set Func tion

The HD44780 is equipped with an in ter nal re set cir cuit that per forms an ini tial and au -
to matic ini tial iza tion on power up. Only if the min i mal power sup ply con di tions are
not met will the au to matic ini tial iza tion fail. In the dis cus sions that fol low we as sume
that the in ter nal re set cir cuit is op er at ing prop erly and that the HD44780 has been in i -
tial ized. The fol low ing op er at ing con di tions are en abled by the re set func tion:

• Dis play is cleared

• Func tion set to 8-bit in ter face, one line dis play, 5 times 8 dot char ac ter font

• Dis play is off, cur sor is off, blink ing is off

• En try mode is set to in cre ment by 1 and no shift

The busy flag is kept in the busy state (BF = 1) dur ing de vice ini tial iza tion. One
way to de ter mine if the au to matic ini tial iza tion has con cluded is by test ing the busy
flag, which will be cleared in this case. If the in ter nal re set did not take place, it is
pos si ble to per form a com plete ini tial iza tion by in struc tion, which in cludes a few

 Liq uid Crys tal Dis plays 255

more steps than if the in ter nal re set had taken place. The Hitachi HD44780U data
sheet pro vides a list ing of the necessary operations.

Ini tial iza tion Com mands

If the in ter nal re set took place it is nec es sary to set the com mu ni ca tions line be fore
the re main ing ini tial iza tion com mands are pre sented to the LCD. This means that the
E line, RS line and RW line must be all be set low. Af ter the lines are set ac cord ingly
there should be a 125 mil li sec ond de lay. The fol low ing code frag ment shows the pro -
cess ing:

bcf PORTA,E_line ; E line low
bcf PORTA,RS_line ; RS line low for com mand
bcf PORTA,RW_line ; Write mode
call de lay_125 ;de lay 125 mi cro sec onds

The pro ce dure de lay_125 in the pre vi ous code frag ment is de scribed later in this
chap ter.

Func tion Pre set Com mand

Be cause the re set func tion has set the de vice in 8-bit data mode, the first com mand
con sists of writ ing 8 bits to the data reg is ter. If the low-or der bits are not wired to the
con trol ler, as is the case in the 4-bit data mode, then these bits are ig nored. In other
words, the first ini tial iza tion in struc tion com pletes with a sin gle byte in ei ther dis play
mode. The Func tion Pre set com mand can be coded as fol lows:

;***********************|
; Pre set com mand |
;***********************|
 movlw B'00100000'
 movwf PORTD
 call pulseE

The pulseE pro ce dure con tains code to bring the E line low and then high
(pulse), which is re quired af ter each data read, write or com mand op er a tion. The
pro ce dure is listed later in this section.

 Func tion Set Com mand

Func tion set is the next ini tial iza tion com mand sent to the LCD. The com mand de ter -
mines whether the dis play font con sists of 5 x 10 or 5 x 7 pix els. The lat ter is by far the
more com mon. Also the duty cy cle, which is typ i cally 1/8 or 1/11 for sin gle-line dis -
plays and 1/16 for mul ti ple lines. The in ter face width is also de ter mined in the Func -
tion Set com mand. It can be 4-bits or 8-bits. The fol low ing code frag ment shows the
com mented code for the Func tion Set com mand.

;***********************|
; Func tion Set |
;***********************|

movlw 0x38 ; 0 0 1 1 1 0 0 0 (FUNCTION SET)
; | | | |__ font se lect:
; | | | 1 = 5x10 in 1/8 or 1/11 dc
; | | | 0 = 1/16 dc
; | | |___ Duty cy cle se lect

256 Chap ter 11

; | | 0 = 1/8 or 1/11
; | | 1 = 1/16 (mul ti ple lines)
; | |___ In ter face width
; | 0 = 4 bits
; | 1 = 8 bits
; |___ FUNCTION SET COMMAND

movwf PORTD
call pulseE ;pulse E line to force LCD com mand

In the pre ced ing code frag ment, the LCD is in i tial ized to mul ti ple lines, 5 times 7
font, and 8-bit in ter face, as in the pro gram LCD_18F_HelloWorld listed later in this
chap ter and found in the book's on line soft ware pack age. Note that bit num ber 4
will be cleared if initializing for a 4-bit data mode.

The pro ce dure named pulseE sets the E line bit off and on to force com mand rec -
og ni tion by the LCD. The pro ce dure is de tailed later in this chap ter.

Dis play Off

Some ini tial iza tion rou tines in LCD doc u men ta tion and data sheets re quire that the
dis play be turned off fol low ing the Func tion Set com mand. If so, the Dis play Off com -
mand can be ex e cuted as fol lows:

;***********************|
; Dis play Off |
;***********************|

movlw 0x08 ; 0 0 0 0 1 0 0 0 (DISPLAY ON/OFF)
; | | | |___ Blink char ac ter at cur sor
; | | | 1 = on, 0 = off
; | | |___ Curson on/off
; | | 1 = on, 0 = off
; | |____ Dis play on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

movwf PORTB
call pulseE ; pulse E line to force LCD com mand

Dis play and Cur sor On

Whether or not the dis play is first turned off, it must be turned on. Also code must se -
lect if the cur sor is on or off, or whether the char ac ter at the cur sor po si tion is to blink.
The fol low ing com mand sets the cur sor and the dis play on and the char ac ter blink off.

;***********************|
; Dis play and Cur sor On |
;***********************|

movlw 0x0e ; 0 0 0 0 1 1 1 0 (DISPLAY ON/OFF)
; | | | |___ Blink char ac ter at cur sor
; | | | 1 = on, 0 = off
; | | |___ Curson on/off
; | | 1 = on, 0 = off
; | |____ Dis play on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

movwf PORTD
call pulseE ; pulse E line to force LCD com mand

 Liq uid Crys tal Dis plays 257

Set En try Mode

The En try Mode com mand sets the di rec tion of cur sor move ment or dis play shift
mode. Nor mally the dis play is set to the in cre ment mode when writ ing in West ern Eu -
ro pean lan guages. The En try Mode com mand also con trols the dis play shift. If en -
abled, the dis played char ac ters ap pear to scroll. This mode can be used to sim u late an
elec tronic bill board by stor ing more than one line of char ac ters in DDRAM and the
then scroll ing the char ac ters left-to-right. The fol low ing code sets the en try mode to
the in cre ment mode and no shift.

;***********************|
; Set En try Mode |
;***********************|

movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
; | | |___ dis play shift
; | | 1 = shift
; | | 0 = no shift
; | |____ cur sor in cre ment mode
; | 1 = left-to-right
; | 0 = right-to-left
; |___ COMMAND BIT

movwf PORTD
call pulseE

Cur sor and Dis play Shift

This com mands de ter mines whether the cur sor or the dis play shifts ac cord ing to the
se lected mode. Shift ing the cur sor or the dis play pro vides a soft ware mech a nism for
mak ing DDRAM cor rec tions or for re triev ing dis play data at spe cific DDRAM lo ca -
tions. The four avail able op tions ap pear in Ta ble 11.4 pre vi ously in this chap ter. The
fol low ing in struc tions set the cur sor to shift right and dis ables dis play shift.

;***********************|
; Cur sor/Dis play Shift |
;***********************|

movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY SHIFT)
 ; | | | |_|___ don't care

; | |_|__ cur sor/dis play shift
; | 00 = cur sor shift left
; | 01 = cur sor shift right
; | 10 = cur sor and dis play
; | shifted left
; | 11 = cur sor and dis play
; | shifted right
; |___ COMMAND BIT

movwf PORTD ;0001 1111
call pulseE

Clear Dis play

The fi nal ini tial iza tion com mand is usu ally one to clear the dis play. It is en tered as fol -
lows:

;***********************|
; Clear Dis play |
;***********************|

258 Chap ter 11

movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)
; |___ COMMAND BIT

movwf PORTD ;0000 0001
call pulseE
call de lay_5 ;de lay 5 mil li sec onds af ter init

No tice that the last com mand is fol lowed by a 5 mil li sec ond de lay. The de lay pro -
ce dure de lay_5 is listed and de scribed later in this chap ter.

11.4.4 Aux il iary Op er a tions
Sev eral sup port rou tines are re quired for ef fec tive text dis play in LCD de vices. These
in clude time de lay rou tines for timed ac cess, a rou tine to pulse the E line in or der to
force the LCD to ex e cute a com mand or to read or write text data, a rou tine to read the
busy flag when this is the method used for pro ces sor/LCD syn chro ni za tion, and rou -
tines to merge data with port bits so as to pre serve the sta tus of port lines not be ing ad -
dressed by code.

Time De lay Rou tine

In Chap ter 9 we dis cussed sev eral ways of pro duc ing time de lays in the 18F PIC fam ily
of microcontrollers. The pres ent task is to de velop a soft ware rou tine that en sures the
time de lay that must take place in LCD pro gram ming, as shown in Ta ble 11.3.

One de lay mech a nism uses the TIMER0 mod ule, which is a built-in 16-bit timer
coun ter (dis cussed in Chap ter 9). Once en abled, port A pin 4, la beled the TOCKI bit
and as so ci ated with TMR0, can be used to time pro ces sor op er a tions. In the par tic u -
lar case of LCD tim ing rou tines, us ing the TIMER0 mod ule seems some what of an
over kill, in ad di tion to the fact that it re quires the use of a port A line, which is of ten
needed for other purposes.

Al ter na tively, tim ing rou tines that serve the pur pose at hand can be de vel oped us -
ing sim ple de lay loops. In this case, no port line is sac ri ficed, and cod ing is con sid er -
ably sim pli fied. These rou tines are ge ner i cally la beled soft ware tim ers, in con trast
to the hard ware tim ers that de pend on the PIC timer/coun ter de vices. Soft ware tim -
ers pro vide the nec es sary de lay by means of pro gram loops, that is, by wast ing time.
How long a de lay is pro vided by the rou tine de pends on the ex e cu tion time of each
in struc tion and on the number of repeated instructions.

Re call now that in struc tions on the PIC 18F452 con sume four clock cy cles. This
means that if the pro ces sor clock is run ning at 4 MHz, then one-fourth of 4 MHz will
be the ex e cu tion time for each in struc tion, which is 1 µs. So if each in struc tion re -
quires 1 µs, re peat ing 1,000 in struc tions will pro duce a de lay of 1 ms. The fol low ing
rou tines pro vide con ve nient de lays for LCD interfacing.

;=======================
; Pro ce dure to de lay
; 125 mi cro sec onds
;=======================
de lay_125mics:

movlw D'42' ; Re peat 42 ma chine cy cles
movwf count1 ; Store value in coun ter

re peat:

 Liq uid Crys tal Dis plays 259

decfsz count1,f ; Dec re ment coun ter (1 cy cle)
goto re peat ; Con tinue if not 0 (2 cy cles)

; 42 * 3 = 126
re turn ; End of de lay

;=======================
; Pro ce dure to de lay
; 5 mil li sec onds
;=======================
de lay_5ms:

movlw D'41' ; Coun ter = 41
movwf count2 ; Store in vari able

de lay:
call de lay_125mics ; De lay 41 mi cro sec onds
decfsz count2,f ; 41 times 125 = 5125 mi cro sec.

; or ap prox i mately 5 ms
goto de lay
re turn ; End of de lay

Ac tu ally, the de lay loop of the pro ce dure named de lay_5ms is not ex actly the
prod uct of 41 it er a tions times 125 µs, as the in struc tion to dec re ment the coun ter
and the goto to the la bel de lay are also in side the loop. That means that three in -
struc tion cy cles must be added to those con sumed by the de lay_125mics pro ce dure.
This re sults in a to tal of 41 * 3 or 123 in struc tion cy cles that must be added to the
5,125 con sumed by de lay_125mics. In fact, there are sev eral other mi nor de lays by
the in struc tions to ini tial ize the coun ters that are not in cluded in the cal cu la tion. In
re al ity, the de lay loops re quired for LCD in ter fac ing need not be ex act, as long as
they are not shorter than the recommended min ima.

In cal cu lat ing soft ware de lays, it is im por tant to re call that, in the case of the
18F452 the in struc tion ex e cu tion time is de ter mined by an ex ter nal clock ei ther in
the form of an os cil la tor crys tal, a res o na tor, an RC os cil la tor, or an other com pat i -
ble tim ing de vice in the cir cuit. The fol low ing are 18F452 oscillator modes:

The PIC 18F452 is avail able in var i ous pro ces sor speeds, from 4 MHz to 20 MHz.
These speeds de scribe the max i mum ca pac ity of the PIC hard ware. The ac tual in -
struc tion speed is de ter mined by the clock ing de vice, so a 20-MHz 18F452 us ing a 4-
MHz os cil la tor ef fec tively runs at 4 MHz.

Puls ing the E Line

The LCD hard ware does not rec og nize data as it is placed in the in put lines. When the
var i ous con trol and data pins of the LCD are con nected to ports in the PIC and data is
placed in the port bits, no ac tion takes place in the LCD con trol ler. In or der for the con -
trol ler to re spond to com mands or to per form read or write op er a tions, it must be ac ti -
vated by pul sat ing (some times called “strobing”) the E line. The puls ing or strobing
mech a nism re quires that the E line be kept low, then raised mo men tarily. The LCD
checks the state of its lines on the rais ing edge of the E line. Once the com mand has
com pleted, the E line is brought low again. The fol low ing code frag ment pulses the E
line in the man ner de scribed:

;========================
; pulse E line
;========================
pulseE

260 Chap ter 11

bsf PORTA,E_line ; pulse E line
bcf PORTA,E_line
call de lay_125mics ; de lay 125 mi cro sec onds
re turn

No tice that the puls ing of the E line is fol lowed by a 125-mi cro sec ond de lay. This
de lay is not part of the pulse func tion but is re quired by most LCD hard ware. Also
no tice able is that some pulse func tions in the pop u lar PIC lit er a ture in clude a no op -
er a tion opcode (nop) be tween the com mands to set and clear the E line. In most
cases, this short de lay does not hurt, but some LCDs re quire a min i mum time lapse
dur ing the pulse and will not func tion cor rectly if the nop is inserted in the code.

Read ing the Busy Flag

We have men tioned that syn chro ni za tion be tween LCD com mands and be tween data
ac cess op er a tions can be based on time de lay loops or on read ing the LCD busy flag.
The busy flag, which is in the same pin as the bit 7 data line, is cleared when the LCD is
ready to re ceive the next com mand, read or write op er a tion, and set if the de vice is not
ready. Read ing the state of the busy flag code can ac com plish more ef fec tive syn chro -
ni za tion than time de lay loops. The sam ple pro gram named LCD_18F_MsgFlag, in the
book's on line soft ware pack age, per forms LCD dis play us ing the busy flag method.
The fol low ing pro ce dure shows busy flag syn chro ni za tion.

;========================
; busy flag test rou tine
;========================
; Pro ce dure to test the HD44780 busy flag
; Ex e cu tion re turns when flag is clear
; Tech note:
; The HD44770 re quires a 10 ms de lay to set the busy flag
; when the line is be ing sourced. Read ing the flag be fore
; this time has elapsed may re sult in a false "not busy"
; re port. The code forces a 15 ma chine cy cle de lay to
; pre vent this er ror.
busyTest:

movlw .15 ; Re peat 15 ma chine cy cles
movwf count1 ; Store value in coun ter

delay15:
decfsz count1,f ; Dec re ment coun ter
goto delay15 ; Con tinue if not 0

; De lay con cluded
movlw B'11111111'

 movwf TRISD
bcf PORTE,RS_line ; RS line low for con trol
bsf PORTE,RW_line ; Read mode

is_busy:
bsf PORTE,E_line ; E line high
movff PORTD,WREG ; Read port D into W

 ; Port D bit 7 is busy flag
bcf PORTE,E_line ; E line low
andlw 0x80 ; Test bit 7, high is busy

; Anding with a the mask 10000000 sets the Z flag if
; pre serves the busy bit was clear:
; Bxxx xxxx |
; | log i cal AND
; 1000 0000 |
;------------------

 Liq uid Crys tal Dis plays 261

; 0000 0000 if B bit was 0 (Z flag is set)
; 1000 0000 if B bit was 1 (Z flag is clear)

btfss STATUS,Z ; Test zero bit in STATUS
goto is_busy ; Re peat if Z flag clear

; ; in di cat ing not busy
; At this point busy flag is clear
; Re set R/W line and port D to out put

bcf PORTE,RW_line ; Clear R/W line
bsf PORTE,RS_line ; Setup for data

 clrf TRISD
re turn

Note that test ing the busy flag re quires set ting the LCD in read mode, which in
turn re quires that there be a con nec tion be tween a PIC port and the R/W line. The
logic used by the pro ce dure could ap pear a lit tle con vo luted be cause code is test ing
not the busy flag of the LCD con trol ler, but the Z flag of the PIC af ter an AND in -
struc tion with a mask. Be cause the mask has the high bit set, the AND op er a tion
sets the Z flag in the STATUS reg is ter if the busy flag was clear. Oth er wise, the Z flag
is clear. In other words, af ter the AND op er a tion, the Z flag is op po site to the state
of the busy bit. Al ter na tively, the logic can be coded as follows:

is_busy:
bsf PORTE,E_line ; E line high
movff PORTD,WREG ; Read port D into W

; Port D bit 7 is busy flag
bcf PORTE,E_line ; E line low
btfsc PORTD,7 ; Test bit di rectly
goto is_busy ; Re peat if Z flag clear

; Ex e cu tion con tin ues if not busy

Also note that the listed pro ce dure con tains no safety mech a nism for de tect ing a
hard ware er ror con di tion in which the busy flag never clears. If such were the case,
the pro gram would hang in a for ever loop. To de tect and re cover from this er ror, a
clean code rou tine would have to in clude an ex ter nal tim ing loop or some other
means of re cov er ing a pos si ble hardware error.

Bit Merg ing Op er a tions

PIC/LCD cir cuits of ten use some of the lines in an in di vid ual port while leav ing oth ers
for other pur poses. In this case, it is con ve nient that the rou tines that ma nip u late
PIC/LCD port ac cess do not change the set tings of other port bits. Note that this sit u a -
tion is not ex clu sive of LCD in ter fac ing and that the dis cus sion that fol lows has gen -
eral ap pli ca tion in PIC pro gram ming.

A pro cess ing rou tine can be de vel oped in or der to change one or more port lines
with out af fect ing the re main ing ones. For ex am ple, an ap pli ca tion that uses a 4-bit
in ter face be tween the PIC and the LCD typ i cally leaves four un used lines in the ac -
cess port, or uses some of these lines for in ter face con nec tions. In this case, the pro -
gram ming prob lem can be de scribed as merg ing bits of the data byte to be writ ten to
the port with some ex ist ing port bits. In this case, one op er and is the ac cess port
value and the other one is the new value to write to this port. If the op er a tion at
hand uses the four high-or der port bits, then its four low-or der bits must be pre -
served. The logic re quired is sim ple: AND the cor re spond ing operands with masks

262 Chap ter 11

that clear the un needed bits and pre serve the sig nif i cant ones, then OR the two
operands. The following procedure shows the required processing:

;=================
; merge bits
;=================
; Rou tine to merge the 4 high-or der bits of the
; value to send with the con tents of port B
; so as to pre serve the 4 low-bits in port B
; Logic:
; AND value with 1111 0000 mask
; AND port B with 0000 1111 mask
; At this point low nib ble in the value and high
; nib ble in port B are all 0 bits:
; value = vvvv 0000
; port B = 0000 bbbb
; OR value and port B re sult ing in:
; vvvv bbbb
; ON ENTRY:
; w con tains value bits
; ON EXIT:
; w con tains merged bits
merge4:

andlw b'11110000' ; ANDing with 0 clears the
; bit. ANDing with 1 pre serves
; the orig i nal value

movwf store2 ; Save re sult in vari able
movf PORTB,w ; port B to w reg is ter
andlw b'00001111' ; Clear high nib ble in port B

; and pre serve low nib ble
iorwf store2,w ; OR two operands in w
re turn

Note that this par tic u lar ex am ple re fers to merg ing two op er and nib bles. The
code can be adapted to merg ing other size bit fields by mod i fy ing the cor re spond ing
masks. For ex am ple, the fol low ing rou tine merges the high-or der bit of one op er and
with the seven low-or der bits of the second one:

; Rou tine to merge the high-or der bit of the first op er and with
; the seven low-or der bits of the sec ond op er and
; ON ENTRY:
; w con tains value bits of first op er and
; port B is the sec ond op er and
merge1:

andlw b'10000000' ; ANDing with 0 clears the
; bit. ANDing with 1 pre serves
; the orig i nal value

movwf store2 ; Save re sult in vari able
movf PORTB,w ; port B to w reg is ter
andlw b'01111111' ; Clear high-or der bit in

; port B and pre serve the seven
; low or der bits

iorwf store2,w ; OR two operands in w
re turn

The pop u lar PIC lit er a ture con tains rou tines to merge bit fields by as sum ing cer -
tain con di tions in the des ti na tion op er and, then test ing the first op er and bit to de -
ter mine if the as sumed con di tion should be pre served or changed. This type of
op er a tion has some times been called “bit flip ping”; for ex am ple,

 Liq uid Crys tal Dis plays 263

flipBit7:
; Code frag ment to test the high-or der bit in the vari able named
; oprnd1 and pre serve its sta tus in the reg is ter vari able PORTB

bcf PORTB,7 ; As sume oprnd1 bit is re set
btfsc oprnd1,7 ; Test op er and bit and skip if

; clear (as sump tion valid)
bsf PORTB,7 ; Set bit if nec es sary
re turn

The logic in bit flip ping rou tines has one crit i cal flaw: if the as sumed con di tion is
false, then the sec ond op er and is changed im prop erly, alas for only a few mi cro sec -
onds. How ever, the in cor rect value can pro duce er rors in ex e cu tion if it is used by
an other de vice dur ing this pe riod. Be cause there is no such ob jec tion to the merge
rou tines based on mask ing, the pro gram mer should always prefer them.

11.4.5 Text Data Stor age and Dis play
Text dis play op er a tions re quire some way of gen er at ing the ASCII char ac ters that are
to be stored in DDRAM mem ory. In Sec tion 11.4.2 we dis cussed the use of sev eral data
di rec tives and ob served that, al though the PIC As sem bler con tains sev eral op er a tors
to gen er ate ASCII data in pro gram mem ory, there is no con ve nient way of stor ing a
string in the gen eral-pur pose reg is ter area. Even if this were pos si ble, SRAM is typ i -
cally in short sup ply and text strings gob ble up con sid er able data space.

Sev eral pos si ble ap proaches are avail able; the one most suit able usu ally de pends
on the to tal string length to be gen er ated or stored, whether the strings are re used
in the code, and to other pro gram-re lated cir cum stances.

In this sense, short text strings can be pro duced char ac ter-by-char ac ter and sent
se quen tially to DDRAM mem ory by plac ing the char ac ters in the cor re spond ing port
and puls ing the E line. The fol low ing code frag ment con sec u tively dis plays the char -
ac ters in the word “Hello” in this man ner. Code as sumes that the com mand to set
the Ad dress Reg is ter has previously been entered.

; Gen er ate char ac ters and send di rectly to DDRAM
movlw 'H' ; ASCII for H in w
movwf PORTB ; Store code in port B
call pulseE ; Pulse E line
movlw 'e' ; Con tin ues
movwf PORTB
call pulseE
movlw 'l'
movwf PORTB
call pulseE
movlw 'l'
movwf PORTB
call pulseE
movlw 'o'
movwf PORTB
call pulseE
call de lay_5

No tice in the pre ced ing frag ment that the code as sumes that the LCD has been in i tial -
ized to au to mat i cally in cre ment the Ad dress Reg is ter left-to-right. This ex plains why
the Ad dress Reg is ter is bumped by the code to the next ad dress with each port ac cess.

264 Chap ter 11

The sam ple pro gram LCD_18F_HelloWorld in this book's soft ware pack age uses the
di rect dis play tech nique de scribed in this sub sec tion.

Gen er at ing and Stor ing a Text String

An al ter na tive ap proach suit able for gen er at ing and dis play ing lon ger strings con sists
of stor ing the string data in a lo cal vari able (some times called a buffer) and then trans -
fer ring the char ac ters, one by one, from the buffer to DDRAM. This kind of pro cess ing
has the ad van tage of al low ing the re use of the same string and the dis ad van tage of us -
ing up scarce data mem ory. The logic for one pos si ble rou tine con sists of first gen er at -
ing and stor ing the char ac ter string in pro gram mem ory, then re triev ing the char ac ters
one-by-one and dis play ing them. The char ac ter gen er a tion and stor age logic is shown
in Fig ure 11.5.

 Fig ure 11.5 Flowchart showing string generation logic.

Ap pli ca tions that add char ac ters or mod ify the text string dur ing pro gram ex e cu tion
of ten use this tech nique be cause the data mem ory string is eas ily ac cessed at run time.

Data in Pro gram Mem ory

The mid-range PIC fam ily of microcontrollers (such as the pop u lar 16F se ries) pro -
vides a way of stor ing and re triev ing data in pro gram mem ory us ing a data ta ble and in -
di rect ad dress ing. The retlw in struc tion fur nishes a way of re turn ing a ta ble char ac ter
in the W reg is ter. This mech a nism works with the 18F PIC fam ily, but not with out com -
pli ca tions, as is the case when the ta ble data steps over a code seg ment bound ary. The

 Liq uid Crys tal Dis plays 265

START

END
YES

NO

Buffer pointer = 0

Get character using
generator

Store character in buffer
Bump buffer pointer

Character = 0
?

new in struc tions of the 18F PICs are more con ve nient and can eas ily ac cess data lo -
cated any where in the pro ces sor's ad dress space.

Be cause the pro gram mem ory space of the 18F de vices ex tends to 21 bits and
stor age and con trol reg is ters are 8-bits wide, three such reg is ters are re quired for a
com plete ad dress. The two low-or der reg is ters will have 8 bits ca pac ity each, while
the high est-or der reg is ter (re ferred to as the up per reg is ter) holds the re main ing 5
bits of the 21-bit ad dress. The fol low ing code snip pet from the sam ple pro gram
LCD_18F_4line_Reloc.asm shows stor age and ac cess to a text string in program
mem ory:

;==========================

; get ta ble char ac ter

;==========================

; Lo cal pro ce dure to get a sin gle char ac ter from a lo cal

; ta ble (msgTable) in pro gram mem ory. Vari able in dex holds

; off set into ta ble

tableChar:

 movlw UPPER msgTab

 movwf TBLPTRU

 movlw HIGH msgTab ; Get ad dress of Ta ble

 movwf TBLPTRH ; Store in ta ble pointer low reg is ter

 movlw LOW msgTab ; Get ad dress of Ta ble

 movwf TBLPTRL

 movff in dex,WREG ; in dex to W

 addwf TBLPTRL,f ; Add in dex to ta ble pointer low

 clrf WREG ; Clear reg is ter

 addwfc TBLPTRH,F ; Add pos si ble carry

 addwfc TBLPTRU,F ; To both reg is ters

 tblrd * ; Read byte from ta ble (into TABLAT)

 movff TABLAT,WREG ; Move TABLAT to W

 re turn

; De fine ta ble in code mem ory

msgTab db "4-line LCD Demo "

 db "Relocatable mode"

The code uses the op er a tors UPPER, HIGH, and LOWER to ob tain the three cor -
re spond ing el e ments of the 21-bit ad dress. These are stored in the spe cial func tion
reg is ters named TBLPTRU, TBLPTRH, and TBLPTRL. Be cause the ta ble can strad -
dle an 8-bit bound ary, the pos si ble carry must be added with the addwfc in struc -
tions. The ta ble char ac ter is returned in WREG.

Dis play ing the Text String

A char ac ter re trieved from its stor age (a lo cal data mem ory buffer or a code mem ory
string) can be dis played by mov ing each ASCII code from WREG into LCD DDRAM.
The code to dis play the text char ac ter as sumes that the LCD has pre vi ously been set in
the auto in cre ment mode dur ing ini tial iza tion and that the Ad dress Reg is ter has been
prop erly in i tial ized with the cor re spond ing DDRAM ad dress. The fol low ing pro ce -
dure dem on strates ini tial iza tion of the DDRAM Ad dress Reg is ter to the value de fined
in the con stant named LCD_1.

266 Chap ter 11

;========================
; Set ad dress reg is ter
; to LCD line 1
;========================
; ON ENTRY:
; Ad dress of LCD line 1 in con stant LCD_1
line1:

bcf PORTA,E_line ; E line low
bcf PORTA,RS_line ; RS line low, set up for con trol
call de lay_125 ; de lay 125 mi cro sec onds

;
; Set to sec ond dis play line

movlw LCD_1 ; Ad dress and com mand bit
movwf PORTD
call pulseE ; Pulse and de lay

;
; Set RS line for data

bsf PORTA,RS_line ; Setup for data
call de lay_125mics ; De lay
re turn

Once the Ad dress Reg is ter has been set up, the dis play op er a tion con sists of trans fer -
ring each char ac ters re turned by the ta ble ac cess rou tine into LCD DDRAM. The fol -
low ing pro ce dure can be used for this pur pose:

;=============================
; dis play 16 char ac ters
;=============================
; Pro ce dure to dis play one line of 16 char ac ters in
; a 16 x 2 line LCD de vice
; On en try:
; Vari able in dex holds off set into mes sage text.
; LCD Ad dress Coun ter reg is ter has been set to the
; line to be dis played
; Vari able charCount is set to the num ber of char ac ters
; to be dis played.
msgLine:
 call tableChar ; Get char ac ter
 movwf PORTD ; Store in port
 call pulseE ; Write to LCD
 incf in dex ; Bump in dex into ta ble
 decfsz charCount,f ; Dec re ment coun ter
 goto msgLine ; Con tinue if not zero
 re turn

No tice that the pro ce dure named msgLine, pre vi ously listed, as sumes that the Ad -
dress Coun ter reg is ter in the HD44780 has been pre vi ously set to the ad dress of the
cor re spond ing test line. Note also that the vari able charCount has been in i tial ized to
the num ber of char ac ters to be dis played, and the vari able in dex to the off set in the
text string. This al lows re us ing the pro ce dure to dis play text be gin ning at other lo -
ca tions in the LCD screen and of various lengths and offsets.

The pre vi ously listed pro ce dures dem on strate just one of many pos si ble vari a -
tions of this tech nique. An other ap proach is to store the char ac ters di rectly in
DDRAM mem ory as they are pro duced by the mes sage re turn ing rou tine, thus avoid -
ing the dis play pro ce dure en tirely. In this last case, the pro gram ming saves some

 Liq uid Crys tal Dis plays 267

data mem ory space at the ex pense of hav ing to gen er ate the mes sage char ac ters
each time they are needed. Which ap proach is the most suit able one depends on the
application.

Sam ple Pro gram LCD_18F_MsgFlag

The sam ple pro gram LCD_18f_MsgFlag listed later in this sub sec tion dem on strates
ac cess to a string ta ble, use of Timer0 to pro duce a vari able de lay, and test ing the busy
flag to de ter mine if LCD is ready.

; File name: LCD_18F_MsgFlag.asm
; Date: Feb ru ary 22, 2013
; Au thor: Julio Sanchez
;
; STATE: Feb 22/13:
; demo board: OK
; bread board: OK
;
; Pro gram for PIC 18F452 and LCD dis play
; Ex e cutes in Demo Board B or com pat i ble cir cuit
;
; De scrip tion:
; Dis play a mes sage stored in pro gram mem ory. Tests the busy
; flag at the con clu sion of crit i cal op er a tions.
;
; A de bug ging tech nique:
; The pro gram dem on strates a sim ple de bug ging tech nique that
; al lows determining if pro gram ex e cu tion has pro ceeded nor mally
; up to a cer tain point in the code. This is done by call ing a
; sim ple rou tine that sets one of the LEDs wired to PORT C
; in Demo Board B.
;===
; Cir cuit
;===
; 18F452
; +------------------+
;+5v-res0-ICD2 mc -| 1 !MCLR PGD 40|
; | 2 RA0 PGC 39|
; | 3 RA1 RB5 38|
; | 4 RA2 5B4 37|
; | 5 RA3 RB3 36|
; | 6 RA4 RB2 35|
; | 7 RA5 RB1 34|
; LCD RS <==| 8 RE0 RB0 33|
; LCD E <==| 9 RE1 32|-------+5v
; LCD RW ==>|10 RE2 31|--------GR
; +5v--------|11 RD7 30|==> LCD data 7 (44780 B flag)
; GR---------|12 RD6 29|==> LCD data 6
; osc ---|13 OSC1 RD5 28|==> LCD data 5
; osc ---|14 OSC2 RD4 27|==> LCD data 4
; LED0 <== |15 RC0 RC7 26|==> LED7
; LED1 <== |16 RC1 RC6 25|==> LED6
; LED2 <== |17 RC2 RC5 24|==> LED5
; LED3 <== |18 RC3 RC4 23|==> LED4
; LCD data 0 <==|19 RD0 RD3 22|==> LCD data 3
; LCD data 1 <==|20 RD1 RD2 21|==> LCD data 2
; +------------------+
; Leg end:
; E = LCD sig nal en able
; RW = LCD read/write

268 Chap ter 11

; RS = LCD reg is ter se lect
; GR = ground
;
;===========================
; LCD wir ing
;===========================
; LCD is wired in par al lel to 16F877 as fol lows:
; DATA LINES:
; |------- F87x -------|----- LCD -------|
; port PIN line PIN
; RD0 19 DB0 8
; RD1 20 DB1 7
; RD2 21 DB2 10
; RD3 22 DB3 9
; RD4 27 DB4 12
; RD5 28 DB5 11
; RD6 29 DB6 14
; RD7 30 DB7 13
; CONTROL LINES:
; |------- F87x -------|----- LCD -------|
; port PIN line PIN
; RE0 8 RS 3
; RE1 9 E 5
; RE2 10 RW 6
;

;===
; def i ni tion and in clude files
;===

pro ces sor 18F452 ; De fine pro ces sor
#in clude <p18F452.inc>

;
; ==
; con fig u ra tion bits
;===

config OSC = HS ; As sumes high-speed res o na tor
config WDT = OFF ; No watch dog timer
config LVP = OFF ; No low volt age pro tec tion
config DEBUG = OFF ; No back ground debugger

;
; Turn off bank ing er ror mes sages

errorlevel -302

;==
; con stant def i ni tions
; for PIC-to-LCD pin wir ing and LCD line ad dresses
;==
; LCD used in the demo board is 2 lines by 16 char ac ters
#de fine E_line 1 ;|
#de fine RS_line 0 ;| -- from wir ing di a gram
#de fine RW_line 2 ;|
; LCD line ad dresses (from LCD data sheet)
#de fine LCD_1 0x80 ; First LCD line con stant
#de fine LCD_2 0xc0 ; Sec ond LCD line con stant
;======================
; timer con stants
;======================
; Three timer con stants are de fined in or der to im ple ment
; a given de lay. For ex am ple, a de lay of one-half sec ond
; in a 4MHz ma chine re quires a count of 500,000, while

 Liq uid Crys tal Dis plays 269

; a de lay of one-tenth sec ond re quires a count of 10,000.
; These num bers are con verted to hex a dec i mal so they can
; be in stalled in three con stants, for ex am ple:
; 1,000,000 = 0x0f4240 = one sec ond at 4MHz
; 500,000 = 0x07a120 = one-half sec ond
; 250,000 = 0x03d090 = one-quar ter sec ond
; 100,000 = 0x0186a0 = one-tenth sec ond at 4MHz
; Note: The con stants that de fine the LCD dis play line
; ad dresses have the high-or der bit set in
; or der to faciliate the con trol ler com mand
; Val ues for one-half sec ond in stalled in con stants
; as fol lows:
; 100,000 = 0x01 0x86 0xa0
; ---- ---- ----
; | | |___ lowCnt
; | |________ midCnt
; |_____________ highCnt
;
#de fine highCnt 0x01
#de fine midCnt 0x86
#de fine lowCnt 0xa0
;===
; vari ables in PIC RAM
;===
; Con tinue with lo cal vari ables

cblock 0x00 ; Start of block
count1 ; Coun ter # 1
count2 ; Coun ter # 2

 com_code
; 3-byte aux il iary coun ter for de lay.

 countH ; High-or der byte
countM ; Me dium-or der byte
countL ; Low-or der byte

 in dex ; Off set into mes sage text
 charCount ; Char ac ters per line

endc
;==
; pro gram
;==

org 0 ; start at ad dress
goto main

; Space for in ter rupt han dlers
;=============================
; in ter rupt in ter cept
;=============================

org 0x008 ; High-pri or ity vec tor
retfie
org 0x018 ; Low-pri or ity vec tor
retfie

;===
; M A I N P R O G R A M C O D E
;===
main:

nop
nop

; Set BSR for bank 0 op er a tions
movlb 0 ; Bank 0

; Init Port A for dig i tal op er a tion
 clrf PORTA,0
 clrf LATA,0

270 Chap ter 11

; Port sum mary:
; PORTD 0-7 OUTPUT
; PORTE 0 1 2 OUTPUT
; ADCON1 is the con fig u ra tion reg is ter for the A/D
; func tions in Port A. A value of 0b011x sets all
; lines for dig i tal op er a tion
 movlw B'00000110' ; Dig i tal mode
 movwf ADCON1,0
; Ini tial ize all lines in PORT D and E for out put
 clrf TRISC

clrf TRISD ; Port C tris reg is ter
 clrf TRISE
; Clear all out put lines
 clrf PORTC
 clrf PORTD
 clrf PORTE
;==============================
; setup Timer0 as coun ter
; 8-bit mode
;==============================
; Prescaler is as signed to Timer0 and initialzed
; to 2:1 rate
; Setup the T0CON reg is ter
; |------------- On/Off con trol
; | 1 = Timer0 en abled
; ||------------ 8/16 bit mode se lect
; || 1 = 8-bit mode
; |||----------- Clock source
; ||| 0 = in ter nal clock
; ||||---------- Source edge se lect
; |||| 1 = high-to-low
; |||||--------- Prescaler as sign ment
; ||||| 0 = prescaler as signed
; |||||||| ----- Prescaler se lect
; |||||||| 1:2 rate

movlw b'11010000'
 movwf T0CON
; Clear reg is ters
 clrf TMR0L
 clrwdt ; Clear watch dog timer
; Clear vari ables
 clrf com_code
;==========================
; init LCD
;==========================
; Wait and ini tial ize HD44780
 call De lay ; 1/10 sec ond at 4MHz

call initLCD ; Do forced ini tial iza tion
 call busyTest
 call led0 ; Good so far
; Set con trol ler to first dis play line

movlw LCD_1 ; Ad dress + off set into line
 movwf com_code
 call LCD_com mand ; Lo cal pro ce dure
 clrf in dex ; Off set into text string
 movlw .16 ; Num ber of char ac ters
 movff WREG,charCount ; To vari able
 call msgLine ; Lo cal LCD line pro ce dure
 call busyTest
 call led1

 Liq uid Crys tal Dis plays 271

; First line dis played
; Set con trol ler to sec ond dis play line

movlw LCD_2 ; Ad dress + off set into line
 movwf com_code
 call LCD_com mand ; Lo cal pro ce dure
 movlw .16 ; Off set into text mes sage
 movff WREG,in dex ; To vari able
 movff WREG,charCount ; and to coun ter
 call msgLine ; Lo cal pro ce dure
 call busyTest
 call led2
; Move off sec ond line

movlw LCD_2+18 ; Ad dress + off set into line
 movwf com_code
 call LCD_com mand ; Lo cal pro ce dure
 call busyTest
 call led3
skip2:
 goto skip2

;==
;==
; P r o c e d u r e s
;==
;==
;================================
; INITIALIZE LCD
;================================
initLCD
; Ini tial iza tion for Densitron LCD mod ule as fol lows:
; 8-bit in ter face
; 2 dis play lines of 16 char ac ters each
; cur sor on
; left-to-right in cre ment
; cur sor shift right
; no dis play shift
;***********************|
; COMMAND MODE |
;***********************|

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low for com mand
bcf PORTE,RW_line ; Write mode
call de lay_168 ;de lay 125 mi cro sec onds

;***********************|
; FUNCTION SET |
;***********************|

movlw 0x38 ; 0 0 1 1 1 0 0 0 (FUNCTION SET)
; | | | |__ font se lect:
; | | | 1 = 5x10 in 1/8 or 1/11 dc
; | | | 0 = 1/16 dc
; | | |___ Duty cy cle se lect
; | | 0 = 1/8 or 1/11
; | | 1 = 1/16 (mul ti ple lines)
; | |___ In ter face width
; | 0 = 4 bits
; | 1 = 8 bits
; |___ FUNCTION SET COMMAND

movwf PORTD ;0011 1000
call pulseE ;pulseE and de lay

272 Chap ter 11

;***********************|
; DISPLAY ON/OFF |
;***********************|

movlw 0x0a ; 0 0 0 0 1 0 1 0 (DISPLAY ON/OFF)
; | | | |___ Blink char ac ter at cur sor
; | | | 1 = on, 0 = off
; | | |___ Curson on/off
; | | 1 = on, 0 = off
; | |____ Dis play on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

movwf PORTD
call pulseE ;pulseE and de lay

;***********************|
; DISPLAY AND CURSOR ON |
;***********************|

movlw 0x0f ; 0 0 0 0 1 1 1 1 (DISPLAY ON/OFF)
; | | | |___ Blink char ac ter at cur sor
; | | | 1 = on, 0 = off
; | | |___ Cursor on/off
; | | 1 = on, 0 = off
; | |____ Dis play on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

movwf PORTD
call pulseE ;pulseE and de lay

;***********************|
; ENTRY MODE SET |
;***********************|

movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
; | | |___ dis play shift
; | | 1 = shift
; | | 0 = no shift
; | |____ cur sor in cre ment mode
; | 1 = left-to-right
; | 0 = right-to-left
; |___ COMMAND BIT

movwf PORTD ;00000110
call pulseE

;***********************|
; CURSOR/DISPLAY SHIFT |
;***********************|

movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY SHIFT)
 ; | | | |_|___ don't care

; | |_|__ cur sor/dis play shift
; | 00 = cur sor shift left
; | 01 = cur sor shift right
; | 10 = cur sor and dis play
; | shifted left
; | 11 = cur sor and dis play
; | shifted right
; |___ COMMAND BIT

movwf PORTD ;0001 1111
call pulseE

;***********************|

 Liq uid Crys tal Dis plays 273

; CLEAR DISPLAY |
;***********************|

movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)
; |___ COMMAND BIT

movwf PORTD ;0000 0001
;

call pulseE
call de lay_28ms ;de lay 5 mil li sec onds af ter init
re turn

;==
; Time De lay and Pulse Pro ce dures
;==
; Pro ce dure to de lay 42 x 4 = 168 ma chine cy cles
; On a 4MHz clock the in struc tion rate is 1 mi cro sec ond
; 42 x 4 x 1 = 168 mi cro sec onds
de lay_168

movlw D'42' ; Re peat 42 ma chine cy cles
movwf count1 ; Store value in coun ter

re peat
decfsz count1,f ; Dec re ment coun ter
goto re peat ; Con tinue if not 0
re turn ; End of de lay

;
; Pro ce dure to de lay 168 x 168 mi cro sec onds
; = 28.224 mil li sec onds
de lay_28ms

movlw D'42' ; Coun ter = 41
movwf count2 ; Store in vari able

de lay
call de lay_168 ; De lay
decfsz count2,f ; 40 times = 5 mil li sec onds
goto de lay
re turn ; End of de lay

;========================
; pulse E line
;========================
pulseE

bsf PORTE,E_line ;pulse E line
nop
bcf PORTE,E_line

 nop
call de lay_168 ; De lay
re turn

;
;========================
; busy flag test rou tine
;========================
; Pro ce dure to test the HD44780 busy flag
; Ex e cu tion re turns when flag is clear
; Tech note:
; The HD44770 re quires a 10 ms de lay to set the busy flag
; when the line is be ing sourced. Read ing the flag be fore
; this time has elapsed may re sult in a false “not busy"
; re port. The code forces a 15 ma chine cy cle de lay to
; pre vent this er ror.
busyTest:

movlw .15 ; Re peat 15 ma chine cy cles
movwf count1 ; Store value in coun ter

delay15:

274 Chap ter 11

decfsz count1,f ; Dec re ment coun ter
goto delay15 ; Con tinue if not 0

; De lay con cluded
movlw B'11111111'

 movwf TRISD
bcf PORTE,RS_line ; RS line low for con trol
bsf PORTE,RW_line ; Read mode

is_busy:
bsf PORTE,E_line ; E line high
movff PORTD,WREG ; Read port D into W

 ; Port D bit 7 is busy flag
bcf PORTE,E_line ; E line low

 btfsc PORTD,7 ; Test bit di rectly
goto is_busy ; Re peat if busy flag set

; At this point busy flag is clear
; Re set R/W line and port D to out put

bcf PORTE,RW_line ; Clear R/W line
bsf PORTE,RS_line ; Setup for data

 clrf TRISD
re turn

;=========================
; LCD com mand
;=========================
LCD_com mand:
; On en try:
; vari able com_code cntains com mand code for LCD
; Set up for write op er a tion

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low, set up for con trol
call de lay_168 ; de lay 125 mi cro sec onds

; Write com mand to data port
 movf com_code,0 ; Com mand code to W

movwf PORTD
call pulseE ; Pulse and de lay

; Set RS line for data
bsf PORTE,RS_line ; Setup for data

 re turn

;==================================
; vari able-lapse de lay pro ce dure
; us ing Timer0
;==================================
; ON ENTRY:
; Vari ables countL, countM, and countH hold
; the low-, mid dle-, and high-or der bytes
; of the de lay pe riod, in timer units
; Rou tine logic:
; The prescaler is as signed to timer0 and setup so
; that the timer runs at 1:2 rate. This means that
; ev ery time the coun ter reaches 128 (0x80) a to tal
; of 256 ma chine cy cles have elapsed. The value 0x80
; is de tected by test ing bit 7 of the coun ter
; reg is ter.
De lay:
 call setVars
; Note:
; The TMR0L reg is ter pro vides the low-or der level
; of the count. Because the coun ter counts up from zero,
; code must pre-in stall a value in the coun ter reg is ter
; that rep re sents one-half the num ber of timer

 Liq uid Crys tal Dis plays 275

; it er a tions (pre-scaler is in 1:2 mode) re quired to
; reach a count of 128. For ex am ple: if the value in
; the low coun ter vari able is 140
; then 140/2 = 70. 128 - 70 = 58
; In other words, when the timer coun ter reaches 128,
; 70 * 2 (140) timer beats would have elapsed.
; For mula:
; Value in TMR0L = 128 - (x/2)
; where x is the num ber of it er a tions in the low-level
; coun ter vari able
; First cal cu late xx/2 by bit shift ing

rrncf countL,f ; Di vide by 2
; now sub tract 128 - (x/2)
 movlw d'128'
; Clear the bor row bit (mapped to Carry bit)
 bcf STATUS,C
 subfwb countL,w
; Now w has ad justed re sult. Store in TMR0L

movwf TMR0L
; Rou tine tests timer over flow by test ing bit 7 of
; the TMR0L reg is ter.
cy cle:

btfss TMR0L,7 ; Is bit 7 set?
goto cy cle ; Wait if not set

; At this point TMR0 bit 7 is set
; Clear the bit

bcf TMR0L,7 ; All other bits are pre served
; Sub tract 256 from beat coun ter by dec re ment ing the
; mid-or der byte

decfsz countM,f
goto cy cle ; Con tinue if mid-byte not zero

; At this point the mid-or der byte has over flowed.
; High-or der byte must be dec re ment ed.

decfsz countH,f
goto cy cle

; At this point the time cy cle has elapsed
re turn

;==============================
; set reg is ter vari ables
;==============================
; Pro ce dure to ini tial ize lo cal vari ables for a
; de lay pe riod de fined in lo cal con stants highCnt,
; midCnt, and lowCnt.
setVars:

movlw highCnt ; From con stants
movwf countH
movlw midCnt
movwf countM
movlw lowCnt
movwf countL
re turn

;=============================
; dis play 16 char ac ters
;=============================
; Pro ce dure to dis play one line of 16 char ac ters in
; a 16 x 2 line LCD de vice
; On en try:
; Vari able in dex holds off set into mes sage text.
; LCD Ad dress Coun ter reg is ter has been set to the

276 Chap ter 11

; line to be dis played
; Vari able charCount is set to the num ber of char ac ters
; to be dis played.
msgLine:
 call tableChar ; Get char ac ter
 movwf PORTD ; Store in port
 call pulseE ; Write to LCD
 incf in dex ; Bump in dex into ta ble
 decfsz charCount,f ; Dec re ment coun ter
 goto msgLine ; Con tinue if not zero
 re turn
;==========================
; get ta ble char ac ter
;==========================
; Lo cal pro ce dure to get a sin gle char ac ter from a lo cal
; ta ble (msgTable) in pro gram mem ory. Vari able in dex holds
; off set into ta ble
tableChar:
 movlw UPPER msgTable
 movwf TBLPTRU
 movlw HIGH msgTable ; Get ad dress of Ta ble
 movwf TBLPTRH ; Store in ta ble pointer low reg is ter
 movlw LOW msgTable ; Get ad dress of Ta ble
 movwf TBLPTRL
 movff in dex,WREG ; in dex to W
 addwf TBLPTRL,f ; Add in dex to ta ble pointer low
 clrf WREG ; Clear reg is ter
 addwfc TBLPTRH,F ; Add pos si ble carry
 addwfc TBLPTRU,F ; To both reg is ters
 tblrd * ; Read byte from ta ble (into TABLAT)
 movff TABLAT,WREG ; Move TABLAT to W
 re turn
;==========================
; de bug ging rou tines
;==========================
led0:
; Light up LED 0 in PORC
 movlw B'00000001'
 iorwf PORTC
 re turn

led1:
; Light up LED 1 in PORC
 movlw B'00000011'
 iorwf PORTC
 re turn

led2:
; Light up LED 2 in PORC
 movlw B'00000111'
 iorwf PORTC
 re turn

led3:
; Light up LED 3 in PORC
 movlw B'00001111'
 iorwf PORTC
 re turn
;===
; code mem ory text

 Liq uid Crys tal Dis plays 277

;===
 org $+2
msgTable:

db " LCD dis play " ; off set 0
db " read ing B flag " ; off set 16
end

11.5 Data Com pres sion Tech niques
Cir cuits based on the par al lel data trans fer of 8 data bits re quire eight port lines de -
voted to this pur pose. As sum ing that three other lines are re quired for LCD com mands
and in ter fac ing (RS, E, and R/W lines), that adds-up to eleven PIC-to-LCD lines. Sev -
eral pos si ble so lu tions al low com press ing the data trans fer func tion. The most ob vi -
ous one is to use the 4-bit data trans fer mode to free four port lines. Other so lu tions are
based on ded i cat ing other hard ware com po nents to the LCD func tion. Fig ure 11.6
shows a 4-bit data mode cir cuit.

 Fig ure 11.6 PIC/LCD circuit for 4-bit data mode.

278 Chap ter 11

18F452

+5v

R
=

1
0

K

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

RESET

+5v

LCD RS

LCD E

LCD RW

LCD data 7

LCD data 6

LCD data 5

LCD data 4

+5v

Picvue LCD - 2 rows x 16

LCD wiring (4 data lines)

20 Mhz Osc

C=0.1mFEC=100mF

78L05

INOUT
9 -12 v DC

Regulated power supply

+5 v DC

+

1

2

13

data 7
data 5

E
RS

data 6
data 4

RW

Vdd +5v

1

14

100 Ohm

2

MCLR/VPP

RAO/ANO

RA1/AN1

RA2/AN2A/REF-

RA3/AN3A/REF+

RA4/TOCKI

RA5/AN4/SS/LVDIN

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1/CLKI

OSC2/CLKO/RA6

RCO/T1OSO/TICK1

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RDO/PSPO

RD1/PSP1

RB7/PGD

RB6/PGC

RB5/PGM

RB4

RB3/CCP2*

RB2/INT2

RB1/INT1

R BO/INTO

Vdd

Vss

RD7/PSP7

RD6/PSP6

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2

 HD44780 pin out
13 GND
14 Vdd +5v
12 Contrast adjust
11 RS (register select)
10 R/W (read/write select)
9 E (signal enable)
8-1 Data bits

+5V +5V +5V

R
=

1
0

K

R
=

1
0

K

R
=

1
0

K

R
=

1
0

K

PB #1 PB #2 PB #3

PB #4

+5v

RJ-12

6 5 4 3 2 1

No tice in Fig ure 11.6 that the four high-or der lines of PORT D are con nected to the
LCD func tion while the four low-or der lines are un used.

11.5.1 4-Bit Data Trans fer Mode
Data com pres sion can be achieved us ing the par al lel in ter face ca pa bil ity of the
Hitachi HD44780 con trol ler. In this case, data trans fers re quire just four data paths in -
stead of eight. The one ob jec tion is that pro gram ming in 4-bit mode is slightly more
com pli cated and that there will be a mi nor per for mance pen alty. The slower ex e cu -
tion speed re sults from the fact that in 4-bit mode data must be sent one nib ble at a
time. But be cause the de lay is only re quired af ter the sec ond nib ble, the ex e cu tion
time pen alty for 4-bit trans fers is not very large.

Many of the rou tines de vel oped for 8-bit data mode pre vi ously in this chap ter can
be re used with out mod i fi ca tion in the 4-bit mode. Oth ers re quire mi nor changes,
and there is one spe cific dis play pro ce dure that must be spe cially de vel oped. The
first re quired change will be in the LCD ini tial iza tion be cause bit 4 in the Func tion
Set com mand must be clear for a 4-bit in ter face. The re main ing ini tial iza tion com -
mands re quire no fur ther change, al though it is a good idea to con sult the data sheet
for the LCD hardware in use.

11.5.2 Pre serv ing Port Data
Dis play ing data us ing a 4-bit in ter face con sists of send ing the high-or der nib ble fol -
lowed by the low-or der nib ble, through the LCD 4-high or der data lines, usu ally la -
beled DB5 to DB7. The puls ing of line E fol lows the last nib ble sent. This means that
soft ware must pro vide a way of read ing and writ ing to the ap pro pri ate port lines (the
ones used in the data trans fer) with out al ter ing the value stored in the port bits ded i -
cated to other uses. In Sec tion 11.3 we dis cussed bit merg ing rou tines, which are quite
suit able for the pur pose at hand.

How ever, bit merg ing tech niques as sume that all eight lines in the port reg is ter
have been trissed for out put. In this case, if one or more of the port lines not con -
nected to the LCD are trissed for in put then the bit-merg ing ma nip u la tions will fail
be cause code can not write data to an in put line. In any case, bit-merg ing re quires
writ ing new data to a port, an op er a tion that is un ac cept able with some de vices. The
ideal so lu tion for shar ing a port be tween the LCD with an other de vice or task would
be that the LCD-re lated op er a tions do not change the val ues in the re main ing port
lines, whether they are trissed for in put or out put. Un for tu nately, there will al ways
be cases in which a shared port could mal func tion. The so lu tions pro posed here are
the best we could de vise while still holding the complications to a reasonable state.

The fol low ing pro ce dure, from the pro gram LCD_18F_4line_Reloc.asm from the
book's soft ware pack age and listed later in this chap ter, shows one pos si ble ac com -
mo da tion.

;***********************|
; write two nib bles |
;***********************|
; Rou tine to write the value in WREG to PORTD while
; pre serv ing port data

 Liq uid Crys tal Dis plays 279

write_nibs:
 movff WREG,thischar ; Save char ac ter
; Store val ues in PORTD and TRISD reg is ters
 movff TRISD,old_trisd
 movff PORTD,old_portd
; Set low nib ble of TRISD for in put
 movlw B'00001111'
 movff WREG,TRISD
; Get char ac ter
 movff thischar,WREG ; Char ac ter to write
 movff WREG,PORTD ; Store high nib ble
 call pulseE ; Pulse to send
 swapf thischar ; Swap char ac ter nib bles
 movff thischar,PORTD ; Store low nib ble
 call pulseE ; Pulse to send
; Re store PORTD and TRISD
 movff old_trisd,TRISD
 movff old_portd,PORTD
 re turn

The write_nibs pro ce dure re quires two lo cal vari ables in which to store the value
in the TRIS and the PORT reg is ter at en try time. Then the code changes the port
lines not used by the LCD func tion (typ i cally the low-or der nib ble) to in put by mod i -
fy ing the TRIS reg is ter. Be cause writ ing a a line trissed for in put has no ef fect, the
ex ist ing val ues in the non-LCD lines are pre served un changed. On exit the orig i nal
tris and port values are restored.

11.5.3 Mas ter/Slave Sys tems
Up to this point we have as sumed that driv ing the LCD is one of the func tions per -
formed by the PIC microcontroller, which also ex e cutes the other cir cuit func tions. In
prac tice, such a scheme is not al ways vi a ble, ei ther due to the high num ber of in ter -
face lines re quired or due to the amount of PIC code space used up by the LCD driver
rou tines. An al ter na tive ap proach is to ded i cate a PIC ex clu sively to con trol ling the
LCD hard ware, while one or more other PICs per form the main cir cuit func tions. In
this scheme, the PIC de voted to the LCD func tion is re ferred to as a slave, while the
one that sends the dis play com mands is called the mas ter.

When a suf fi cient num ber of in ter face lines are avail able, the con nec tion be -
tween mas ter and slave can be sim pli fied us ing a par al lel in ter face. For ex am ple, if
four port lines can be used to in ter con nect the two PICs, then six teen dif fer ent com -
mand codes can be sent to the slave. The slave reads the com mu ni ca tions lines
much like it would read a mul ti ple tog gle switch. A sim ple pro to col can be de vised
so that the slave uses these same in ter face lines to pro vide feed back to the mas ter.
For ex am ple, the slave sets one or all four lines low to in di cate that it is ready for
the next com mand, and sets them high to in di cate that com mand ex e cu tion is in
prog ress and that no new com mands can be re ceived. The mas ter, in turn, reads the
com mu ni ca tions lines to determine when it can send another command to the slave.

But us ing par al lel com mu ni ca tions be tween mas ter and slave can be a self-de -
feat ing prop o si tion, be cause it re quires at least seven in ter face lines to be able to
send ASCII char ac ters. Be cause the scar city of port lines is the orig i nal rea son for
us ing a mas ter/slave setup, par al lel com mu ni ca tions may not be a good so lu tion in

280 Chap ter 11

many cases. On the other hand, com mu ni ca tions be tween mas ter and slave can take
place se ri ally, us ing a sin gle in ter face line. The dis cus sion of us ing se rial in ter face
be tween a mas ter and an LCD slave driver PIC is left for the chapter on serial
communications.

11.5.4 4-Bit LCD In ter face Sam ple Pro grams
The sam ple pro gram LCD_18F_4line_Reloc.asm pro gram ex e cutes in relocatable
code and dem on strates many of the top ics dis cussed in this chap ter. The pro gram list -
ing fol lows:

; File name: LCD_18F_4line_Reloc.asm
; Pro ject: LCD_18F_4line_Reloc.mcp
; Date: Feb ru ary 26, 2013
; Au thor: Julio Sanchez
;
; STATE: Feb 26/13:
; Demo board: OK
; Bread board: OK
;
; Pro gram for PIC 18F452 and LCD dis play
; Ex e cutes in Demo Board B or com pat i ble cir cuit
;
; De scrip tion:
; Dis play a mes sage stored in a pro gram mem ory ta ble
;===
; Cir cuit
; wir ing for 4-bit mode
;===
; 18F452
; +------------------+
;+5v-res0-ICD2 mc -| 1 !MCLR PGD 40|
; | 2 RA0 PGC 39|
; | 3 RA1 RB5 38|
; | 4 RA2 5B4 37|
; | 5 RA3 RB3 36|
; | 6 RA4 RB2 35|
; | 7 RA5 RB1 34|
; LCD RS <==| 8 RE0 RB0 33|
; LCD E <==| 9 RE1 32|-------+5v
; LCD RW ==>|10 RE2 31|--------GR
; +5v--------|11 RD7 30|==> LCD data 7
; GR---------|12 RD6 29|==> LCD data 6
; osc ---|13 OSC1 RD5 28|==> LCD data 5
; osc ---|14 OSC2 RD4 27|==> LCD data 4
; |15 RC0 RC7 26|
; |16 RC1 RC6 25|
; |17 RC2 RC5 24|
; |18 RC3 RC4 23|
; |19 RD0 RD3 22|
; |20 RD1 RD2 21|
; +------------------+
; Leg end:
; E = LCD sig nal en able
; RW = LCD read/write
; RS = LCD reg is ter se lect
; GR = ground
;

 Liq uid Crys tal Dis plays 281

;===========================
; LCD wir ing
;===========================
; LCD is wired in for 4-bit data to 18F452 as fol lows:
; DATA LINES:
; |------- F87x -------|----- LCD -------|
; port PIN line PIN
; RD4 27 DB4 12
; RD5 28 DB5 11
; RD6 29 DB6 14
; RD7 30 DB7 13
; CONTROL LINES:
; |------- 16F452 -------|----- LCD -------|
; port PIN line PIN
; RE0 8 RS 3
; RE1 9 E 5
; RE2 10 RW 6
;

list p=18f452
; In clude file, change di rec tory if needed
in clude "p18f452.inc"

; ==
; con fig u ra tion bits
;===
; Con fig u ra tion bits set as re quired for MPLAB ICD 2

config OSC = XT ; As sumes high-speed res o na tor
config WDT = OFF ; No watch dog timer
config LVP = OFF ; No low volt age pro tec tion
config DEBUG = OFF ; No back ground debugger
config PWRT = ON ; Power on timer en abled

 config CP0 = OFF ; Code pro tec tion block x = 0-3
 config CP1 = OFF
 config CP2 = OFF
 config CP3 = OFF
 config WRT0 = OFF ; Write pro tec tion block x = 0-3
 config WRT1 = OFF
 config WRT2 = OFF
 config WRT3 = OFF
 config EBTR0 = OFF ; Ta ble read pro tec tion block x = 0-3
 config EBTR1 = OFF
 config EBTR2 = OFF
 config EBTR3 = OFF
;
; Turn off bank ing er ror mes sages

errorlevel -302

;==
; con stant def i ni tions
; for PIC-to-LCD pin wir ing and LCD line ad dresses
;==
; LCD used in the demo board is 2 lines by 16 char ac ters
#de fine E_line 1 ;|
#de fine RS_line 0 ;| -- from wir ing di a gram
#de fine RW_line 2 ;|
; LCD line ad dresses (from LCD data sheet)
#de fine LCD_line1 0x80 ; First LCD line con stant
#de fine LCD_line2 0xc0 ; Sec ond LCD line con stant
;======================
; timer con stants
;======================

282 Chap ter 11

; Three timer con stants are de fined in or der to im ple ment
; a given de lay. For ex am ple, a de lay of one-half sec ond
; in a 4MHz ma chine re quires a count of 500,000, while
; a de lay of one-tenth sec ond re quires a count of 10,000.
; These num bers are con verted to hex a dec i mal so they can
; be in stalled in three con stants, for ex am ple:
; 1,000,000 = 0x0f4240 = one sec ond at 4MHz
; 500,000 = 0x07a120 = one-half sec ond
; 250,000 = 0x03d090 = one-quar ter sec ond
; 100,000 = 0x0186a0 = one-tenth sec ond at 4MHz
; Note: The con stant that de fine the LCD dis play line
; ad dresses have the high-or der bit set in
; or der to faciliate the con trol ler com mand
; Val ues for one-half sec ond in stalled in con stants
; as fol lows:
; 500,000 = 0x07 0xa1 0x20
; ---- ---- ----
; | | |___ lowCnt
; | |________ midCnt
; |_____________ highCnt
;
#de fine highCnt 0x07
#de fine midCnt 0xa1
#de fine lowCnt 0x20
;===
; vari ables in PIC RAM
;===
 udata_acs 0x000
count1 res 1 ; Coun ter # 1
com_code res 1
; 3-byte aux il iary coun ter for de lay.
countH res 1 ; High-or der byte
countM res 1 ; Me dium-or der byte
countL res 1 ; Low-or der byte
in dex res 1 ; Off set into mes sage text
charCount res 1 ; Char ac ters per line
bflag res 1 ; Busy flag nib ble stor age
thischar res 1 ; Re mem ber char ac ter
; Stor age for TRIS D and PORT D
old_trisd res 1 ; To pre serve PORT D low
old_portd res 1 ; or der data
;==
; pro gram
;==

; Start at the re set vec tor
Re set_Vec tor code 0x000

goto Start

; Start ap pli ca tion be yond vec tor area

code 0x030
Start:
; Set BSR for bank 0 op er a tions

movlb 0 ; Bank 0

; Init Port A for dig i tal op er a tion
 clrf PORTA,0
 clrf LATA,0
; Port sum mary:
; PORTD 0-7 OUTPUT

 Liq uid Crys tal Dis plays 283

; PORTE 0 1 2 OUTPUT
; ADCON1 is the con fig u ra tion reg is ter for the A/D
; func tions in Port A. A value of 0b011x sets all
; lines for dig i tal op er a tion
 movlw B'00000110' ; Dig i tal mode
 movwf ADCON1,0
; Ini tial ize all lines in PORT D and E for out put

clrf TRISD ; Port D tris reg is ter
 clrf TRISE
; Clear all out put lines
 clrf PORTD
 clrf PORTE
;==============================
; setup Timer0 as coun ter
; 8-bit mode
;==============================
; Prescaler is as signed to Timer0 and initialized
; to 2:1 rate
; Setup the T0CON reg is ter
; |------------- On/Off con trol
; | 1 = Timer0 en abled
; ||------------ 8/16 bit mode se lect
; || 1 = 8-bit mode
; |||----------- Clock source
; ||| 0 = in ter nal clock
; ||||---------- Source edge se lect
; |||| 1 = high-to-low
; |||||--------- Prescaler as sign ment
; ||||| 0 = prescaler as signed
; |||||||| ----- Prescaler se lect
; |||||||| 1:2 rate

movlw b'11010000'
 movwf T0CON
; Clear reg is ters
 clrf TMR0L
 clrwdt ; Clear watch dog timer
;==========================
; init LCD
;==========================
 call DelayOneHalfSec
; Wait and ini tial ize HD44780

call initLCD_4bit ; Do forced ini tial iza tion
 ; Set con trol ler to first dis play line
 call busyTest ; Test busy flag
;===========================
; dis play text line # 1
;===========================
; Set DDRAM ad dress

call CommandMode
movlw LCD_line1 ; Ad dress + off set into line

 call write_nibs ; Lo cal nib ble write pro ce dure
; Pre pare to send text line
 call DataMode ; Set con trol ler for data mode
 clrf in dex ; Point to first char ac ter
 movlw .16 ; Char ac ters per line
 movwf charCount ; Char count = 16
; Get char ac ter from ta ble
char_line1:
 call tableChar ; Char ac ter to WREG
 call write_nibs ; Write two nib bles

284 Chap ter 11

 incf in dex ; Bump in dex into mes sage
 decfsz charCount,f ; Dec re ment char ac ter count
 goto char_line1
;===========================
; dis play text line # 2
;===========================
; Set DDRAM ad dress
 call CommandMode

movlw LCD_line2 ; Ad dress + off set into line
 call write_nibs ; Lo cal nib ble write pro ce dure
; Pre pare to send text line
 call DataMode ; Set con trol ler for data mode
 movlw .16 ; Char ac ters per line
 movwf charCount ; Char count = 16
 movwf in dex ; 16th caracter in ta ble
; Get char ac ter from ta ble
char_line2:
 call tableChar ; Char ac ter to WREG
 call write_nibs
 incf in dex ; Bump in dex into mes sage
 decfsz charCount,f ; Dec re ment char ac ter count
 goto char_line2
; Hang up to end ex e cu tion
WaitHere:
 goto WaitHere
;==
;==
; P r o c e d u r e s
;==
;==
;================================
; INITIALIZE LCD
;================================
initLCD_4bit
; Ini tial iza tion for Densitron LCD mod ule as fol lows:
; 4-bit in ter face
; 2 dis play lines of 16 char ac ters each
; cur sor on
; left-to-right in cre ment
; cur sor shift right
; no dis play shift
; Store val ues in PORTD and TRISD reg is ters
 movff TRISD,old_trisd
 movff PORTD,old_portd
; Set low nib ble of TRISD for in put
 movlw B'00001111'
 movff WREG,TRISD
;***********************|
; COMMAND MODE |
;***********************|

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low for com mand
bcf PORTE,RW_line ; Write mode
call De lay_28Ms ; de lay 28 mil li sec onds

;***********************|
; 8-bit com mand |
;***********************|
; ; 0 0 1 0 0 0 0 0 (Se lect 4-bit)

; | |
; | |___ In ter face width

 Liq uid Crys tal Dis plays 285

; | 0 = 4 bits
; | 1 = 8 bits
; |___ FUNCTION SET COMMAND

 movlw 0x20
 movff WREG,PORTD
 call pulseE

;***********************|
; FUNCTION SET |
;***********************|
; 0x28 ; 0 0 1 0 1 0 0 0 (FUNCTION SET 0x28)

; | | | |__ font se lect:
; | | | 1 = 5x10 in 1/8 or 1/11 dc
; | | | 0 = 1/16 dc
; | | |___ Duty cy cle se lect
; | | 0 = 1/8 or 1/11
; | | 1 = 1/16 (mul ti ple lines)
; | |___ In ter face width
; | 0 = 4 bits
; | 1 = 8 bits
; |___ FUNCTION SET COMMAND

 movlw 0x20 ; High nib ble first
 movff WREG,PORTD ; To port
 call pulseE ; Pulse and de lay
 movlw 0x80 ; Low nib ble
 movff WREG,PORTD ; To port
 call pulseE ; Pulse and de lay
; Re peat com mand
 movlw 0x20 ; High nib ble first
 movff WREG,PORTD ; To port
 call pulseE ; Pulse and de lay
 movlw 0x80 ; Low nib ble
 movff WREG,PORTD ; To port
 call pulseE ; Pulse and de lay

;***********************|
; DISPLAY ON/OFF |
;***********************|
; 0x0a ; 0 0 0 0 1 0 1 0 (DISPLAY ON/OFF)

; | | | |___ Blink char ac ter at cur sor
; | | | 1 = on, 0 = off
; | | |___ Curson on/off
; | | 1 = on, 0 = off
; | |____ Dis play on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

 movlw 0x00 ; High nib ble first
 movff WREG,PORTD ; To port
 call pulseE ; Pulse and de lay
 movlw 0xa0 ; Low nib ble
 movff WREG,PORTD ; To port
 call pulseE ; Pulse and de lay

;***********************|
; DISPLAY AND CURSOR ON |
;***********************|
; 0x0f ; 0 0 0 0 1 1 1 1 (DISPLAY ON/OFF)

; | | | |___ Blink char ac ter at cur sor
; | | | 1 = on, 0 = off
; | | |___ Curson on/off

286 Chap ter 11

; | | 1 = on, 0 = off
; | |____ Dis play on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

 movlw 0x00 ; High nib ble first
 movff WREG,PORTD ; To port
 call pulseE ; Pulse and de lay
 movlw 0xf0 ; Low nib ble
 movff WREG,PORTD ; To port
 call pulseE ; Pulse and de lay

;***********************|
; ENTRY MODE SET |
;***********************|
; 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)

; | | |___ dis play shift
; | | 1 = shift
; | | 0 = no shift
; | |____ cur sor in cre ment mode
; | 1 = left-to-right
; | 0 = right-to-left
; |___ COMMAND BIT

 movlw 0x00 ; High nib ble first
 movff WREG,PORTD ; To port

call pulseE ; Pulse and de lay
 movlw 0x60 ; Low nib ble
 movff WREG,PORTD ; To port

call pulseE ; Pulse and de lay

;***********************|
; CURSOR/DISPLAY SHIFT |
;***********************|
; 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY SHIFT)
 ; | | | |_|___ don't care

; | |_|__ cur sor/dis play shift
; | 00 = cur sor shift left
; | 01 = cur sor shift right
; | 10 = cur sor and dis play
; | shifted left
; | 11 = cur sor and dis play
; | shifted right
; |___ COMMAND BIT

 movlw 0x10 ; High nib ble first
 movff WREG,PORTD ; To port

call pulseE ; Pulse and de lay
 movlw 0x40 ; Low nib ble
 movff WREG,PORTD ; To port

call pulseE ; Pulse and de lay

;***********************|
; CLEAR DISPLAY |
;***********************|
; 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)

; |___ COMMAND BIT
 movlw 0x00 ; High nib ble first
 movff WREG,PORTD ; To port

call pulseE ; Pulse and de lay

 Liq uid Crys tal Dis plays 287

 movlw 0x10 ; Low nib ble
 movff WREG,PORTD ; To port

call pulseE ; PulseE and de lay
call De lay_28Ms ; De lay 28 mil li sec onds af ter init

; Re store PORTD and TRISD
 movff old_trisd,TRISD
 movff old_portd,PORTD

re turn

;========================
; pulse E line
;========================
pulseE

bsf PORTE,E_line ;pulse E line
bcf PORTE,E_line
call De lay_28Ms ; De lay
re turn

;
;========================
; busy flag test rou tine
;========================
; Pro ce dure to test the HD44780 busy flag
; Ex e cu tion re turns when flag is clear
; Tech note:
; The HD44770 re quires a 10 ms de lay to set the busy flag
; when the line is be ing sourced. Read ing the flag be fore
; this time has elapsed may re sult in a false "not busy"
; re port. The code forces a 15 ma chine cy cle de lay to
; pre vent this er ror.
busyTest:

movlw .15 ; Re peat 15 ma chine cy cles
movwf count1 ; Store value in coun ter

delay15:
decfsz count1,f ; Dec re ment coun ter
goto delay15 ; Con tinue if not 0

; De lay con cluded
movlw B'11111111'

 movwf TRISD
bcf PORTE,RS_line ; RS line low for con trol
bsf PORTE,RW_line ; Read mode

is_busy:
 bsf PORTE,E_line
 nop
 movff PORTD,bflag ; Read nib ble from LCD
 nop
 bcf PORTE,E_line ; bring low
 nop
 bsf PORTE,E_line
 nop
 movff PORTD,WREG ; Dis card low nib ble into W
 nop
 bcf PORTE,E_line
; Test high bit of bflag vari able
 btfsc bflag,7
 goto is_busy
; At this point busy flag is clear
; Re set R/W line and port D to out put

bcf PORTE,RW_line ; Clear R/W line
bsf PORTE,RS_line ; Setup for data
clrf TRISD

288 Chap ter 11

re turn

;==================================
; vari able-lapse de lay pro ce dure
; us ing Timer0
;==================================
De lay:
; ON ENTRY:
; Vari ables countL, countM, and countH hold
; the low-, mid dle-, and high-or der bytes
; of the de lay pe riod, in timer units
; Rou tine logic:
; The prescaler is as signed to timer0 and setup so
; that the timer runs at 1:2 rate. This means that
; ev ery time the coun ter reaches 128 (0x80) a to tal
; of 256 ma chine cy cles have elapsed. The value 0x80
; is de tected by test ing bit 7 of the coun ter
; reg is ter.
;
; Note:
; The TMR0L reg is ter pro vides the low-or der level
; of the count. Because the coun ter counts up from zero,
; code must pre-in stall a value in the coun ter reg is ter
; that rep re sents one-half the num ber of timer
; it er a tions (pre-scaler is in 1:2 mode) re quired to
; reach a count of 128. For ex am ple: if the value in
; the low coun ter vari able is 140
; then 140/2 = 70. 128 - 70 = 58
; In other words, when the timer coun ter reaches 128,
; 70 * 2 (140) timer beats would have elapsed.
; For mula:
; Value in TMR0L = 128 - (x/2)
; where x is the num ber of it er a tions in the low-level
; coun ter vari able
; First cal cu late xx/2 by bit shift ing

rrncf countL,f ; Di vide by 2
; now sub tract 128 - (x/2)
 movlw d'128'
; Clear the bor row bit (mapped to Carry bit)
 bcf STATUS,C
 subfwb countL,w
; Now w has ad justed re sult. Store in TMR0L

movwf TMR0L
; Rou tine tests timer over flow by test ing bit 7 of
; the TMR0L reg is ter.
cy cle:

btfss TMR0L,7 ; Is bit 7 set?
goto cy cle ; Wait if not set

; At this point TMR0 bit 7 is set
; Clear the bit

bcf TMR0L,7 ; All other bits are pre served
; Sub tract 256 from beat coun ter by dec re ment ing the
; mid-or der byte

decfsz countM,f
goto cy cle ; Con tinue if mid-byte not zero

; At this point the mid-or der byte has over flowed.
; High-or der byte must be dec re ment ed.

decfsz countH,f
goto cy cle

; At this point the time cy cle has elapsed

 Liq uid Crys tal Dis plays 289

re turn

;==========================
; one-half sec ond timer
;==========================
DelayOneHalfSec:
; 500,000 = 0x07 0xa1 0x20
; ---- ---- ----
; | | |___ lowCnt
; | |________ midCnt
; |_____________ highCnt

movlw 0x07 ; From val ues above
movwf countH
movlw 0xa1
movwf countM
movlw 0x20
movwf countL
call De lay
re turn

;==========================
; 28 Ms timer
;==========================
De lay_28Ms:
; 28/1000
; 000,028 = 0x00 0x00 0x28
; ---- ---- ----
; | | |___ lowCnt
; | |________ midCnt
; |_____________ highCnt
; Note: because coun ters are dec re ment ed AFTER loop
; a zero value would wrap-around

movlw 0x01 ; From val ues above
movwf countH
movlw 0x01
movwf countM
movlw 0x20
movwf countL

 call De lay
re turn

;==========================
; get ta ble char ac ter
;==========================
; Lo cal pro ce dure to get a sin gle char ac ter from a lo cal
; ta ble (msgTable) in pro gram mem ory. Vari able in dex holds
; off set into ta ble
tableChar:
 movlw UPPER msgTab
 movwf TBLPTRU
 movlw HIGH msgTab ; Get ad dress of Ta ble
 movwf TBLPTRH ; Store in ta ble pointer low reg is ter
 movlw LOW msgTab ; Get ad dress of Ta ble
 movwf TBLPTRL
 movff in dex,WREG ; in dex to W
 addwf TBLPTRL,f ; Add in dex to ta ble pointer low
 clrf WREG ; Clear reg is ter
 addwfc TBLPTRH,F ; Add pos si ble carry
 addwfc TBLPTRU,F ; To both reg is ters
 tblrd * ; Read byte from ta ble (into TABLAT)

290 Chap ter 11

 movff TABLAT,WREG ; Move TABLAT to W
 re turn

;***********************|
; COMMAND MODE |
;***********************|
; Pro ce dure to set the con trol ler in com mand mode
CommandMode:

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low for com mand
bcf PORTE,RW_line ; Write mode
call De lay_28Ms ; de lay 28 mil li sec onds

 re turn
;***********************|
; DATA MODE |
;***********************|
; Pro ce dure to set the con trol ler in data mode
DataMode:

bcf PORTE,E_line ; E line low
bsf PORTE,RS_line ; RS line high for read/write
bcf PORTE,RW_line ; Write mode
call De lay_28Ms ; de lay 28 mil li sec onds

 re turn
;***********************|
; write two nib bles |
;***********************|
; Rou tine to write the value in WREG to PORTD while
; pre serv ing port data
write_nibs:
 movff WREG,thischar ; Save char ac ter
; Store val ues in PORTD and TRISD reg is ters
 movff TRISD,old_trisd
 movff PORTD,old_portd
; Set low nib ble of TRISD for in put
 movlw B'00001111'
 movff WREG,TRISD
; Get char ac ter
 movff thischar,WREG ; Char ac ter to write
 movff WREG,PORTD ; Store high nib ble
 call pulseE ; Pulse to send
 swapf thischar ; Swap char ac ter nib bles
 movff thischar,PORTD ; Store low nib ble
 call pulseE ; Pulse to send
; Re store PORTD and TRISD
 movff old_trisd,TRISD
 movff old_portd,PORTD
 re turn

; De fine ta ble in code mem ory
msgTab db "4-line LCD Demo "
 db "Relocatable mode"
 end

11.6 LCD Pro gram ming in C18
The C18 lan guage in cludes sup port for pro gram ming LCD de vices. This sup port co -
mes in a set of ex ter nal LCD func tions that is part of the Soft ware Pe riph er als Li brary.
The li brary in cludes eleven prim i tive func tions as well as a header file named xlcd.h

 Liq uid Crys tal Dis plays 291

found in the MCC18 com piler in stal la tion folder. To de ter mine the path to the xlcd.h
file,you can nav i gate to the Pro ject>Set Lan guage Tool Lo ca tions com mand in
MPLAB. Click the [+] but ton in the Micro chip C18 Toolsuite en try and then the [+] but -
ton on De fault Search Paths & Di rec to ries. Se lect ing the In clude Search Path op tion
will dis play in the lo ca tion win dow the cur rent path to the C18 header files. Fig ure 11.7
is a screen snap shot of the fi nal screen.

 Fig ure 11.7 Find ing the path to C18 header files.

It is quite pos si ble that there would be sev eral cop ies of the xlcd.h file in a par tic -
u lar sys tem. It is im por tant that the file ed ited is the one in the C18 com piler search
path. Be fore mak ing changes in the file, it is a good idea to make a copy of the orig i -
nal one for fu ture reference.

11.6.1 Ed it ing xlcd.h
The xlcd.h file is fur nished as a tem plate and de faults to reg is ter and hard ware as sign -
ments that would co in cide with the user's sys tem only by pure chance. At the start of
the file, there is an in clude state ment that ref er ences the ge neric pro ces sor header file
named p18cxxx.h. This file con tains a cas cade of tests for the in clude state ment that
de fines the spe cific F18 de vice in your sys tem. The cldc.h file pro vides in struc tions on
the re quired ed it ing.

De fin ing the In ter face

The LCD sup port in cludes both the 4-bit and the 8-bit data modes de scribed ear lier in
this chap ter. The de fault sup port is for 4-bit op er a tion. The file con tains the fol low ing
lines:

292 Chap ter 11

/* In ter face type 8-bit or 4-bit
 * For 8-bit op er a tion uncomment the #de fine BIT8
*/
/* #de fine BIT8 */

/* When in 4-bit in ter face de fine if the data is in the up per
 * or lower nib ble. For lower nib ble, com ment the #de fine UPPER
 */
/* #de fine UPPER */

For 8-bit op er a tion, the com ments are re moved from the first #de fine state ment.
If in 4-bit mode, then the sec ond #de fine state ment is uncommented if the data is to
be pre sented in the up per port nib ble. Oth er wise, the data is ex pected in the lower
nibble.

De fin ing the Data Port and Tris Reg is ter

The xlcd.h file con tains two #de fine state ments that se lect the port and tris reg is ter as -
so ci ated with the LCD data path, as fol lows:

/* DATA_PORT de fines the port to which the LCD data lines are con nected */
#de fine DATA_PORT PORTB
#de fine TRIS_DATA_PORT TRISB

The operands must be ed ited if the data port is any other than PORT B.
De fin ing the Con trol Lines
The con trol lines de ter mine the wir ing be tween the microcontroller and the
de vice. These lines are con ven tion ally labled RS, RW, and E. Their func tion
was de scribed in Section
11.4.3. The port lines and cor re spond ing tris reg is ters are de fined in the
header file as fol lows:

/* CTRL_PORT de fines the port where the con trol lines are
 * con nected.
 These are just sam ples, change to match your ap pli ca tion.
*/
#de fine RW_PIN LATBbits.LATB6 /* PORT for RW */
#de fine TRIS_RW TRISBbits.TRISB6 /* TRIS for RW */
#de fine RS_PIN LATBbits.LATB5 /* PORT for RS */
#de fine TRIS_RS TRISBbits.TRISB5 /* TRIS for RS */
#de fine E_PIN LATBbits.LATB4 /* PORT for D */
#de fine TRIS_E TRISBbits.TRISB4 /* TRIS for E */

For ex am ple, to match the wir ing of the cir cuit in Fig ure 11.4, the #de fine state -
ments would be ed ited as fol lows:

#de fine RW_PIN LATEbits.LATE2 /* PORTE line 2 for RW */
#de fine TRIS_RW TRISEbits.TRISE2 /* TRIS for RW */
#de fine RS_PIN LATEbits.LATE0 /* PORTE line 0 for RS */
#de fine TRIS_RS TRISEbits.TRISE0 /* TRIS for RS */
#de fine E_PIN LATEbits.LATE1 /* PORTE line 1 for E */
#de fine TRIS_E TRISEbits.TRISE1 /* TRIS for E */

The re main ing el e ments in the file are con stants that do not nor mally re quire
chang ing. The file as sumes that the mem ory model of the pro gram is far and the pa -
ram e ter class is auto.

 Liq uid Crys tal Dis plays 293

11.6.2 Tim ing Rou tines
The XLCD li brar ies in C18 re quire that the user fur nish three de lay func tions. This is
nec es sary in or der to ac com mo date the pro ces sor speed in the sys tem. The de lay rou -
tines must use spe cific names, re turn types, and pa ram e ters as fol lows:

• extern void DelayFor18TCY(void) for 18 cy cles de lay

• extern void DelayPORXLCD(void) for 15 ms de lay

• extern void DelayXLCD(void) for 5 ms de lay

Be cause the rou tines must be vis i ble to the C18 li brary mod ules, they must be
prototyped as ex ter nal in the file that con tains them, as in the pre vi ous dec la ra -
tions. The fol low ing code sam ple is suit able for a sys tem run ning at 4 MHz.

//**
// timer funtions re quired by C18
//**
void DelayFor18TCY(void)
{

Nop();
Nop();
Nop();
Nop();
Nop();
Nop();
Nop();
Nop();
Nop();
Nop();
Nop();
Nop();

// 12 op er a tions plus call and re turn times
}
void DelayPORXLCD (void)
{
// Cal cu la tions for a 4 MHz os cil la tor

Delay1KTCYx(15); // De lay of 15ms
// Cy cles = (TimeDelay * Fosc) / 4
// Cy cles = (15ms * 4MHz) / 4 = 15
// Cy cles = 15,000

re turn;
}

void DelayXLCD (void)
{

Delay1KTCYx(5); // De lay of 5ms
// Cy cles = (TimeDelay * Fosc) / 4)
// Cy cles = (5ms * 4MHz) / 4 = 5
// Cy cles = 5,000

re turn;
}

Micro chip fur nishes a code sam ple for LCD pro gram ming named EXTERNAL
LCD, which in cludes a C lan guage file for im ple ment ing the three re quired de lays.
The file name is de lay_xlcd.c. Code list ing is as fol lows:

294 Chap ter 11

// File with de lay func tions from Micro chip's
// EXTERNAL XLCD code sam ple
// Au thor: Harsha J.M. (04/04/09)

#in clude "xlcd.h"

void DelayXLCD(void)
{

un signed char i=0;
for(i=0;i<25;i++);

}

void DelayFor18TCY(void)
{

un signed char i=0;
for(i=0;i<10;i++);

}

void DelayPORXLCD(void)
{

un signed char i=0;
for(i=0;i<10;i++);

}

11.6.3 XLCD Li brary Func tions
The fol low ing C lan guage prim i tives are in cluded in the XLCD C18 li brary are listed in
Ta ble 11.6.

Ta ble 11.6

LCD Prim i tives in XLCD

BusyXLCD Test for LCD con trol ler busy?
OpenXLCD Con fig ure the I/O lines used for con trol ling

the LCD and ini tial ize the LCD.
putcXLCD Write a byte to the LCD con trol ler.
putsXLCD Write a string from data mem ory to the LCD.
putrsXLCD Write a string from pro gram mem ory to the LCD.
ReadAddrXLCD Read ad dress byte from the LCD con trol ler.
ReadDataXLCD Read a byte from the LCD con trol ler.
SetCGRamAddr Set the char ac ter gen er a tor ad dress.
SetDDRamAddr Set the dis play data ad dress.
WriteCmdXLCD Write a com mand to the LCD con trol ler.
WriteDataXLCD Write a byte to the LCD con trol ler.

The func tions are sum ma rized in the fol low ing sub sec tions.

BusyXLCD

De ter mine if the LCD con trol ler is busy. Re turns 1 if the controllwe is busy and 0 oth er -
wise.

In clude: p18cxxx.h
xlcd.h

Pro to type: un signed char BusyXLCD(void);
File Name: busyxlcd.c
Code Ex am ple: while(BusyXLCD()); // Waits for LCD not busy.

 Liq uid Crys tal Dis plays 295

OpenXLCD
Func tion: Ini tial ize the Hitachi HD4478 ac cord ing to I/O pins def i ni tions in
xldc.h
In clude: xlcd.h
Pro to type: void OpenXLCD(un signed char lcdtype);

Ar gu ments: un signed char lcdtype is a bitmask cre ated by per form ing a bitwise
AND op er a tion ('&') with a value from each of the fol low ing operands de fined in the
file xlcd.h.

Data In ter face:
FOUR_BIT 4-bit Data In ter face mode
EIGHT_BIT 8-bit Data In ter face mode
LCD Con fig u ra tion:
LINE_5X7 5x7 char ac ters, sin gle line dis play
LINE_5X10 5x10 char ac ters dis play
LINES_5X7 5x7 char ac ters, mul ti ple line dis play

File Name: openxlcd.c
Code Ex am ple:

OpenXLCD(EIGHT_BIT & LINES_5X7);

putrXLCD

Calls WriteDataXLCD (* buffer). See be low.

putsXLCD

This func tion writes a string of char ac ters lo cated in buffer to the Hitachi HD44780
LCD con trol ler. It stops trans mis sion when a null char ac ter is en coun tered. The null
char ac ter is not trans mit ted. The caller must check that the LCD con trol ler is not busy
be fore call ing BusyXLCD. The data is writ ten to the char ac ter gen er a tor RAM or the
dis play data RAM de pend ing on what the pre vi ous call to setcgram() or setddram().

In clude: xlcd.h
Pro to type: void putsXLCD(char *buffer);
void putrsXLCD(const rom char *buffer);
Ar gu ments: const rom char *buffer.

Strings lo cated in data mem ory should be used with the “puts” ver sions of these
func tions. Strings lo cated in pro gram mem ory, in clud ing string lit er als, should be
used with the “putrs” ver sions of these func tions.

File Name: putsxlcd.c
putrxlcd.c
Code Ex am ple:

char mybuff [20];
putrsXLCD("Hello World");
putsXLCD(mybuff);

ReadAddr

Reads the ad dress byte from the Hitachi HD44780 LCD con trol ler. A pre vi ous call to
BusyXLCD de ter mines if the con trol ler is busy.

In clude: xlcd.h
Pro to type: un signed char ReadAddrXLCD(void);
Re marks: This func tion reads the ad dress byte from the Hitachi HD44780 LCD
 con trol ler. The ad dress is from the char ac ter gen er a tor RAM or the

296 Chap ter 11

 dis play data RAM de pend ing on the pre vi ous call to setcgram() or
 setddram().
Re turn Value:
 This func tion re turns an 8-bit quan tity. The ad dress is con tained
 in the lower or der 7 bits and the BUSY sta tus flag in the Most
 Sig nif i cant bit.
File name: readaddr.c
Code Ex am ple:

char addr;
.
.
.
while (BusyXLCD());
addr = ReadAddrXLCD();

ReadDataXLCD

Reads a data byte from the Hitachi HD44780 LCD con trol ler. The caller must check
that the LCD con trol ler is not busy by call ing BusyXLCD. The data is read from the
char ac ter gen er a tor RAM or the dis play data RAM de pend ing on the pre vi ous call to
setcgram() or set ddram().

In clude: xlcd.h
Pro to type: char ReadDataXLCD(void);
File name: readdata.c
Re marks: This func tion reads a data byte from the Hitachi HD44780 LCD
 con trol ler.
Code Ex am ple:

char data achar;
.
.
.
while (BusyXLCD());
achar = ReadAddrXLCD();

SetDDRamAddr

Sets the dis play data ad dress of the Hitachi HD44780 LCD con trol ler. The caller must
first check to see if the LCD con trol ler is busy by call ing BusyXLCD.

In clude: xlcd.h
Pro to type: void SetCGRamAddr(un signed char addr);
Ar gu ments: addr
File Name: setddram.c
Code Ex am ple:

char cgaddr = 0xc0;
.
.
.
while(BusyXLCD());
SetCGRamAddr(cgaddr);

SetCGRamAddr

This rou tine sets the char ac ter gen er a tor ad dress of the Hitachi HD44780 LCD con -
trol ler. The caller must first check the state of the LCD con trol ler by call ing
BusyXLCD.

 Liq uid Crys tal Dis plays 297

In clude: xlcd.h
Pro to type: void SetDDRamAddr(un signed char addr);
Ar gu ments: un signed char addr
File Name: setcgram.c
Code Ex am ple:

char ddaddr = 0x10;
.
.
.
while(BusyXLCD());
SetDDRamAddr(ddaddr);

WriteCmdXLCD

Writes a com mand to the Hitachi HD44780 LCD con trol ler. The caller must first check
the LCD con trol ler by call ing BusyXLCD.

In clude: xlcd.h
Pro to type: void WriteCmdXLCD(un signed char cmd);
Ar gu ments: un signed char cmd
The fol low ing val ues are de fined in xlcd.h:

DOFF Turn dis play off
DON Turn dis play on
CURSOR_OFF En able dis play with no cur sor
BLINK_ON En able dis play with blink ing cur sor
BLINK_OFF En able dis play with un blink ing cur sor
SHIFT_CUR_LEFT Cur sor shifts to the left
SHIFT_CUR_RIGHT Cur sor shifts to the right
SHIFT_DISP_LEFT Dis play shifts to the left
SHIFT_DISP_RIGHT Dis play shifts to the right

Al ter na tively, the com mand may be a bitmask that is cre ated by per form ing a
bitwise AND op er a tion ('&') with a value from each of the cat e go ries de fined in the
file xlcd.h.

Data Trans fer Mode:
FOUR_BIT 4-bit Data In ter face mode
EIGHT_BIT 8-bit Data In ter face mode
Dis play Type:
LINE_5X7 5x7 char ac ters, sin gle line
LINE_5X10 5x10 char ac ters dis play
LINES_5X7 5x7 char ac ters, mul ti ple lines

File Name: wcmdxlcd.c
Code Ex am ple:

while(BusyXLCD());
WriteCmdXLCD(EIGHT_BIT & LINES_5X7);
WriteCmdXLCD(BLINK_ON);
WriteCmdXLCD(SHIFT_DISP_LEFT);
putcXLCD

WriteDataXLCD

Writes a data byte to the Hitachi HD44780 LCD con trol ler. The caller must first check
the state of the LCD con trol ler by call ing BusyXLCD. The data is writ ten to the char ac -
ter gen er a tor RAM or the dis play data RAM, de pend ing on the pre vi ous call to
setddram or setcgram.

In clude: xlcd.h

298 Chap ter 11

Pro to type: void WriteDataXLCD(char data);
Ar gu ments: data

 The value of data can be any 8-bit value, but should cor re spond
 to a valid char ac ter in the HD44780 LCD con trol ler RAM ta ble.
File Name: writdata.c
Code Ex am ple:

un signed char achar = 'A';
.
.
.
WriteDataXLCD(achar);

11.7 LCD Ap pli ca tion De vel op ment in C18
The de vel op ment of a pro gram that con tains LCD func tions fol lows the same steps as
any other C18 ap pli ca tion; how ever, cer tain pre cau tions and customizations make the
pro cess eas ier. To this ef fect, in the pres ent sec tion we pres ent the de vel op ment of a
C18 ap pli ca tion that con tains LCD op er a tions. In this pre sen ta tion we do not re visit
the pro cess of cre at ing a C18 pro gram de scribed in Chap ter 5. The pro cess de scribed
does not fol low the use of code-gen er at ing util i ties such as Ap pli ca tion Mae stro. We
be lieve the pro gram mer ben e fits from cre at ing his own code, even at the price of a lit -
tle more ef fort. The walkthrough was done us ing MPLAB ver sion 8.86 un der Win dows
XP.

11.7.1 Us ing the Pro ject Wiz ard
Al though the Pro ject Wiz ard is not nec es sary in cre at ing a C18 ap pli ca tion in MPLAB,
it is use ful be cause it pro vides a se quence of steps while not hid ing de tails from the de -
vel oper. In the fol low ing ex er cise we will cre ate a pro ject with a sin gle workspace.
The pro ject name is C_LCD_Ex am ple.mcw. The pro ject files can be found in the
book's on line soft ware pack age.

The Pro ject Wiz ard com mand is lo cated in the MPLAB Pro ject menu. The ini tial
screen, la beled Step 1, is shown in Fig ure 5.4 and con sists of se lect ing the PIC de -
vice used for the pro ject, in our case the 18F452.

The sec ond step al lows us to se lect the ac tive toolsuite, which is ac tu ally the pro -
gram ming lan guage and de vel op ment tools used in the pro ject. We nav i gate through
the op tions of fered in the top win dow to Micro chip C18 Toolsuite, as shown in
Figure 5.5.

The third step con sists of de fin ing and nam ing the pro ject file for the ap pli ca tion,
as seen in Fig ure 5.6. At this point we can used the browse but ton to nav i gate to an
ex ist ing folder, or cre ate a new folder any where in the sys tem's mem ory space. In
this walkthrough we cre ate a new folder named C_LCD_Ex am ple and use this same
name for the project.

The fourth step con sists of add ing the nec es sary files to the pro ject. If we have a
prin ci pal pro gram file (of ten named main.c), we can in clude this file in the pro ject
at this time, or the main pro gram file can be cre ated and in cluded in the pro ject at a
later date. Al though any file re quired by the ap pli ca tion can be in cluded later, it is
usu ally con ve nient to in clude those that we are cer tain will be needed at this time.

 Liq uid Crys tal Dis plays 299

One such case com prises the LCD sup port files that is fur nished with the C18 pack -
age as the Soft ware Peripherals Library.

In a nor mal com piler in stal la tion, these files are lo cated in MCC18/src/pmc_com -
mon/XLCD. If at this time we know which sup port files will be used by our pro gram,
we can se lect those and add them. Oth er wise we can se lect all the sup port files in
the di rec tory in the knowl edge that those not used can be later elim i nated from the
pro ject. We usu ally pre fer this last option.

Once the files are added, they are pre ceded by a let ter that de ter mines the file-ad -
di tion mode. The op tions are A (au to matic), U (user pro ject), S (sys tem path), and C
(copy to pro ject). This last op tion in cor po rates the file into the pro ject with out re -
quir ing an ab so lute path. It is usu ally the saf est one. The ad di tion op tion is changed
by click ing the identifier letter.

While in the fourth step we can also se lect the linker script re quired by the ap pli -
ca tion for the par tic u lar pro ces sor. In a de fault in stal la tion, the linker scripts will be
found in the MCC18/lkr di rec tory. We must lo cate the file named l18452.lkr; click the
Add>> but ton and op tion ally change the ad di tion path as pre vi ously discussed.

A header file that must be in cluded in the pro ject is named xlcd.h and is found in
the MCC18/h di rec tory. As with the other sup port files it, can be in cluded at this
time or later.

Main Pro gram File

At this point we have cre ated a pro ject and its workspace but we have not yet cre ated
or added the main pro gram file in C lan guage. We will name this file with the same
name as the pro ject: C_LCD_Ex am ple.c.

The most con ve nient way of start ing ap pli ca tion de vel op ment is by means of a
tem plate file. In the case of LCD pro gram ming, the tem plate file is ac tu ally a min i -
mal LCD ap pli ca tion. The file is named C_LCD_Tem plate.c and is found in this
book's on line soft ware pack age. At this time we can copy the file to our Pro ject di -
rec tory and re name it ac cord ingly. The template file code follows:

// Pro ject name:
// Source files: XLCD sup port files
// Header file: xlcd.h
// Date:
//
// Pro ces sor: PIC 18F452
// En vi ron ment: MPLAB IDE Ver sion 8.xx
// MPLAB C-18 Com piler
//
// TEST CIRCUIT:
//
// PORT PINS DIRECTION DEVICE
// De scrip tion:
// Tem plate file for LCD ap pli ca tions.
// As sumes the fol low ing:
// Hitachi HD44780 LCD con trol ler
// Two lines by 16 char ac ters each
// Wired for 8-bit data

300 Chap ter 11

// Uses C18 LCD Soft ware Pe riph eral Li brary
//
//
#in clude <p18cxxx.h>
#in clude "xlcd.h"
//
// Con fig u ra tion bits set as re quired for MPLAB ICD 2
#pragma config OSC = XT // As sumes high-speed res o na tor
#pragma config WDT = OFF // No watch dog timer
#pragma config LVP = OFF // No low volt age pro tec tion
#pragma config DEBUG = OFF // No back ground debugger
#pragma config PWRT = ON // Power on timer en abled
#pragma config CP0 = OFF // Code pro tec tion block x = 0-3
#pragma config CP1 = OFF
#pragma config CP2 = OFF
#pragma config CP3 = OFF
#pragma config WRT0 = OFF // Write pro tec tion block x = 0-3
#pragma config WRT1 = OFF
#pragma config WRT2 = OFF
#pragma config WRT3 = OFF
#pragma config EBTR0 = OFF // Ta ble read pro tec tion block x = 0-3
#pragma config EBTR1 = OFF
#pragma config EBTR2 = OFF
#pragma config EBTR3 = OFF

// Global data
char XLCD_Disp1[] = " Test ing LCD ";
char XLCD_Disp2[] = " dis play ";

void main(void)
{

un signed char config=0xff;

ADCON1 = 0xFF;

// De fine con fig u ra tion for 8 bits and two 5 X 7 lines
config = EIGHT_BIT & LINES_5X7;
// Ini tial ize LCD
OpenXLCD(config);
// Test for busy
while(BusyXLCD()); // Wait un til LCD not busy
// Set start ing ad dress in the LCD RAM for dis play.
// Can be ed ited to match sys tem
SetDDRamAddr(0x80);
while(BusyXLCD()); // Wait un til LCD not busy
putsXLCD(XLCD_Disp1); // Dis play first string
while(BusyXLCD()); // Wait un til LCD not busy
// Set ad dress for dis play sec ond line
SetDDRamAddr(0xC0);
while(BusyXLCD()); // Wait un til LCD not busy
putsXLCD(XLCD_Disp2); // Dis play sec ond string
while(BusyXLCD()); // Wait un til LCD not busy

while(1); //end of tem plate

}

 Liq uid Crys tal Dis plays 301

Once we have ed ited, re named, and in cluded the tem plate file in the pro ject's
source files, we can at tempt to com pile the ap pli ca tion us ing the Build All com mand
in the MPLAB Pro ject menu. Make sure that the de sired build con fig u ra tion (de bug
or re lease) has been se lected in the cor re spond ing win dow. The build tab in the
MPLAB Out put win dow will re cord the build pro cess and list any com pile- or
link-time er rors. The Build All com mand recompiles all the source files in the pro -
ject and thus serves as a check of the Soft ware Pe riph er als Li brary mod ules.

302 Chap ter 11

Chap ter 12

Real-Time Clocks

12.1 Mea sur ing Time
This chap ter deals with the mea sure ment of time in dis crete, dig i tal units. In this con -
text we speak of “real-time” as years, days, hours, min utes, and so on. A real-time
clock (RTC) is one that mea sures time in hours, min utes, and sec onds, and a real-time
cal en dar is in years, months, weeks, and days. Be cause time is a con tin uum that es -
capes our com pre hen sion, we must di vide it into mea sur able chunks that can be ma -
nip u lated and cal cu lated. How ever, not all time units are in pro por tional re la tions to
one an other. There are 60 sec onds in a min ute and 60 min utes in an hour, but 24 hours
in a day and 28, 29, 30, or 31 days in a month. Fur ther more, the months and the days of
the week have tra di tional names. Fi nally, the Gre go rian cal en dar re quires add ing a
29th day to Feb ru ary on any year that is evenly di vis i ble by 4. The de vice or soft ware to
per form all of these time cal cu la tions is re ferred to as a real-time clock. In this chap ter
we dis cuss the use of real-time clocks in PIC 18F cir cuits.

Note that the no tion of real-time pro gram ming does not co in cide with the pro -
gram ming of real-time clocks. Real-time com put ing (also called re ac tive com put ing)
re fers to sys tems that are sub ject to a time con straint. For ex am ple, a pro gram that
must en sure that a dead line is met be tween a world event and a sys tem re sponse.
Non-real-time sys tems can not guar an tee a re sponse even if it is the usual re sult. In
this sense, the topic of this chap ter is lim ited to clock ing de vices and rou tines that
mea sure time in con ven tional units, not to real-time com put ing.

12.1.1 Clock Sig nal Source

All dig i tal sys tems re quire a tim ing de vice that pro duces the clock cy cles by which the
hard ware op er ates. The timer or clock is the beat ing heart of a dig i tal de vice.
Pulse-gen er at ing tech nol o gies in clude os cil la tors, res o na tors, re sis tor-ca pac i tor cir -
cuits, pi ezo elec tric crys tals, and oth ers. It is in tim ing op er a tions that the ac cu racy of
the pulse-gen er at ing de vice be comes a crit i cal is sue. In this con text, a dig i tal clock or
watch will be as ac cu rate as the fre quency of the sig nal source. If a com mer cial os cil la -
tor has a 10 % vari a tion in ac cu racy, a tim ing rou tine that uses this os cil la tor can en -
sure no more than 10 % ac cu racy.

303

Crys tal os cil la tors use the me chan i cal res o nance of a vi brat ing pi ezo elec tric ma -
te rial to cre ate a very pre cise fre quency. One com mon type is quartz crys tals. They
pro vide a sta ble and ac cu rate sig nal that is used in clocks, quartz watches, in te -
grated cir cuits, ra dio trans mit ters and re ceiv ers, and var i ous test and mea sur ing in -
stru ments. Quartz crys tals are man u fac tured in fre quen cies from one tenth of a
ki lo hertz to sev eral mega hertz. In em bed ded ap pli ca tions the crys tal of ten used for
real-time cal cu la tions os cil lates at a rate of 32.768 kHz and is usu ally called a 32-kHz
crys tal. Be cause 32,768 is a power of 2, it pro vides a con ve nient source for bi nary
nu mer i cal time cal cu la tions. For ex am ple, 65,535 os cil la tions (0xffff in hex) take
place in 2 sec onds. A coun ter set to count down from 0x8000 os cil la tions of a
32-kHz crys tal will roll over ev ery one sec ond. By the same to ken, 327 os cil la tions of
this crys tal will mea sure one hun dredth of a sec ond.

32-kHz Crys tal Cir cuit

The rea son that an ex ter nal crys tal can be used di rectly with the 18F452 is that the
microcontroller pro vides sup port for an ex ter nal clock source. In our dis cus sion of
the Timer1 mod ule (see Sec tion 9.5.1), we saw that Timer1 can be set to use an ex ter -
nal clock in its asyn chron ous coun ter mode. In this case, the 18F452 RC0 and RC1 pins
are mul ti plexed as in put from the clock source, typ i cally a 32-kHz quartz crys tal. In
this func tion, the pins are la beled T10SI and T1OSO. T1OSI is the am pli fier in put line
and T1OSO the am pli fier out put.

The ver sion of the crys tal most of ten used in em bed ded ap pli ca tions takes the
form of a small, sil very cyl in der with two wire con nec tors. The cir cuit also re quires
two ca pac i tors, one on each ter mi nal of the 32-kHz crys tal. Fig ure 12.1 shows the
typ i cal wir ing of this cir cuit.

Fig ure 12.1 18F452 circuit with a 32 kHz crys tal in Port C.

304 Chap ter 12

18F452

+5v

R
=

1
0
K

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

RESET

+5v

20 Mhz Osc

C=0.1mFEC=100mF

78L05

INOUT
9 -12 v DC

Regulated power supply

+5 v DC

+

MCLR/VPP

RAO/ANO

RA1/AN1

RA2/AN2A/REF-

RA3/AN3A/REF+

RA4/TOCKI

RA5/AN4/SS/LVDIN

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1/CLKI

OSC2/CLKO/RA6

RCO/T1OSO/TICK1

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RDO/PSPO

RD1/PSP1

RB7/PGD

RB6/PGC

RB5/PGM

RB4

RB3/CCP2*

RB2/INT2

RB1/INT1

R BO/INTO

Vdd

Vss

RD7/PSP7

RD6/PSP6

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2

XTAL

C1

C1-C2 = 33 pF
C2

The value of these ca pac i tors has been a topic of some de bate on the Internet be -
cause Micro chip rec om mends 33 pF but sug gests that the user should con sult the
man u fac turer of the crys tal. We have used 22- and 33-pF ca pac i tors in our ex per i -
men tal cir cuits with out any ob serv able dif fer ence.

12.1.2 Pro gram ming the Timer1 Clock

Pro gram ming the real-time clock based on Timer 1 is straight for ward and sim ple. The
timer can be in i tial ized to use an 8-bit or 16-bit coun ter, but in real-time clock ap pli ca -
tions the 16-bit op tion is eas ier to im ple ment. Once the timer is in i tial ized and as sum -
ing a 32-kHz crys tal, the 16-bit coun ter over flows ev ery 2 sec onds. Ap pli ca tions can
ei ther poll the timer reg is ters (TMR1H and TMR1L) or set up an in ter rupt that is trig -
gered by the over flow. In ter rupt-based han dlers work well us ing the 18F452 low- or
high-pri or ity in ter rupt, which means that most ap pli ca tions can be de signed to use
one of the in ter rupts.

Read ing and writ ing the 16-bit timer reg is ters was dis cussed in Sec tion 9.5.1. In
this ap pli ca tion, code se lects the 8- or the 16-bit mode by means of the RD16 bit in
the T1CON reg is ter. The ad dress for TMR1H is mapped to a buffer reg is ter for the
high byte of Timer1. This de ter mines that a read from TMR1L will load the con tents
of the high byte of Timer1 into the Timer1 high-byte buffer. This scheme makes it
pos si ble to ac cu rately read all 16 bits of Timer1 with out hav ing to de ter mine if a
roll over took place while the read was in prog ress. This is also the case with a write
op er a tion. Writ ing the high byte of Timer1 must also take place through the TMR1H
buffer reg is ter. In other words, Timer1 high byte is up dated with the con tents of
TMR1H when a write oc curs to TMR1L. This al lows writ ing all 16 bits to both the
high and low bytes of Timer1 in a sin gle op er a tion.

Set ting Up Timer1 Hard ware

The se quence of op er a tions re quired to set up a 16-bit real-time clock based on Timer 1
in ter rupt on over flow is the fol low ing:

• Turn off Timer1 in ter rupt dur ing setup op er a tions.

• Set up the T1CON reg is ter to en able 16-bit op er a tion, en able the Timer1 os cil la tor,
se lect not-syn chro nized op er a tion, se lect ex ter nal clock source, and en able the
Timer1 in ter rupt on over flow.

• Set up pri or ity lev els on in ter rupts.

• As sign a pri or ity to the Timer1 in ter rupt.

• Set up the Timer1 in ter rupt in the INTCON reg is ter.

• Ac ti vate fall ing edge mode in INTCON2 reg is ter.

• Clear the in ter rupt flag and reenable the Timer1 in ter rupt.

The code for this ini tial iza tion is found in the sam ple pro gram RTC_18F_Timer1 Code
listed later in this sec tion.

 Real-Time Clocks 305

Cod ing the In ter rupt Han dler

In 16-bit mode, the in ter rupt han dler re ceives con trol ev ery time the TMR1H reg is ter
over flows. Ap pli ca tions can set an ini tial value in the coun ter reg is ters in or der to con -
trol the time pe riod of the in ter rupt. For ex am ple, if the 16-bit coun ter is pre set to
0x8000 then the reg is ter will over flow in one-half the de fault time. The 1-sec ond time
lapse is very com mon in real-time clock code. The in ter rupt la tency and the timer re -
quired for re set ting the coun ter reg is ters will af fect the ac cu racy of the clock. In many
cases, the er ror in tro duced is tol er a ble for the par tic u lar ap pli ca tion. Oth er wise it is
pos si ble to cal cu late the time er ror and com pen sate for it by pre set ting the low-or der
coun ter reg is ter. Once the timer reg is ters are pre set, code can clear the in ter rupt flag
to re start the count.

Sam ple Pro gram RTC_18F_Timer1.asm

The sam ple pro gram RTC_18F_Timer1.asm is found in the pro ject of the same name in
this book's on line soft ware pack age. The pro gram uses the high-pri or ity in ter rupt to
op er ate a real-time clock by the Timer1 mod ule. Code as sumes that an LED is wired to
port C, line 2. The LED is tog gled on and off by the in ter rupt han dler at 1-sec ond in ter -
vals. The pro gram runs in the cir cuit in Fig ure 12.1. Code is as fol lows:

; File name: RTC_18F_Timer1.asm
; Pro ject: RTC_18F_Timer1.mcp
; Date: March 4, 2013
; Au thor: Julio Sanchez
;
; STATE: Tested OK
;
; Pro gram for PIC 18F452 us ing Timer1 and 32kHz crys tal
; to pro vide real-time op er a tions.
;
; Ex e cutes in com pat i ble cir cuit
;
; De scrip tion:
; Dem on stra tion of the Timer1 ex ter nal clock us ing a 32
; kHz quart crys tal wired to port C lines 0 and 1.
; Ap pli ca tion tog gles on and off an LED wired to port
; C, line 2, at one sec ond in ter vals. Code uses the high-
; pri or ity in ter rupt as a time keeper.
;
;===
; Cir cuit
;===
; 18F452
; +------------------+
;+5v-res0-ICD2 mc -| 1 !MCLR PGD 40|
; | 2 RA0 PGC 39|
; | 3 RA1 RB5 38|
; | 4 RA2 5B4 37|
; | 5 RA3 RB3 36|
; | 6 RA4 RB2 35|
; | 7 RA5 RB1 34|
; | 8 RE0 RB0 33|
; | 9 RE1 32|-------+5v
; |10 RE2 31|--------GR
; +5v--------|11 RD7 30|
; GR---------|12 RD6 29|

306 Chap ter 12

; osc ---|13 OSC1 RD5 28|
; osc ---|14 OSC2 RD4 27|
; 32khz crys tal ---|15 RC0 RC7 26|
; 32khz crys tal ---|16 RC1 RC6 25|
; LED <==|17 RC2 RC5 24|
; |18 RC3 RC4 23|
; |19 RD0 RD3 22|
; |20 RD1 RD2 21|
; +------------------+
;
;

list p=18f452
; In clude file, change di rec tory if needed
in clude "p18f452.inc"

; ==
; con fig u ra tion bits
;===
; Con fig u ra tion bits set as re quired for MPLAB ICD 2
 config OSC = XT ; As sumes high-speed res o na tor

config WDT = OFF ; No watch dog timer
config LVP = OFF ; No low volt age pro tec tion
config DEBUG = OFF ; No back ground debugger

 config PWRT = ON ; Power on timer en abled
 config CP0 = OFF ; Code pro tec tion block x = 0-3
 config CP1 = OFF
 config CP2 = OFF
 config CP3 = OFF
 config WRT0 = OFF ; Write pro tec tion block x = 0-3
 config WRT1 = OFF
 config WRT2 = OFF
 config WRT3 = OFF
 config EBTR0 = OFF ; Ta ble read pro tec tion block x = 0-3
 config EBTR1 = OFF
 config EBTR2 = OFF
 config EBTR3 = OFF
;
; Turn off bank ing er ror mes sages

errorlevel -302
;==
; pro gram
;==

; Start at the re set vec tor
Re set_Vec tor code 0x000

goto Start
;==
; in ter rupt in ter cepts
;==
; HIGH PRIORITY INTERRUPT VECTOR

org 0x008
goto ServiceRtn

; LOW-PRIORITY HANDLER NOT IMPLEMENTED IN THIS EXAMPLE
org 0x018 ; LOW PRIORITY VECTOR
retfie 0x00 ; No con text save re turn

;==
; m a i n p r o g r a m
;==

code 0x030
Start:

 Real-Time Clocks 307

; Set BSR for bank 0 op er a tions
movlb 0 ; Bank 0

; Init Port A for dig i tal op er a tion
 clrf PORTA,0
 clrf LATA,0
; ADCON1 is the con fig u ra tion reg is ter for the A/D
; func tions in Port A. A value of 0b011x sets all
; lines for dig i tal op er a tion
 movlw B'00000110' ; Dig i tal mode
 movwf ADCON1,0
; Ini tial ize PORT C for out put.
; Set ting of the tris reg is ter does not af fect lines
; wired to crys tal

clrf TRISC ; Out put to LED. TRIS bits
; are don't care for crys tal

; Clear out put lines
clrf PORTC ; Turn off LED

;
;=========================
; T1CON in os cil la tor mode
;=========================

bcf PIE1,TMR1IE ; Turn off Timer1 in ter rupt
; dur ing setup

; Setup the T1CON reg is ter
; |------------- READ/WRITE
; | 16-bit op er a tion
; ||------------ UNIMPLEMENTED
; |||----------- Clock source
; ||||---------- PRESCALE BITS
; |||| 00 = no prescale
; |||||--------- T1OSCEN - En able os cil la tor
; ||||||-------- !T1SYNC - Not syn chro nized
; |||||||------- TMR1CS - Ex ter nal clock
; |||||||| ----- TMR1ON - Timer 1 in ter rupt
; ||||||||

movlw b'10001111'
 movff WREG,T1CON
; Setup Timer1 in ter rupt

bsf RCON,IPEN ; Pri or ity lev els on in ter rupts
bsf IPR1,TMR1IP ; High pri or ity Tmr1 over flow

; Clear Timer1 reg is ters
clrf TMR1H
clrf TMR1L
clrwdt

;===============================
; Set up for Timer1 in ter rupt
;===============================
; INTCON reg is ter in i tial ized as fol lows:
; (IPEN bit is clear)
; |------------ GIE/GIEH - high-pri or ity in ter rupts
; | en abled
; ||----------- PEIE/GEIL - Pe riph eral en abled
; |||---------- timer0 over flow in ter rupt
; ||||--------- ex ter nal in ter rupt
; |||||-------- port change in ter rupt
; ||||||------- over flow in ter rupt flag
; |||||||------ ex ter nal in ter rupt flag
; ||||||||----- RB4:RB7 in ter rupt flag
 movlw b'11000000'

308 Chap ter 12

 movwf INTCON
; Set INTCON2 for fall ing edge op er a tion
 bcf INTCON2,INTEDG0
; Re-en able timer1 in ter rupt

bcf INTCON,TMR0IF ; Clear in ter rupt flag
bsf PIE1,TMR1IE ; Turn on Timer1 in ter rupt

; af ter setup

;==========================
; loop do ing noth ing
;==========================
end less:

nop
nop
goto end less

;==
; in ter rupt ser vice rou tine
;==
ServiceRtn:
; HIGH PRIORITY INTERRUPT HANDLER
; Sets Timer1 coun ter to roll over ev ery 32,768 beats
; Re sets Timer1 interrupt flag
; Tog gles state of LED on line 2, PORT C
; Re turns sav ing con text

movlw 0x80 ; High bit set
movff WREG,TMR1H ; To high or der reg is ter
clrf TMR1L ; Clear low and write both
bcf PIR1,TMR1IF ; Clear Timer1 in ter rupt flag

; Test sta tus of PORTC line 2 LED
btfss PORTC,2 ; Is LED on ?
goto turnON ; Turn it ON

; LED is on. Turn it off
bcf PORTC,2 ; Clear bit to turn off
retfie 0x01 ; Re turn sav ing con text

turnON:
bsf PORTC,2 ; Turn on LED
retfie 0x01 ; Re turn sav ing con text

end

12.2 Real-Time Clock ICs
An al ter na tive to us ing the PIC's hard ware sup port for real-time clocks, as shown in
the pre ced ing sec tion, is to in clude a real-time clock IC in the cir cuit. These ded i cated
ICs, usu ally called RTCs, are in te grated cir cuits de signed to keep track of time in con -
ven tional units, that is, in years, days, hours, min utes, and sec onds. Many real-time
clock ICs are avail able with dif fer ent char ac ter is tics, data for mats, modes of op er a -
tion, and in ter faces. Most of the ones used in PIC cir cuits have a se rial in ter face in or -
der to save ac cess ports. Most RTC chips pro vide a bat tery con nec tion so that the time
can be kept when the sys tem is turned off.

In the sec tions that fol low, we dis cuss one pop u lar RTC chip: the NJU6355, but
this is by no means the only op tion for em bed ded sys tems. Demo Board B con tains a
real-time clock IC (6355) that can be used in test ing the pro gram ming in the sec tions
that fol low..

 Real-Time Clocks 309

12.2.1 NJU6355
The NJU6355 se ries is a se rial I/O real-time clock suit able for microcontroller-based
em bed ded sys tems. The IC in cludes a coun ter, shift reg is ter, volt age reg u la tor, and the
in ter face con trol ler. It is usu ally wired to an ex ter nal 32-kHz quartz crys tal The in ter -
face to a PIC re quires four lines. The op er at ing volt age is the TTL level so it can be
wired di rectly on the typ i cal PIC cir cuit. The out put data in cludes year, month,
day-of-week, hour, min utes, and sec onds. Fig ure 12.2 is the pin diagram for the chip.

Fig ure 12.2 NJU6355 pin di a gram.

12.2.2 6355 Data For mat ting
The NJU6355 out put is in packed BCD for mat, that is, each dec i mal digit is rep re -
sented by a 4-bit bi nary num ber. The chip's logic cor rectly cal cu lates the num ber of
days in each month as well as the leap years. All un used bits are re ported as bi nary 0.
Fig ure 12.3 is a bitmap of the for mat ted timer data.

Fig ure 12.3 NJU6355 timer data format

310 Chap ter 12

NJU6355
6

7

81

5

2

3

4

I/O

XT

_XT

GND

Vcc

DATA

CLK

CE

 NJU6355 PINOUT

 I/O - Input/Output select
 XT - Quartz crystal input (f=32.768kHz)
 _XT - Quartz crystal output
 GND - Ground
 CE - Input enable
 CLK - Clock input
DATA - Serial timer input/output
 Vcc - +5V power

seconds

year

minutes

hours

day

month

day of week

RANGE:

0 to 59

0 to 99

0 to 59

0 to 23

1 to 31

1 to 12

1 to 7

 S6 S5 S4 S3 S2 S1 S0

Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0

 M6 M5 M4 M3 M2 M1 M0

 H5 H4 H3 H2 H1 H0

 D5 D4 D3 D2 D1 D0

 M4 M3 M2 M1 M0

 W2 W1 W0

MSB LSB

Timer data can be read when the I/O line is low and the CE line is high. Out put
from the 6355 is LSB first. A to tal of 52 sig nif i cant bits are read in bot tom-up or der
as the data is shown in Fig ure 12.2. That is, the first bit re ceived is the least-sig nif i -
cant bit of the year, then the month, af ter that the day, and so forth. All date items
are 8 bits, ex cept the day of week, which is 4 bits. Non-sig nif i cant bits in each field
are re ported as zero. This means that the value for the 10th month (Oc to ber) are the
bi nary dig its 00001012. Re port ing un used dig its as zero sim pli fies the con ver sion
into ASCII.

The NJU6355 does not re port valid time data un til af ter it has been in i tial ized,
even if there is power and clock sig nals into the chip. Ini tial iza tion re quires writ ing
data into the 6355 reg is ters. In or der to write to the IC, code must set the I/O and the
CE lines high. At this mo ment, all clock up dates stop and the RTC goes into the
write mode. Here again, the in put data is latched in LSB first, start ing with the year
and con clud ing with the min utes. There is no pro vi sion for writ ing sec onds into the
RTC, so the to tal num ber of bits writ ten is 44.

The 6355 con tains a mech a nism for de tect ing con di tions that could com pro mise
the clock's op er a tion, such as low power. In this case, the spe cial value 0xee is writ -
ten into each digit of the in ter nal reg is ters so that pro cess ing rou tines can be come
aware that the timer is in er ror.

The NJU6355 re quires the in stal la tion of an ex ter nal crys tal os cil la tor. The crys -
tal must have a fre quency of 32.768 kHz. The time-keep ing ac cu racy of the RTC is
de ter mined by this os cil la tor. The ca pac ity of the os cil la tor must match that of the
RTC and of the cir cuit. A stan dard crys tal with a ca pac i tance of 12.5pF works well
for ap pli ca tions that do not de mand high clock ac cu racy. For more ex act ing ap pli ca -
tions the 6355 can pro grammed to check the clock fre quency and de ter mine its er -
ror. The chip's fre quency check ing mode is de scribed in an NJU6355 Ap pli ca tion
Note avail able from NJR.

12.2.3 Ini tial iza tion and Clock Prim i tives
Sev eral core pro ce dures (we could call them clock prim i tives) are nec es sary for de -
vel op ing RTC ap pli ca tions. The first one initializes the clock hard ware. Two other
prim i tives read the cur rent time and write to the clock reg is ters. Be cause clock data
can be in 8- or 4-bit for mats, it is use ful to de sign the pro ce dures so that they pro vide
sep a rate en try points to han dle the 4- and the 8-bit op tions.

Read ing and Writ ing Clock Data

Once the 6355 has been in i tial ized, the ap pli ca tion can read or write to the chip's reg is -
ters. The core pro ce dure for the read op er a tion has two en try points: read4RTC re -
turns 4 bits from an RTC reg is ter and readRTC re turns the full 8 bits. Code is as
fol lows:

;============================
; read 4/8 bits from RTC
;============================
; Pro ce dure to read 4/8 bits stored in 6355 reg is ters
; Value re turned in w reg is ter

 Real-Time Clocks 311

read4RTC
movlw .4 ; 4 bit read
goto anyBits

readRTC
movlw .8 ; 8 bits read

anyBits:
movwf coun ter

; Read 6355 read op er a tion re quires the IO line be set low
; and the CE line high. Data is read in the fol low ing or der:
; year, month, day, day-of-week, hour, min utes, sec onds
readBits:

bsf PORTB,CLK ; Set CLK high to val i date data
bsf STATUS,C ; Set the carry flag (bit = 1)

; Op er a tion:
; If data line is high, then bit read is a 1-bit
; oth er wise bit read is a 0-bit

btfss PORTB,DAT ; Is data line high?
; Leave carry set (1 bit) if high

bcf STATUS,C ; Clear the carry bit (make bit 0)
; At this point the carry bit matches the data line

bcf PORTB,CLK ; Set CLK low to end read
; The carry bit is now ro tated into the temp1 reg is ter

rrcf temp1,1
decfsz coun ter,1 ; Dec re ment the bit coun ter
goto readBits ; Con tinue if not last bit

; At this point all bits have been read (8 or 4)
movf temp1,0 ; Re sult to w
re turn

No tice that the pro ce dure's two en try points load the w reg is ter with the num ber
of bits to be read, the value of which is stored in a lo cal reg is ter named coun ter.
When coun ter goes to zero, the read op er a tion ter mi nates. The ac tual read ing of
clock data con sists of test ing the 6355 data line (la beled DAT) for a 0 or a 1 bit. The
re sult is stored in the carry flag, which is then ro tated into the lo cal vari able named
temp1. The rrcf in struc tion (ro tate right file reg is ter through carry) ac com plishes
this. No tice that the 6355 re quires that the clock line (la beled CLK) be held high
during a read.

Equipped with the 4- and 8-bit read prim i tives, read ing 6355 data con sists of call -
ing the two rou tines and stor ing each re sult in a lo cal vari able. The vari ables are
named year, month, day, dayOfWeek, hour, min utes, and sec onds. The read op er a -
tion re quires that the clock's IO line be held low and the CE line high. The CLK line
is ini tially set low and then high by the ac tual read op er a tion. Code is as fol lows:

;============================
; read RTC data
;============================
; Pro ce dure to read the cur rent time from the RTC and store
; data (in packed BCD for mat) in lo cal time reg is ters.
; Ac cord ing to wir ing di a gram
; NJU6355 In ter face for read op er a tions:
; DAT PORTB,0 In put
; CLK PORTB,1 Out put
; CE PORTB,2 Out put
; IO PORTB,3 Out put
Get_Time

312 Chap ter 12

; Clear port B
movlw b'00000000'
movwf PORTB

; Make data line in put
Bank1
movlw b'00000001'
movwf TRISB
Bank0

; Read ing RTC data re quires that the IO line be low and the
; CE line be high. CLK line is held low

bcf PORTB,CLK ; CLK low
call LCD_de lay_1
bcf PORTB,IO ; IO line low
call LCD_de lay_1
bsf PORTB,CE ; and CE line high

; Data is read from RTC as fol lows:
; year 8 bits (0 to 99)
; month 8 bits (1 to 12)
; day 8 bits (1 to 31)
; dayOfWeek 4 bits (1 to 7)
; hour 8 bits (0 to 23)
; min utes 8 bits (0 to 59)
; sec onds 8 bits (0 to 59)
; ======
; To tal 52 bits

call readRTC
movwf year
call LCD_de lay_1

;
call readRTC
movwf month
call LCD_de lay_1

;
call readRTC
movwf day
call LCD_de lay_1

;
; dayOfWeek of week is a 4-bit value

call read4RTC
movwf dayOfWeek
call LCD_de lay_1

;
call readRTC
movwf hour
call LCD_de lay_1

;
call readRTC
movwf min utes
call LCD_de lay_1

;
call readRTC
movwf sec onds

; Done
bcf PORTB,CE ; CE line low to end out put
re turn

No tice that when the rou tine ends, the CE line is set low again to ter mi nate out -
put from the clock IC. Also no tice that the read op er a tion re turns data se quen tially,
start ing with the year and end ing with sec onds. If an ap pli ca tion re quires one of the

 Real-Time Clocks 313

el e ments in the list but not oth ers, it must still read the pre ced ing ones and ig nore
these val ues. Data that fol lows the de sired en try need not be read be cause set ting
the clock's CS line low ends the read op er a tion and re sets the clock's in ter nal data
pointer.

 Writ ing to the 6355 fol lows the same se quen tial pat tern as the read op er a tion:
data is first writ ten to the year reg is ter, then to the month, and lastly to the min utes.
The sec onds value in the 6355 can not be writ ten. Here again, two core rou tines are
re quired: one to write 8-bit reg is ters and an other one to write to the 4-bit reg is ter.
The en try points are named write4RTC and writeRTC, re spec tively. Code is as
follows:

;============================
; write 4/8 bits to RTC
;============================
; Pro ce dure to write 4 or 8 bits to the RTC reg is ters
; ON ENTRY:
; temp1 reg is ter holds value to be writ ten
; ON EXIT:
; noth ing
write4RTC

movlw .4 ; Init for 4 bits
goto allBits

writeRTC
movlw .8 ; Init for 8 bits

allBits:
movwf coun ter ; Store in bit coun ter
clrf temp1 ; Clear lo cal reg is ter

writeBits:
bcf PORTB,CLK ; Clear the CLK line
call LCD_de lay_2 ; Wait
bsf PORTB,DAT ; Set the data line to RTC
btfss temp1,0 ; Send LSB
bcf PORTB,DAT ; Clear data line
call LCD_de lay_2 ; Wait for op er a tion to com plete
bsf PORTB,CLK ; Bring CLK line high to val i date
rrcf temp1,f ; Ro tate bits in stor age
decfsz coun ter,f ; Dec re ment bit coun ter
goto writeBits ; Con tinue if not last bit
re turn

The ac tual write op er a tion is a loop in which the reg is ter named coun ter de ter -
mines the num ber of it er a tions. For each bit, code clears the CLK line, then sets the
DAT line high. If the low or der bit of temp1 is set then the DAT line is turned from
high to low. Oth er wise it is kept high. The bit write takes place when the CLK line is
again turned high. Then the bits in temp1 are ro tated right and the loop con tin ues
un til the coun ter reg is ter goes to 0.

Ini tial ize RTC

The pro ce dure to ini tial ize the 6355 con sists of CLK line low, and the IO and CE lines
high. Then data must be writ ten to all 6355 reg is ters. Code is as fol lows:

;============================
; init RTC
;============================

314 Chap ter 12

; Pro ce dure to ini tial ize the real-time clock chip. If chip
; is not in i tial ized it will not op er ate and the val ues
; read will be in valid.
; Because the 6355 op er ates in BCD for mat the stored val ues must
; be con verted to packed BCD.
; Ac cord ing to wir ing di a gram
; NJU6355 In ter face for set ting time:
; DAT PORTB,0 Out put
; CLK PORTB,1 Out put
; CE PORTB,2 Out put
; IO PORTB,3 Out put
setRTC:

clrf TRISB
; Writ ing to the 6355 re quires that the CLK bit be held
; low while the IO and CE lines are high

bcf PORTB,CLK ; CLK low
call de lay_5
bsf PORTB,IO ; IO high
call de lay_5
bsf PORTB,CE ; CE high

; Data is stored in RTC as fol lows:
; year 8 bits (0 to 99)
; month 8 bits (1 to 12)
; day 8 bits (1 to 31)
; dayOfWeek 4 bits (1 to 7)
; hour 8 bits (0 to 23)
; min utes 8 bits (0 to 59)
; ======
; To tal 44 bits
; Sec onds can not be writ ten to RTC. RTC sec onds reg is ter
; is au to mat i cally in i tial ized to zero

movf year,w ; Get item from stor age
call bin2bcd ; Con vert to BCD
movwf temp1
call writeRTC

movf month,w
call bin2bcd
movwf temp1
call writeRTC

movf day,w
call bin2bcd
movwf temp1
call writeRTC

movf dayOfWeek,w ; dayOfWeek of week is 4-bits
call bin2bcd
movwf temp1
call write4RTC

movf hour,w
call bin2bcd
movwf temp1
call writeRTC

movf min utes,w
call bin2bcd
movwf temp1
call writeRTC

 Real-Time Clocks 315

; Done
bcf PORTB,CLK ; Hold CLK line low
call de lay_5
bcf PORTB,CE ; and the CE line

 ; to the RTC
call de lay_5
bcf PORTB,IO ; RTC in out put mode
re turn

12.2.4 BCD Con ver sions
In ad di tion to the RTC pro ce dures to ini tial ize the clock reg is ters and to read clock
data, the ap pli ca tion re quires aux il iary pro ce dures to ma nip u late and dis play data in
BCD for mat. The 6355 uses the packed BCD for mat and in or der to dis play clock data
on the LCD,a BCD-to-ASCII con ver sion is re quired. Ad di tion ally, be cause pro gram
data is stored in bi nary form, it is also nec es sary to have a rou tine to con vert bi nary
data into BCD form. A sim ple al go rithm for con vert ing bi nary to BCD is as fol lows:

1. The value 10 is sub tracted from the source op er and un til the re minder is less than
0 (carry cleared). The num ber of sub trac tions is the high-or der BCD digit.

2. The value 10 is then added back to the sub tra hend to com pen sate for the last sub -
trac tion.

3. The fi nal re minder is the low-or der BCD digit.

The bi nary to BCD con ver sion pro ce dure is coded as fol lows:

;============================
; bi nary to BCD con ver sion
;============================
; Con vert a bi nary num ber into two packed BCD dig its
; ON ENTRY:
; w reg is ter has bi nary value in range 0 to 99
; ON EXIT:
; out put vari ables bcdLow and bcdHigh con tain two
; un packed BCD dig its
; w con tains two packed BCD dig its
; Rou tine logic:
; The value 10 is sub tracted from the source op er and
; un til the re minder is < 0 (carry cleared). The num ber
; of sub trac tions is the high-or der BCD digit. 10 is
; then added back to the sub tra hend to com pen sate
; for the last sub trac tion. The fi nal re minder is the
; low-or der BCD digit
; Vari ables:
; inNum stor age for source op er and
; bcdHigh stor age for high-or der nib ble
; bcdLow stor age for low-or der nib ble
; thisDig Digit coun ter
bin2bcd:

movwf inNum ; Save copy of source value
clrf bcdHigh ; Clear stor age
clrf bcdLow
clrf thisDig

min10:
movlw .10
subwf inNum,f ; Sub tract 10

316 Chap ter 12

btfsc STATUS,C ; Did sub tract over flow?
goto sum10 ; No. Count sub trac tion
goto fin10

sum10:
incf thisDig,f ; In cre ment digit coun ter
goto min10

; Store 10th digit
fin10:

movlw .10
addwf inNum,f ; Ad just
movf thisDig,w ; Get digit coun ter con tents
movwf bcdHigh ; Store it

; Cal cu late and store low-or der BCD digit
movf inNum,w ; Store units value
movwf bcdLow ; Store digit

; Com bine both dig its
swapf bcdHigh,w ; High nib ble to HOBs
iorwf bcdLow,w ; ORin low nib ble
re turn

Be cause the pro gram re quires dis play ing val ues stored in BCD for mat by the 6355
hard ware, a rou tine is nec es sary to con vert two packed BCD dig its into two ASCII
dec i mal dig its. The con ver sion logic is quite sim ple: the BCD digit is con verted to
ASCII by add ing 0x30 to its value. All that is nec es sary is to shift and mask-out bits
in the packed BCD op er and so as to iso late each digit and then add 0x30 to each
one. The code is as follows:

;==============================
; BCD to ASCII dec i mal
; con ver sion
;==============================
; ON ENTRY:
; w reg is ter has two packed BCD dig its
; ON EXIT:
; out put vari ables asc10, and asc1 have
; two ASCII dec i mal dig its
;
; Rou tine logic:
; The low or der nib ble is iso lated and the value 0x30
; added to con vert to ASCII. The re sult is stored in
; the vari able asc1. Then the same is done to the
; high-or der nib ble and the re sult is stored in the
; vari able asc10
;
Bcd2asc:

movwf store1 ; Save in put
andlw b'00001111' ; Clear high nib ble
addlw 0x30 ; Con vert to ASCII
movwf asc1 ; Store re sult
swapf store1,w ; Re cover in put and swap dig its
andlw b'00001111' ; Clear high nib ble
addlw 0x30 ; Con vert to ASCII
movwf asc10 ; Store re sult
re turn

 Real-Time Clocks 317

Fig ure 12.4 Real-time clock dem on stra tion cir cuit.

12.3 RTC Dem on stra tion Cir cuit and Pro gram

No tice that the cir cuit in Fig ure 12.4 is a sub set of Demo Board 18F452, which can be
used to test the sam ple code listed in the fol low ing sec tion.

12.3.1 RTC_F18_6355.asm Pro gram

The dem on stra tion pro gram named RTC_F18_6355.asm listed in this sec tion and
found in the book's soft ware pack age dem on strates pro gram ming of the RTC 6355 IC.
Code reads the clock data in an end less loop. The hours, min utes, and sec onds are dis -
played on the sec ond line of the LCD as fol lows:

318 Chap ter 12

18F452

+5v

R
=

1
0
K

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

RESET

+5v

LCD RS

LCD E

LCD RW

LCD data 7

LCD data 6

LCD data 5

LCD data 4

RB0

RB1

RB2

RTC IO

RTC CE

RTC CLK

RTC DATA

RB3

LCD data 3

LCD data 2

LCD data 0

LCD data 1

+5v

Picvue LCD - PVC160206QYL04 - 2 rows x 16

LCD wiring

Top view

4 Mhz Osc

1

2
13

data 7
data 5
data 3
data 1

E
RS

data 6
data 4
data 2
data 0
RW

Vdd +5v

1

14

100 Ohm

2

32.768 kHz
Crystal

NJU6355ED

+5v

1

2

3

4

8

7

6

5

+5v

DATA

CLK

CE

IO

X1

X2

GND

Real-time Clock (RB0-RB3)

MCLR/VPP

RAO/ANO

RA1/AN1

RA2/AN2A/REF-

RA3/AN3A/REF+

RA4/TOCKI

RA5/AN4/SS/LVDIN

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1/CLKI

OSC2/CLKO/RA6

RCO/T1OSO/TICK1

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RDO/PSPO

RD1/PSP1

RB7/PGD

RB6/PGC

RB5/PGM

RB4

RB3/CCP2*

RB2/INT2

RB1/INT1

R BO/INTO

Vdd

Vss

RD7/PSP7

RD6/PSP6

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2

 H:xx M:xx S:xx

Where xx rep re sents the two BCD dig its read from the clock and con verted to ASCII
dec i mal for dis play.

Code De tails

The most im por tant op er a tions per formed by the RTC_F18_6355 pro gram were dis -
cussed ear lier or were cov ered in pre vi ous chap ters. Nev er the less, the code con tains
a few de tails that merit ad di tional com ment.

The pro gram uses sev eral #de fine state ments to cre ate con stants that are later
ref er enced in the code. For ex am ple,

; De fines from real-time clock wir ing di a gram
; all lines in port B
#de fine DAT 0 ;|
#de fine CLK 1 ;| -- from cir cuit wir ing di a gram
#de fine CE 2 ;|
#de fine IO 3 ;|

These state ments as so ci ate nu meric val ues from the wir ing di a gram with the
stan dard names used by the real-time clock doc u men ta tion. Hence forth the nu meric
val ues can be sub sti tuted with the sym bolic names, thereby im prov ing the read abil -
ity and re li abil ity of the code, as in the following fragment:

; Writ ing to the 6355 re quires that the CLK bit be held
; low while the IO and CE lines are high

bcf PORTB,CLK ; CLK low
call LCD_de lay_2
bsf PORTB,IO ; IO high
call LCD_de lay_2
bsf PORTB,CE ; CE high

The ap pli ca tion also uses #de fine state ments to cre ate other con stants, such as
the LCD lines and ad dresses and the val ues used in the ini tial iza tion of the RTC. No -
tice that the use of #de fine state ments (or of equiv a lent equates) makes the code
eas ier to test and to mod ify be cause all in stances of the con stant or la bel are found
in a sin gle location in the code.

Code List ing
; File name: RTC_18F_6355.asm
; Last Up date: March 8, 2013
; Au thor: Julio Sanchez
; Pro ces sor: 18F452
; State:
; March 8/13 - Demo Board 18F452 OK
;
; De scrip tion:
; Pro gram to dem on strate the NJU6355 Real Time Clock IC.
; Pro gram uses LCD to dis play re sults of hours, min utes,
; and sec onds, as fol lows:
;
; |=====================|
; | Real time clock |

 Real-Time Clocks 319

; | H:03 M:02 S:01 |
; |=====================|
;
; Ini tial iza tion val ues are in #de fine state ments that start
; with i, such as iYear, iMonth, etc.
;
; WARNING:
; Code as sumes 4MHz clock. De lay rou tines must be
; ed ited for faster clock
;===
; Cir cuit
;===
; 18F452
; +------------------+
;+5v-res0-ICD2 mc -| 1 !MCLR PGD 40|
; | 2 RA0 PGC 39|
; | 3 RA1 RB5 38|
; | 4 RA2 5B4 37|
; | 5 RA3 RB3 36|==> RTC IO
; | 6 RA4 RB2 35|==> RTC CE
; | 7 RA5 RB1 34|<== RTC CLK
; LCD RS <==| 8 RE0 RB0 33|<== RTC DATA
; LCD E <==| 9 RE1 32|-------+5v
; LCD RW ==>|10 RE2 31|--------GR
; +5v--------|11 RD7 30|==> LCD data 7
; GR---------|12 RD6 29|==> LCD data 6
; osc ---|13 OSC1 RD5 28|==> LCD data 5
; osc ---|14 OSC2 RD4 27|==> LCD data 4
; |15 RC0 RC7 26|
; |16 RC1 RC6 25|
; |17 RC2 RC5 24|==>
; |18 RC3 RC4 23|==>
; LCD data 0 <==|19 RD0 RD3 22|==> LCD data 3
; LCD data 1 <==|20 RD1 RD2 21|==> LCD data 2
; +------------------+
; Leg end:
; LCD E = LCD sig nal en able
; LCD RW = LCD read/write
; LCD RS = LCD reg is ter se lect
; GR = ground
; RTC DATA = se rial timer I/O
; RTC CLK = Clock in put
; RTC CE = In put en able
; RTC IO = In put/out put se lect
;==

list p=18f452
; In clude file, change di rec tory if needed
in clude "p18f452.inc"

; ==
; con fig u ra tion bits
;===
; Con fig u ra tion bits set as re quired for MPLAB ICD 2
 config OSC = XT ; As sumes high-speed res o na tor

config WDT = OFF ; No watch dog timer
config LVP = OFF ; No low volt age pro tec tion
config DEBUG = OFF ; No back ground debugger

 config PWRT = ON ; Power on timer en abled
 config CP0 = OFF ; Code pro tec tion block x = 0-3
 config CP1 = OFF
 config CP2 = OFF

320 Chap ter 12

 config CP3 = OFF
 config WRT0 = OFF ; Write pro tec tion block x = 0-3
 config WRT1 = OFF
 config WRT2 = OFF
 config WRT3 = OFF
 config EBTR0 = OFF ; Ta ble read pro tec tion block x = 0-3
 config EBTR1 = OFF
 config EBTR2 = OFF
 config EBTR3 = OFF
;
; Turn off bank ing er ror mes sages

errorlevel -302
;==
; con stant def i ni tions
; for PIC-to-LCD pin wir ing and LCD line ad dresses
;==
; LCD used in the demo board is 2 lines by 16 char ac ters
#de fine E_line 1 ;|
#de fine RS_line 0 ;| -- from wir ing di a gram
#de fine RW_line 2 ;|
; LCD line ad dresses (from LCD data sheet)
#de fine LCD_1 0x80 ; First LCD line con stant
#de fine LCD_2 0xc0 ; Sec ond LCD line con stant
; De fines from real-time clock wir ing di a gram
; all lines in port B
#de fine DAT 0 ;|
#de fine CLK 1 ;| -- from cir cuit wir ing di a gram
#de fine CE 2 ;|
#de fine IO 3 ;|
;
; De fines for RTC ini tial iza tion (val ues are ar bi trary)
#de fine iYear .7
#de fine iMonth .6
#de fine iDay .5
#de fine iDoW .4
#de fine iHour .3
#de fine iMin .2
#de fine iSec .1
;======================
; timer con stants
;======================
; Three timer con stants are de fined in or der to im ple ment
; a given de lay. For ex am ple, a de lay of one-half sec ond
; in a 4MHz ma chine re quires a count of 500,000, while
; a de lay of one-tenth sec ond re quires a count of 10,000.
; These num bers are con verted to hex a dec i mal so they can
; be in stalled in three con stants, for ex am ple:
; 1,000,000 = 0x0f4240 = one sec ond at 4MHz
; 500,000 = 0x07a120 = one-half sec ond
; 250,000 = 0x03d090 = one-quar ter sec ond
; 100,000 = 0x0186a0 = one-tenth sec ond at 4MHz
; Note: The con stant that de fine the LCD dis play line
; ad dresses have the high-or der bit set in
; or der to faciliate the con trol ler com mand
; Val ues for one-tenth sec ond in stalled in con stants
; as fol lows:
; 500,000 = 0x01 0x86 0xa0
; ---- ---- ----
; | | |___ lowCnt
; | |________ midCnt

 Real-Time Clocks 321

; |_____________ highCnt
;
#de fine highCnt 0x01
#de fine midCnt 0x86
#de fine lowCnt 0xa0

;===
; vari ables in PIC RAM
;===
; Re serve 32 bytes for string buffer

cblock 0x000
strData
endc

; Re serve three bytes for ASCII dig its
cblock 0x22
asc100
asc10
asc1

; Con tinue with lo cal vari ables
countH
countM
countL
com_code
char_count
char_save
count1 ; Coun ter # 1
count2 ; Coun ter # 2
count3 ; Coun ter # 3
in dex ; In dex into text ta ble (also used

; for aux il iary stor age)
store1 ; Lo cal tem po rary stor age
store2 ; Stor age # 2

; Stor age for BCD dig its
bcdLow ; low-or der nib ble of packed BCD
bcdHigh ; High-or der nib ble

; Vari ables for Real-Time Clock
year
month
day
dayOfWeek ; Sunday to Sat ur day (1 to 7)
hour
min utes
sec onds
temp1
coun ter

; Stor age for BCD con ver sion rou tine
inNum ; Source op er and
thisDig ; Digit coun ter
endc

;===
; pro gram
;===
; Start at the re set vec tor
 org 0x000

goto main
; No in ter rupts in this ap pli ca tion
 org 0x008
 retfie
 org 0x018

322 Chap ter 12

 retfie
;============================
; ta ble in pro gram mem ory
;============================

org 0x100
msgTable:

db "Real time clock " ; off set 0
db "H: M: S: " ; off set 16

;off sets | | |
; | | |____ msgTable + 29
; | |_________ msgTable + 24
; |______________ msgTable + 19
; Start ap pli ca tion be yond vec tor area

org 0x200
main:

nop
nop

; Set BSR for bank 0 op er a tions
movlb 0 ; Bank 0

; Init Port A for dig i tal op er a tion
 clrf PORTA,0
 clrf LATA,0
; Port sum mary:
; PORTD 0-7 OUTPUT
; PORTE 0 1 2 OUTPUT
; ADCON1 is the con fig u ra tion reg is ter for the A/D
; func tions in Port A. A value of 0b011x sets all
; lines for dig i tal op er a tion
 movlw B'00000110' ; Dig i tal mode
 movwf ADCON1,0
; Ini tial ize all lines in PORT D and E for out put

clrf TRISD ; Port C tris reg is ter
 clrf TRISE
; Clear all out put lines
 clrf PORTD
 clrf PORTE
;==============================
; setup Timer0 as coun ter
; 8-bit mode
;==============================
; Prescaler is as signed to Timer0 and initialzed
; to 2:1 rate
; Setup the T0CON reg is ter
; |------------- On/Off con trol
; | 1 = Timer0 en abled
; ||------------ 8/16 bit mode se lect
; || 1 = 8-bit mode
; |||----------- Clock source
; ||| 0 = in ter nal clock
; ||||---------- Source edge se lect
; |||| 1 = high-to-low
; |||||--------- Prescaler as sign ment
; ||||| 0 = prescaler as signed
; |||||||| ----- Prescaler se lect
; |||||||| 1:2 rate

movlw b'11010000'
 movwf T0CON
; Clear reg is ters
 clrf TMR0L
 clrwdt ; Clear watch dog timer

 Real-Time Clocks 323

; Clear vari ables
 clrf com_code
;==========================
; init LCD
;==========================
; Wait and ini tial ize HD44780
 call De lay

call InitLCD ; Do forced ini tial iza tion
call De lay

; Move pro gram mem ory ta ble msgTable to RAM buffer
; named strData lo cated at RAM 0x000

call Msg2Data
; Set RS line for data

bsf PORTE,RS_line ; Setup for data
call De lay ; De lay
call RAM2LCDLine1 ; Dis play top LCD line
call RAM2LCDLine2 ; Sec ond LCD line

;===============================
; real-time clock pro cess ing
;===============================
; Ini tial ize real-time clock

call initRTC ; Ini tial ize vari ables
call setRTC ; Start clock
call de lay_5 ; Wait for op er a tion to con clude

newTime:
; Get vari ables from RTC

call Get_Time
call de lay_5 ; Wait

;==========================
; hours
;==========================

movf hour,w ; Get hours
call Bcd2asc ; Con ver sion rou tine

; At this point three ASCII dig its are stored in lo cal
; vari ables. Move dig its to dis play area

movf asc1,w ; Unit digit
movwf .19 ; Store in buffer
movf asc10,w ; Same with other digit
movwf .18
call de lay_5

;==========================
; min utes
;==========================

movf min utes,w
call Bcd2asc ; Con ver sion rou tine

; At this point three ASCII dig its are stored in lo cal
; vari ables. Move two dig its to dis play area

movf asc1,w ; Unit digit
movwf .24 ; Store in buffer
movf asc10,w ; same with other digit
movwf .23
call de lay_5

;===========================
; sec onds
;===========================

movf sec onds,w
call Bcd2asc ; Con ver sion rou tine

; Move dig its to dis play area
movf asc1,w ; Unit digit
movwf .29 ; Store in buffer

324 Chap ter 12

movf asc10,w ; same with other digit
movwf .28
call de lay_5

; Dis play sec onds LCD line
call RAM2LCDLine2 ; Sec ond LCD line
goto newTime

;==
;==
; P r o c e d u r e s
;==
;==
;================================
; INITIALIZE LCD
;================================
InitLCD
; Ini tial iza tion for Densitron LCD mod ule as fol lows:
; 8-bit in ter face
; 2 dis play lines of 16 char ac ters each
; cur sor on
; left-to-right in cre ment
; cur sor shift right
; no dis play shift
;***********************|
; COMMAND MODE |
;***********************|

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low for com mand
bcf PORTE,RW_line ; Write mode
call de lay_168 ;de lay 125 mi cro sec onds

;***********************|
; FUNCTION SET |
;***********************|

movlw 0x38 ; 0 0 1 1 1 0 0 0 (FUNCTION SET)
; | | | |__ font se lect:
; | | | 1 = 5x10 in 1/8 or 1/11 dc
; | | | 0 = 1/16 dc
; | | |___ Duty cy cle se lect
; | | 0 = 1/8 or 1/11
; | | 1 = 1/16 (mul ti ple lines)
; | |___ In ter face width
; | 0 = 4 bits
; | 1 = 8 bits
; |___ FUNCTION SET COMMAND

movwf PORTD ;0011 1000
call pulseE ;pulseE and de lay

;***********************|
; DISPLAY ON/OFF |
;***********************|

movlw 0x0a ; 0 0 0 0 1 0 1 0 (DISPLAY ON/OFF)
; | | | |___ Blink char ac ter
; | | | 1 = on, 0 = off
; | | |___ Curson on/off
; | | 1 = on, 0 = off
; | |____ Dis play on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

movwf PORTD

 Real-Time Clocks 325

call pulseE ;pulseE and de lay

;***********************|
; DISPLAY AND CURSOR ON |
;***********************|

movlw 0x0c ; 0 0 0 0 1 1 0 0 (DISPLAY ON/OFF)
; | | | |___ Blink char ac ter
; | | | 1 = on, 0 = off
; | | |___ Cursor on/off
; | | 1 = on, 0 = off
; | |____ Dis play on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

movwf PORTD
call pulseE ;pulseE and de lay

;***********************|
; ENTRY MODE SET |
;***********************|

movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
; | | |___ dis play shift
; | | 1 = shift
; | | 0 = no shift
; | |____ cur sor in cre ment mode
; | 1 = left-to-right
; | 0 = right-to-left
; |___ COMMAND BIT

movwf PORTD ;00000110
call pulseE

;***********************|
; CURSOR/DISPLAY SHIFT |
;***********************|

movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY SHIFT)
 ; | | | |_|___ don't care

; | |_|__ cur sor/dis play shift
; | 00 = cur sor shift left
; | 01 = cur sor shift right
; | 10 = cur sor and dis play
; | shifted left
; | 11 = cur sor and dis play
; | shifted right
; |___ COMMAND BIT

movwf PORTD ;0001 1111
call pulseE

;***********************|
; CLEAR DISPLAY |
;***********************|

movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)
; |___ COMMAND BIT

movwf PORTD ;0000 0001
;

call pulseE
call de lay_28ms ;de lay 5 mil li sec onds af ter init
re turn

;==
; Time De lay and Pulse Pro ce dures

326 Chap ter 12

;==
; Pro ce dure to de lay 42 x 4 = 168 ma chine cy cles
; On a 4MHz clock the in struc tion rate is 1 mi cro sec ond
; 42 x 4 x 1 = 168 mi cro sec onds
de lay_168

movlw D'42' ; Re peat 42 ma chine cy cles
movwf count1 ; Store value in coun ter

re peat
decfsz count1,f ; Dec re ment coun ter
goto re peat ; Con tinue if not 0
re turn ; End of de lay

;
; Pro ce dure to de lay 168 x 168 mi cro sec onds
; = 28.224 mil li sec onds
de lay_28ms

movlw D'42' ; Coun ter = 41
movwf count2 ; Store in vari able

de lay
call de lay_168 ; De lay
decfsz count2,f ; 40 times = 5 mil li sec onds
goto de lay
re turn ; End of de lay

;========================
; pulse E line
;========================
pulseE

bsf PORTE,E_line ;pulse E line
bcf PORTE,E_line
call de lay_168 ;de lay 168 mi cro sec onds
re turn

;=========================
; LCD com mand
;=========================
LCD_com mand:
; On en try:
; vari able com_code cntains com mand code for LCD
; Set up for write op er a tion

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low, set up for con trol
call de lay_168 ; de lay 125 mi cro sec onds

; Write com mand to data port
 movf com_code,0 ; Com mand code to W

movwf PORTD
call pulseE ; Pulse and de lay

; Set RS line for data
bsf PORTE,RS_line ; Setup for data

 re turn

;==================================
; vari able-lapse de lay pro ce dure
; us ing Timer0
;==================================
; ON ENTRY:
; Vari ables countL, countM, and countH hold
; the low-, mid dle-, and high-or der bytes
; of the de lay pe riod, in timer units
; Rou tine logic:
; The prescaler is as signed to timer0 and setup so

 Real-Time Clocks 327

; that the timer runs at 1:2 rate. This means that
; ev ery time the coun ter reaches 128 (0x80) a to tal
; of 256 ma chine cy cles have elapsed. The value 0x80
; is de tected by test ing bit 7 of the coun ter
; reg is ter.
De lay:
 call setVars
; Note:
; The TMR0L reg is ter pro vides the low-or der level
; of the count. Because the coun ter counts up from zero,
; code must pre-in stall a value in the coun ter reg is ter
; that rep re sents one-half the num ber of timer
; it er a tions (pre-scaler is in 1:2 mode) re quired to
; reach a count of 128. For ex am ple: if the value in
; the low coun ter vari able is 140
; then 140/2 = 70. 128 - 70 = 58
; In other words, when the timer coun ter reaches 128,
; 70 * 2 (140) timer beats would have elapsed.
; For mula:
; Value in TMR0L = 128 - (x/2)
; where x is the num ber of it er a tions in the low-level
; coun ter vari able
; First cal cu late xx/2 by bit shift ing

rrcf countL,f ; Di vide by 2
; now sub tract 128 - (x/2)
 movlw d'128'
; Clear the bor row bit (mapped to Carry bit)
 bcf STATUS,C
 subfwb countL,w
; Now w has ad justed re sult. Store in TMR0L

movwf TMR0L
; Rou tine tests timer over flow by test ing bit 7 of
; the TMR0L reg is ter.
cy cle:

btfss TMR0L,7 ; Is bit 7 set?
goto cy cle ; Wait if not set

; At this point TMR0 bit 7 is set
; Clear the bit

bcf TMR0L,7 ; All other bits are pre served
; Sub tract 256 from beat coun ter by dec re ment ing the
; mid-or der byte

decfsz countM,f
goto cy cle ; Con tinue if mid-byte not zero

; At this point the mid-or der byte has over flowed.
; High-or der byte must be dec re ment ed.

decfsz countH,f
goto cy cle

; At this point the time cy cle has elapsed
re turn

;==============================
; set reg is ter vari ables
;==============================
; Pro ce dure to ini tial ize lo cal vari ables for a
; de lay pe riod de fined in lo cal con stants highCnt,
; midCnt, and lowCnt.
setVars:

movlw highCnt ; From con stants
movwf countH
movlw midCnt
movwf countM

328 Chap ter 12

movlw lowCnt
movwf countL
re turn

;=======================
; Pro ce dure to de lay
; 42 mi cro sec onds
;=======================
de lay_125

movlw D'42' ; Re peat 42 ma chine cy cles
movwf count1 ; Store value in coun ter

repeat2
decfsz count1,f ; Dec re ment coun ter
goto repeat2 ; Con tinue if not 0
re turn ; End of de lay

;=======================
; Pro ce dure to de lay
; 5 mil li sec onds
;=======================
de lay_5

movlw D'41' ; Coun ter = 41
movwf count2 ; Store in vari able

delay2
call de lay_125 ; De lay
decfsz count2,f ; 40 times = 5 mil li sec onds
goto delay2
re turn ; End of de lay

;========================

;==========================
; get ta ble char ac ter
;==========================
; Lo cal pro ce dure to get a sin gle char ac ter from a lo cal
; ta ble (msgTable) in pro gram mem ory. Vari able in dex holds
; off set into ta ble
tableReadChar:
 movlw UPPER msgTable
 movwf TBLPTRU
 movlw HIGH msgTable ; Get ad dress of Ta ble
 movwf TBLPTRH ; Store in ta ble pointer low reg is ter
 movlw LOW msgTable ; Get ad dress of Ta ble
 movwf TBLPTRL
 movff in dex,WREG ; in dex to W
 addwf TBLPTRL,f ; Add in dex to ta ble pointer low
 clrf WREG ; Clear reg is ter
 addwfc TBLPTRH,F ; Add pos si ble carry
 addwfc TBLPTRU,F ; To both reg is ters
 tblrd * ; Read byte from ta ble (into TABLAT)
 movff TABLAT,WREG ; Move TABLAT to W
 re turn

;==
; con ver sion pro ce dures
;==
;==============================
; BCD to ASCII dec i mal
;==============================
; ON ENTRY:
; WREG has two packed BCD dig its

 Real-Time Clocks 329

; ON EXIT:
; out put vari ables asc10, and asc1 have
; two ASCII dec i mal dig its
; Rou tine logic:
; The low or der nib ble is iso lated and the value 30H
; added to con vert to ASCII. The re sult is stored in
; the vari able asc1. Then the same is done to the
; high-or der nib ble and the re sult is stored in the
; vari able asc10

Bcd2asc:
movwf store1 ; Save in put
andlw b'00001111' ; Clear high nib ble
addlw 0x30 ; Con vert to ASCII
movwf asc1 ; Store re sult
swapf store1,w ; Re cover in put and swap dig its
andlw b'00001111' ; Clear high nib ble
addlw 0x30 ; Con vert to ASCII
movwf asc10 ; Store re sult
re turn

;
;============================
; bi nary to BCD con ver sion
;============================
; Con vert a bi nary num ber into two packed BCD dig its
; ON ENTRY:
; w reg is ter has bi nary value in range 0 to 99
; ON EXIT:
; out put vari ables bcdLow and bcdHigh con tain two
; packed un packed BCD dig its
; w con tains two packed BCD dig its
; Rou tine logic:
; The value 10 is sub tracted from the source op er and
; un til the re mainder is < 0 (carry cleared). The num ber
; of sub trac tions is the high-or der BCD digit. 10 is
; then added back to the sub tra hend to com pen sate
; for the last sub trac tion. The fi nal re mainder is the
; low-or der BCD digit
; Vari ables:
; inNum stor age for source op er and
; bcdHigh stor age for high-or der nib ble
; bcdLow stor age for low-or der nib ble
; thisDig Digit coun ter
bin2bcd:

movwf inNum ; Save copy of source value
clrf bcdHigh ; Clear stor age
clrf bcdLow
clrf thisDig

min10:
movlw .10
subwf inNum,f ; Sub tract 10
btfsc STATUS,C ; Did sub tract over flow?
goto sum10 ; No. Count sub trac tion
goto fin10

sum10:
incf thisDig,f ;in cre ment digit coun ter
goto min10

; Store 10th digit
fin10:

movlw .10

330 Chap ter 12

addwf inNum,f ; Ad just for last subtract
movf thisDig,w ; get digit coun ter con tents
movwf bcdHigh ; Store it

; Cal cu late and store low-or der BCD digit
movf inNum,w ; Store units value
movwf bcdLow ; Store digit

; Com bine both dig its
swapf bcdHigh,w ; High nib ble to HOBs
iorwf bcdLow,w ; ORin low nib ble
re turn

;
;==
; 6355 RTC pro ce dures
;==
;============================
; init RTC
;============================
; Pro ce dure to ini tial ize the real-time clock chip. If chip
; is not in i tial ized it will not op er ate and the val ues
; read will be in valid.
; Because the 6355 op er ates in BCD for mat the stored val ues must
; be con verted to packed BCD.
; Ac cord ing to wir ing di a gram
; NJU6355 In ter face for set ting time:
; DAT PORTB,0 Out put
; CLK PORTB,1 Out put
; CE PORTB,2 Out put
; IO PORTB,3 Out put
setRTC:

clrf TRISB
; Writ ing to the 6355 re quires that the CLK bit be held
; low while the IO and CE lines are high

bcf PORTB,CLK ; CLK low
call de lay_5
bsf PORTB,IO ; IO high
call de lay_5
bsf PORTB,CE ; CE high

; Data is stored in RTC as fol lows:
; year 8 bits (0 to 99)
; month 8 bits (1 to 12)
; day 8 bits (1 to 31)
; dayOfWeek 4 bits (1 to 7)
; hour 8 bits (0 to 23)
; min utes 8 bits (0 to 59)
; ======
; To tal 44 bits
; Sec onds can not be writ ten to RTC. RTC sec onds reg is ter
; is au to mat i cally in i tial ized to zero

movf year,w ; Get item from stor age
call bin2bcd ; Con vert to BCD
movwf temp1
call writeRTC

movf month,w
call bin2bcd
movwf temp1
call writeRTC

movf day,w
call bin2bcd

 Real-Time Clocks 331

movwf temp1
call writeRTC

movf dayOfWeek,w ; dayOfWeek of week is 4-bits
call bin2bcd
movwf temp1
call write4RTC

movf hour,w
call bin2bcd
movwf temp1
call writeRTC

movf min utes,w
call bin2bcd
movwf temp1
call writeRTC

; Done
bcf PORTB,CLK ; Hold CLK line low
call de lay_5
bcf PORTB,CE ; and the CE line

 ; to the RTC
call de lay_5
bcf PORTB,IO ; RTC in out put mode
re turn

;============================
; read RTC data
;============================
; Pro ce dure to read the cur rent time from the RTC and store
; data (in packed BCD for mat) in lo cal time reg is ters.
; Ac cord ing to wir ing di a gram
; NJU6355 In ter face for read op er a tions:
; DAT PORTB,0 In put
; CLK PORTB,1 Out put
; CE PORTB,2 Out put
; IO PORTB,3 Out put
Get_Time
; Clear port B

movlw b'00000000'
movwf PORTB

; Make data line in put
movlw b'00000001'
movwf TRISB

; Read ing RTC data re quires that the IO line be low and the
; CE line be high. CLK line is held low

bcf PORTB,CLK ; CLK low
call de lay_125
bcf PORTB,IO ; IO line low
call de lay_125
bsf PORTB,CE ; and CE line high

; Data is read from RTC as fol lows:
; year 8 bits (0 to 99)
; month 8 bits (1 to 12)
; day 8 bits (1 to 31)
; dayOfWeek 4 bits (1 to 7)
; hour 8 bits (0 to 23)
; min utes 8 bits (0 to 59)
; sec onds 8 bits (0 to 59)
; ======
; To tal 52 bits

332 Chap ter 12

call readRTC
movwf year
call de lay_125

call readRTC
movwf month
call de lay_125

call readRTC
movwf day
call de lay_125

; dayOfWeek of week is a 4-bit value
call read4RTC
movwf dayOfWeek
call de lay_125

call readRTC
movwf hour
call de lay_125

call readRTC
movwf min utes
call de lay_125

call readRTC
movwf sec onds

bcf PORTB,CE ; CE line low to end out put
re turn

;============================
; read 4/8 bits from RTC
;============================
; Pro ce dure to read 4/8 bits stored in 6355 reg is ters
; Value re turned in w reg is ter
read4RTC

movlw .4 ; 4 bit read
goto anyBits

readRTC
movlw .8 ; 8 bits read

anyBits:
movwf coun ter

; Read 6355 read op er a tion re quires the IO line be set low
; and the CE line high. Data is read in the fol low ing or der:
; year, month, day, day-of-week, hour, min utes, sec onds
readBits:

bsf PORTB,CLK ; Set CLK high to val i date data
bsf STATUS,C ; Set the carry flag (bit = 1)

; Op er a tion:
; If data line is high, then bit read is a 1-bit
; oth er wise bit read is a 0-bit

btfss PORTB,DAT ; Is data line high?
; Leave carry set (1 bit) if

high
bcf STATUS,C ; Clear the carry bit (make bit 0)

; At this point the carry bit matches the data line
bcf PORTB,CLK ; Set CLK low to end read

; The carry bit is now ro tated into the temp1 reg is ter
rrcf temp1,1

 Real-Time Clocks 333

decfsz coun ter,1 ; Dec re ment the bit coun ter
goto readBits ; Con tinue if not last bit

; At this point all bits have been read (8 or 4)
movf temp1,0 ; Re sult to w
re turn

;============================
; write 4/8 bits to RTC
;============================
; Pro ce dure to write 4 or 8 bits to the RTC reg is ters
; ON ENTRY:
; temp1 reg is ter holds value to be writ ten
; ON EXIT:
; noth ing
write4RTC

movlw .4 ; Init for 4 bits
goto allBits

writeRTC
movlw .8 ; Init for 8 bits

allBits:
movwf coun ter ; Store in bit coun ter

writeBits:
bcf PORTB,CLK ; Clear the CLK line
call de lay_5 ; Wait
bsf PORTB,DAT ; Set the data line to RTC
btfss temp1,0 ; Send LSB
bcf PORTB,DAT ; Clear data line
call de lay_5 ; Wait for op er a tion to com plete
bsf PORTB,CLK ; Bring CLK line high to val i date
rrcf temp1,f ; Ro tate bits in stor age
decfsz coun ter,1 ; Dec re ment bit coun ter
goto writeBits ; Con tinue if not last bit
re turn

;============================
; init time vari ables
;============================
; Pro ce dure to ini tial ize time vari ables for test ing
; Con stants used in ininitialization are lo cated in
; #de fine state ments.
initRTC:

movlw iYear
movwf year
movlw iMonth
movwf month
movlw iDay
movwf day
movlw iDoW
movwf dayOfWeek
movlw iHour
movwf hour
movlw iMin
movwf min utes
movlw iSec
movwf sec onds
re turn

;===============================
; Test string from pro gram
; to data mem ory

334 Chap ter 12

;===============================
Msg2Data:
; Pro ce dure to store in PIC RAM buffer at ad dress 0x000 the
; 32-byte mes sage con tained in the code area la beled
; msgTable
; ON ENTRY:
; in dex is lo cal vari able that hold off set into
; text ta ble. This vari able is also used for
; tem po rary stor age of off set into buffer
; char_count is a coun ter for the 32 char ac ters
; to be moved
; tableReadChar is a pro ce dure that re turns the
; string at the off set stored in the in dex
; vari able
; ON EXIT:
; Text mes sage stored in buffer
;
; Store 12-bit ad dress in FSR0

lfsr 0,0x000 ; FSR0 = 0x000
; Ini tial ize in dex for text string ac cess

clrf in dex
movlw .32 ; Char ac ters to move'
movff WREG,char_count ; To coun ter reg is ter

readThenWrite:
call tableReadChar ; Lo cal pro ce dure

; WREG now holds char ac ter from ta ble
movff WREG,POSTINC0 ; In di rect write and bump

; pointer
incf in dex ; Next char ac ter
decfsz char_count ; Dec re ment coun ter
goto readThenWrite
re turn

;===============================
; Dis play RAM ta ble at LCD 1
;===============================
; Rou tine to dis play 16 char ac ters on LCD line 1
; from a RAM ta ble start ing at ad dress 0x000
; ON ENTRY:
RAM2LCDLine1:
; Set vari ables

movlw .16 ; Count
movff WREG,char_count ; To coun ter

; Store 12-bit RAM ta ble ad dress in FSR0
lfsr 0,0x000

; Set con trol ler to first dis play line
movlw LCD_1 ; Ad dress + off set into line

 movwf com_code
 call LCD_com mand ; Lo cal pro ce dure
; Set RS line for data

bsf PORTE,RS_line ; Setup for data
call De lay ; De lay

; Re trieve mes sage from pro gram mem ory and store in LCD
ReadAndDisplay0:

movff POSTINC0,WREG ; Read byte and bump pointer
; Char ac ter byte in WREG
 movwf PORTD
 call pulseE

decfsz char_count ; Dec re ment coun ter
goto ReadAndDisplay0

 Real-Time Clocks 335

re turn

;===============================
; Dis play RAM ta ble at LCD 2
;===============================
; Rou tine to dis play 16 char ac ters on LCD line 2
; from a RAM ta ble start ing at ad dress 0x010
; ON ENTRY:
; in dex holds the off set into the text string in RAM

RAM2LCDLine2: ; Dis play sec ond line
; Set vari ables

movlw .16 ; Count
movff WREG,char_count ; To coun ter

; Store 12-bit RAM ta ble ad dress in FSR0
lfsr 0,0x010 ; Test off set

; Set con trol ler to sec ond dis play line
movlw LCD_2 ; Ad dress + off set into line

 movwf com_code
 call LCD_com mand ; Lo cal pro ce dure
; Set RS line for data

bsf PORTE,RS_line ; Setup for data
call De lay

;
ReadAndDisplay2:

movff POSTINC0,WREG ; Read byte and bump pointer
; Char ac ter byte in WREG
 movwf PORTD
 call pulseE

decfsz char_count ; Dec re ment coun ter
goto ReadAndDisplay2

 re turn
end

12.4 Real-Time Clocks in C18
C18 pro vides sup port for Timer 1 op er a tions that can be used to im ple ment a real-time
clock us ing a 32-kHz crys tal as an ex ter nal source, as de scribed in Sec tion 12.1. The
timer prim i tives are avail able in the C18 Hard ware Pe riph er als Li brary. These func -
tions were de scribed in Chap ter 9, Sec tion 9.6, and fol low ing. Set ting up an in ter rupt-
driven sys tem in C18 is the topic of Sec tions 8.5 and fol low ing and are dem on strated in
the pro gram dis cussed in Sec tion 12.3.1 later in this chap ter. On the other hand, C18
does not pro vide sup port for the NJU6355 or any other RTC in te grated cir cuit. The
pro gram mer need ing to im ple ment a real-time clock in C18 can ei ther base the soft -
ware on the Timer1 mod ule with an ex ter nal crys tal or de velop prim i tives in C18 and
as sem bly lan guage to op er ate a real-time clock IC such as the NJU6355.

12.4.1 Timer1-Based RTC in C18
If an ap pli ca tion can de vote Port C lines 0 and 1 to in ter fac ing with a 32-kHz crys tal, as
well as one of the in ter rupt sources, then the real-time clock can be coded with out
great ag gra va tion. The as sem bly lan guage code in the pro gram RTC_18F_Timer1.asm
de vel oped in Sec tion 12.1.2 can serve as a model for the equiv a lent C18 ver sion. A C
lan guage pro gram us ing the low-pri or ity vec tor of the 18F452 was de vel oped in Sec -
tion 8.5.2. With very few changes, the code can be mod i fied to sup port the high-pri or -

336 Chap ter 12

ity in ter rupt vec tor. The Timer 1 prim i tives in the C18 Hard ware Pe riph er als Li brary
can be used to set up Timer1 for this ap pli ca tion. Code for set ting up the sys tem is as
fol lows:

/***
 main pro gram
**/
void main(void)
{

// Init Port A for dig i tal op er a tion
PORTA = 0; // Clear port
LATA = 0; // and latch reg is ter
// ADCON1 is the con fig u ra tion reg is ter for the A/D
// func tions in Port A. A value of 0b011x sets all
// lines for dig i tal op er a tion
ADCON1 = 0b00000110;// Code for dig i tal mode
// Initalize di rec tion reg is ters
TRISC = 0x00; // Port C lines for out put
PORTC = 0xff; // Clear port reg is ter
// Setup RB0 in ter rupt
RCONbits.IPEN = 1; // Set in ter rupt pri or ity bit
IPR1bits.TMR1IP; // on Timer1 over flow
TMR1H = 0x00; // Clear coun ters
TMR1L = 0x00;
// Setup the INTCON reg is ter:
// |------------ GIE/GIEH - high-pri or ity in ter rupts
// | en abled
// ||----------- PEIE/GEIL - Pe riph eral en abled
// |||---------- timer0 over flow in ter rupt
// ||||--------- ex ter nal in ter rupt
// |||||-------- port change in ter rupt
// ||||||------- over flow in ter rupt flag
// |||||||------ ex ter nal in ter rupt flag
// ||||||||----- RB4:RB7 in ter rupt flag

 // 11000000 = 0xc0
INTCON = 0xc0;
// Set INTCON2 for fall ing edge
INTCON2bits.INTEDG0 = 0;
// Con fig ure Timer1 for in ter rupt on over flow, 16-bit
// data, ex ter nal clock source and 1:1 prescaler,

 // Timer1 os cil la tor on, and no syn chro ni za tion
OpenTimer1(

TIMER_INT_ON &
T1_16BIT_RW &

 T1_SOURCE_EXT &
T1_PS_1_1 &
T1_OSC1EN_ON &
T1_SYNC_EXT_OFF);

INTCONbits.TMR0IF = 0; // Clear flag
PIE1bits.TMR1IE = 1; // En able in ter rupt

PORTC = 0xff;

while(1) {
Nop();

}
}

 Real-Time Clocks 337

No tice that the main() func tion in the C_Timer1_RTC.c pro gram hangs up in
an end less loop be cause all the work is done by the in ter rupt han dler, which is
coded as fol lows:

// Pro to type for the high-priority ISR
void high_ISR(void);
// Lo cate the in ter rupt vec tor
#pragma code high_vec tor = 0x08
// Im ple ment a jump to a han dler named high_ISR
// Us ing inline as sem bly lan guage
void high_in ter rupt(void)
{

_asm
goto high_ISR
_endasm

}
// Re store com piler ad dress ing
#pragma code
// De fine and code the han dler
#pragma in ter rupt high_ISR
void high_ISR(void)
{

// Set timer1 to roll over ev ery sec onds
WriteTimer1(0x8000);
PIR1bits.TMR1IF = 0; // Re set in ter rupt
// Test Port C, line 2 to tog gle LED
if(PORTC & 0x4)

PORTC = 0x00; // Turn LEDs off
else

PORTC = 0xff; // Turn LEDs on
}
C_Timer1_RTC.c Code List ing
// Pro ject name: C_Timer1_RTC.mpc
// Source files: C_Timer1_RTC.c
// Date: March 9, 2013
//
// Pro ces sor: PIC 18F452
// En vi ron ment: MPLAB IDE Ver sion 8.86
// MPLAB C-18 Com piler
//
// De scrip tion:
// Dem on stra tion of the Timer1 ex ter nal clock us ing a
// 32 kHz quartz crys tal wired to port C lines 0 and 1.
// Ap pli ca tion tog gles on and off the LEDs wired to port
// c lines 2 and 3, at one sec ond in ter vals. Code uses
// the high-pri or ity in ter rupt as a time keeper.
//
//===
// Cir cuit
//===
// 18F452
// +------------------+
//+5v-res0-ICD2 mc -| 1 !MCLR PGD 40|
// | 2 RA0 PGC 39|
// | 3 RA1 RB5 38|
// | 4 RA2 5B4 37|
// | 5 RA3 RB3 36|
// | 6 RA4 RB2 35|
// | 7 RA5 RB1 34|

338 Chap ter 12

// | 8 RE0 RB0 33|
// | 9 RE1 32|-------+5v
// |10 RE2 31|--------GR
// +5v--------|11 RD7 30|
// GR---------|12 RD6 29|
// osc ---|13 OSC1 RD5 28|
// osc ---|14 OSC2 RD4 27|
// 32khz crys tal ---|15 RC0 RC7 26|
// 32khz crys tal ---|16 RC1 RC6 25|
// LED <==|17 RC2 RC5 24|
// LED <==|18 RC3 RC4 23|
// |19 RD0 RD3 22|
// |20 RD1 RD2 21|
// +------------------+
// Leg end:
// E = LCD sig nal en able
// RW = LCD read/write
// RS = LCD reg is ter se lect
// GR = ground
//
// CRYSTAL FOR TIMER1 OSCILLATOR:
// RC0
// RC1
//
// INCLUDED CODE
#in clude <p18f452.h>
#in clude <tim ers.h>
#in clude <eep.h>

#pragma config OSC = XT // As sumes high-speed res o na tor
#pragma config WDT = OFF // No watch dog timer
#pragma config LVP = OFF // No low volt age pro tec tion
#pragma config DEBUG = OFF // No back ground debugger
#pragma config PWRT = ON // Power on timer en abled
#pragma config CP0 = OFF // Code pro tec tion block x = 0-3
#pragma config CP1 = OFF
#pragma config CP2 = OFF
#pragma config CP3 = OFF
#pragma config WRT0 = OFF // Write pro tec tion block x = 0-3
#pragma config WRT1 = OFF
#pragma config WRT2 = OFF
#pragma config WRT3 = OFF
#pragma config EBTR0 = OFF // Ta ble read pro tec tion block x = 0-3
#pragma config EBTR1 = OFF
#pragma config EBTR2 = OFF
#pragma config EBTR3 = OFF

// Pro to type for the high-priority ISR
void high_ISR(void);
// Lo cate the in ter rupt vec tor
#pragma code high_vec tor = 0x08
// Im ple ment a jump to a han dler named high_ISR
// Us ing inline as sem bly lan guage
void high_in ter rupt(void)
{

_asm
goto high_ISR
_endasm

}

 Real-Time Clocks 339

// Re store com piler ad dress ing
#pragma code
// De fine and code the han dler
#pragma in ter rupt high_ISR
void high_ISR(void)
{

// Set timer1 to roll over ev ery sec onds
WriteTimer1(0x8000);
PIR1bits.TMR1IF = 0; // Re set in ter rupt
// Test Port C, line 2 to tog gle LED
if(PORTC & 0x4)

PORTC = 0x00; // Turn LEDs off
else

PORTC = 0xff; // Turn LEDs on
}

/***
 main pro gram
**/
void main(void)
{

// Init Port A for dig i tal op er a tion
PORTA = 0; // Clear port
LATA = 0; // and latch reg is ter
// ADCON1 is the con fig u ra tion reg is ter for the A/D
// func tions in Port A. A value of 0b011x sets all
// lines for dig i tal op er a tion
ADCON1 = 0b00000110;// Code for dig i tal mode
// Initalize di rec tion reg is ters
TRISC = 0x00; // Port C lines for out put
PORTC = 0xff; // Clear port reg is ter
// Setup RB0 in ter rupt
RCONbits.IPEN = 1; // Set in ter rupt pri or ity bit
IPR1bits.TMR1IP; // on Timer1 over flow
TMR1H = 0x00; // Clear coun ters
TMR1L = 0x00;
// Setup the INTCON reg is ter:
// |------------ GIE/GIEH - high-pri or ity in ter rupts
// | en abled
// ||----------- PEIE/GEIL - Pe riph eral en abled
// |||---------- timer0 over flow in ter rupt
// ||||--------- ex ter nal in ter rupt
// |||||-------- port change in ter rupt
// ||||||------- over flow in ter rupt flag
// |||||||------ ex ter nal in ter rupt flag
// ||||||||----- RB4:RB7 in ter rupt flag

 // b'11000000' = 0xc0
INTCON = 0xc0;
// Set INTCON2 for fall ing edge
INTCON2bits.INTEDG0 = 0;
// Con fig ure Timer1 for in ter rupt on over flow, 16-bit
// data, ex ter nal clock source and 1:1 prescaler,

 // Timer1 os cil la tor on, and no syn chro ni za tion
OpenTimer1(

TIMER_INT_ON &
T1_16BIT_RW &

 T1_SOURCE_EXT &
T1_PS_1_1 &
T1_OSC1EN_ON &

340 Chap ter 12

T1_SYNC_EXT_OFF);
INTCONbits.TMR0IF = 0; // Clear flag
PIE1bits.TMR1IE = 1; // En able in ter rupt

PORTC = 0xff;

while(1) {
Nop();

}

}

 Real-Time Clocks 341

Chap ter 13

An a log Data and De vices

13.1 Op er a tions on Com puter Data

We mea sure nat u ral forces and phe nom ena us ing dig i tal rep re sen ta tions, but nat u ral
events are ac tu ally con tin u ous. Time, pres sure, volt age, cur rent, tem per a ture, hu mid -
ity, grav i ta tional at trac tion — all ex ist as con tin u ous en ti ties that we rep re sent in
volts, pounds, hours, am peres, or de grees, in or der to be able to per form nu mer i cal
cal cu la tions. In other words, nat u ral phe nom ena oc cur in an a log quan ti ties that we
dig i tize in or der to fa cil i tate com put er ized mea sure ments and data pro cess ing.

A po ten ti om e ter in an elec tri cal cir cuit al lows re duc ing the volt age level from the
cir cuit max i mum to ground, or zero level. If we were to mea sure and con trol the ac -
tion of the po ten ti om e ter, we need to quan tify its ac tion into a dig i tal value within
the phys i cal range of the cir cuit. In other words, we need to con vert an an a log quan -
tity that var ies con tin u ously be tween 0 and 5 volts, to a dis crete dig i tal value range
that we can store and pos si bly dis play. If the volt age range of the po ten ti om e ter is
from 5 to 0 volts, we can dig i tize its ac tion into a nu meric range of 0 to 500 units, or
we can mea sure the an gle or ro ta tion of the po ten ti om e ter disk in de grees from 0 to
180. The de vice that per forms ei ther con ver sion is called an A/D or an a log-to-dig i tal
con verter. The re verse pro cess, dig i tal-to-an a log, is also some times nec es sary, al -
though not as of ten as A/D. In this chap ter we ex plore A/D con ver sions in PIC soft -
ware and hard ware.

13.2 18F452 A/D Hard ware

Many PIC microcontrollers, in clud ing the 18F se ries, come with onboard A/D hard -
ware. One of the ad van tages of us ing onboard A/D con vert ers is sav ing in ter face lines.
While a cir cuit that de pends on an A/D con ver sion de vice typ i cally re quires three lines
to in ter face with the microcontroller, a sim i lar cir cuit can be im ple mented in a PIC
with in ter nal A/C con ver sion by sim ply con nect ing the an a log de vice to the cor re -
spond ing PIC port. In the PIC world, where I/O lines are of ten in short sup ply, this ad -
van tage is not in sig nif i cant.

343

The A/D mod ule of 18F452 pro vides 8-bit con ver sion res o lu tion and can re ceive
an a log in put in up to six teen dif fer ent chan nels.The 10-bit An a log-to-Dig i tal (A/D)
Con verter mod ule can have up to six teen an a log in puts. The an a log in put charges a
sam ple and hold ca pac i tor that serves as in put into the con verter. The hard ware
then gen er ates a dig i tal re sult of this an a log level via suc ces sive ap prox i ma tion.
This A/D con ver sion of the an a log in put sig nal re sults in a cor re spond ing 10-bit dig i -
tal num ber. The an a log ref er ence volt ages are soft ware selectable to ei ther the de -
vice's sup ply volt ages (Vdd and Vss) or the volt age level on the AN3/VREF+ and
AN2/VREF pins. The A/D con verter con tin ues to con vert while the de vice is in
SLEEP mode. The A/D mod ule has four reg is ters. These reg is ters are:

13.2.1 A/D Mod ule on the 18F452
The num ber of lines de pends on the spe cific ver sion of the F18 de vice. The de scrip -
tions that fol low re fer spe cif i cally to the 18F452 40-pin de vice. This im ple men ta tion of
the A/D mod ule is com pat i ble with the one in the mid-range PICs such as the 16F877.
The con verter uses a sam ple and hold ca pac i tor to store the an a log charge and per -
forms a suc ces sive ap prox i ma tion al go rithm to pro duce the dig i tal re sult. The con -
verter res o lu tion is 10 bits, which are stored in two 8-bit reg is ters. One of the reg is ters
has only 4 sig nif i cant bits.

The A/D mod ule has high- and low-volt age ref er ence in puts that are se lected by
soft ware. The mod ule can op er ate while the pro ces sor is in SLEEP mode, but only if
the A/D clock pulse is de rived from its in ter nal RC os cil la tor. The mod ule con tains
four reg is ters ac ces si ble to the ap pli ca tion:

• ADRESH - Re sult High Reg is ter

• ADRESL - Re sult Low Reg is ter

• ADCON0 - Con trol Reg is ter 0

• ADCON1 - Con trol Reg is ter 1

Of these, it is the ADCON0 reg is ter that con trols most of the op er a tions of the mod ule.
Port A pins RA0 to RA5 and PORT E pins RE0 to RE2 are mul ti plexed as an a log in put
pins into the A/C mod ule. Fig ure 13.1 shows the reg is ters as so ci ated with A/D mod ule
op er a tions.

Fig ure 13.1 Reg is ters related to A/C module operations.

344 Chap ter 13

ADSC1 ADSC0 CHS2 CHS1 CHS0 GO/DONE ADON

ADFM PCFG3 PCFG2 PCFG1 PCFG0

ADCON0

ADCON1

PIR1

ADRESH

PIE1

ADRESL

INTCON

ADIF

A/D Result Register High Byte

A/D Result Register Low Byte

ADIE

GIE PEIE

7 6 5 4 3 2 1 0 bits
REGISTER

NAME

ADCON0 Reg is ter

The ADCON0 reg is ter is lo cated at ad dress 0xfc2h. Seven of the eight bits are mean ing -
ful in A/D con trol and sta tus op er a tions. Fig ure 13.2 is a bitmap of the ADCON0 reg is -
ter.

Fig ure 13.2 ADCON0 register bitmap.

In Fig ure 13.2, bits 7 and 6, la beled ASCC1 and ADSC0, are the se lec tion bits for
the A/D con ver sion clock. The con ver sion time per bit is de fined as TAD in PIC doc -
u men ta tion. A/D con ver sion re quires a min i mum of 12 TAD in a 10-bit ADC. The
source of the A/D con ver sion clock is soft ware se lected. The four pos si ble options
for TAD are

• Fosc/2

• Fosc/8

• Fosc/32

• In ter nal A/D mod ule RC os cil la tor (var ies be tween 2 and 6 µs)

The con ver sion time is the an a log-to-dig i tal clock pe riod mul ti plied by the num -
ber of bits of res o lu tion in the con verter, plus the two to three ad di tional clock pe ri -
ods for set tling time, as spec i fied in the data sheet of the spe cific de vice. The
var i ous sources for the an a log-to-dig i tal con verter clock rep re sent the main os cil la -

 An a log Data and De vices 345

 ADSC1 ADSC0 CHS2 CHS1 CHS0 GO/DONE ADON

7 6 5 4 3 2 1 0bits:

bit 7-6 ADCS1:ADCS0: A/D Conversion Clock Select bits
 00 = FOSC/2
 01 = FOSC/8
 10 = FOSC/32
 11 = FRC (internal A/D module RC oscillator)
bit 5-3 CHS2:CHS0: Analog Channel Select bits
 000 = channel 0, (RA0=AN0)
 001 = channel 1, (RA1=AN1)
 010 = channel 2, (RA2=AN2)
 011 = channel 3, (RA3=AN3)
 100 = channel 4, (RA5=AN4)
 101 = channel 5, (RE0=AN5) | not active
 110 = channel 6, (RE1=AN6) | in 28-pin
 111 = channel 7, (RE2=AN7) | 16F87x PICS
bit 2 GO/DONE: A/D Conversion Status bit
 If ADON = 1:
 1 = A/D conversion in progress (setting this
 bit starts the A/D conversion)
 0 = A/D conversion not in progress (this bit
 is automatically cleared by hardware when
 the A/D conversion is complete)
bit 1 Unimplemented: Read as '0'
bit 0 ADON: A/D On bit
 1 = A/D converter module is operating
 0 = A/D converter module is shut-off and
 consumes no power

tor fre quency di vided by 2, 8, or 32. The third choice is the use of a ded i cated in ter -
nal RC clock that has a typ i cal pe riod of 2 to 6 µs. Be cause the con ver sion time is
de ter mined by the sys tem clock, a faster clock re sults in a faster con ver sion time.

 The A/D con ver sion clock must be se lected to en sure a min i mum Tad time of 1.6
µs. The for mula for con vert ing pro ces sor speed (in MHz) into Tad mi cro sec onds is
as follows:

 where Tad is A/D con ver sion time, Tosc is the os cil la tor clock fre quency in MHz, and
Tdiv is the di vi sor de ter mined by bits ADSC1 and ADSC0 of the ADCON0 reg is ter. For
ex am ple, in a PIC run ning at 10 MHz, if we se lect the Tosc/8 op tion (di vi sor equal 8),
the A/D con ver sion time per bit is cal cu lated as fol lows:

 In this case, the min i mum rec om mended con ver sion speed of 1.6 µs is achieved.
How ever, in a PIC with an os cil la tor speed of 10 MHz, this op tion pro duces a con ver -
sion speed of 0.8 µs, less than the rec om mended min i mum. In this case, we would
have to se lect the di vi sor 32 op tion, giv ing a con ver sion speed of 3.2 µs.

Ta ble 13.1

A/C Con verter Tad at Var i ous Os cil la tor Speeds

 TAD IN MICROSECONDS
OPERATION ADCS1:ADCS0 20MHZ 10MHZ 5MHZ 1.25MHZ

Fosc/2 00 0.1 0.2 0.4 1.6
Fosc/8 01 0.4 0.8 1.6 6.4
Fosc/32 10 1.6 3.2 6.4 25.6
RC 11 2-6 2-6 2-6 2-6
Note: Val ues in bold are within the rec om mended lim its

In Ta ble 13.1, con verter speeds of less than 1.6 µs or higher than 10 µs are not rec -
om mended. Re call that the Tad speed of the con verter is cal cu lated per bit, so the
to tal con ver sion time in a 10-bit de vice is ap prox i mately the Tad speed mul ti plied by
10 bits, plus three ad di tional cy cles; there fore, a de vice op er at ing at a Tad speed of
1.6 µs re quires 1.6 µs * 13, or 20.8 µs, for the entire conversion.

Bits CHS2 to CHS0 in the ADCON0 reg is ter (see Fig ure 13.2) de ter mine which of
the an a log chan nels is se lected. There are sev eral chan nels for an a log in put but only
one A/2 con verter cir cuitry. So the set ting of this bit field de ter mines which of six or

346 Chap ter 13

Tad
Tosc

Tdiv

= 1

Tad
MHz

= =1
5

8

1 6.

eight pos si ble chan nels is cur rently read by the A/C con verter. An ap pli ca tion can
change the set ting of these bits in or der to read sev eral an a log in puts in suc ces sion.

Bit 2 of the ADCON0 reg is ter, la beled GO/DONE, is both a con trol and a sta tus
bit. Set ting the GO/DONE bit starts A/D con ver sion. Once con ver sion has started,
the bit in di cates if it is still in prog ress. Code can test the sta tus of the GO/DONE bit
in or der to de ter mine if con ver sion has con cluded.

Bit 0 of the ADCON0 reg is ter turns the A/D mod ule on and off. The ini tial iza tion
rou tine of an A/D-en abled ap pli ca tion turns on this bit. Pro grams that do not use the
A/D con ver sion mod ule leave the bit off to con serve power.

ADCON1 Reg is ter

The ADCON1 reg is ter also plays an im por tant role in pro gram ming the A/D mod ule.
Bit 7 of the ADCON1 reg is ter is used to de ter mine the bit jus ti fi ca tion of the dig i tal re -
sult. Be cause the 10-bit re sult is re turned in two 8-bit reg is ters, the six un used bits can
be placed ei ther on the left- or the right-hand side of the 16-bit re sult. If ADCON1 bit 7
is set, then the re sult is right-jus ti fied; oth er wise it is left-jus ti fied. Fig ure 13.3 shows
the lo ca tion of the sig nif i cant bits.

Fig ure 13.3 Left- and right-jus ti fi ca tion of A/D re sult.

One com mon use of right jus ti fi ca tion is to re duce the num ber of sig nif i cant bits
in the con ver sion re sult. For ex am ple, an ap pli ca tion on the 18F452 uses the A/D
con ver sion mod ule but re quires only 8-bit ac cu racy in the re sult. In this case, code
can left-jus tify the con ver sion re sult, read the ADRESH reg is ter, and ig nore the
low-or der bits in the ADRESL reg is ter. By ig nor ing the two low-or der bits, the 10-bit
ac cu racy of the A/D hard ware is re duced to 8 bits and the con verter per forms as an
8-bit ac cu racy unit.

The bit field la beled PCFG3 to PCFG0 in the ADCON1 reg is ter de ter mines port
con fig u ra tion as an a log or dig i tal and the map ping of the pos i tive and neg a tive volt -
age ref er ence pins. The num ber of pos si ble com bi na tions is lim ited by the 4 bits al -
lo cated to this field, so the pro gram mer and cir cuit de signer must se lect the op tion
that is most suited to the ap pli ca tion when the ideal one is not avail able. Ta ble 13.1
shows the port con fig u ra tion op tions.

 An a log Data and De vices 347

V V V V V V V V

0 0 0 0 0 0 V V

V V 0 0 0 0 0 0

V V V V V V V V

ADRESH

ADRESH

Left-justified (ADFM bit = 0)

Right-justified (ADFM bit = 1)

Legend:
 V = valid digit
 0 = digit always cleared

ADRESL

ADRESL

Ta ble 13.1

A/D Con verter Port Con fig u ra tion Op tions

Sup pose a cir cuit that calls for two an a log in puts, wired to ports RA0 and RA1,
with no ref er ence volt ages. In Ta ble 13.1 we can find two op tions that se lect ports
RA0 and RA1 and are an a log in puts: these are the ones se lected with PCFG bits 0100
and 0101. The first op tion also se lects port RA3 as an a log in put, even though not re -
quired in this case. The sec ond one also se lects port RA3 as a pos i tive volt age ref er -
ence, also not required.

Ei ther op tion works in this ex am ple; how ever, any pin con fig ured for an a log in -
put pro duces in cor rect re sults if used as a dig i tal source. There fore, a chan nel con -
fig ured for an a log in put can not be used for non-an a log pur poses. By the same
to ken, a chan nel con fig ured for dig i tal in put should not be used for an a log data be -
cause ex tra cur rent is con sumed by the hard ware. Fi nally, chan nels to be used for
an a log-to-dig i tal con ver sion must be con fig ured for in put in the cor re spond ing TRIS
reg is ter.

SLEEP Mode Op er a tion

The A/D mod ule can be made to op er ate in SLEEP mode. As men tioned pre vi ously,
SLEEP mode op er a tion re quires that the A/D clock source be set to RC by set ting both
ADCS bits in the ADCON0 reg is ter. When the RC clock source is se lected, the A/D
mod ule waits one in struc tion cy cle be fore start ing the con ver sion. Dur ing this pe riod,
the SLEEP in struc tion is ex e cuted, thus elim i nat ing all dig i tal switch ing noise from

348 Chap ter 13

 PCFG3: An7 An6 An5 An4 An3 An2 An1 An0 CHAN/

PCFG0 Re2 Re1 Re0 Ra5 Ra3 Ra2 Ra1 Ra0 Vref+ Vref- Refs

0000 A A A A A A A A VDD VSS 8/0

0001 A A A A Vre+ A A A RA3 VSS 7/1

0010 D D D A A A A A VDD VSS 5/0

0011 D D D A Vre+ A A A RA3 VSS 4/1

0100 D D D D A D A A VDD VSS 3/0

0101 D D D D Vre+ D A A RA3 VSS 2/1

011x D D D D D D D D VDD VSS 0/0

1000 A A A A Vre+ Vre- A A RA3 RA2 6/2

1001 D D A A A A A A VDD VSS 6/0

1010 D D A A Vre+ A A A RA3 VSS 5/1

1011 D D A A Vre+ Vre- A A RA3 RA2 4/2

1100 D D D A Vre+ Vre- A A RA3 RA2 3/2

1101 D D D D Vre+ Vre- A A RA3 RA2 2/2

1110 D D D D D D D A VDD VSS 1/0

1111 D D D D Vre+ Vre- D A RA3 RA2 1/2

Legend:
 D = digital input
 A = analog input
 CHAN/Refs = analog channels/voltage reference inputs

the con ver sion. The com ple tion of the con ver sion is de tected by test ing the GO/DONE
bit. If a dif fer ent clock source is se lected, then a SLEEP in struc tion causes the con ver -
sion-in-prog ress to be aborted and the A/D mod ule to be turned off.

13.2.2 A/D Mod ule Sam ple Cir cuit and Pro gram
The cir cuit in Fig ure 13.4 can be used to dem on strate the A/D con verter mod ule in
18F452 PIC. The cir cuit is also used for dem on strat ing the LM335 tem per a ture sen sor
later in this chap ter.

 Fig ure 13.4 Dem on stra tion cir cuit for A/D conversion module.

The cir cuit in Fig ure 13.4 con tains a 5K po ten ti om e ter wired to an a log port RA1
of an 18F452. The LCD dis play is used to show three dig its, in the range 0 to 255,
that rep re sent the rel a tive po si tion of the po ten ti om e ter's disk. The pro gram named
A2D_Pot2LCD.asm, in this book's on line soft ware and listed later in this chap ter,
uses the built-in A/D mod ule. Pro gram ming the A/D mod ule con sists of the fol low ing
steps:

 An a log Data and De vices 349

18F452

+5v

+5v

R
=

1
0

K

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

RESET

+5v

LCD RS

LCD E

LCD RW

LCD data 7

LCD data 6

LCD data 5

LCD data 4

LCD data 3

LCD data 2

LCD data 0

LCD data 1

+5v

Picvue LCD - PVC160206QYL04- 2 rows x 16

LCD wiring
Top view

4 Mhz Osc

1

2

13

data 7
data 5
data 3
data 1

E
RS

data 6
data 4
data 2
data 0
RW

Vdd +5v

1

14

100 Ohm

2

LM335Z
Temp. Sensor
(flat side view)

MCLR/VPP

RAO/ANO

RA1/AN1

RA2/AN2A/REF-

RA3/AN3A/REF+

RA4/TOCKI

RA5/AN4/SS/LVDIN

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

Vdd

Vss

OSC1/CLKI

OSC2/CLKO/RA6

RCO/T1OSO/TICK1

RC1/T1OSI/CCP2

RC2/CCP1

RC3/SCK/SCL

RDO/PSPO

RD1/PSP1

RB7/PGD

RB6/PGC

RB5/PGM

RB4

RB3/CCP2*

RB2/INT2

RB1/INT1

R BO/INTO

Vdd

Vss

RD7/PSP7

RD6/PSP6

RD5/PSP5

RD4/PSP4

RC7/RX/DT

RC6/TX/CK

RC5/SDO

RC4/SDI/SDA

RD3/PSP3

RD2/PSP2

+5v

Pot 5K

1. Con fig ure the PIC I/O lines to be used in the con ver sion. All an a log lines are in i -
tial ized as in put in the cor re spond ing TRIS reg is ters.

2. Se lect the ports to be used in the con ver sion by set ting the PCFGx bits in the
ADCON1 reg is ter. Se lects right- or left-jus ti fi ca tion.

3. Se lect the an a log chan nels, se lect the A/D con ver sion clock, and en able the A/D
mod ule.

4. Wait the ac qui si tion time.

5. Ini ti ate the con ver sion by set ting the GO/DONE bit in the ADCON0 reg is ter.

6. Wait for the con ver sion to com plete.

7. Read and store the dig i tal re sult.

Ini tial ize A/D Mod ule

The fol low ing pro ce dure from the A2D_Pot2LCD.asm pro gram initializes the A/D
mod ule for the re quired pro cess ing:

;============================
; init A/D mod ule
;============================
; 1. Pro ce dure to ini tial ize the A/D mod ule, as fol lows:
; Con fig ure the PIC I/O lines. Init an a log lines as in put.
; 2. Se lect ports to be used by set ting the PCFGx bits in the
; ADCON1 reg is ter. Se lect right- or left-jus ti fi ca tion.
; 3. Se lect the an a log chan nels, se lect the A/D con ver sion
; clock, and en able the A/D mod ule.
; 4. Wait the ac qui si tion time.
; 5. Ini ti ate the con ver sion by set ting the GO/DONE bit in the
; ADCON0 reg is ter.
; 6. Wait for the con ver sion to com plete.
; 7. Read and store the dig i tal re sult.
InitA2D:

movlw b'00000010'
movwf TRISA ; Set PORT A, line 1, as in put

; Se lect the for mat and A/D port con fig u ra tion bits in
; the ADCON1 reg is ter
; For mat is left-jus ti fied so that ADRESH bits are the
; most sig nif i cant
; 0 x x x 1 1 1 0 <== value in stalled in ADCON1
; 7 6 5 4 3 2 1 0 <== ADCON1 bits
; | |__|__|__|____ RA0 is an a log.
; | Vref+ = Vdd
; | Vref- = Vss
; |_________________________ 0 = left-jus ti fied
;

movlw b'00001110'
movwf ADCON1 ; RA0 is an a log. All oth ers

 ; dig i tal
 ; Vref+ = Vdd
; Se lect D/A op tions in ADCON0 reg is ter
; For a 10 MHz clock the Fosc32 op tion pro duces a con ver sion
; speed of 1/(10/32) = 3.2 mi cro sec onds, which is within the
; rec om mended range of 1.6 to 10 mi cro sec onds.
; 1 0 0 0 1 0 0 1 <== value in stalled in ADCON0
; 7 6 5 4 3 2 1 0 <== ADCON0 bits

350 Chap ter 13

; | | | | | | |____ A/D func tion se lect
; | | | | | | 1 = A/D ON
; | | | | | |__________ A/D sta tus bit
; | | |__|__|_____________ An a log Chan nel Se lect
; | | 001 = Chanel 1 (RA1)
; |__|______________________ A/D Clock Se lect
; 10 = Fosc/32

movlw b'10001001'
movwf ADCON0 ; Chan nel 0, Fosc/32, A/D

 ; en abled
; De lay for se lec tion to com plete. (Ex ist ing rou tine pro vides
; more than 20 mi cro sec onds re quired)

call delayAD ; Lo cal pro ce dure
re turn

A/D Con ver sion

Once the mod ule is in i tial ized, the A/D line or lines can be read by soft ware. The con -
ver sion is ini ti ated by set ting the GO/DONE bit in the ADCON0 reg is ter. Soft ware then
tests the GO/DONE bit to de ter mine when the con ver sion has ended. The fol low ing
pro ce dure per forms the nec es sary op er a tions.

;============================
; read A/D line
;============================
; Pro ce dure to read the value in the A/D line and con vert
; to dig i tal
ReadA2D:
; Ini ti ate con ver sion

bsf ADCON0,GO ; Set the GO/DONE bit
; GO/DONE bit is cleared au to mat i cally when con ver sion ends
convWait:

btfsc ADCON0,GO ; Test bit
goto convWait ; Wait if not clear

; At this point con ver sion has con cluded
; ADRESH reg is ter (bank 0) holds 8 MSBs of re sult
; ADRESL reg is ter (bank 1) holds 4 LSBs.
; In this ap pli ca tion value is left-jus ti fied. Only the
; MSBs are read

movf ADRESH,W ; Dig i tal value to w reg is ter
re turn

;=======================
; de lay pro ce dure
;=======================
; For a 10 MHz clock the Fosc32 op tion pro duces a con ver sion
; speed of 1/(10/32) = 3.2 mi cro sec onds. At 3.2 ms per bit
; 13 bits re quire ap prox i mately 41 ms. The in struc tion time
; at 10 MHz is 10 ms. 4/10 = 0.4 ms per insctruction. To de lay
; 41 ms a 10 MHz PIC must ex e cute 11 in struc tions. Add one
; more for safety.
delayAD:

movlw .12 ; Re peat 12 ma chine cy cles
movwf count1 ; Store value in coun ter

repeat11:
decfsz count1,f ; Dec re ment coun ter
goto repeat11 ; Con tinue if not 0
re turn

 An a log Data and De vices 351

13.2.3 A2D_Pot2LCD Pro gram
; File name: A2D_Pot2LCD.asm
; Date: March 17, 2013
; Au thor: Julio Sanchez
;
; STATE:
; Tested March 18/13: Demo board 18F452
;
; De scrip tion:
; Pro gram to dem on strate use of the An a log to Dig i tal
; Con verter (A/D) mod ule on the 18F452. Pro gram reads the
; value of a potentionmeter con nected to PORT A, line 1
; and dis plays re sis tance in the range 0 to 255 on the
; at tached LCD.
;
; Ex e cutes in Demo Board 18F452 or com pat i ble cir cuit
;
;===
; Cir cuit
; wir ing for 8-bit mode
;===
; 18F452
; +------------------+
;+5v-res0-ICD2 mc -| 1 !MCLR PGD 40|
; | 2 RA0 PGC 39|
; Pot 5K ==>| 3 RA1 RB5 38|
; | 4 RA2 5B4 37|
; | 5 RA3 RB3 36|
; | 6 RA4 RB2 35|
; | 7 RA5 RB1 34|
; LCD RS <==| 8 RE0 RB0 33|
; LCD E <==| 9 RE1 32|-------+5v
; LCD RW ==>|10 RE2 31|--------GR
; +5v--------|11 RD7 30|==> LCD data 7
; GR---------|12 RD6 29|==> LCD data 6
; osc ---|13 OSC1 RD5 28|==> LCD data 5
; osc ---|14 OSC2 RD4 27|==> LCD data 4
; |15 RC0 RC7 26|
; |16 RC1 RC6 25|
; |17 RC2 RC5 24|==>
; |18 RC3 RC4 23|==>
; LCD data 0 <==|19 RD0 RD3 22|==> LCD data 3
; LCD data 1 <==|20 RD1 RD2 21|==> LCD data 2
; +------------------+
;
; Leg end:
; E = LCD sig nal en able
; RW = LCD read/write
; RS = LCD reg is ter se lect
; GR = ground
;
;==

list p=18f452
; In clude file, change di rec tory if needed
in clude "p18f452.inc"

; ==
; con fig u ra tion bits
;===
; Con fig u ra tion bits set as re quired for MPLAB ICD 2

352 Chap ter 13

 config OSC = XT ; As sumes high-speed res o na tor
config WDT = OFF ; No watch dog timer
config LVP = OFF ; No low volt age pro tec tion
config DEBUG = OFF ; No back ground debugger

 config PWRT = ON ; Power on timer en abled
 config CP0 = OFF ; Code pro tec tion block x = 0-3
 config CP1 = OFF
 config CP2 = OFF
 config CP3 = OFF
 config WRT0 = OFF ; Write pro tec tion block x = 0-3
 config WRT1 = OFF
 config WRT2 = OFF
 config WRT3 = OFF
 config EBTR0 = OFF ; Ta ble read pro tec tion block x = 0-3
 config EBTR1 = OFF
 config EBTR2 = OFF
 config EBTR3 = OFF
;
; Turn off bank ing er ror mes sages

errorlevel -302
;==
; con stant def i ni tions
; for PIC-to-LCD pin wir ing and LCD line ad dresses
;==
; LCD used in the demo board is 2 lines by 16 char ac ters
#de fine E_line 1 ;|
#de fine RS_line 0 ;| -- from wir ing di a gram
#de fine RW_line 2 ;|
; LCD line ad dresses (from LCD data sheet)
#de fine LCD_1 0x80 ; First LCD line con stant
#de fine LCD_2 0xc0 ; Sec ond LCD line con stant
;
;======================
; timer con stants
;======================
; Three timer con stants are de fined in or der to im ple ment
; a given de lay. For ex am ple, a de lay of one-half sec ond
; in a 4MHz ma chine, re quires a count of 500,000, while
; a de lay of one-tenth sec ond re quires a count of 10,000.
; These num bers are con verted to hex a dec i mal so they can
; be in stalled in three con stants, for ex am ple:
; 1,000,000 = 0x0f4240 = one sec ond at 4MHz
; 500,000 = 0x07a120 = one-half sec ond
; 250,000 = 0x03d090 = one-quar ter sec ond
; 100,000 = 0x0186a0 = one-tenth sec ond at 4MHz
; Note: The con stant that de fines the LCD dis play line
; ad dresses have the high-or der bit set in
; or der to faciliate the con trol ler com mand
; Val ues for one-tenth sec ond in stalled in con stants
; as fol lows:
; 500,000 = 0x01 0x86 0xa0
; ---- ---- ----
; | | |___ lowCnt
; | |________ midCnt
; |_____________ highCnt
;
#de fine highCnt 0x01
#de fine midCnt 0x86
#de fine lowCnt 0xa0

 An a log Data and De vices 353

;===
; vari ables in PIC RAM
;===
; Re serve 32 bytes for string buffer

cblock 0x000
strData ; La bel for de bug ging
endc

; Re serve three bytes for ASCII dig its
cblock 0x22
asc100
asc10
asc1

; Con tinue with lo cal vari ables
countH
countM
countL
com_code
char_count
char_save
count1 ; Coun ter # 1
count2 ; Coun ter # 2
count3 ; Coun ter # 3
in dex ; In dex into text ta ble (also used

; for aux il iary stor age)
; Stor age for ASCII dec i mal con ver sion and dig its

inNum ; Source op er and
thisDig ; Digit coun ter

endc

;===
; pro gram
;===
; Start at the re set vec tor
 org 0x000

goto main
; No in ter rupts used by this ap pli ca tion
 org 0x008
 retfie
 org 0x018
 retfie
;============================
; ta ble in pro gram mem ory
;============================

org 0x100
msgTable:

db "Pot re sis tance " ; off set 0
db " (0-255): *** " ; off set 16

;off set |
; |____ msgTable + 26
;

; Start ap pli ca tion be yond vec tor area
org 0x200

main:
nop

; Set BSR for bank 0 op er a tions
movlb 0 ; Bank 0

; Init Port A for dig i tal op er a tion
 clrf PORTA,0
 clrf LATA,0

354 Chap ter 13

; Port sum mary:
; PORTD 0-7 OUTPUT
; PORTE 0 1 2 OUTPUT
; ADCON1 is the con fig u ra tion reg is ter for the A/D
; func tions in Port A. A value of 0b011x sets all
; lines for dig i tal op er a tion
 movlw B'00000110' ; Dig i tal mode
 movwf ADCON1,0
; Ini tial ize all lines in PORT D and E for out put

clrf TRISD ; Port C tris reg is ter
 clrf TRISE
; Clear all out put lines
 clrf PORTD
 clrf PORTE
;==============================
; setup Timer0 as coun ter
; 8-bit mode
;==============================
; Prescaler is as signed to Timer0 and initialzed
; to 2:1 rate
; Setup the T0CON reg is ter
; |------------- On/Off con trol
; | 1 = Timer0 en abled
; ||------------ 8/16 bit mode se lect
; || 1 = 8-bit mode
; |||----------- Clock source
; ||| 0 = in ter nal clock
; ||||---------- Source edge se lect
; |||| 1 = high-to-low
; |||||--------- Prescaler as sign ment
; ||||| 0 = prescaler as signed
; |||||||| ----- Prescaler se lect
; |||||||| 1:2 rate

movlw b'11010000'
 movwf T0CON
; Clear reg is ters
 clrf TMR0L
 clrwdt ; Clear watch dog timer
; Clear vari ables
 clrf com_code
;==========================
; init LCD
;==========================
; Wait and ini tial ize HD44780
 call De lay

call InitLCD ; Do forced ini tial iza tion
call De lay

; Move pro gram mem ory ta ble msgTable to RAM buffer
; named strData lo cated at RAM 0x000

call Msg2Data
; Set RS line for data

bsf PORTE,RS_line ; Setup for data
call De lay ; De lay
call RAM2LCDLine1 ; Dis play top LCD line
call RAM2LCDLine2 ; Sec ond LCD line

;===========================
; A2D op er a tions
;===========================
; Ini tial ize A/D con ver sion lines

call InitA2D ; Lo cal pro ce dure

 An a log Data and De vices 355

;============================
; read POT dig i tal value
;============================
readPOT:

call ReadA2D ; Lo cal pro ce dure
; w has dig i tal value read from an a log line RA1
; Dis play re sult

call bin2asc ; Con ver sion rou tine
; At this point three ASCII dig its are stored in lo cal
; vari ables. Move dig its to dis play area

movff asc1,.28 ; Unit digit
movff asc10,.27 ; same with other dig its
movff asc100,.26
call de lay_5

; Dis play line
call RAM2LCDLine2 ; Sec ond LCD line
goto readPOT

;==
;==
; P r o c e d u r e s
;==
;==
;================================
; INITIALIZE LCD
;================================
InitLCD
; Ini tial iza tion for Densitron LCD mod ule as fol lows:
; 8-bit in ter face
; 2 dis play lines of 16 char ac ters each
; cur sor on
; left-to-right in cre ment
; cur sor shift right
; no dis play shift
;***********************|
; COMMAND MODE |
;***********************|

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low for com mand
bcf PORTE,RW_line ; Write mode
call de lay_168 ;de lay 125 mi cro sec onds

;***********************|
; FUNCTION SET |
;***********************|

movlw 0x38 ; 0 0 1 1 1 0 0 0 (FUNCTION SET)
; | | | |__ font se lect:
; | | | 1 = 5x10 in 1/8 or 1/11 dc
; | | | 0 = 1/16 dc
; | | |___ Duty cy cle se lect
; | | 0 = 1/8 or 1/11
; | | 1 = 1/16 (mul ti ple lines)
; | |___ In ter face width
; | 0 = 4 bits
; | 1 = 8 bits
; |___ FUNCTION SET COMMAND

movwf PORTD ;0011 1000
call pulseE ;pulseE and de lay

;***********************|
; DISPLAY ON/OFF |
;***********************|

356 Chap ter 13

movlw 0x0a ; 0 0 0 0 1 0 1 0 (DISPLAY ON/OFF)
; | | | |___ Blink char ac ter at cur sor
; | | | 1 = on, 0 = off
; | | |___ Cursor on/off
; | | 1 = on, 0 = off
; | |____ Dis play on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

movwf PORTD
call pulseE ;pulseE and de lay

;***********************|
; DISPLAY AND CURSOR ON |
;***********************|

movlw 0x0c ; 0 0 0 0 1 1 0 0 (DISPLAY ON/OFF)
; | | | |___ Blink char ac ter at cur sor
; | | | 1 = on, 0 = off
; | | |___ Cursor on/off
; | | 1 = on, 0 = off
; | |____ Dis play on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

movwf PORTD
call pulseE ;pulseE and de lay

;***********************|
; ENTRY MODE SET |
;***********************|

movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
; | | |___ dis play shift
; | | 1 = shift
; | | 0 = no shift
; | |____ cur sor in cre ment mode
; | 1 = left-to-right
; | 0 = right-to-left
; |___ COMMAND BIT

movwf PORTD ;00000110
call pulseE

;***********************|
; CURSOR/DISPLAY SHIFT |
;***********************|

movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY SHIFT)
 ; | | | |_|___ don't care

; | |_|__ cur sor/dis play shift
; | 00 = cur sor shift left
; | 01 = cur sor shift right
; | 10 = cur sor and dis play
; | shifted left
; | 11 = cur sor and dis play
; | shifted right
; |___ COMMAND BIT

movwf PORTD ;0001 1111
call pulseE

;***********************|
; CLEAR DISPLAY |
;***********************|

movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)

 An a log Data and De vices 357

; |___ COMMAND BIT
movwf PORTD ;0000 0001

;
call pulseE
call de lay_28ms ;de lay 5 mil li sec onds af ter init
re turn

;==
; Time De lay and Pulse Pro ce dures
;==
; Pro ce dure to de lay 42 x 4 = 168 ma chine cy cles
; On a 4MHz clock the in struc tion rate is 1 mi cro sec ond
; 42 x 4 x 1 = 168 mi cro sec onds
de lay_168

movlw D'42' ; Re peat 42 ma chine cy cles
movwf count1 ; Store value in coun ter

re peat
decfsz count1,f ; Dec re ment coun ter
goto re peat ; Con tinue if not 0
re turn ; End of de lay

;
; Pro ce dure to de lay 168 x 168 mi cro sec onds
; = 28.224 mil li sec onds
de lay_28ms

movlw D'42' ; Coun ter = 41
movwf count2 ; Store in vari able

de lay
call de lay_168 ; De lay
decfsz count2,f ; 40 times = 5 mil li sec onds
goto de lay
re turn ; End of de lay

;========================
; pulse E line
;========================
pulseE

bsf PORTE,E_line ;pulse E line
bcf PORTE,E_line
call de lay_168 ;de lay 168 mi cro sec onds
re turn

;=========================
; LCD com mand
;=========================
LCD_com mand:
; On en try:
; vari able com_code cntains com mand code for LCD
; Set up for write op er a tion

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low, set up for con trol
call de lay_168 ; de lay 125 mi cro sec onds

; Write com mand to data port
 movf com_code,0 ; Com mand code to W

movwf PORTD
call pulseE ; Pulse and de lay

; Set RS line for data
bsf PORTE,RS_line ; Setup for data

 re turn

;==================================

358 Chap ter 13

; vari able-lapse de lay pro ce dure
; us ing Timer0
;==================================
; ON ENTRY:
; Vari ables countL, countM, and countH hold
; the low-, mid dle-, and high-or der bytes
; of the de lay pe riod, in timer units
; Rou tine logic:
; The prescaler is as signed to timer0 and setup so
; that the timer runs at 1:2 rate. This means that
; ev ery time the coun ter reaches 128 (0x80) a to tal
; of 256 ma chine cy cles have elapsed. The value 0x80
; is de tected by test ing bit 7 of the coun ter
; reg is ter.
De lay:
 call setVars
; Note:
; The TMR0L reg is ter pro vides the low-or der level
; of the count. Because the coun ter counts up from zero,
; code must pre-in stall a value in the coun ter reg is ter
; that rep re sents the one-half the num ber of timer
; it er a tions (pre-scaler is in 1:2 mode) re quired to
; reach a count of 128. For ex am ple: if the value in
; the low coun ter vari able is 140
; then 140/2 = 70. 128 - 70 = 58
; In other words, when the timer coun ter reaches 128,
; 70 * 2 (140) timer beats would have elapsed.
; For mula:
; Value in TMR0L = 128 - (x/2)
; where x is the num ber of it er a tions in the low-level
; coun ter vari able
; First cal cu late x/2 by bit shift ing

rrcf countL,f ; Di vide by 2
; now sub tract 128 - (x/2)
 movlw d'128'
; Clear the bor row bit (mapped to Carry bit)
 bcf STATUS,C
 subfwb countL,w
; Now w has ad justed re sult. Store in TMR0L

movwf TMR0L
; Rou tine tests timer over flow by test ing bit 7 of
; the TMR0L reg is ter.
cy cle:

btfss TMR0L,7 ; Is bit 7 set?
goto cy cle ; Wait if not set

; At this point TMR0 bit 7 is set
; Clear the bit

bcf TMR0L,7 ; All other bits are pre served
; Sub tract 256 from beat coun ter by dec re ment ing the
; mid-or der byte

decfsz countM,f
goto cy cle ; Con tinue if mid-byte not zero

; At this point the mid-or der byte has over flowed.
; High-or der byte must be dec re ment ed.

decfsz countH,f
goto cy cle

; At this point the time cy cle has elapsed
re turn

;==============================
; set reg is ter vari ables

 An a log Data and De vices 359

;==============================
; Pro ce dure to ini tial ize lo cal vari ables for a
; de lay pe riod de fined in lo cal con stants highCnt,
; midCnt, and lowCnt.
setVars:

movlw highCnt ; From con stants
movwf countH
movlw midCnt
movwf countM
movlw lowCnt
movwf countL
re turn

;=======================
; Pro ce dure to de lay
; 42 mi cro sec onds
;=======================
de lay_125

movlw D'42' ; Re peat 42 ma chine cy cles
movwf count1 ; Store value in coun ter

repeat2
decfsz count1,f ; Dec re ment coun ter
goto repeat2 ; Con tinue if not 0
re turn ; End of de lay

;=======================
; Pro ce dure to de lay
; 5 mil li sec onds
;=======================
de lay_5

movlw D'41' ; Coun ter = 41
movwf count2 ; Store in vari able

delay2
call de lay_125 ; De lay
decfsz count2,f ; 40 times = 5 mil li sec onds
goto delay2
re turn ; End of de lay

;========================

;==========================
; get ta ble char ac ter
;==========================
; Lo cal pro ce dure to get a sin gle char ac ter from a lo cal
; ta ble (msgTable) in pro gram mem ory. Vari able in dex holds
; off set into ta ble
tableReadChar:
 movlw UPPER msgTable
 movwf TBLPTRU
 movlw HIGH msgTable ; Get ad dress of Ta ble
 movwf TBLPTRH ; Store in ta ble pointer low reg is ter
 movlw LOW msgTable ; Get ad dress of Ta ble
 movwf TBLPTRL
 movff in dex,WREG ; in dex to W
 addwf TBLPTRL,f ; Add in dex to ta ble pointer low
 clrf WREG ; Clear reg is ter
 addwfc TBLPTRH,F ; Add pos si ble carry
 addwfc TBLPTRU,F ; To both reg is ters
 tblrd * ; Read byte from ta ble (into TABLAT)
 movff TABLAT,WREG ; Move TABLAT to W
 re turn

360 Chap ter 13

;===============================
; Test string from pro gram
; to data mem ory
;===============================
Msg2Data:
; Pro ce dure to store in PIC RAM buffer at ad dress 0x000 the
; 32-byte mes sage con tained in the code area la beled
; msgTable
; ON ENTRY:
; in dex is lo cal vari able that hold off set into
; text ta ble. This vari able is also used for
; tem po rary stor age of off set into buffer
; char_count is a coun ter for the 32 char ac ters
; to be moved
; tableReadChar is a pro ce dure that re turns the
; string at the off set stored in the in dex
; vari able
; ON EXIT:
; Text mes sage stored in buffer
;
; Store 12-bit ad dress in FSR0

lfsr 0,0x000 ; FSR0 = 0x000
; Ini tial ize in dex for text string ac cess

clrf in dex
movlw .32 ; Char ac ters to move'
movff WREG,char_count ; To coun ter reg is ter

readThenWrite:
call tableReadChar ; Lo cal pro ce dure

; WREG now holds char ac ter from ta ble
movff WREG,POSTINC0 ; In di rect write and bump

; pointer
incf in dex ; Next char ac ter
decfsz char_count ; Dec re ment coun ter
goto readThenWrite
re turn

;===============================
; Dis play RAM ta ble at LCD 1
;===============================
; Rou tine to dis play 16 char ac ters on LCD line 1
; from a RAM ta ble start ing at ad dress 0x000
; ON ENTRY:
RAM2LCDLine1:
; Set vari ables

movlw .16 ; Count
movff WREG,char_count ; To coun ter

; Store 12-bit RAM ta ble ad dress in FSR0
lfsr 0,0x000

; Set con trol ler to first dis play line
movlw LCD_1 ; Ad dress + off set into line

 movwf com_code
 call LCD_com mand ; Lo cal pro ce dure
; Set RS line for data

bsf PORTE,RS_line ; Setup for data
call De lay ; De lay

; Re trieve mes sage from pro gram mem ory and store in LCD
ReadAndDisplay0:

movff POSTINC0,WREG ; Read byte and bump pointer
; Char ac ter byte in WREG
 movwf PORTD

 An a log Data and De vices 361

 call pulseE
decfsz char_count ; Dec re ment coun ter
goto ReadAndDisplay0
re turn

;===============================
; Dis play RAM ta ble at LCD 2
;===============================
; Rou tine to dis play 16 char ac ters on LCD line 2
; from a RAM ta ble start ing at ad dress 0x010
; ON ENTRY:
; in dex holds the off set into the text string in RAM
RAM2LCDLine2:; Dis play sec ond line
; Set vari ables

movlw .16 ; Count
movff WREG,char_count ; To coun ter

; Store 12-bit RAM ta ble ad dress in FSR0
lfsr 0,0x010 ; Test off set

; Set con trol ler to sec ond dis play line
movlw LCD_2 ; Ad dress + off set into line

 movwf com_code
 call LCD_com mand ; Lo cal pro ce dure
; Set RS line for data

bsf PORTE,RS_line ; Setup for data
call De lay

ReadAndDisplay2:
movff POSTINC0,WREG ; Read byte and bump pointer

; Char ac ter byte in WREG
 movwf PORTD
 call pulseE

decfsz char_count ; Dec re ment coun ter
goto ReadAndDisplay2

 re turn

;==
; An a log to Dig i tal Pro ce dures
;==
;============================
; init A/D mod ule
;============================
; 1. Pro ce dure to ini tial ize the A/D mod ule, as fol lows:
; Con fig ure the PIC I/O lines. Init an a log lines as in put.
; 2. Se lect ports to be used by set ting the PCFGx bits in the
; ADCON1 reg is ter. Se lect right- or left-jus ti fi ca tion.
; 3. Se lect the an a log chan nels, se lect the A/D con ver sion
; clock, and en able the A/D mod ule.
; 4. Wait the ac qui si tion time.
; 5. Ini ti ate the con ver sion by set ting the GO/DONE bit in the
; ADCON0 reg is ter.
; 6. Wait for the con ver sion to com plete.
; 7. Read and store the dig i tal re sult.
InitA2D:

movlw b'00000010'
movwf TRISA ; Set PORT A, line 1, as in put

; Se lect the for mat and A/D port con fig u ra tion bits in
; the ADCON1 reg is ter
; For mat is left-jus ti fied so that ADRESH bits are the
; most sig nif i cant
; 0 x x x 1 1 1 0 <== value in stalled in ADCON1
; 7 6 5 4 3 2 1 0 <== ADCON1 bits

362 Chap ter 13

; | |__|__|__|____ RA0 is an a log.
; | Vref+ = Vdd
; | Vref- = Vss
; |_________________________ 0 = left-jus ti fied
;

movlw b'00001110'
movwf ADCON1 ; RA0 is an a log. All oth ers

 ; dig i tal
 ; Vref+ = Vdd
; Se lect D/A op tions in ADCON0 reg is ter
; For a 10 MHz clock the Fosc32 op tion pro duces a con ver sion
; speed of 1/(10/32) = 3.2 mi cro sec onds, which is within the
; rec om mended range of 1.6 to 10 mi cro sec onds.
; 1 0 0 0 1 0 0 1 <== value in stalled in ADCON0
; 7 6 5 4 3 2 1 0 <== ADCON0 bits
; | | | | | | |____ A/D func tion se lect
; | | | | | | 1 = A/D ON
; | | | | | |__________ A/D sta tus bit
; | | |__|__|_____________ An a log Chan nel Se lect
; | | 001 = Channel 1 (RA1)
; |__|______________________ A/D Clock Se lect
; 10 = Fosc/32

movlw b'10001001'
movwf ADCON0 ; Chan nel 0, Fosc/32, A/D

 ; en abled
; De lay for se lec tion to com plete. (Ex ist ing rou tine pro vides
; more than 20 mi cro sec onds re quired)

call delayAD ; Lo cal pro ce dure
re turn

;============================
; read A/D line
;============================
; Pro ce dure to read the value in the A/D line and con vert
; to dig i tal
ReadA2D:
; Ini ti ate con ver sion

bsf ADCON0,GO ; Set the GO/DONE bit
; GO/DONE bit is cleared au to mat i cally when con ver sion ends
convWait:

btfsc ADCON0,GO ; Test bit
goto convWait ; Wait if not clear

; At this point con ver sion has con cluded
; ADRESH reg is ter (bank 0) holds 8 MSBs of re sult
; ADRESL reg is ter (bank 1) holds 4 LSBs.
; In this ap pli ca tion value is left-jus ti fied. Only the
; MSBs are read

movf ADRESH,W ; Dig i tal value to w reg is ter
re turn

;=======================
; de lay pro ce dure
;=======================
; For a 10 MHz clock the Fosc32 op tion pro duces a con ver sion
; speed of 1/(10/32) = 3.2 mi cro sec onds. At 3.2 ms per bit
; 13 bits re quire ap prox i mately 41 ms. The in struc tion time
; at 10 MHz is 10 ms. 4/10 = 0.4 ms per insctruction. To de lay
; 41 ms a 10 MHz PIC must ex e cute 11 in struc tions. Add one
; more for safety.
delayAD:

movlw .12 ; Re peat 12 ma chine cy cles
movwf count1 ; Store value in coun ter

 An a log Data and De vices 363

repeat11:
decfsz count1,f ; Dec re ment coun ter
goto repeat11 ; Con tinue if not 0
re turn

;==============================
; bi nary to ASCII dec i mal
; con ver sion
;==============================
; ON ENTRY:
; WREG has bi nary value in range 0 to 255
; ON EXIT:
; out put vari ables asc100, asc10, and asc1 have
; three ASCII dec i mal dig its
; Rou tine logic:
; The value 100 is sub tracted from the source op er and
; un til the re main der is < 0 (carry set). The num ber
; of sub trac tions is the dec i mal hun dreds re sult. 100 is
; then added back to the sub tra hend to com pen sate
; for the last sub trac tion. Now 10 is sub tracted in the
; same man ner to de ter mine the dec i mal tens re sult.
; The fi nal re main der is the dec i mal units re sult.
; Vari ables:
; inNum stor age for source op er and
; asc100 stor age for hun dreds po si tion re sult
; asc10 stor age for tens po si tion re sult
; asc1 stor age for unit po si tion reslt
; thisDig Digit coun ter
bin2asc:

movwf inNum ; Save copy of source value
clrf asc100 ; Clear hun dreds stor age
clrf asc10 ; Tens
clrf asc1 ; Units
clrf thisDig

sub100:
movlw .100
subwf inNum,f ; Sub tract 100
btfsc STATUS,C ; Did sub tract over flow?
goto bump100 ; No. Count sub trac tion
goto end100

bump100:
incf thisDig,f ; In cre ment digit coun ter
goto sub100

; Store 100th digit
end100:

movf thisDig,w ; Ad justed digit coun ter
addlw 0x30 ; Con vert to ASCII
movwf asc100 ; Store it

; Cal cu late tens po si tion value
clrf thisDig

; Ad just min u end
movlw .100 ; Min u end
addwf inNum,f ; Add value to min u end to

; Com pen sate for last op er a tion
sub10:

movlw .10
subwf inNum,f ; Sub tract 10
btfsc STATUS,C ; Did sub tract over flow?
goto bump10 ; No. Count sub trac tion
goto end10

364 Chap ter 13

bump10:

incf thisDig,f ;in cre ment digit coun ter

goto sub10

;

; Store 10th digit

end10:

movlw .10

addwf inNum,f ; Ad just for last sub trac tion

movf thisDig,w ; get digit coun ter con tents

addlw 0x30 ; Con vert to ASCII

movwf asc10 ; Store it

; Cal cu late and store units digit

movf inNum,w ; Store units value

addlw 0x30 ; Con vert to ASCII

movwf asc1 ; Store digit

re turn

end

13.3 A/D Con ver sion in C18
The C18 Hard ware Pe riph er als Li brary in cludes sup port for an a log-to-dig i tal con ver -
sions by means of the fol low ing func tions:

• BusyADC tests if the A/D con verter is cur rently per form ing a con ver sion.

• CloseADC dis ables the A/D con verter.

• ConvertADCstarts an A/D con ver sion.

• OpenADC configures and initializes the A/D con verter.

• ReadADC reads the re sults of an A/D con ver sion.

• SetChanADC se lects A/D chan nel to be used.

13.3.1 Con ver sion Prim i tives

The con ver sion func tions are im ple mented dif fer ently for the var i ous de vices of the
PIC 18F fam ily. The de scrip tions that fol low re fer spe cif i cally to the 18F452

Busy ADC

This func tion tests if the ADC mod ule is cur rently per form ing a con ver sion. It re turns
1 in a char type if a con ver sion is in prog ress and 0 oth er wise. Func tion pa ram e ters are

In clude: adc.h

Pro to type: char BusyADC(void);

File Name: adcbusy.c

CloseADC

This func tion dis ables the A/D mod ule an its as so ci ated in ter rupt mech a nism. Func -
tion pa ram e ters are

In clude: adc.h

Pro to type: void CloseADC(void);

File Name: adcclose.c

 An a log Data and De vices 365

ConvertADC

This func tion starts an A/D con ver sion. The BusyADC() func tion can be used to de ter -
mine if the con ver sion has con cluded. Func tion pa ram e ters are

In clude: adc.h
Pro to type: void ConvertADC(void);
File Name: adcconv.c

OpenADC

This func tion configures the A/D con verter. The ar gu ments passed to the func tion can
change for dif fer ent PIC 18F de vices. The ones listed are for the 18F452. The
OpenADC() func tion re sets the A/D pe riph eral to the Power On state and configures
the A/D-re lated Spe cial Func tion Reg is ters ac cord ing to the op tions spec i fied. Func -
tion pa ram e ters are

In clude: adc.h
Pro to type: void OpenADC(un signed char config,

 un signed char config2);
Ar gu ments:
config
De fines a bitmask cre ated by per form ing a bitwise AND op er a tion ('&') with a
value from each of the cat e go ries listed be low. These val ues are de fined in
the file adc.h.

A/D clock source:
ADC_FOSC_2 FOSC / 2
ADC_FOSC_4 FOSC / 4
ADC_FOSC_8 FOSC / 8
ADC_FOSC_16 FOSC / 16
ADC_FOSC_32 FOSC / 32
ADC_FOSC_64 FOSC / 64
ADC_FOSC_RC In ter nal RC Os cil la tor

A/D re sult jus ti fi ca tion:
ADC_RIGHT_JUST Re sult in Least Sig nif i cant bits
ADC_LEFT_JUST Re sult in Most Sig nif i cant bits

A/D volt age ref er ence source:
ADC_8ANA_0REF VREF+=VDD, VREF-=VSS,

All an a log chan nels
ADC_7ANA_1REF AN3=VREF+, All an a log

chan nels ex cept AN3
ADC_6ANA_2REF AN3=VREF+, AN2=VREF
ADC_6ANA_0REF VREF+=VDD, VREF-=VSS
ADC_5ANA_1REF AN3=VREF+, VREF-=VSS
ADC_5ANA_0REF VREF+=VDD, VREF-=VSS
ADC_4ANA_2REF AN3=VREF+, AN2=VREFADC_
4ANA_1REF AN3=VREF+
ADC_3ANA_2REF AN3=VREF+, AN2=VREFADC_
3ANA_0REF VREF+=VDD, VREF-=VSS
ADC_2ANA_2REF AN3=VREF+, AN2=VREFADC_
2ANA_1REF AN3=VREF+
ADC_1ANA_2REF AN3=VREF+, AN2=VREF-,

AN0=A
ADC_1ANA_0REF AN0 is an a log in put
ADC_0ANA_0REF All dig i tal I/O

config2
De fines a bitmask that is cre ated by per form ing a bitwise AND op er a tion
('&') with a value from each of the cat e go ries listed be low. These val ues
are de fined in the adc.h file.

Chan nel:

366 Chap ter 13

ADC_CH0 Chan nel 0
ADC_CH1 Chan nel 1
ADC_CH2 Chan nel 2
ADC_CH3 Chan nel 3
ADC_CH4 Chan nel 4
ADC_CH5 Chan nel 5
ADC_CH6 Chan nel 6
ADC_CH7 Chan nel 7

A/D In ter rupts:
ADC_INT_ON In ter rupts en abled
ADC_INT_OFF In ter rupts dis abled

File Name: adcopen.c
Code Ex am ple:

OpenADC(ADC_FOSC_32 &
ADC_RIGHT_JUST &
ADC_1ANA_0REF,
ADC_CH0 &
ADC_INT_OFF);

ReadADC

This func tion reads the 10-bit signed re sult of an A/D con ver sion. Based on the con fig -
u ra tion of the A/D con verter by the last call to openADC(), the re sult will be con tained
in the Least Sig nif i cant or Most Sig nif i cant bits of the 10-bit re sult. The func tion pa -
ram e ters are

In clude: adc.h
Pro to type: int ReadADC(void);
File Name: adcread.c

SetChanADC

This func tion se lects the chan nel used as in put to the A/D con verter. The func tion pa -
ram e ters are

In clude: adc.h
Pro to type: void SetChanADC(un signed char chan nel);
Ar gu ments: chan nel

One of the fol low ing val ues (de fined in adc.h):
ADC_CH0 Chan nel 0
ADC_CH1 Chan nel 1
ADC_CH2 Chan nel 2
ADC_CH3 Chan nel 3
ADC_CH4 Chan nel 4
ADC_CH5 Chan nel 5
ADC_CH6 Chan nel 6
ADC_CH7 Chan nel 7

File Name: adcsetch.c
Code Ex am ple: SetChanADC(ADC_CH0);

13.3.2 C_ADConvert.c Pro gram
The sam ple pro gram C_ADConvert.c in the book's soft ware pack age and listed later in
this sec tion uses C lan guage code to read the re sis tance of a 5K po ten ti om e ter wired to
port RA1 as in the cir cuit in Fig ure 13.4 and in Demo Board 18F452. The C lan guage
pro gram is the equiv a lent of the pro gram A2D_Pot2LCD.asm pre sented ear lier in this
chapter.

 An a log Data and De vices 367

The C lan guage code uses the fol low ing C18 hard ware li brar ies:

• xlcd.h

• adc.h

• atdlib.h

• de lays.h

The pro gram per forms the fol low ing steps:

1. Opens the XLCD de vice and initializes it for 8-bit mode and 5 times 7 pix els. Turns
off blink and flash ing cur sor.

2. Sets the DDRAM ad dress and dis plays the first LCD text line.

3. Sets up an end less loop. Initializes the A/D de vice with the fol low ing pro cess ing:
Fosc 32, left jus ti fi ca tion, eight an a log chan nels, chan nel 1 is ac tive for an a log in -
put, and turns off ADC in ter rupts.

4. Af ter an ac qui si tion de lay, code starts the con ver sion pro cess. Once con ver sion
has con cluded, the value in ADRESH reg is ter is stored in a lo cal vari able of type
un signed char. Al ter na tively, the re sis tance value could have been ob tained by
call ing ReadLCD().

5. The ADC is closed.

6. The ASCII buffer for the re sis tance dig its is cleared. The con verted ASCII string is
moved to a dis play buffer.

7. The DDRAM ad dress for the sec ond dis play line is set and the sec ond LCD line is
dis played.

8. The DDRAM ad dress for the string buffer is set and the re sis tance dig its are dis -
played in the sec ond LCD line. A long de lay en sures sta bil ity be fore the next read -
ing.

9. Ex e cu tion loops to Step 3.

C_ADConvert.c Code List ing

// Pro ject name: C_ADConvert.mcp
// Source files: C_ADConvert.c
// XLCD sup port files
// Header files: xlcd.h
// adc.h
// stdlib.h
// de lays.h
//
// Date: March 20/2013
//
//
// Pro ces sor: PIC 18F452
// En vi ron ment: MPLAB IDE Ver sion 8.xx
// MPLAB C-18 Com piler
//
// TEST CIRCUIT:
// Ex e cutes in Demo Board 18F452 or com pat i ble cir cuit
//

368 Chap ter 13

//===
// Cir cuit
// wir ing for 8-bit mode
//===
// 18F452
// +------------------+
//5v-res0-ICD2 mc -| 1 !MCLR PGD 40|
// | 2 RA0 PGC 39|
// Pot 5K ==>| 3 RA1 RB5 38|
// | 4 RA2 5B4 37|
// | 5 RA3 RB3 36|
// | 6 RA4 RB2 35|
// | 7 RA5 RB1 34|
// LCD RS <==| 8 RE0 RB0 33|
// LCD E <==| 9 RE1 32|-------+5v
// LCD RW ==>|10 RE2 31|--------GR
// +5v--------|11 RD7 30|==> LCD data 7
// GR---------|12 RD6 29|==> LCD data 6
// osc ---|13 OSC1 RD5 28|==> LCD data 5
// osc ---|14 OSC2 RD4 27|==> LCD data 4
// |15 RC0 RC7 26|
// |16 RC1 RC6 25|
// |17 RC2 RC5 24|
// |18 RC3 RC4 23|
// LCD data 0 <==|19 RD0 RD3 22|==> LCD data 3
// LCD data 1 <==|20 RD1 RD2 21|==> LCD data 2
// +------------------+
//
//
// Leg end:
// E = LCD sig nal en able
// RW = LCD read/write
// RS = LCD reg is ter se lect
// GR = ground
//
// Ap pli ca tion code as sumes the fol low ing:
// Hitachi HD44780 LCD con trol ler
// Two lines by 16 char ac ters each
// Wired for 8-bit data
// Uses C18 LCD Soft ware Pe riph eral Li brary
// A/D Con ver sion func tions
//
#in clude <p18cxxx.h>
#in clude "xlcd.h"
#in clude <adc.h>
#in clude <de lays.h>
#in clude <stdlib.h>
//
// Con fig u ra tion bits set as re quired for MPLAB ICD 2
#pragma config OSC = XT // As sumes high-speed res o na tor
#pragma config WDT = OFF // No watch dog timer
#pragma config LVP = OFF // No low volt age pro tec tion
#pragma config DEBUG = OFF // No back ground debugger
#pragma config PWRT = ON // Power on timer en abled
#pragma config CP0 = OFF // Code pro tec tion block x = 0-3
#pragma config CP1 = OFF
#pragma config CP2 = OFF
#pragma config CP3 = OFF
#pragma config WRT0 = OFF // Write pro tec tion block x = 0-3
#pragma config WRT1 = OFF

 An a log Data and De vices 369

#pragma config WRT2 = OFF
#pragma config WRT3 = OFF
#pragma config EBTR0 = OFF // Ta ble read pro tec tion block x = 0-3
#pragma config EBTR1 = OFF
#pragma config EBTR2 = OFF
#pragma config EBTR3 = OFF

// Global data
char XLCD_Disp1[] = "Pot re sis tance ";
char XLCD_Disp2[] = " (0-255): ";
char A2D_String[] = " ";

void main(void)
{

un signed char config = 0x00;
un signed char blinkoff = 0x00;

 un signed char charvalue = 0;
int x; // A coun ter
un signed int re sult; // ADC con verted value

// De fine con fig u ra tion for 8 bits and two 5 X 7 lines
config = EIGHT_BIT & LINES_5X7;
blinkoff = CURSOR_OFF & BLINK_OFF;

//************************
// Ini tial ize LCD
//************************
while(BusyXLCD()); // Wait un til LCD not busy
OpenXLCD(config); // Intialize LCD
// Test for busy
while(BusyXLCD()); // Wait un til LCD not busy
// Turn off cur sor and blink ing
WriteCmdXLCD(blinkoff);
// Set start ing ad dress in the LCD RAM for dis play.
// Can be ed ited to match sys tem
while(BusyXLCD());
SetDDRamAddr(0x80);
while(BusyXLCD()); // Wait un til LCD not busy
putsXLCD(XLCD_Disp1); // Dis play first string
while(BusyXLCD()); // Wait un til LCD not busy

 //***
// main pro gram loop
//***
while(1) {

 //*************************
// ini tial ize A/D
//*************************
// Con fig ure con verter
OpenADC(ADC_FOSC_32 &

 ADC_LEFT_JUST &
 ADC_8ANA_0REF,
 ADC_CH1 &
 ADC_INT_OFF);

Delay10TCYx(5); // De lay for ac qui si tion
ConvertADC(); // Start con ver sion
while(BusyADC()); // Wait for com ple tion
// In stead of call ing ReadADC() the value can be
// read di rectly off the ADRESH reg is ter

370 Chap ter 13

charvalue = ADRESH;
// Al ter na tively val ues can be ob tained with ReadADC()
// and typecase, as fol lows:
// re sult = ReadADC(); // Get value as int
// charvalue = (un signed char) re sult; // Type cast

CloseADC();
// Clear buffer
for(x = 0; x < 7; x++)

A2D_String[x] = 0x20;

// Con vert in te ger to ASCII string
itoa(charvalue, A2D_String);

// Set ad dress for dis play sec ond line
SetDDRamAddr(0xC0);
while(BusyXLCD()); // Wait un til LCD not busy
putsXLCD(XLCD_Disp2); // Dis play sec ond LCD line
// Set ad dress for ASCII string line
SetDDRamAddr(0xCA);
while(BusyXLCD()); // Wait un til LCD not busy
putsXLCD(A2D_String); // Dis play sec ond string
while(BusyXLCD()); // Wait un til LCD not busy
// Long de lay be fore next read
Delay10KTCYx(25);
}

}

13.4 In ter fac ing with An a log De vices
Many de vices avail able as in te grated cir cuits pro vide an an a log re port of some phys i -
cal data. These de vices, usu ally re ferred to as trans duc ers, are used to mea sure many
phys i cal quan ti ties and phe nom ena, in clud ing volt age, cur rent, re sis tance, light in ten -
sity, hu mid ity, tem per a ture, wind in ten sity, and at mo spheric pres sure among many
oth ers. A pro gram ma ble ther mo stat for a home-based sys tem would typ i cally in clude
sev eral trans duc ers in clud ing tem per a ture and hu mid ity lev els. In the pre vi ous ex am -
ples in this chap ter we used the A/D mod ule of the 18F452 to mea sure the re sis tance of
a stan dard po ten ti om e ter. In the pres ent we briefly dis cuss in ter fac ing with a tem per -
a ture sen sor.

13.4.1 LM 34 Tem per a ture Sen sor
The LM35 is a pop u lar fam ily of tem per a ture sen sors that in cludes de vices in var i ous
pack ag ing for mats and dif fer ent func tion al ity. The LM135 sub-fam ily, pres ently dis -
cussed, is an in te grated cir cuit with the fol low ing fea tures:

• Eas ily cal i brated

• Wide op er at ing tem per a ture range

• Di rectly cal i brated in de grees Kel vin, Fahr en heit, or Cen ti grade.

• 1°C ini tial ac cu racy avail able

• 200°C range

• Op er ates from 400 mA to 5 mA

 An a log Data and De vices 371

• Low cost

• Less than 1mA dy namic im ped ance

The LM135, LM235, and LM335 are avail able in her metic TO tran sis tor pack ages
while the LM335 is also avail able in 8-pin SO-8 and plas tic TO-92 pack ages.

The prin ci pal char ac ter is tic of the LM35 se ries sen sors is their lin ear out put. This
means that the volt age gen er ated by the sen sor var ies di rectly and lin early with the
sensed quan tity.

13.4.2 LM135 Cir cuits
Fig ure 13.5 shows the con nec tion di a grams for the SO-8 and TO-92 pack ages of the
LMx35 tem per a ture sen sors.

Fig ure 13.5 Con nec tion di a grams for LMx35 temperature sen sors.

The LMx35 fam ily in cludes the LM135, LM235, LM335, LM135A, LM235A, and
LM335A. The LM135 sen sor op er ates over a range of -55ºC to 150ºC, the LM235 over
a range of -40ºC to 125ºC, and the LM335 over a range of -40ºC to 100ºC.

Cal i brat ing the Sen sor

The ICs of the LM135 fam ily can be cal i brated in or der to re duce the pos si ble er ror to
1ºC over a range of 100ºC. The cal i bra tion is sim pli fied by the fact that all LM135 sen -
sors have lin ear out put. Cal i bra tion is ac com plished by means of a 10kOhm po ten ti -
om e ter wired to the Adj ter mi nal of the de vice. The cal i bra tion cir cuit is shown in
Fig ure 13.6.

Fig ure 13.6 LM135 calibration circuit.

372 Chap ter 13

1

2

3

4

LMx35
8-pin SOIC

LMx35
TO-92

Top View Bottom View

NC

NC

Adj

Adj + -
NC

NC

NC

+

-

8

7

6

5

+5v

LM135 Adj

Scaling
Resistor

Analog
Output

P
o

te
n

ti
o

m
e

te
r

R
=

1
0

K

The re sis tor la beled Scal ing Re sis tor in Fig ure 13.6 al lows us ing the +5v sup ply
line as a volt age ref er ence into the LM135. This al lows ex pand ing the volt age out put
range to make better use of the A/D con verter hard ware.

13.4.3 C_ADC_LM35.c Pro gram
The pro gram C_ADC_LM35 in the book's soft ware pack age and listed later in this sec -
tion reads and dis plays in an LCD de vice the tem per a ture value of an LM35 sen sor. The
pro gram uses the A/D mod ule of the 18F452 PIC. The value dis played is the raw read -
ing of the sen sor de vice. Ap pli ca tions will pro cess this value ac cord ing to the cir cuit's
hard ware and the data de sired. A par tic u lar im ple men ta tion of this code will take into
ac count the spe cific LM35 de vice in the cir cuit, the value of the scal ing re sis tor, and
the de sired for mat for the dis played re sults. Code list ing is as fol lows:

// Pro ject name: C_ADC_LM35.mcp
// Source files: C_ADC_LM35.c
// XLCD sup port files
// Header files: xlcd.h
// adc.h
// stdlib.h
// de lays.h
//
// Date: March 20/2013
//
// Pro ces sor: PIC 18F452
// En vi ron ment: MPLAB IDE Ver sion 8.xx
// MPLAB C-18 Com piler
//
// De scrip tion:
// Read and dis play raw tem per a ture value off an LM35 sen sor.
//
// TEST CIRCUIT:
// Ex e cutes in Demo Board 18F452 or com pat i ble cir cuit
//
//===
// Cir cuit
// wir ing for 8-bit mode
//===
// 18F452
// +------------------+
//5v-res0-ICD2 mc -| 1 !MCLR PGD 40|
// LM35 ==>| 2 RA0 PGC 39|
// | 3 RA1 RB5 38|
// | 4 RA2 5B4 37|
// | 5 RA3 RB3 36|
// | 6 RA4 RB2 35|
// | 7 RA5 RB1 34|
// LCD RS <==| 8 RE0 RB0 33|
// LCD E <==| 9 RE1 32|-------+5v
// LCD RW ==>|10 RE2 31|--------GR
// +5v--------|11 RD7 30|==> LCD data 7
// GR---------|12 RD6 29|==> LCD data 6
// osc ---|13 OSC1 RD5 28|==> LCD data 5
// osc ---|14 OSC2 RD4 27|==> LCD data 4
// |15 RC0 RC7 26|
// |16 RC1 RC6 25|
// |17 RC2 RC5 24|

 An a log Data and De vices 373

// |18 RC3 RC4 23|
// LCD data 0 <==|19 RD0 RD3 22|==> LCD data 3
// LCD data 1 <==|20 RD1 RD2 21|==> LCD data 2
// +------------------+
//
// Leg end:
// E = LCD sig nal en able
// RW = LCD read/write
// RS = LCD reg is ter se lect
// GR = ground
//
// Ap pli ca tion code as sumes the fol low ing:
// Hitachi HD44780 LCD con trol ler
// Two lines by 16 char ac ters each
// Wired for 8-bit data
// Uses C18 LCD Soft ware Pe riph eral Li brary
// A/D Con ver sion func tions
//
#in clude <p18cxxx.h>
#in clude "xlcd.h"
#in clude <adc.h>
#in clude <de lays.h>
#in clude <stdlib.h>
//
// Con fig u ra tion bits set as re quired for MPLAB ICD 2
#pragma config OSC = XT // As sumes high-speed res o na tor
#pragma config WDT = OFF // No watch dog timer
#pragma config LVP = OFF // No low volt age pro tec tion
#pragma config DEBUG = OFF // No back ground debugger
#pragma config PWRT = ON // Power on timer en abled
#pragma config CP0 = OFF // Code pro tec tion block x = 0-3
#pragma config CP1 = OFF
#pragma config CP2 = OFF
#pragma config CP3 = OFF
#pragma config WRT0 = OFF // Write pro tec tion block x = 0-3
#pragma config WRT1 = OFF
#pragma config WRT2 = OFF
#pragma config WRT3 = OFF
#pragma config EBTR0 = OFF // Ta ble read pro tec tion block x = 0-3
#pragma config EBTR1 = OFF
#pragma config EBTR2 = OFF
#pragma config EBTR3 = OFF

// Global data
char XLCD_Disp1[] = "LM35 tem per a ture";
char XLCD_Disp2[] = "(raw val): ";
char A2D_String[] = " ";

void main(void)
{

un signed char config = 0x00;
un signed char blinkoff = 0x00;

 un signed char charvalue = 0;
int x; // A coun ter
un signed int re sult; // ADC con verted value

// De fine con fig u ra tion for 8 bits and two 5 X 7 lines
config = EIGHT_BIT & LINES_5X7;
blinkoff = CURSOR_OFF & BLINK_OFF;
//************************

374 Chap ter 13

// Ini tial ize LCD
//************************
while(BusyXLCD()); // Wait un til LCD not busy
OpenXLCD(config); // Intialize LCD
// Test for busy
while(BusyXLCD()); // Wait un til LCD not busy
// Turn off cur sor and blink ing
WriteCmdXLCD(blinkoff);
// Set start ing ad dress in the LCD RAM for dis play.
// Can be ed ited to match sys tem
while(BusyXLCD());
SetDDRamAddr(0x80);
while(BusyXLCD()); // Wait un til LCD not busy
putsXLCD(XLCD_Disp1); // Dis play first string
while(BusyXLCD()); // Wait un til LCD not busy

 //***
// main pro gram loop
//***
while(1) {

 //*************************
// ini tial ize A/D
//*************************
// Con fig ure con verter
OpenADC(ADC_FOSC_32 &

 ADC_RIGHT_JUST &
 ADC_8ANA_0REF,
 ADC_CH0 &
 ADC_INT_OFF);

Delay10TCYx(5); // De lay for ac qui si tion
ConvertADC(); // Start con ver sion
while(BusyADC()); // Wait for com ple tion
// In stead of call ing ReadADC() the value can be
// read di rectly off the ADRESH reg is ter
re sult = ReadADC(); // Get value as int
CloseADC();
// Clear buffer
for(x = 0; x < 7; x++)

A2D_String[x] = 0x20;
// Con vert in te ger to ASCII string
itoa(re sult, A2D_String);
// Set ad dress for dis play sec ond line
SetDDRamAddr(0xC0);
while(BusyXLCD()); // Wait un til LCD not busy
putsXLCD(XLCD_Disp2); // Dis play sec ond LCD line
// Set ad dress for ASCII string line
SetDDRamAddr(0xCA);
while(BusyXLCD()); // Wait un til LCD not busy
// Value dis played is the raw read ing of the sen sor de vice.
// Ap pli ca tions will pro cess this value ac cord ing to the
// cir cuit's hard ware and the de sired re sults.
putsXLCD(A2D_String); // Dis play sec ond string
while(BusyXLCD()); // Wait un til LCD not busy
// Long de lay be fore next read
Delay10KTCYx(25);
}

}

 An a log Data and De vices 375

Chap ter 14

Op er at ing Sys tems

14.1 Time-Crit i cal Sys tems
Most ma jor em bed ded sys tem ap pli ca tions per form more than one ac tiv ity. For ex am -
ple, a con trol sys tem for a mi cro wave oven must set the oven tem per a ture, op er ate the
timer, de tect if the oven door is open, and mon i tor the key pad for in put and com -
mands. The more com plex a sys tem the more dif fi cult it be comes to man age the si mul -
ta neous tasks it must per form. In this sense the soft ware must be ca pa ble of di vid ing
sys tem re sources ad e quately be tween the dif fer ent tasks, set ting pri or i ties, and de -
tect ing er ror con di tions that could be crit i cal. In the mi cro wave oven ex am ple pre vi -
ously men tioned, the soft ware should be able to de tect if the door is open so that
dan ger ous ra di a tion is not al lowed to es cape.

Em bed ded sys tems are of ten time-crit i cal ap pli ca tions. Not only must the soft -
ware en sure that events takes place, but also that they take place within a give time
frame. As the num ber of si mul ta neous ac tiv i ties be comes larger, en sur ing the time li -
ness of each ac tiv ity be comes more dif fi cult. In a sense, each ac tiv ity com petes for
the CPU's at ten tion, and the soft ware de ter mines which one gets it at any given in -
stant.

The sys tem de signer must in ves ti gate the un der ly ing re quire ments of each task in
or der to de vise a strat egy that sat is fies the most im por tant needs. It is the Real Time
Op er at ing Sys tem (RTOS) and not the ap pli ca tions them selves that de ter mines the
pri or i ties. We can say that the op er at ing sys tem be comes the god of the ma chine.
The fol low ing el e ments are im por tant in this con text.

• What is an op er at ing sys tem in the con text of em bed ded pro gram ming.

• What is meant by “real-time”.

• What is nec es sary in or der to achieve gen u ine and sim u lated multi-task ing.

• What prin ci ples gov ern the de sign and op er a tions of a RTOS and of real-time pro -
gram ming.

377

14.1.2 Multitasking in Real-Time
Multitasking is the tech nol ogy by which mul ti ple pro cesses are able to share sys tem
re sources and CPU. Barrr ing spe cial ized hard ware, it can be said that if a sin gle CPU is
pres ent, then only one task can be ex e cut ing at any point in time. The no tion of
multitasking solves the prob lem of ex e cut ing sev eral tasks by al lo cat ing CPU time to
each task. The task that is ex e cut ing is said to be run ning, and the other ones are said
to be wait ing or sus pended. The pro cesses by which CPU time is al lo cated to each task
is called sched ul ing. The op er a tion by which CPU time is re as signed from one task to
an other one is re ferred to as a con text switch. Con text switch ing pro duces the il lu sion
that sev eral tasks are ex e cut ing si mul ta neously.

Sched ul ing strat e gies of op er at ing sys tems can be clas si fied as fol lows:

• Multiprogramming sys tems. In this model, each task keeps run ning un til it
reaches a point at which it must wait for an ex ter nal event or un til the sched uler
forc ibly sus pends its ex e cu tion. Multiprogramming sys tems tend to max i mize
CPU us age.

• Time-shar ing sys tems. In time-shar ing, the run ning task is al lo cated a time slot at
the end of which it must re lin quish CPU us age vol un tarily or it will be forced to by
the sched uler. Time-shar ing sys tems al low sev eral pro grams to ex e cute ap par -
ently si mul ta neously.

• Pri or ity-based sys tems. In this model, the sched uler is driven by the pri or i ties as -
signed to each task. When an event of a higher pri or ity re quires ser vice, the op er -
at ing sys tem pre empts the one cur rently ex e cut ing. Pri or ity-based sys tems are
usu ally event driven.

Sev eral terms emerge from this clas si fi ca tion: co op er a tive multitasking re fers to
a sched ul ing al go rithm in which each task vol un tarily cedes ex e cu tion time to other
tasks. This ap proach has been largely re placed by one re ferred to as pre emp tive
multitasking. With pre emp tive ap proach, the op er at ing sys tem as signs a slice of
CPU time to each task ac cord ing to a set of pri or i ties. If an ex ter nal event takes
place that re quires im me di ate at ten tion, then the run ning task can be pre empted in
or der to re spond to the event. Real-time op er at ing sys tems are based on both co op -
er a tive and pre emp tive multitasking.

14.2 RTOS Scope
In the con text of real-time pro gram ming and of em bed ded sys tems, we must de fine
the scope of a soft ware sys tem that can be clas si fied as an op er at ing sys tem. In a con -
ven tional com puter sys tem, it is clear that the op er at ing sys tem is a stand-alone ap pli -
ca tion that con trols de vices, al lo cates re sources, prioritizes op er a tions re quested by
ap pli ca tion, and per forms other man age ment and con trol du ties. In the sense of Win -
dows, Unix, and Mac OS, the op er at ing sys tem is a mon i tor pro gram that ex e cutes in
the fore ground.

Rea l - t ime op er a t ing sys tems do not a l ways con form to th is model .
Microcontroller-based cir cuits and de vices of ten do not pro vide the sup port nec es -
sary for a stand-along con trol pro grams the likes of Win dows or Unix. Al though the
def i ni tion of what con sti tutes and op er at ing sys tem is a mat ter of se man tics, in the

378 Chap ter 14

pres ent con text we adopt the wid est pos si ble de scrip tion and in clude all con trol fa -
cil i ties used in sched ul ing and re source al lo ca tion op er a tions. Thus, RTOS can be
im ple mented in the fol low ing forms:

• As a con ven tional, stand-alone pro gram that is fur nished and loaded in de pend -
ently of ap pli ca tion code

• As a col lec tion or li brary of con trol rou tines that are ap pended to the ap pli ca tion
at com pile time but that con sti tute a sep a rate soft ware en tity

• As rou tines that per form con trol, re source al lo ca tion, and other op er at ing sys tem
func tions but that are part of the ap pli ca tion it self

14.2.1 Tasks, Pri or i ties, and Dead lines
Imag ine a microcontroller-based cir cuit de signed to op er ate the tem per a ture and ir ri -
ga tion con trols in a green house. The cir cuit con tains sen sors that read the air tem per -
a ture in the green house as well as the soil hu mid ity. If the air tem per a ture ex ceeds
80oF, the air cool ing sys tem is turned on un til the tem per a ture reaches 70oF. If the soil
hu mid ity is lower than 40%, then the ir ri ga tion sys tem is turned on un til the hu mid ity
reaches 90%. The flowchart for the green house con trol ler is shown in Fig ure 14.1.

 Fig ure 14.1 Flowchart of a green house con trol sys tem.

 Op er at ing Sys tems 379

START

YES

YES

YES

YES

NO

NO

NO

Read soil humidity
sensor

Read soil humidity
sensor

Read air temperature
sensor

Read air temperature
sensor

Turn-on irrigation
system

Turn-off irrigation
system

Turn-on cooling
system

Turn-off cooling
system

Humidity < 40%
?

Humidity > 90%
?

Temperature > 80
?

Temperature < 70
?

The flowchart of Fig ure 14.1 shows that the green house con trol pro gram must
per form two dis tinct op er a tions: one is to mon i tor the soil hu mid ity and turn the ir -
ri ga tion sys tem on and off, and an other one is to mon i tor the air tem per a ture and
turn the cool ing sys tem on and off. These could be called the ir ri ga tion con trol task
and the air tem per a ture con trol task. How ever, in the flowchart of Fig ure 14.1, it is
no ta ble that the air tem per a ture con trol task is sus pended while the ir ri ga tion task
is in prog ress. This could cause the air tem per a ture to be come ex ceed ingly high
while the sys tem is busy mon i tor ing the soil hu mid ity dur ing ir ri ga tion.

Some of the prob lems and chal lenges of multitasking in a real-time op er at ing sys -
tem be come ap par ent even in this sim ple ex am ple. One so lu tion to the prob lem
men tioned in the pre ced ing para graph can be based on multitasking. For ex am ple,
the soft ware could be de signed so that mon i tor ing the two sen sors takes place in a
closed loop. If one of the sen sors in di cates that an ir ri ga tion or cool ing op er a tion is
re quired, then the cor re spond ing sys tem is turned ei ther on or off. The re sult ing
flowchart is shown in Fig ure 14.2.

Fig ure 14.2 Al ter na tive pro cess ing for green house control.

The pro cess ing in the flowchart of Fig ure 14.2 can be vi su al ized as con sist ing of
sev eral tasks. One of them would be mon i tor ing the state of the sen sors; a sec ond
task con sists of con trol ling the ir ri ga tion sys tem; and a third one of con trol ling the

380 Chap ter 14

START

YES

YES

YES

YES

NO

NO

NO

NO

Read soil humidity
sensor

Read air temperature
sensor

Turn-on irrigation
system

Turn-on cooling
system

Turn-off irrigation
system

Turn-off cooling
system

Humidity < 40%
?

Temperature > 80
?

Humidity > 90%
?

Temperature > 80
?

cool ing sys tem. In or der to avoid re dun dant op er a tions, such as turn ing on a sys tem
that is al ready on or turn ing off one that is turned off, the soft ware can have global
vari ables that are ac ces si ble to all tasks. In this man ner, the sen sor mon i tor ing task
would set a vari able (prob a bly a bit flag) to in di cate the state of each sys tem. Thus,
the sys tem con trol tasks could de ter mine the state of a sys tem and avoid try ing to
turn on an op er a tion that is al ready ac tive.

For the sake of ex per i men ta tion, let us add an ad di tional com pli ca tion to the
green house con trol sys tem: as sume that the elec tric power avail able to the green -
house only al lows per form ing a sin gle op er a tion, that is, that the cool ing and the ir -
ri ga tion sys tems can not be on at the same time. This lim i ta tion leads to the
es tab lish ment of pri or i ties, for ex am ple, that ir ri ga tion should have pref er ence over
cool ing or vice versa. Con se quently, if the cool ing sys tem is op er at ing at the time
that the soil mois ture reaches the min i mum level, then cool ing op er a tion will be
stopped so that ir ri ga tion can take place. The sys tem can ac com mo date this re quire -
ment by es tab lish ing pri or i ties that can be based or sim ple or com plex rules.

Fi nally, one or more ac tiv i ties or tasks can be sub ject to spe cific dead lines. For
ex am ple, in the green house ex am ple, it may be the case that ir ri ga tion op er a tions
must end by 6 PM ev ery day and not re-start un til 8 AM the fol low ing morn ing in de -
pend ently of any other fac tor. In this case, the sys tem must con tain a real-time clock
and check ing this clock will be part of the sched ul ing. These con straints and lim i ta -
tions in the green house con trol ex am ple are of ten pres ent in most op er at ing sys -
tems and give rise to the con cepts of tasks, pri or i ties, and dead lines. In the
fol low ing sec tions we look at them in greater de tail.

14.2.2 Ex e cut ing in Real-Time

The real-time el e ment in a Real-Time Op er at ing Sys tem re lates to the fact that the sys -
tem must re spond quickly and pre dict ably to events. In the green house ex am ple men -
tioned pre vi ously the sys tem must con trol ir ri ga tion and cool ing op er a tions and must
do so as rap idly as pos si ble. A sys tem that op er ates in real-time can not usu ally post -
pone sen sory or con trol ac tiv i ties for a later day or hour. In fact, we as sume that the la -
tency of a real-time sys tem is min i mal. This can be sum ma rized by stat ing that a
sys tem op er at ing in real-time must be able to pro vide ad e quate ac tion within the re -
quired pri or i ties and dead lines. This def i ni tion does not im ply that real-time sys tems
must op er ate at any given speed but that it must ex e cute at suf fi cient speed so that the
time-based re quire ments are met.

14.3 RTOS Pro gram ming

The most el e men tary pro gram ming model for any sys tem or ap pli ca tion, some times
called se quen tial pro gram ming, im plies a set of in struc tions that are ex e cuted one at a
time. This se quen tial or der of ex e cu tion is only vi o lated when the pro gram branches
to an other lo ca tion or when a sub-pro gram ex e cutes. In the sec ond ver sion of the ex -
am ple green house con trol pro gram, we have at tempted to im ple ment multitasking by
means of se quen tial pro gram ming. How ever, this ap proach con tains sev eral weak
points:

 Op er at ing Sys tems 381

• The ex e cu tion time of pro gram loops is not con stant. That is, the rou tine that mon -
i tors the sen sors may take dif fer ent time dur ing sev eral it er a tions. For ex am ple,
one it er a tion of the loop may re quire per form ing sev eral con trol op er a tions while
an other it er a tion may not. This vari a tion may be tol er a ble in the green house ex -
am ple but could be un ac cept able in the con trol sys tem of a nu clear power plant.

• Tasks may in ter fere with each other. In the green house con trol sys tem ex am ple,
the task of con trol ling the ir ri ga tion sys tem forces a de lay in mon i tor ing the tem -
per a ture sen sors.

• Com plex pri or i ties can be al gor ith mi cally dif fi cult to en force.

In the green house con trol sys tem ex am ple, some tasks are time-trig gered while
oth ers are event-trig gered. In this sense stop ping ir ri ga tion ac tiv i ties at 8 PM is a
time-trig gered ac tiv ity, while start ing the cool ing sys tem when the am bi ent tem per a -
ture reaches 70oF is event-trig gered.

14.3.1 Fore ground and Back ground Tasks
One so lu tion to the task pri or i tiz a tion prob lem is to al low some tasks to ex e cute in the
back ground. For ex am ple, the green house con trol pro gram needs to know the
time-of-day in or der to sus pend ir ri ga tion dur ing the night hours. If the time-of-day op -
er a tions are han dled by an in ter rupt ser vice rou tine, then we can state that this task
takes place in the back ground while a fore ground loop takes care of read ing the sen -
sors and con trol ling ir ri ga tion and cool ing pro cesses. The fore ground and back -
ground tasks can eas ily com mu ni cate through vari ables that are ac ces si ble to both
rou tines. In this case, the in ter rupt han dler could set a “do not ir ri gate” flag at 6 PM ev -
ery eve ning and re set the flag at 8 AM ev ery morn ing. The ir ri ga tion con trol rou tine
would con sult the state of this flag in or der de cide whether to start ir ri ga tion.

In ter rupts in Task ing

In em bed ded sys tems, in ter rupts pro vide a vi a ble mech a nism for prioritizing tasks,
es pe cially those that take place in a time cy cle or that are con strained by a dead line.
The in ter rupt mech a nism is in fact se quen tial be cause other CPU ac tiv ity is sus -
pended while the in ter rupt is in prog ress. How ever, the fact that the in ter rupt can be
trig gered by pro gram ma ble ex ter nal events makes it a power tool in sim u lat ing the
par al lel ex e cu tion of mul ti ple tasks. How ever, we should be care ful not to as sume that
tasks with higher pri or i ties should al ways be han dled by the in ter rupt rou tine.

What tasks can be eas ily han dled by in ter rupt usu ally de pends on the sys tem it -
self. For ex am ple, in an 18F fam ily PIC-based sys tem, it would be rel a tively easy to
have a time-of-day clock ex e cut ing in the back ground loop (see Sec tion 12.1.2). On
the other hand, set ting up an in ter rupt to take place when a sen sor is within a given
range may be much more dif fi cult. The re quire ments of each sys tem and the hard -
ware ar chi tec ture de ter mines which tasks should be han dled in the fore ground and
which in the back ground.

In gen eral, the 18F fam ily PIC sys tem makes it easy to as sign time-trig gered tasks
to in ter rupts be cause sev eral over flow tim ers are avail able in the hard ware.
Event-trig gered tasks can be in ter rupt driven if the events are of a bi nary na ture.
For ex am ple, the ac tion on a pushbutton switch can be vectored to an in ter rupt han -

382 Chap ter 14

dler. On the other hand, it is more dif fi cult to have range-based events trig ger an in -
ter rupt, as is the case with the sen sors of the green house con trol sys tem.

14.3.2 Task Loops
Real-time sys tems of ten con tain con ven tional loops as a sim ple way of car ry ing out
sev eral tasks. The flowcharts in Fig ure 14.1 and Fig ure 14.2 both con tain task loops.
Tasks loops are use ful in cases where sched ul ing can be ac com plished lin early, that is,
by run ning tasks suc ces sively while poll ing ports for events that sig nal the need for a
spe cific task to be ex e cuted or ter mi nated. Al though poll ing rou tines usu ally waste
con sid er able pro ces sor time in flag-test ing op er a tions, in many cases the tasks can be
han dled suc cess fully in spite of this waste. The prob lem arises when a sim ple task
loop can not in sure a timely re sponse to events. In these cases the pos si ble so lu tions
are the offloading of one or more tasks to in ter rupt han dlers or the im ple men ta tion of
pre emp tive multitasking.

14.3.3 Clock-Tick In ter rupt
One of the sim plest and most use ful ap pli ca tions of in ter rupts in RTOS is to pro duce a
timed beat. 18F fam ily de vices fur nish hard ware sup port for tim ers. The typ i cal im ple -
men ta tion is in the form of a count-up mech a nism that over flows when it reaches the
max i mum ca pac ity of the timer reg is ter, at which time an in ter rupt is gen er ated. Soft -
ware can be de signed to use the in ter rupt to ex e cute time-trig gered tasks. In the pre vi -
ous ex am ple of a green house ir ri ga tion sys tem, we pro posed a time-of-day clock
in ter rupt that would han dle turn ing off the ir ri ga tion sys tem at dusk and back on in the
morn ing.

In multitasking sys tems, the clock-tick in ter rupt can be used to as sign slices of
ex e cu tion time to dif fer ent tasks. In the co op er a tive model, each task would re lin -
quish con trol back to the sched uler on com ple tion of a cy cle or phase of its ex e cu -
tion. In the pre emp tive model, the in ter rupt it self will sig nal to the sched uler that a
task needs to be sus pended. In one case, the timer tick is used by the task it self to
time its own ac tiv ity. In the other one, the clock-tick is used by the sched uler rou -
tine to con trol the ex e cu tion of sev eral tasks.

No tice that al though the clock sig nal is of ten de rived from the CPU's clock or os -
cil la tor hard ware, it does not nec es sar ily take place at the clock's rate. Most
microcontroller sys tems pro vide ways of ma nip u lat ing the rate of the clock-tick in -
ter rupt by means of prescalers, preloading the coun ter reg is ter (as in the ex am ples
of Chap ter 12), or us ing ex ter nal clock sources.

14.3.4 In ter rupts in Pre emp tive Multitasking
In a pre emp tive sys tem, the sched uler must be ca pa ble of sus pend ing a task in or der
re es tab lish pri or i ties or to di rect ex e cu tion to an other task. In microcontroller-based
sys tems, the only avail able mech a nism for sus pend ing code ex e cu tion is the in ter -
rupt. The clas si cal ap proach for multitasking in real-time sys tems is by a timer in ter -
rupt that ex e cutes ev ery so many cy cles of the sys tem clock. If the fre quency of the
in ter rupt can be set to con form to a unit of al lowed task ex e cu tion time, then the in ter -
rupt han dler re ceives con trol at the con clu sion of ev ery time pe riod and the task is ef -
fec tively pre empted. This amount of time is called a time slice. In this man ner, the task

 Op er at ing Sys tems 383

sched uler con trols the ex e cu tion of run ning pro cesses and is able to en force the pri or -
ity queue and ensure that pro cesses meet their dead lines

 The ac tual im ple men ta tion of pre emp tive multitasking re quires more than an in -
ter rupt sys tem that can be pro grammed at a cer tain fre quency of the sys tem clock.
In or der to di rect ex e cu tion to var i ous tasks, the sched uler must be able to save the
con text and the pro gram coun ter of each in ter rupted task so that the task can be re -
started at a fu ture time. The con text it self con sists of the val ues of the crit i cal reg is -
ters and mem o ries that are ac ces si ble to the task. The pro gram coun ter (which we
do not con sider part of the con text) is usu ally stored in the stack by the in ter rupt in -
ter cept. Both the pro gram coun ter and the con text are some times re ferred to as the
ma chine state. A typ i cal multitasking sched uler re trieves the pro gram coun ter from
the stack and stores it to gether with the con text. A task is re started by re stor ing the
program counter and the context from this storage.

14.4 Con struct ing the Sched uler
The fol low ing con cepts, dis cussed pre vi ously, are es sen tial to the no tion of a
real-time, multitasking op er at ing sys tem:

• A task is a unit of pro gram ex e cu tion de fined by a rou tine or subprogram that per -
forms a spe cific chore. The no tion of a task is re lated to real-time sys tems while
the more term “pro cess” is of ten used in re la tion to con ven tional com put ing.

• A time slice is the min i mal unit of ex e cu tion time al lowed to each task.

• A con text switch is the mo ment in time when a task is sus pended so that pri or i ties
and task states can be ex am ined. A con text switch can take place at the con clu -
sion of a task (or of a task phase), as is the case in co op er a tive sched ul ing. A con -
text switch can also be forced at the con clu sion of a time slice, as is the case in
pre emp tive sched ul ing.

14.4.1 Cy clic Sched ul ing
The sim plest model for a multitasking sys tem is one that al lows each task to run to
com ple tion. In this case, the sched uler is lim ited to per form ing the con text switch ing
at the con clu sion of each task. The task loop, men tioned pre vi ously, can of ten be the
base of a cy clic sched uler. Graph i cally, cy clic sched ul ing is rep re sented in Fig ure 14.3.

Fig ure 14.3 Cy clic sched ul ing.

384 Chap ter 14

Task 1 Task 3Task 2

14.4.2 Round-Robin Sched ul ing
An other sim ple al go rithm is round-robin sched ul ing. The typ i cal im ple men ta tion of
round-robin sched ul ing is based on an in ter rupt-driven clock-tick. The round-robin
model as signs equal pri or ity to all tasks and gives each task the same time slice. Tasks
are se lected in a fixed or der that does not change dur ing ex e cu tion. At the con clu sion
of each time slice the cur rently ex e cut ing task is sus pended and the next one in or der
is started. This im plies that tasks are pre empted at the end of each time slice, there -
fore round-robin sched ul ing as sumes pre emp tive multitasking. Fig ure 14.4 de picts
round-robin sched ul ing.

Fig ure 14.4 Round-robin sched ul ing.

Al though the model in Fig ure 14.4 ap pears quite straight for ward, round-robin is
not with out draw backs. One of them is shown by the solid black lines sep a rat ing
each task in Fig ure 14.4. These lines in di cate the task-switch ing op er a tions, which
can have a sig nif i cant over head. An other pos si ble sce nario is that a task com pletes
be fore its time slice ex pires, in which case the sys tem wastes ex e cu tion time.
Thirdl, round-robin does not take into ac count task pri or i ties and pri or ity changes.

14.4.3 Task States and Pri or i tized Sched ul ing

The flaws of the round-robin model make ev i dent the need to es tab lish con di tions that
re flect the state of each run ning task, as well as the pos si bil ity of tasks chang ing state
dur ing ex e cu tion. The fol low ing task states are usu ally rec og nized:

• Task ready. In this state, a task is ready to start ex e cut ing and change to the ac tive
state.

• Task ac tive. Task is run ning and has been al lo cated CPU time. A task leaves the ac -
tive state be cause it has com pleted or be cause it has been pre empted by the op er -
at ing sys tem.

• Task blocked. A task that is ready is pre vented from run ning. One rea son could be
that the task is wait ing for an ex ter nal event to take place or for data to be re -
ceived. Also, a task can be blocked if a needed re source is be ing used by an other
task.

• Task stopped. A task is ex cluded from those that are granted CPU time.

 Op er at ing Sys tems 385

Task 1

Task switches

Task 3Task 2

• Task de stroyed. The task no lon ger ex ists.

In or der to avoid the lim i ta tions of con ven tional round-robin sched ul ing, it is pos -
si ble to come up with a scheme in which each task is as signed a pri or ity rank ing. In
this man ner, tasks with higher pri or ity are al lowed to com plete, or are as signed a
larger time slice than tasks with lower pri or ity. There are many al go rithms for im -
ple ment ing pri or ity sched ul ing. In one model, an ex e cut ing task that is as signed a
higher pri or ity is al lowed to hold the CPU un til it has com pleted. In an other vari a -
tion of the al go rithm, the pri or ity rank ings are used to pro por tion ally as sign time
slices to each task, but tasks are pre empted at the end of their al lot ted time. A more
so phis ti cated ap proach is to de ter mine each task's time slice not only ac cord ing to
the pri or ity rank ings, but also ac cord ing to the task's com plex ity and re quire ments.
The task's state (ready, ac tive, blocked, stopped, or de stroyed) also de ter mines if
and when the task is al lowed CPU time.

Pri or i tized-pre emp tive sched ul ing also con tains the in her ent risk of a low-pri or -
ity task not be ing al lowed to ex e cute at all. In this case, the task is said to be dead -
locked. The sched ul ing al go rithm de ter mines how such cases are han dled, that is, if
dead lock is al lowed or if all tasks are in sured a min i mum ex e cu tion time slice.

14.5 A Small Sys tem Ex am ple
In small sys tems, purely pre emp tive sched ul ers are dif fi cult to im ple ment be cause it
re quires that the op er at ing sys tem have suf fi cient in for ma tion to make all de ci sions
that de ter mine ac cess to CPU time. Fur ther more, pre emp tive meth ods must usu ally
pay a price in lower per for mance due in part to the data re quire ments and the time
con sumed in con text switch ing.

Of ten it is pos si ble to com bine pre emp tive sched ul ing with co op er a tive tech -
niques in which tasks re lin quish CPU time of their own ac cord. For ex am ple, a task
that has run to com ple tion may re turn con trol to the sched uler even if its time slice
has not yet ex pired. Or a task may re turn con trol to the sched uler if it is in a non crit -
i cal stage of its ex e cu tion cy cle.

14.5.1 Task Struc ture

At the be gin ning of its de sign, the pro gram mer chooses which ac tiv i ties of the sys tem
will be con sid ered tasks. At this point it is im por tant to avoid cre at ing too many tasks
be cause each con text switch im plies time and stor age over heads. Some times the sys -
tem dead lines can serve as a start ing point for iden ti fy ing tasks. In this sense re lated
ac tiv i ties that are must meet sim i lar dead lines can be grouped into a sin gle task. By the
same to ken, ac tiv i ties that are re lated in their func tion or their data re quire ments can
of ten be bun dled into a sin gle task.

Al though tasks may be pre empted by the sched uler, they must be coded to run
con tin u ously. In other words, each task is a self-con tained and semi-au ton o mous
pro gram. Tasks can not ac cess each other's code be cause this would cre ate prob -
lems with reentrancy at task switch time. How ever, sev eral tasks can ac cess the
same subprogram.

386 Chap ter 14

In cer tain pre emp tive mod els, each task must be as so ci ated with a pri or ity rank -
ing. This rank ing can be a static value that re mains un changed dur ing pro gram ex e -
cu tion, or a dy namic one which can change at runtime. Pri or i ties should be based on
the task's im por tance to the sys tem, the user, and the pro gram en vi ron ment. The fol -
low ing ranks can be es tab lished:

• High-pri or ity tasks are es sen tial for sys tem sur vival.

• Mid dle-pri or ity tasks are nec es sary for cor rect sys tem op er a tion.

• Low-priority tasks are those that might be oc ca sion ally ex pend able or that can de -
lay in their com ple tion.

Pri or i ties can also be in flu enced by the task's dead lines, be cause high-pri or ity
should be given to tasks with very tight time dead lines. How ever, a task can be given
a lower pri or ity even if it has a de mand ing dead line, if the task it self is of low im por -
tance.

14.5.2 Sema phore

It is of ten the case that sev eral tasks may need ac cess to the same re source. A re -
source could be a hard ware com po nent such as a pe riph eral or a disk stor age area, a
printer, a soft ware mod ule, or a subprogram. In any case, grant ing ac cess to a re -
source re quires spe cial con trols.

The data struc ture used is called a sema phore. In vented by Edsger Dijkstra, the
sema phore is a con trol de vice that al lows man ag ing ac cess to a shared re source in a
multiprogramming en vi ron ment. The sema phore re cords the num ber of units of a
shared re source that are avail able. In the case of a sin gle unit, con trol is by a bi nary
sema phore. Oth er wise, the sema phore can be a nu meric value that is in cre mented
and dec re ment ed as the re source is used or re stored.

In a bi nary sema phore (the most com mon one), the task will be able to use the re -
source if its sema phore is in the GO state. In this case, the task will change the
sema phore to the WAIT state while it is us ing the re source, and back to the GO state
when it is fin ished. While a sema phore is in the WAIT state, any task need ing the re -
source will go into a blocked state. This im ple men ta tion cor re sponds with the con -
cept of mu tual ex clu sion, that is, all oth ers are ex cluded when one task is ac cess ing
the re source.

The so-called count ing sema phore is used if there is more than one re source of
the same type. In this case, the sema phore ini tially holds the to tal num ber of avail -
able re sources, and tasks in cre ment and dec re ment the count as pre vi ously de -
scribed. At any time, the count ing sema phore holds the num ber of units of a
re source cur rently avail able.

An ef fect of set ting a sema phore to the WAIT state is that an other task be comes
blocked. In this man ner, a sema phore can be used to pro vide time syn chro ni za tion
and sig nal ing be tween dif fer ent tasks. One task can block an other by set ting a
sema phore, and can re lease it by clear ing the semaphore.

 Op er at ing Sys tems 387

14.6 Sam ple OS Ap pli ca tion
; File name: 18F452_OS_Demo.asm
; Date: June 25, 2013
; Au thor: Julio Sanchez
; PIC 18F452
;
;===
; CPU pinout
;===
; 18F452
; +------------------+
; MCLR/Vpp ===>| 1 40|===> RB7/PGD
; RA0/AN0 <==>| 2 39|<==> RB6/PGC
; RA1/AM1 <==>| 3 38|<==> RB5/PGM
; RA2/AN2/REF- <==>| 4 37|<==> RB4
; RA3/AN3/REF+ <==>| 5 36|<==> RB3/CCP2
; RA4/TOCKI <==>| 6 35|<==> RB2/INT2
; RA5/AN4/SS/LVDIN <==>| 7 34|<==> RB1/INT1
; RE0/RD/AN5 <==>| 8 33|<==> RB0/INT0
; RE1/WR/AN6 <==>| 9 32|<=== Vdd
; RE2/CS/AN7 <==>|10 31|===> Vss
; Vdd ===>|11 30|<==> RD7/PSP7
; Vss <== |11 29|<==> RD6/PSP6
; OSCI/CLKI ===>|13 28|<==> RD5/PSP5
; OSC2/CLK0/RA6 <==>|14 27|<==> RD4/PSP4
; RC0/T1OSO/TICK1 <==>|15 26|<==> RC7/RX/DT
; RC1/T1OS1/CCP2 <==>|16 25|<==> RC6/TX/CK
; RC2/CCP1 <==>|17 24|<==> RC5/SD0
; RC3/SCK/SCL <==>|18 23|<==> RC4/SDI/SDA
; RD0/PSP0 <==>|19 22|<==> RD3/PSP3
; RD1/PSP1 <==>|20 21|<==> RD2/PSP2
; +------------------+
; Leg end:
; Crys = 32.768 KHz crys tal DBx = LCD data byte 1-7
; cap = 22 Pf ca pac i tor E = LCD sig nal en able
; res0 = 10K re sis tor RW = LCD read/write
; res1 = 470 Ohm re sis tor RS = LCD reg is ter se lect
; res2 = 412 Ohm re sis tor GR = ground

;
; De scrip tion:
; A RTOS dem on stra tion pro gram. Cir cuit con tains three
; LEDs (yel low, red, and green) which can be en abled or
; disabled and flash at dif fer ent rates. Each LCD is
; con sid ered a task in a multitasking en vi ron ment. An
; in ter rupt han dler op er ates a timer tick in the
; back ground. Three pushbutton switches are used to ac ti vate
; the var i ous modes and to set the pa ram e ters for each
; task. Three DIP switches al low deac ti vat ing any task
; with out chang ing the task's de lay value. The DIP switches
; sim u late the as sign ment of some crit i cal re source with out
; which a task can not run.
;
; WARNING:
; Code as sumes 4MHz clock. De lay rou tines must be
; ed ited for faster clock.
; PROGRAM OPERATION:
; State di a gram:

388 Chap ter 14

; +--------+
; | INIT | +------------+
; +---|----+ | TASK |
; | | STATUS |
; | | SWITCHES |
; | +-----|------+
; +----------+ +----------+ +----|------+
; | SETUP |<=====>| COMMAND |<=======>| TASK |
; | MODE | | MODE | | SCHEDULER |
; +----|-----+ +----------+ +-----|----+
; | +-----------------+ |
; |___________| TIMER VARIABLES |__________|
; +-----------------+
;
; The LCD dis plays the cur rent de lay val ues for each task.
; as fol lows:
;
; 0 15
; | | | | | | | | | | | | | | | |
; T a s k : 1 2 3 <== line 1
; D e l a y : 1 5 9 <== line 2
; | | |
; 7 10 13 <== digit off set
;
; In the de fault start-up all tasks are run ning and the
; de fault de lays are 1, 5, and 9 re spec tively.
;
;==========================
; com mand mode
;==========================
; Tasks are run ning
; But ton # 1 en ters the setup mode
; Setup mode al lows entering new val ues for the task
; de lays (range 0 to 9). A task with a de lay value of 0
; is blocked. All tasks are sus pended.
;===========================
; setup mode
;===========================
; SETUP MODE KEYS:
; Pushbutton # 1 tog gles to next digit.
; # 2 tabs to next digit field
; # 3 ends setup mode and re turn to
; com mand mode
;
;===========================
; LCD wir ing
;===========================
; LCD is wired in par al lel to 16F877 as fol lows:
; DATA LINES:
; |------- F87x -------|----- LCD -------|
; port PIN line PIN
; RD0 19 DB0 8
; RD1 20 DB1 7
; RD2 21 DB2 10
; RD3 22 DB3 9
; RD4 27 DB4 12
; RD5 28 DB5 11
; RD6 29 DB6 14
; RD7 30 DB7 13
; CONTROL LINES:

 Op er at ing Sys tems 389

; |------- F87x -------|----- LCD -------|
; port PIN line PIN
; RE0 8 RS 3
; RE1 9 E 5
; RE2 10 RW 6
;
;===========================
; Pushbutton switches
; ac tion and wir ing
;===========================
; All switches are wired ac tive low, this means that
; port reads bi nary 0 when switch is closed
; x87 PORT PIN SWITCH FUNCTION
; STATUS MODE ACTION
; RB0 33 SW1 Go to SETUP mode
; RB2 34 SW2 NO ACTION
; RB3 35 SW3 NO ACTION
; SETUP MODE ACTION:
; RB0 33 SW1 Tog gle digit (0 to 9)
; RB2 34 SW2 Tab to next digit
; Exit to STATUS mode if
; at last digit
; RB3 35 SW3 Re turn to STATUS mode
;===========================
; DIP switches
; (re source as sign ment)
;===========================
; x87 PORT PIN Func tion
; RC4 23 Ac ti vate/de-ac ti vate Task 1
; RC5 24 " Task 2
; RC6 25 " Task 3
;
;===========================
; LED wir ing
;===========================
; x87 PORT PIN LED Color Func tion
; RA0 2 1 green Task 1
; RA1 3 2 red Task 2
; RA2 4 3 yel low Task 3
;
;===
; 16F877 con fig u ra tion op tions
;===
; Switches used in __config di rec tive:
; _CP_ON Code pro tec tion ON/OFF
; * _CP_OFF
; * _PWRTE_ON Power-up timer ON/OFF
; _PWRTE_OFF
; _BODEN_ON Brown-out re set en able ON/OFF
; * _BODEN_OFF
; * _PWRTE_ON Power-up timer en able ON/OFF
; _PWRTE_OFF
; _WDT_ON Watch dog timer ON/OFF
; * _WDT_OFF
; _LPV_ON Low volt age IC pro gram ming en able ON/OFF
; * _LPV_OFF
; _CPD_ON Data EE mem ory code pro tec tion ON/OFF
; * _CPD_OFF
; OSCILLATOR CONFIGURATIONS:
; _LP_OSC Low power crys tal oscillator

390 Chap ter 14

; _XT_OSC Ex ter nal par al lel res o na tor/crys tal oscillator
; * _HS_OSC High speed crys tal res o na tor
; _RC_OSC Re sis tor/ca pac i tor oscillator
; | (sim plest, 20% er ror)
; |
; |_____ * in di cates setup val ues pres ently se lected

pro ces sor 18f452 ; De fine pro ces sor
#in clude <p18f452.inc>
__CONFIG _CP_OFF & _WDT_OFF & _BODEN_OFF & _PWRTE_ON & _HS_OSC &

_WDT_OFF & _LVP_OFF & _CPD_OFF

; __CONFIG di rec tive is used to em bed con fig u ra tion data
; within the source file. The la bels fol low ing the di rec tive
; are lo cated in the cor re spond ing .inc file.
;
; Turn off bank ing er ror mes sages

errorlevel -302
;
;==
; con stant def i ni tions
; for PIC-to-LCD pin wir ing and LCD line ad dresses
;==
; LCD used in the demo board is 2 lines by 16 char ac ters
#de fine E_line 1 ;|
#de fine RS_line 0 ;| -- from wir ing di a gram
#de fine RW_line 2 ;|
; LCD line ad dresses (from LCD data sheet)
#de fine LCD_1 0x80 ; First LCD line con stant
#de fine LCD_2 0xc0 ; Sec ond LCD line con stant
; Ad dress of in di vid ual char ac ters on sec ond LCD line
#de fine CHAR_1 0xc7 ; First char ac ter in sec ond line
#de fine CHAR_2 0xca ; Sec ond char ac ter
#de fine CHAR_3 0xcd ; Third char ac ter
; Note: The con stant that de fine the LCD dis play line
; ad dresses have the high-or der bit set in
; or der to facilitate the con trol ler com mand
;
;===
; vari ables in PIC RAM
;===
; Re serve 16 bytes for string buffer

cblock 0x20
strData
endc

; Con tinue with lo cal vari ables
cblock 0x30 ; Start of block
count1 ; Coun ter # 1
count2 ; Coun ter # 2
count3 ; Coun ter # 3
pic_ad ; Stor age for start of text area

; (la beled strData) in PIC RAM
J ; coun ter J
K ; coun ter K
in dex ; For LCD dis play
temp ; Aux il iary stor age for con ver sion

; Digit-ge neric data for gen eral pro ce dures
thisField ; Cur rent digit (0 to 3)
digAsc ; ASCII for cur rently se lected field

; co mes from cycle1 to cycle3 vari ables

 Op er at ing Sys tems 391

charAdd ; Ad dress of cur rent digit field
; CHAR_1 to CHAR_3

; Vari ables for pre serv ing con text dur ing in ter rupt
old_w ; Con text sav ing
old_STATUS ; Idem

;=========================
; task-re lated vari ables
;=========================

taskState ; Bitmapped task state con trol
delay1 ; Task de lays
delay2
delay3
status1 ; Task de lay sta tus
status2
status3

; Field-spe cific reg is ters for ASCII dig its
cycle1 ; Task 1 de lay (in ASCII)
cycle2 ; Task 2 de lay
cycle3 ; Task 3 de lay
endc

;==
; M A C R O S
;==
; Mac ros to se lect the reg is ter banks
; Data mem ory bank se lec tion bits:
; RP1:RP0 Bank
; 0:0 0 Ports A,B,C,D, and E
; 0:1 1 Tris A,B,C,D, and E
; 1:0 2
; 1:1 3
Bank0 MACRO ; Se lect RAM bank 0

bcf STATUS,RP0
bcf STATUS,RP1
ENDM

Bank1 MACRO ; Se lect RAM bank 1
bsf STATUS,RP0
bcf STATUS,RP1
ENDM

Bank2 MACRO ; Se lect RAM bank 2
bcf STATUS,RP0
bsf STATUS,RP1
ENDM

Bank3 MACRO ; Se lect RAM bank 3
bsf STATUS,RP0
bsf STATUS,RP1
ENDM

;==
; pro gram
;==

org 0 ; start at ad dress

NOP

goto main
; Space for in ter rupt han dlers
;=============================
; in ter rupt in ter cept
;=============================

org 0x04

392 Chap ter 14

goto IntServ
main:
; Port setup:
; PORT A lines:
; PORT LINE DEVICE MODE
; RA0 2 LED 1 OUTPUT
; RA1 3 LED 2 OUTPUT
; RA2 4 LED 3 OUTPUT
; PORT B lines:
; RB0 33 SWITCH 1 INPUT
; RB1 34 SWITCH 2 INPUT
; RB2 35 SWITCH 3 INPUT
; RB3 36 SWITCH 3 INPUT
; PORT C lines:
; RC4 23 DIP 1 INPUT
; RC5 24 DIP 2 INPUT
; RC6 25 DIP 3 INPUT
; PORT D lines:
; RD0-RD7 19-22/27-30 LCD Data OUTPUT
; Port E lines:
; RE0-RE2 8-10 LCD Ctrl OUTPUT

nop
nop

; Se lect bank 1 to tris out put reg is ters
Bank1

; Tris port D for out put
movlw B'00000000'
movwf TRISD ; and port D
movwf TRISE

; By de fault port A lines are an a log. To con fig ure them
; as dig i tal code must set bits 1 and 2 of the ADCON1
; reg is ter (in bank 1)

movlw 0x06 ; bi nary 0000 0110 is code to
; make all port A lines digial

movwf ADCON1
; Tris port A for out put

movlw B'00000000'
movwf TRISA ; Tris port A

; Tris port B bits 0 to 3 for in put
movlw B'00001111'
movwf TRISB

; Tris port C lines 4, 5, and 6 for in put
movlw B'01110000'
movwf TRISC

; Back to Bank 0
Bank0

; Clear all out put lines
movlw B'00000000'
movwf PORTA
movwf PORTD
movwf PORTE

;=============================
; setup timer1 and in ter rupt
;=============================

call timer1Off
;==========================
; init task vari ables
;==========================

 Op er at ing Sys tems 393

; delayx vari ables hold the de lay val ues (range 0 to 9)
; statusx vari ables hold the current de lay count

clrf status1
clrf status2
clrf status3

; Ini tial ize ASCII dig its to de fault val ues
; task 1 = 1, Task 2 = 5, Task 3 = 9

movlw '1'
movwf cycle1
movlw '5'
movwf cycle2
movlw '9'
movwf cycle3

; Con vert cy cles to bi nary and store in vari able
; delay1 to delay3

call cyc2bin
; Up date taskState vari able ac cord ing to DIP switches

call updateState
; Se lect cur rent field (range 0 to 2)

clrf thisField ; Field 0 is first digit
; Set ad dress of first digit in gen eral vari able

movlw CHAR_1 ; Ad dress of first digit
movwf charAdd ; To gen eral vari able

; Store base ad dress of text buffer in PIC RAM
movlw 0x20 ; Start ad dress of text buffer
movwf pic_ad ; to lo cal vari able

;==========================
; init LCD
;==========================
; Wait and ini tial ize HD44780

call de lay_28ms ; Al low LCD time to ini tial ize it self
call initLCD ; Then do forced ini tial iza tion
call de lay_28ms ; (Wait prob a bly not nec es sary)

;==
;==
; c o m m a n d p r o c e s i n g
;==
;==
; State di a gram:
; +--------+
; | INIT | +------------+
; +---|----+ | TASK |
; | | STATUS |
; | | SWITCHES |
; | +-----|------+
; +----------+ +----------+ +----|------+
; | SETUP |<=====>| COMMAND |<=======>| TASK |
; | MODE | | MODE | | SCHEDULER |
; +----|-----+ +----------+ +-----|----+
; | +-----------------+ |
; |___________| TIMER VARIABLES |__________|
; |-----------------|
;
commandMode:
;============================
; dis play LCD text
;============================
; Store 16 blanks in PIC RAM, start ing at ad dress stored
; in vari able pic_ad

394 Chap ter 14

call blank16
; Call pro ce dure to store ASCII char ac ters for mes sage
; in text buffer

call storeStatus
; Set DDRAM ad dress to start of first line

call line1
; Call pro ce dure to dis play 16 char ac ters in LCD

call display16
;========================
; sec ond LCD line
;========================

call de lay_168 ; Wait for ter mi na tion
call blank16 ; Blank buffer

; Call pro ce dure to store ASCII char ac ters for mes sage
; in text buffer

clrw
call storeParams
call line2 ; DDRAM ad dress of LCD line 2
call display16

; Now test switches
; PORT B lines:
; RB0 33 SWITCH 1 INPUT
; RB1 34 SWITCH 2 INPUT
; RB2 35 SWITCH 3 INPUT
; Switches are ACTIVE LOW
; In Sta tus mode the fol low ing switches are ac tive
; RB0 = go to setup mode

;==
;==
; timer con trol and com mand mode
;==
;==
timerCtrl:
; Turn on in ter rupt

call timer1Off
call long_de lay
call timer1On
call long_de lay

; Re set sta tus
clrf status1
clrf status2
clrf status3

;===
; com mand wait loop
;===
timerWait:
; Up date state ac cord ing to DIP swtiches set tings

call updateState
; Test RB0 line

btfss PORTB,0 ; Test RB0 line
goto setupMode ; Com mand han dler

; Not RB0
goto timerWait

;===
; setup mode subcommand
;===
setupMode:

call long_de lay
; Turn off clock

 Op er at ing Sys tems 395

call timer1Off
; Turn off all LEDs

call ledsOff
; Call pro ce dure to store ASCII char ac ters for mes sage
; in text buffer

call storeParams
call line2 ; DDRAM ad dress of LCD line 2
call display16

; Re set field
clrf thisField

; Debounce last key stroke
call long_de lay
call long_de lay

; Up date digit and dis play
call field2GR ; Field digit to gen eral reg is ter
call showDigit ; Dis play digit
call GR2Field ; Gen eral reg is ter to field
goto setupKey
nop ; Spacer

;=================================
; SETUP mode com mand pro cess ing
;=================================
; Key com mands:
; PB#/LINE NAME ACTION
; 1 RB0 ENTER Tog gle digit
; 2 RB1 TAB Move to next digit
; 3 RB2 DONE Go back to STATUS mode
; Switches are ACTIVE LOW
setupKey:

btfss PORTB,0 ; Test RB0 line
goto cmdENTER ; Han dler

; Not RB0
nop
btfss PORTB,1 ; Test RB1 line
goto cmdTAB

; Not RB1
nop
btfss PORTB,2 ; Test RB2 line
goto cmdDONE
goto setupKey

;=======================
; DONE subcommand
;=======================
; Ex e cu tion re turns to main com mand pro cess ing
cmdDONE:

goto lastField ; Re set to last field and
; re turn to timer con trol
; mode

;=======================
; ENTER subcommand
;=======================
cmdENTER:
; In the SETUP mode the en ter key tog gles the digit
; in the cur rently se lected dis play field. Field
; num ber is stored in thisField.

call field2GR ; Field digit to gen eral reg is ter
call nextDigit ; Bump digit
call showDigit ; Dis play it
call GR2Field ; Gen eral reg is ter to field
call long_de lay

396 Chap ter 14

goto setupKey ; Mon i tor next key stroke

;=========================
; tab to next digit
;=========================
; The vari able thisField (range 0 to 2) con tains the
; current digit field num ber cor re spond ing to the
; dig its cycle1, cycle2, and cycle3. Ac tion on the
; tab com mand key tog gles to the next field.
cmdTAB:
; First test if value is last field (thisField = 2)

movlw 0x02 ; Value of third field
subwf thisField,w ; Com pare op er a tion
btfsc STATUS,Z ; Test Z flag
goto lastField ; Go if last field

; At this point thisField is not = 3
incf thisField,f ; Bump field
call field2GR ; Field digit to gen eral reg is ter
call showDigit ; Dis play it
call GR2Field ; Gen eral reg is ter to field
call long_de lay
goto setupKey ; Mon i tor next key stroke

; Wrap arround to first field
;============================
; end of Setup com mand
;============================
lastField:

call long_de lay
; The val ues are pres ently in the field digit
; vari ables cycle1, cycle2, dur1, and dur2.

call cyc2bin ; ASCII cy cle (in cyclex) to
; bi nary (in delayx)

; Re set statusx vari ables
clrf status1
clrf status2
clrf status3

; Done. Go back to com mand mode
goto commandMode

;==
;==
; P r o c e d u r e s
;==
;==
;======================
; INITIALIZE LCD
;======================
initLCD
; Ini tial iza tion for Densitron LCD mod ule as fol lows:
; 8-bit in ter face
; 2 dis play lines of 16 char ac ters each
; cur sor on
; left-to-right in cre ment
; cur sor shift right
; no dis play shift
;***********************|
; COMMAND MODE |
;***********************|

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low for com mand

 Op er at ing Sys tems 397

bcf PORTE,RW_line ; Write mode
call de lay_168 ;de lay 125 mi cro sec onds

;***********************|
; FUNCTION SET |
;***********************|

movlw 0x38 ; 0 0 1 1 1 0 0 0 (FUNCTION SET)
; | | | |__ font se lect:
; | | | 1 = 5x10 in 1/8 or 1/11 dc
; | | | 0 = 1/16 dc
; | | |___ Duty cy cle se lect
; | | 0 = 1/8 or 1/11
; | | 1 = 1/16 (mul ti ple lines)
; | |___ In ter face width
; | 0 = 4 bits
; | 1 = 8 bits
; |___ FUNCTION SET COMMAND

movwf PORTD ;0011 1000
call pulseE ;pulseE and de lay

;***********************|
; DISPLAY ON/OFF |
;***********************|

movlw 0x0a ; 0 0 0 0 1 0 1 0 (DISPLAY ON/OFF)
; | | | |___ Blink char ac ter
; | | | 1 = on, 0 = off
; | | |___ Cursor on/off
; | | 1 = on, 0 = off
; | |____ Dis play on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

movwf PORTD
call pulseE ;pulseE and de lay

;***********************|
; DISPLAY AND CURSOR ON |
;***********************|

movlw 0x0f ; 0 0 0 0 1 1 1 1 (DISPLAY ON/OFF)
; | | | |___ Blink char ac ter
; | | | 1 = on, 0 = off
; | | |___ Cursor on/off
; | | 1 = on, 0 = off
; | |____ Dis play on/off
; | 1 = on, 0 = off
; |____ COMMAND BIT

movwf PORTD
call pulseE ;pulseE and de lay

;***********************|
; ENTRY MODE SET |
;***********************|

movlw 0x06 ; 0 0 0 0 0 1 1 0 (ENTRY MODE SET)
; | | |___ dis play shift
; | | 1 = shift
; | | 0 = no shift
; | |____ cur sor in cre ment mode
; | 1 = left-to-right
; | 0 = right-to-left
; |___ COMMAND BIT

movwf PORTD ;00000110

398 Chap ter 14

call pulseE

;***********************|
; CURSOR/DISPLAY SHIFT |
;***********************|

movlw 0x14 ; 0 0 0 1 0 1 0 0 (CURSOR/DISPLAY SHIFT)
 ; | | | |_|___ don't care

; | |_|__ cur sor/dis play shift
; | 00 = cur sor shift left
; | 01 = cur sor shift right
; | 10 = cur sor and dis play
; | shifted left
; | 11 = cur sor and dis play
; | shifted right
; |___ COMMAND BIT

movwf PORTD ;0001 1111
call pulseE

;***********************|
; CLEAR DISPLAY |
;***********************|

movlw 0x01 ; 0 0 0 0 0 0 0 1 (CLEAR DISPLAY)
; |___ COMMAND BIT

movwf PORTD ;0000 0001
;

call pulseE
call de lay_28ms ;de lay 5 mil li sec onds af ter init
re turn

;======================================
; Time De lay and Pulse Pro ce dures
;======================================
; Pro ce dure to de lay 42 x 4 = 168 ma chine cy cles
; On a 4MHz clock the in struc tion rate is 1 mi cro sec ond
; 42 x 4 x 1 = 168 mi cro sec onds
de lay_168

movlw D'42' ; Re peat 42 ma chine cy cles
movwf count1 ; Store value in coun ter

re peat
decfsz count1,f ; Dec re ment coun ter
goto re peat ; Con tinue if not 0
re turn ; End of de lay

;
; Pro ce dure to de lay 168 x 168 mi cro sec onds
; = 28.224 mil li sec onds
de lay_28ms

movlw D'42' ; Coun ter = 41
movwf count2 ; Store in vari able

de lay
call de lay_168 ; De lay
decfsz count2,f ; 40 times = 5 mil li sec onds
goto de lay
re turn ; End of de lay

;========================
; pulse E line
;========================
pulseE

bsf PORTE,E_line ;pulse E line
bcf PORTE,E_line
call de lay_168 ;de lay 168 mi cro sec onds
re turn

 Op er at ing Sys tems 399

;=============================
; de lay pro ce dures
;=============================
; Ap prox i mately 160,000 ma chine cy cles
; decfsz and goto are 2-cy cle in struc tions
; so both loops take up 4 ma chine cy cles per it er a tion.
; 40,000 x 4 = 160,000 cy cles
; = 160 mil li sec onds at 4MHz.
long_de lay

movlw D'200' ; w = 200 dec i mal
movwf J ; J = w

jloop: movwf K ; K = w

kloop: decfsz K,f ; K = K-1, skip next if zero
goto kloop ; 4 ma chine cy cles loop
decfsz J,f ; J = J-1, skip next if zero
goto jloop ; 4 ma chine cy cles loop
re turn

;==
; data ma nip u la tion pro ce dures
;==
;=================================
; field data to gen eral reg is ter
;=================================
; Data in the field vari ables (cycle1, cycle2, and cycle3
; is moved to the gen eral reg is ter digAsc
; Vari able thisField holds 0, 1, and 2 field num ber
field2GR:

movlw .0 ; 0 to w reg is ter
subwf thisField,w ; Sub tract cur rent field
btfss STATUS,Z ; Test zero flag
goto testFV1 ; Go if not first field

; At this point first digit field is se lected
; move data to gen eral reg is ter (digAsc)

movf cycle1,w ; First digit to w
movwf digAsc ; To gen eral reg is ter

; Set ad dress of first digit in gen eral vari able
movlw CHAR_1 ; Ad dress of first digit
movwf charAdd ; To gen eral vari able
goto exitField ; Gen eral pro cess ing

; Test ing sec ond digit field (field value = 1)
testFV1:

movlw .1 ; 1 to w reg is ter
subwf thisField,w ; Sub tract cur rent field
btfss STATUS,Z ; Test zero flag
goto testFV2 ; Go if not field

; At this point sec ond digit field is se lected
movf cycle2,w ; First digit to w
movwf digAsc ; To gen eral reg is ter

; Set ad dress of sec ond digit in gen eral vari able
movlw CHAR_2 ; Ad dress of digit
movwf charAdd ; To gen eral vari able
goto exitField ; Gen eral pro cess ing

; Test ing third digit field (field value = 2)
testFV2:
; At this point third digit field is se lected

movf cycle3,w ; Digit to w
movwf digAsc ; To gen eral reg is ter

; Set ad dress of third digit in gen eral vari able

400 Chap ter 14

movlw CHAR_3 ; Ad dress of digit
movwf charAdd ; To gen eral vari able

exitField:
re turn

;=================================
; digit up date pro ce dure
;=================================
; ASCII digit is stored in vari able digAsc.
; Digit is tested for '9' and re wound. Oth er wise
; it is bumped top the next digit
nextDigit:

movf digAsc,w ; Digit to w reg is ter
sublw 0x39 ; ASCII for '9'
btfsc STATUS,Z ; Test zero flag
goto is9 ; Go if digit is '9'

; Digit is not '9'. Bump to next digit
incf digAsc,f ; Bump to next digit
re turn

; At this point digit stor age is re set back to '0'
is9:

movlw '0' ; ASCII '0'
movwf digAsc ; Digit to vari able
re turn

;===================================
; dis play digit
;===================================
; Pro ce dure to dis play digit
showDigit:

call char2LCD ; Flash cycle1 digit
; De lay

call long_de lay
re turn

;==================================
; gen eral data to field reg is ters
;==================================
; Pro ce dure to move data from the gen eral reg is ter
; (digAsc) to the cor re spond ing field reg is ter
; Field val ues are 0, 1, and 2
GR2Field:

movlw 0x00 ; 0 to w reg is ter
subwf thisField,w ; Sub tract cur rent field
btfss STATUS,2 ; Test zero flag be (2)
goto notFV1 ; Go if not first field

; At this point first digit field is se lected
; move data to gen eral reg is ter (digAsc)

movf digAsc,w ; Digit to w
movwf cycle1 ; To field reg is ter
goto allFields ; Gen eral pro cess ing

; Test ing sec ond digit field (field value = 1)
notFV1:

movlw 0x01 ; 2 to w reg is ter
subwf thisField,w ; Sub tract cur rent field
btfss STATUS,2 ; Test zero flag be (2)
goto notFV2 ; Go if not field

; At this point sec ond digit field is se lected
movf digAsc,w ; Digit to w
movwf cycle2 ; To digit field
goto allFields ; Gen eral pro cess ing

 Op er at ing Sys tems 401

; Test ing third digit field (field value = 2)
notFV2:
; At this point third digit field is se lected

movf digAsc,w ; Digit to w
movwf cycle3 ; To gen eral reg is ter

allFields:
call long_de lay
re turn

;
;=============================
; cy cle to bi nary
;=============================
; ASCII val ues of de lay time are stored in the vari ables
; cycle1 to cycle3. These val ues are con verted to bi nary
; and stored in vari ables delay1 to delay3
cyc2bin:

movf cycle1,w ; First cy cle to w
movwf temp ; tem po rary reg is ter
movlw 0x30 ; 30 hex
subwf temp,w ; Sub tract and store in w
movwf delay1

; cycle2 to delay2
movf cycle2,w ; First cy cle to w
movwf temp ; tem po rary reg is ter
movlw 0x30 ; 30 hex
subwf temp,w ; Sub tract and store in w
movwf delay2

; cycle3 to delay3
movf cycle3,w ; First cy cle to w
movwf temp ; tem po rary reg is ter
movlw 0x30 ; 30 hex
subwf temp,w ; Sub tract and store in w
movwf delay3
re turn

;===========================
; up date taskState
; ac cord ing to DIP switches
;===========================
; Pro ce dure to read task state switches wired to port C
; lines 4, 5, and 6 and up date the cor re spond ing bits
; in the taskState vari able
; Task states are mapped to the three low-or der bits
; taskState 7 6 5 4 3 2 1 0
; | | |___ task 3 (green)
; | |______ task 2 (red)
; |_________ task 1 (yel low)
updateState:
; Clear task switch vari able

clrf taskState
; Test RC0 line

btfsc PORTC,4 ; Test RC4 line
goto stateBit1 ; Next task state bit

; At this point task state must be set
bsf taskState,0

stateBit1:
; Test RC1 line

btfsc PORTC,5 ; Test RC5 line
goto stateBit2 ; Next task state bit

; At this point task state must be set
bsf taskState,1

402 Chap ter 14

stateBit2:
; Test RC2 line

btfsc PORTC,6 ; Test RC6 line
goto stateDone ; Exit

; At this point task state must be set
bsf taskState,2

stateDone:
re turn

;===
; LCD dis play pro ce dures
;===
;====================================
; dis play currnet field char ac ter
; on LCD line 2
;====================================
char2LCD:
; ON ENTRY:
; Ad dress of char ac ter in LCD line 2 in vari able charAdd
; Char ac ter to be dis played in vari able digAsc
; ON EXIT:
; Char ac ter is dis played and cur sor is re set to char ac ter
; po si tion

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low, setup for con trol
call de lay_168 ; de lay

; Set to char ac ter po si tion in sec ond dis play line
movf charAdd,w ; Ad dress with high-bit set
movwf PORTD
call pulseE ; Pulse and de lay

; Set RS line for data
bsf PORTE,RS_line ; RS = 1 for data
call de lay_168 ; de lay

; Dis play char ac ter
movf digAsc,w ; cycle1 digit to w
movwf PORTD ; Write digit to LCD port
call pulseE

; Done. Re set cur sor af ter write op er a tion
bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low, setup for con trol
call de lay_168 ; de lay

; Set to char ac ter po si tion in sec ond dis play line
movf charAdd,w ; Ad dress with high-bit set
movwf PORTD
call pulseE ; Pulse and de lay
re turn

;============================
; dis play 16 char ac ters
;============================
display16:
; Sends 16 char ac ters from PIC buffer with ad dress stored
; in vari able pic_ad to LCD line pre vi ously se lected
; Set up for data

bcf PORTE,E_line ; E line low
bsf PORTE,RS_line ; RS line low for con trol
call de lay_168 ; De lay

; Set up coun ter for 16 char ac ters
movlw D'16' ; Coun ter = 16
movwf count3

 Op er at ing Sys tems 403

; Get dis play ad dress from lo cal vari able pic_ad
movf pic_ad,w ; First dis play RAM ad dress to W
movwf FSR ; W to FSR

getchar:
movf INDF,w ; get char ac ter from dis play RAM

; lo ca tion pointed to by file se lect
; reg is ter

movwf PORTD
call pulseE ;send data to dis play

; Test for 16 char ac ters dis played
decfsz count3,f ; Dec re ment coun ter
goto nextchar ; Skipped if done
re turn

nextchar:
incf FSR,f ; Bump pointer
goto getchar

;========================
; blank buffer
;========================
; Pro ce dure to store 16 blank char ac ters in PIC RAM
; buffer start ing at ad dress stored in the vari able
; pic_ad
blank16:

movlw D'16' ; Setup coun ter
movwf count1
movf pic_ad,w ; First PIC RAM ad dress
movwf FSR ; In dexed ad dress ing
movlw 0x20 ; ASCII space char ac ter

storeit:
movwf INDF ; Store blank char ac ter in PIC RAM

; buffer us ing FSR reg is ter
decfsz count1,f ; Done?
goto incFSR ; no
re turn ; yes

incFSR:
incf FSR,f ; Bump FSR to next buffer space
goto storeit

;========================
; Set ad dress reg is ter
; to LCD line 1
;========================
; ON ENTRY:
; Ad dress of LCD line 1 in con stant LCD_1
line1:

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low, set up for con trol
call de lay_168 ; de lay 125 mi cro sec onds

; Set to sec ond dis play line
movlw LCD_1 ; Ad dress and com mand bit
movwf PORTD
call pulseE ; Pulse and de lay

; Set RS line for data
bsf PORTE,RS_line ; Setup for data
call de lay_168 ; De lay
re turn

;========================
; Set ad dress reg is ter
; to LCD line 2

404 Chap ter 14

;========================
; ON ENTRY:
; Ad dress of LCD line 2 in con stant LCD_2
line2:

bcf PORTE,E_line ; E line low
bcf PORTE,RS_line ; RS line low, setup for con trol
call de lay_168 ; de lay

; Set to sec ond dis play line
movlw LCD_2 ; Ad dress with high-bit set
movwf PORTD
call pulseE ; Pulse and de lay

; Set RS line for data
bsf PORTE,RS_line ; RS = 1 for data
call de lay_168 ; de lay
re turn

;=========================
; Turn ON LED 1
;=========================
led1_on:
; Pro ce dure to turn on LED No. 1 wired to port RA0

movf PORTA,w ; Port A to w
iorlw B'00000001' ; Set LOB

; |||____ LED 1
; ||_____ LED 2
; |______ LED 3

movwf PORTA
re turn

;=========================
; Turn OFF LED 1
;=========================
led1_off:
; Pro ce dure to turn off LED No. 1 wired to port RA0

movf PORTA,w ; Port A to w
andlw B'11111110' ; Clear LOB

; |||____ LED 1
; ||_____ LED 2
; |______ LED 3

movwf PORTA
re turn

;=========================
; Turn ON LED 2
;=========================
led2_on:
; Pro ce dure to turn on LED No. 2 wired to port RA1

movf PORTA,w ; Port A to w
iorlw B'00000010' ; Set bit 1

; |||____ LED 1
; ||_____ LED 2
; |______ LED 3

movwf PORTA
re turn

;=========================
; Turn OFF LED 2
;=========================
led2_off:
; Pro ce dure to turn off LED No. 2 wired to port RA1

movf PORTA,w ; Port A to w
andlw B'11111101' ; Clear bit 1

 Op er at ing Sys tems 405

; |||____ LED 1
; ||_____ LED 2
; |______ LED 3

movwf PORTA
re turn

;=========================
; Turn ON LED 3
;=========================
led3_on:
; Pro ce dure to turn on LED No. 3 wired to port RA2

movf PORTA,w ; Port A to w
iorlw B'00000100' ; Set bit 2

; |||____ LED 1
; ||_____ LED 2
; |______ LED 3

movwf PORTA
re turn

;=========================
; Turn OFF LED 3
;=========================
led3_off:
; Pro ce dure to turn off LED No. 3 wired to port RA3

movf PORTA,w ; Port A to w
andlw B'11111011' ; Clear bit 2

; |||____ LED 1
; ||_____ LED 2
; |______ LED 3

movwf PORTA
re turn

;=========================
; Turn ON LED 4
;=========================
led4_on:
; Pro ce dure to turn on LED No. 4 wired to port RA3

movf PORTA,w ; Port A to w
iorlw B'00001000' ; Set LOB

; |_______ LED 4
movwf PORTA
re turn

;=========================
; Turn OFF LED 1
;=========================
led4_off:
; Pro ce dure to turn off LED No. 1 wired to port RA0

movf PORTA,w ; Port A to w
andlw B'11110111' ; Clear LOB

; |______ LED 4
movwf PORTA
re turn

;==========================
; flash all 3 LEDs
;==========================
flash3leds:

call led1_on
call long_de lay
call led1_off
call long_de lay
call led2_on
call long_de lay
call led2_off

406 Chap ter 14

call long_de lay
call led3_on
call long_de lay
call led3_off
call long_de lay
re turn

;==========================
; turn OFF all 3 LEDs
;==========================
ledsOff:

movf PORTA,w ; Port A to w
andlw B'11110000' ; Clear LOB
movwf PORTA
re turn

;===
;===
; in ter rupt ser vice rou tine
;===
;===
; Ser vice rou tine re ceives con trol when the timer1
; reg is ters TMR1H/TMR1L over flow, that is when the word
; value rolls over from 0xffff to 0x0000.
; The timer is setup to work off the sys tem clock.
; At 4MHz the de lay per timer1 cy cles is of:
; 65,535 * (0.25 microsec) = 16,383 microsecs
; = 16.383 mil li sec onds
IntServ:
; Clear the timer in ter rupt flag so that count con tin ues

bcf PIR1,0 ; Clear TIMER1 in ter rupt flag
; Save con text

movwf old_w ; Save w reg is ter
swapf STATUS,w ; STATUS to w
movwf old_STATUS ; Save STATUS

; At this point code must de ter mine which (if any) of
; the three pos si ble tasks is in a READY or RUNNING
; State. Task states are mapped to the three low-or der
; bits of the taskState vari able:
; taskState 7 6 5 4 3 2 1 0
; | | |___ task 3 (green)
; | |______ task 2 (red)
; |_________ task 1 (yel low)

btfsc taskState,2 ; Test task 3
goto task1 ; Task 1 rou tine

testTask2:
btfsc taskState,1 ; Task 2
goto task2

testTask3:
btfsc taskState,0 ; Task 3
goto task3

; At this point all tasks are in a NOT READY or
; NOT RUNNING state

goto exitISR ; Exit now
;=========================
; task han dlers
;=========================
; line color task timer de lay sta tus
; RA0 green Task 1 delay1 status1
; RA1 red Task 2 delay2 status2
; RA2 yel low Task 3 delay3 status3

 Op er at ing Sys tems 407

; The val ues in the delayx reg is ters are in the range
; 0 to 9. A de lay of 0 means that the LED flashes at
; the clock rate. A de lay of 1 means that the LED
; flashes ev ery other clock beat (skip 1). A de lay of
; 5 that the LED skips 5 clock beats be fore turn ing on
; or off.
; The statusx reg is ters con trol the num ber of beats
; cur rently skipped. Thus if delay2 = 5 then status2
; will hold val ues 0 to 5. When delayx = statusx an
; on/off op er a tion is per formed and statusx is re set.
;===========================
; task1 = yel low LED
;===========================
; Re lated reg is ters: de lay 1 and sta tus 1
task1:

incf status1,f ; Next sta tus
movf delay1,w ; De lay to w
subwf status1,w ; Com pare
btfss STATUS,Z ; Test Z flag
goto exitT1 ; Exit han dler if not zero

; At this point the statusx reg is ter has reached the
; max i mum count for the given de lay.
; Clear statusx reg is ter

clrf status1
; Set/re set portA line 0 by xoring a mask with a one-bit

movlw b'00000001' ; Xoring with a 1-bit pro duces
; the com ple ment

xorwf PORTA,f ; Com ple ment bit 2, port A
exitT1:

goto testTask2
;===========================
; task 2 = red LED
;===========================
; Re lated reg is ters: de lay 2 and sta tus 2
task2:

incf status2,f ; Next sta tus
movf delay2,w ; De lay to w
subwf status2,w ; Com pare
btfss STATUS,Z ; Test Z flag
goto exitT2 ; Exit han dler if not zero

; At this point the statusx reg is ter has reached the
; max i mum count for the given de lay.
; Clear statusx reg is ter

clrf status2
; Set/re set portA line 0 by xoring a mask with a one-bit

movlw b'00000010' ; Xoring with a 1-bit pro duces
; the com ple ment

xorwf PORTA,f ; Com ple ment bit 2, port A
exitT2:

goto testTask3
;===========================
; task 3 = green LED
;===========================
; Re lated reg is ters: de lay 3 and sta tus 3
task3:

incf status3,f ; Next sta tus
movf delay3,w ; De lay to w
subwf status3,w ; Com pare
btfss STATUS,Z ; Test Z flag
goto exitT3 ; Exit han dler if not zero

408 Chap ter 14

; At this point the statusx reg is ter has reached the
; max i mum count for the given de lay.
; Clear statusx reg is ter

clrf status3
; Set/re set portA line 0 by xoring a mask with a one-bit

movlw b'00000100' ; Xoring with a 1-bit pro duces
; the com ple ment

xorwf PORTA,f ; Com ple ment bit 2, port A
exitT3:

goto exitISR ; Done!
;=========================
; exit ISR
;=========================
exitISR:
; Re store con text

swapf old_STATUS,w ; Saved STATUS to w
movfw STATUS ; To STATUS reg is ter
swapf old_w,f ; Swap file reg is ter in it self
swapf old_w,w ; re-swap back to w

; Re set,in ter rupt
retfie

;===
; timer1 in ter rupt re lated pro ce dures
;===
timer1On:
; Setup timer1 high reg is ter for 32,768 it er a tions
; by set ting the reg is ter's high-or der bit.
; Note: timer1 was in i tial ized dur ing a pre vi ous call
; to the timer1Off pro ce dure.

clrf TMR1H ; Clear reg is ter
bsf TMR1H,7 ; Set bit 7
clrf TMR1L ; Coun ter low byte

; En able in ter rupts
bsf INTCON,7 ; En able global in ter rupts
bsf INTCON,6 ; And pe riph er als
Bank1
bsf PIE1,0 ; Timer1 over flow in ter rupt on

; Start timer 1
Bank0
bsf T1CON,0 ; TMR1ON bit
re turn

;=============================
; turn off timer1
;=============================
timer1Off:

bcf INTCON,7 ; Global in ter rupts off
bcf INTCON,6 ; Disable pe riph eral in ter rupts
Bank1
bcf PIE1,0 ; Disable TIMER1 in ter rupt
Bank0
bcf PIR1,0 ; Clear TIMER1 over flow flag
movlw B'00001000' ; Setup TIMER1 con trol reg is ter

; movlw B'00001010' ; Setup TIMER1 con trol reg is ter
movwf T1CON ; lableled T1CON

; Bit map:
; 0 0 0 0 1 0 1 0
; 7 6 5 4 3 2 1 0 <== T1CON reg is ter
; | | | | | | | |
; | | | | | | | |___ TMR1ON

 Op er at ing Sys tems 409

; | | | | | | | 1 = en able timer1
; | | | | | | | *0 = stop timer1
; | | | | | | |___ TMR1CS
; | | | | | | *1 = ex ter nal clock from
; | | | | | | T1OSO/T1OS1 on ris ing edge
; | | | | | | 0 = in ter nal clock
; | | | | | |___ T1SYNC
; | | | | | When TMR1CS = 1
; | | | | | 1 = do not syn chro nize clock
; | | | | | *0 = syn chro nize clock
; | | | | | Bit ig nored when TMR1CS = 0
; | | | | |___ T1OSCEN
; | | | | *1 = os cil la tor en abled
; | | | | 0 = os cil la tor off (no power drain)

; | | |__|______ T1CKPS1:T1CKPS0 (prescale val ues)
; | | 11 = 1:8 10 = 1:4
; | | 01 = 1:2 *00 = 1:1
; |__|____________ UNIMPLEMENTED (read as 0)
;

re turn

;===
; code res i dent ta bles
;===
; The ta bles are at tached fol low ing the rou tines that use
; them. Also, to avoid cross ing page bound aries each
; rou tine is orged at in cre ments of 0x40 (64 bytes).

org 0x400
;===============================
; first text string pro ce dure
;===============================
storeStatus:
; Pro ce dure to store in PIC RAM buffer the mes sage
; con tained in the code area la beled msg1
; ON ENTRY:
; vari able pic_ad holds ad dress of text buffer
; in PIC RAM
; w reg is ter hold off set into stor age area
; msg1 is rou tine that re turns the string char ac ters
; an a zero ter mi na tor
; ON EXIT:
; Text mes sage stored in buffer
;
; Store base ad dress of text buffer in FSR

movf pic_ad,w ; first dis play RAM ad dress to W
movwf FSR ; W to FSR

; Ini tial ize in dex for text string ac cess
clrf in dex

get_msg_char:
movlw HIGH msg1 ; High 8-bit ad dress
movwf PCLATH ; To pro gram coun ter high
movf in dex,w ; Load char ac ter off set into W
call msg1 ; Get char ac ter from ta ble

; Test for zero ter mi na tor
andlw 0x0ff
btfsc STATUS,Z ; Test zero flag
goto endstr1 ; End of string

; ASSERT: valid string char ac ter in w
; store char ac ter in text buffer (by FSR)

410 Chap ter 14

movwf INDF ; store in buffer by FSR
incf FSR,f ; in cre ment buffer pointer

; Re store ta ble char ac ter coun ter from vari able
incf in dex,f ; Bump off set coun ter
goto get_msg_char ; Con tinue

endstr1:
re turn

; 0 15
; | | | | | | | | | | | | | | | |
; T a s k : 1 2 3 <== line 1
msg1:

addwf PCL,f ; Ac cess ta ble
retlw 'T'
retlw 'a'
retlw 's'
retlw 'k'
retlw ':'
retlw ' '
retlw ' '
retlw '1'
retlw ' '
retlw ' '
retlw '2'
retlw ' '
retlw ' '
retlw '3'
retlw ' '
retlw ' '
retlw 0

;=================================
; sec ond text string pro ce dure
;=================================
; Pro ce dure to store paramenters string and ASCII dig its
; in sec ond LCD line
; ON ENTRY:
; ASCII dig its are stored in vari ables cycle1, cycle2,
; dur1, and dur2. Dig its are cop ied to dis play area
; af ter mes sage

org 0x440
storeParams:
; Store base ad dress of text buffer in FSR

movf pic_ad,w ; first dis play RAM ad dress to W
movwf FSR ; W to FSR

; Ini tial ize in dex for text string ac cess
clrf in dex

get_msg_char1:
movlw HIGH msg2 ; High 8-bit ad dress
movwf PCLATH ; To pro gram coun ter high
movf in dex,w ; Load char ac ter off set into W
call msg2 ; Get char ac ter from ta ble

; Test for zero ter mi na tor
andlw 0x0ff
btfsc STATUS,Z ; Test zero flag
goto endstr2 ; End of string

; ASSERT: valid string char ac ter in w
; store char ac ter in text buffer (by FSR)

movwf INDF ; store in buffer by FSR
incf FSR,f ; in cre ment buffer pointer

; Re store ta ble char ac ter coun ter from vari able

 Op er at ing Sys tems 411

incf in dex,f ; Bump off set coun ter
goto get_msg_char1 ; Con tinue

; Dig its are now moved into text buffer lo cated at
; off set 0x20, as follws:
; cycle1 digit at 0x27
; cycle2 at 0x2a
; cycle3 at 0x2d
; 0 15
; | | | | | | | | | | | | | | | |
; T a s k : 1 2 3 <== line 1
; D e l a y : 1 5 9 <== line 2
; | | |
; 7 10 13 <== digit off set
endstr2:

movf cycle1,w ; First cy cle digit
movwf 0x27 ; Store in vari able
movf cycle2,w
movwf 0x2a
movf cycle3,w
movwf 0x2d
re turn

; 0 15
; | | | | | | | | | | | | | | | |
; D e l a y : 1 5 9 <== line 2
msg2:

addwf PCL,f ; Ac cess ta ble
retlw 'D'
retlw 'e'
retlw 'l'
retlw 'a'
retlw 'y'
retlw ':'
retlw ' '
retlw 'x'
retlw ' '
retlw ' '
retlw 'x'
retlw ' '
retlw ' '
retlw 'x'
retlw ' '
retlw ' '
retlw 0

; End of pro gram

end

412 Chap ter 14

Ap pen dix A

MPLAB C18 Lan guage Tu to rial

A.1 In This Ap pen dix

This appendix is an over view of the gen eral C lan guage im ple mented in the MPLAB
C18 Com piler. It is in tended for read ers who are un fa mil iar with con ven tional C pro -
gram ming and pro vides a ba sic tu to rial on the lan guage fun da men tals. The hard -
ware-spe cific fea tures of C18 as well as the func tions in the C18 pe riph er als li brar ies
are cov ered in Chap ter 6.

The lan guage el e ments dis cussed in this appendix are those of in ter est to the PIC
18F452 pro gram mer. Lan guage fea tures that ap ply to con ven tional com puter en vi -
ron ments, such as video dis play, key board in put, and printer con trols, are not part
of the con tents of this ap pen dix even if some of these fea tures are sup ported by
MPLAB C18. The reader in ter ested in learn ing stan dard C lan guage pro gram ming
should re fer to one of the many books on the sub ject.

The in stal la tion and test ing of the MPLAB C18 Com piler is dis cussed in Chap ter
5. The au thors as sume that at this point the reader has al ready in stalled the MPLAB
IDE and the C18 com piler. The source files for the sam ple pro grams de vel oped in
this ap pen dix can be found in the book's on line pack age in the di rec tory path
named SampleCode/AppendixA.

Be cause the dis cus sion in this ap pen dix takes place in the con text of
microcontroller hard ware, the reader should have cov ered the ma te rial up to and in -
clud ing book Chap ter 5.

A.1.1 About Pro gram ming

In the pres ent con text, a pro gram can be de fined as a se quen tial set of in struc tions de -
signed to per form a spe cific task. The set of in struc tions that must be fol lowed to start
up a par tic u lar model of au to mo bile could be de scribed as the start-up pro gram for
that ve hi cle. On the other hand, a com puter pro gram is a set of log i cal in struc tions that
makes the com puter per form a spe cific func tion.

413

For ex am ple, you can write a com puter pro gram to cal cu late the in ter est that ac -
crues when you in vest a given amount of money, at a cer tain in ter est rate, for a spe -
cific pe riod of time. An other pro gram could be used to tell a ro bot when it is time to
re charge its bat ter ies. Yet an other one could help a phy si cian di ag nose a child hood
dis ease by ex am in ing the pa tient's symp toms. In all these cases, the pro gram con -
sists of a set of in struc tions that per form con di tional tests, fol low a pre dict able
path, and reach an also pre dict able re sult. A set of hap haz ard in struc tions that leads
to no predictable end is not considered a program.

A.1.2 Com mu ni cat ing with an Alien In tel li gence

It can be said that a com puter pro gram is a way of com mu ni cat ing with an alien in tel li -
gence. A com puter is a ma chine built of metal, sil i con, and other com pos ite ma te ri als:
it has no knowl edge of the world and no com mon sense. In this sense a com puter is
noth ing more than a tin can. If 50 years ago some one had found you at tempt ing to com -
mu ni cate and give or ders to a tin can, you would have prob a bly been com mit ted to a
men tal in sti tu tion. To day we go un no ticed as we at tempt to com mu ni cate with a hard -
ware de vice.

Our main chal lenge is that the tin can never “knows what you mean.” A hu man in -
tel li gence has ac cu mu lated con sid er able knowl edge of the world and of so ci ety at
large. The set of in struc tions for a hu man to get us a can of soda from a vend ing ma -
chine can be rather sim ple:

“Joe, here is fifty cents, would you please get me a Pepsi?”

Joe, who has knowl edge of the world, un der stands that he must walk out of the
room, open the nec es sary doors and walk up and down stairs, reach the vend ing ma -
chine, wait in line if some one if us ing it, then place the coins in the ad e quate slot,
punch the Pepsi but ton, re trieve the can of soda, and bring it back to me, again
open ing doors and walk ing up and down stairs as nec es sary. Joe has knowl edge of
doors, of stairs, of money, of wait ing in line, of vend ing ma chines, and of thou sands
of other worldly things and so cial con ven tions that are nec es sary to per form this
simple chore.

The ma chine, on the other hand, has no pre vi ous knowl edge, does not un der -
stand so cial con ven tions, and has no ex pe ri ence with doors, stairs, peo ple stand ing
in line, or vend ing ma chine op er a tion. If we for get to tell the ro bot to open the door,
it will crash through and leave a hole shaped like its out line. If we for get to tell it to
wait in line if some one else is us ing the vend ing ma chine, then the ro bot may just
walk over the cur rent cus tomer in its ef fort to put the coins in the slot. The tin can
has no ex pe ri ence, no so cial man ners, and no com mon sense. Giv ing in struc tions to
a ma chine is dif fer ent and much more com pli cated than giv ing in struc tions to an in -
tel li gent be ing.

This is what com puter pro gram ming is about. It is some times con sid ered dif fi cult
to learn, not so much be cause it is com pli cated, but be cause it is some thing to
which we are not ac cus tomed. Learn ing pro gram ming re quires learn ing the gram -
mar and syn tax of a pro gram ming lan guage, but, per haps more im por tantly, it re -

414 Ap pen dix A

quires learn ing to com mu ni cate with and is sue com mands to a tin can. A task
indeed!

A.1.3 Flowcharting
Com puter sci en tists have come up with tools and tech niques to help us de velop pro -
grams. One of the sim plest and most use ful of these tools is the flowchart. A flowchart,
like the word im plies, is a graph i cal rep re sen ta tion of the flow of a pro gram. In other
words, a flowchart is a graph of the tests, op tions, and ac tions that a pro gram must
per form in or der to achieve a spe cific log i cal task.

Flowcharting is use ful be cause com puter pro grams must leave no loose ends and
pre sume no rea son able be hav ior. You can not tell a com puter, “Well...you know what
I mean!” or as sume that a cer tain op er a tion is so ob vi ous that it need not be ex plic -
itly stated. The pro gram mer uses a flowchart to make cer tain that each pro cess ing
step is clearly de fined and that the op er a tions are per formed in the re quired se -
quence.

Flowcharts use sym bols and spe cial an no ta tions to de scribe the spe cific steps in
pro gram flow. The most com mon ones are shown in Fig ure A.1.

Fig ure A.1 Flowcharting sym bols.

Sup pose you needed to de velop a pro gram to de ter mine when a do mes tic ro bot
needs to re charge its own bat ter ies. As sume that the ro bot con tains a me ter that
mea sures the per cent of full charge in its bat ter ies, as well as a clock that in di cates
the time of day. The pro gram is to be based on the fol low ing rules:

1. The ro bot should re charge it self af ter 5:00 PM.

2. The ro bot should not re charge it self if the bat ter ies are more than 80% full.

The logic for re charg ing the ro bot bat ter ies re quires first read ing the in ter nal
clock to de ter mine if it is af ter 5:00 PM. If so, then it will read the ro bot's bat tery me -
ter to de ter mine if the bat ter ies are less than 80% full. If both tests are true, then the
ro bot is in structed to plug it self into a wall out let and re charge. If not, it is in -
structed to con tinue work ing. The logic can be ex pressed in a flowchart, as shown
in Fig ure A.2.

 MPLAB C18 Lan guage Tu to rial 415

RECTANGLE
Processing operations
Data entry. Arithmetic

PARALLELOGRAM
Input and output

DIAMOND
Decision

CIRCLE
Termination

 symbol

FLOWLINES
Connection symbol

Indicates direction of
program flow

Fig ure A.2 Flowchart for recharging a robot battery.

Note in the flowchart of Fig ure A.2 that the di a mond sym bols rep re sent pro gram
de ci sions. These de ci sions are based on el e men tary logic, which re quires that there
must be two, but not more than two choices. The pos si ble an swers are la beled YES
and NO in the flowchart. De ci sions are the cru cial points in the logic. A pro gram
that re quires no de ci sions is prob a bly based on such sim ple logic that a flowchart
would be un nec es sary. For in stance, a pro gram that con sists of sev eral pro cess ing
steps that are al ways per formed in the same se quence does not re quire a flowchart.

The logic in com puter pro grams of ten be comes com pli cated, or con tains sub tle
points that can be mis in ter preted or over looked. Even sim ple pro gram ming prob -
lems usu ally ben e fit from a flowchart. The logic flowcharted in Fig ure A.2 is based
on re charg ing the bat ter ies if it is af ter 5:00 PM “and” if the bat tery me ter reads less
than 80%. In this case both con di tions must be true for the ac tion of re charg ing the
bat tery to take place. An al ter na tive set of rules could state that the ro bot must re -
charge it self if it is af ter 5:00 PM “or” if the bat tery is less than 80% full. In this case.
ei ther con di tion de ter mines that the ro bot re charges. The flowchart to rep re sent
this logic must be mod i fied, as shown in Fig ure A.3.

416 Ap pen dix A

START

END

NO

NO

YES

YES

Is it after
5:00 PM

?

Are batteries
less than 80% full

?

Continue working

Recharge battery

Read battery meter

Fig ure A.3 Al ter na tive logic for re charg ing a robot bat tery.

Now sup pose that there are crit i cal func tions that you do not want the do mes tic
ro bot to in ter rupt, even if it is af ter 5:00 PM or if the bat tery is less than 80%
charged. For ex am ple, if the ro bot is walk ing the dog, you may not want it to let go
of the leash and go plug it self into the wall out let. In this case, you would have to
mod ify the flowchart and in sert an ad di tional test so that re charg ing does not take
place if the ro bot is cur rently per form ing a crit i cal ac tiv ity. Fur ther more, you may
de cide that a very low bat tery could dam age the ma chine; there fore, if the me ter
shows less than 20% full charge, the ro bot should plug it self into the out let, no mat -
ter what. Here again, the pro gram logic and the flowchart would have to be mod i -
fied to ex press the new set of con di tions that de ter mines which pro gram ac tion
takes place. It is easy to see how pro gram logic can eas ily get com pli cated and why
flowcharts and other logic anal y sis tools are so im por tant to the pro gram mer.

A.1.4 C Lan guage Rules
The C lan guage fol lows a few sim ple rules of syn tax:

• Up per- and lower-case let ters are dif fer ent sym bols in C. When typ ing C code, you
must be care ful to fol low the re quired cap i tal iza tion, for ex am ple, Main and main
re fer to dif fer ent pro gram el e ments.

• In gen eral, C ig nores white space. White space char ac ters are those that do not ap -
pear on the screen, such as blank spaces, tabs, and line-end codes. C pro gram mers
use white space to make the code more pleas ant and read able but these char ac -
ters are ig nored by the com piler..

 MPLAB C18 Lan guage Tu to rial 417

START

END

NO

NO

YES

YES

Is it past 5:00 PM
?

Are batteries
< 80% full

?

Continue working

Recharge battery

Read internal clock

Read battery meter

• C uses braces {} as group ing sym bols. They mark the be gin ning and the end of a
pro gram sec tion. A C pro gram must have an equal num ber of left and right braces.
The part of a C pro gram lo cated be tween braces is called a block.

• Ev ery C state ment ends in the ; sym bol. A state ment is a pro gram el e ment that gen -
er ates a pro cess ing ac tion. Not ev ery C ex pres sion is a state ment.

Com ments

Com puter pro grams usu ally con tain text that clar i fies or ex plains the code. These are
called com ments. Com ments must be pre ceded by a spe cial sym bol so that the text is
ig nored by the com piler. In C there are two ways of in sert ing com ments into your
code:

• The // sym bol cre ates a com ment that ex tends to the end of the line, for ex am ple,

 // This is a sin gle-line com ment

The // sym bol can ap pear any where in a pro gram line.

• The /* and */ sym bols are used to de limit a com ment that can span over more than
one line, for ex am ple:

 /* This is a

 mul ti ple line

 com ment */

Some pro gram mers ob ject to mul ti ple line com ments be cause com ments that
span sev eral lines force the reader to look up or down in the text for the pres ence of
com ment sym bols. These pro gram mers con sider that a much clearer style is to use
the dou ble slash sym bol to mark each com ment line. In this book we have used mul -
ti ple-line com ments in text blocks and la bels. For all com ments in side code, we
have used the sin gle-line comment (//) symbol.

Pro gram Header

Pro grams of ten be gin with sev eral com mented lines, some times called the pro gram
header, that con tain gen eral in for ma tion about the code that fol lows. The fol low ing el -
e ments are usu ally found in the pro gram header:

• The pro gram name

• The name of the au thor or au thors

• A copy right no tice, if one is ap pro pri ate

• The date of pro gram cre ation and mod i fi ca tions

• A de scrip tion of the pro gram's pur pose and the func tions that it per forms

• A his tory of the pro gram changes and up dates

• A list ing of the tools used in de vel op ing the pro gram

• A de scrip tion of the soft ware and hard ware en vi ron ment re quired to run the pro -
gram

418 Ap pen dix A

Pro gram mers usu ally cre ate their own pro gram head ers, which they paste into all
their sources.

Pro gram ming Tem plates

Pro gram ming tem plates con tain not only the pro gram header, but also a skel e ton that
com piles cor rectly in the tar get en vi ron ment. The fol low ing is a pro gram ming tem -
plate for C lan guage ap pli ca tions com pat i ble with the PIC 18F452 and the MPLAB C18
com piler in the MPLAB IDE.

/* Pro ject name:
 Source files:
 Date:
 Copy right 201x by
 Pro ces sor: PIC 18F452
 En vi ron ment: MPLAB IDE Ver sion 8.86

MPLAB C-18 Com piler

 TEST CIRCUIT:

 PROGRAM DESCRIPTION:

*/

#in clude <p18f452.h>

// DATA VARIABLES

#pragma config WDT = OFF
#pragma config OSC = HS
#pragma config LVP = OFF
#pragma config DEBUG = OFF

// Func tion pro to types

/* ==
 main pro gram
=== */
void main(void)
{

// Initalize di rec tion reg is ters
Re turn;

}

To save space, we of ten elim i nate or com press the header from the source list -
ings in this book.

A.2 Struc ture of a C Pro gram
A C lan guage source file con sists of a se ries of sym bolic and ex plicit pro gram el e -
ments (some times called ex pres sions) that can be in ter preted by the com piler. Some
of these el e ments would be un de ci pher able to a per son un fa mil iar with the C pro gram -
ming lan guage. Other el e ments of the pro gram are quite un der stand able even to some -
one to tally un fa mil iar with C. In the fol low ing sec tions we pres ent sev eral MPLAB C18
pro grams of in creas ing com plex ity. The pro grams are then an a lyzed in de tail. How -

 MPLAB C18 Lan guage Tu to rial 419

ever, this anal y sis is lim ited mostly to the pro gram's lan guage fea tures. The de vices
and hard ware are cov ered else where in the book.

A.2.1 Sam ple Pro gram C_LEDs_ON
The fol low ing C lan guage source frag ment from the pro gram C_LEDs_ON.c com piles
into an ex e cut able that turns on the odd num bered LEDs wired to Port C.

/**
 main pro gram
***/
void main (void)
{

// Initalize di rec tion reg is ters
TRISC = 0;
PORTC = 0;
// End less loop to turn on four LEDs
while (1)
PORTC = 0b10101010;
;

}

In the fol low ing para graphs we at tempt to dis sect the above pro gram and an a lyze
its com po nent el e ments. This walk-through is in tended to pro vide a pre lim i nary
knowl edge of C. Most of these con cepts will be ex plained later in the book.

The lines

/**
 main pro gram
***/

are mul ti ple-line com ments. The sym bols /* are used in C to mark the start of a
text area that is ig nored by the com piler. The sym bols */ in di cate the end of the
com ment. Com ments are used to doc u ment or ex plain pro gram op er a tion. The ac -
tual con tents of a com ment are ig nored by the pro gram.

The pro gram lines

// Initalize di rec tion reg is ters

and

// End less loop to turn on four LEDs

are sin gle-line com ments.

Iden ti fi ers

An iden ti fier is a name or phrase in a C lan guage pro gram the words TRISC and PORTC
are iden ti fi ers. A C lan guage iden ti fier con sists of one or more let ters, num bers, or the
un der score sym bol. Up per and lower case let ters are con sid ered as dif fer ent sym bols
by C lan guage. For ex am ple, the names PORTC and PortC are dif fer ent iden ti fi ers. An
iden ti fier can not start with a digit. For ex am ple, the iden ti fier 1ABC is not le gal in C.

420 Ap pen dix A

The ANSI C stan dard re quires that the com piler rec og nize at least the first 31 char ac -
ters in an iden ti fier. The fol low ing are le gal iden ti fi ers:

per sonal_name
PORTA
PI
y_121
XY_value_128

In the sam ple pro gram C_LEDs_ON listed pre vi ously, the iden ti fi ers TRISC and
PORTC re fer to hard ware reg is ters in the 18F452 microcontroller. TRISC is the di -
rec tion con trol reg is ter for Port C, and PORTC is the reg is ter it self. These reg is ters
are de fined in the in clude file p18f452.h, which is ref er enced in the fol low ing #in -
clude statement:

#in clude <p18f452.h>

The pro gram line

TRISC = 0;

de fines Port C for out put, and the pro gram line

PORTC = 0;

Initializes all Port C lines to zero.

Re served Words

A C iden ti fier can not be a word used for other pur poses by the lan guage. These spe cial
words, called re served words, are listed in Ta ble A.1.

Ta ble A.1

C Lan guage Re served Words

asm de fault float reg is ter switch
auto do for re turn typedef
break dou ble for tran short un ion
case else goto signed un signed
char en try if sizeof void
const enum int static vol a tile
con tinue extern long struct while

main() Func tion

The pro gram lines

void main(void)
{

in di cate a C lan guage func tion named main(). A func tion is a unit of pro gram ex e cu -
tion. Ev ery C lan guage pro gram must con tain one func tion named main(). All sam ple
pro grams in this book con tain a main() func tion. Pro gram ex e cu tion al ways be gins at

 MPLAB C18 Lan guage Tu to rial 421

the main func tion. The pro gram mer can cre ate other func tions and give them names
fol low ing the guide lines for C lan guage iden ti fi ers men tioned above. If a pro gram has
more than one func tion, ex e cu tion will al ways start at the one named main(), re gard -
less of where it is lo cated. The main func tion starts at the open ing ros ter ({) and ends
at the clos ing ros ter (}). The func tion body con sists of pro gram lines be tween these
ros ters.

The data type, in this case void, that pre cedes the func tion name in di cates the
type of the value re turned by the func tion. In the case of main(), the type void in di -
cates that the func tion re turns no value. The data types or types en closed within the
func tion's pa ren the sis de fine the ar gu ments that are passed to the func tion. In the
case of main(), the term void in di cates that the func tion re ceives no pa ram e ters as
ar gu ments.

A.2.2 Sam ple Pro gram C_LEDs_Flash
The pro gram C_LEDs_Flash, in the book's soft ware re source, is a dem on stra tion to
flash red and green LEDs con nected to Port C pins. The code in the source file is as fol -
lows:

// INCLUDED CODE
#in clude <p18f452.h>

// DATA VARIABLES AND CONSTANTS
un signed int count;
#de fine MAX_COUNT 16000

#pragma config WDT = OFF
#pragma config OSC = HS
#pragma config LVP = OFF
#pragma config DEBUG = OFF

// Func tion pro to types
void FlashLEDs(void);

/***
 main pro gram
**/
void main(void)
{

/* Initalize di rec tion reg is ters */
TRISC = 0;
PORTC = 0;
/* End less loop to flash LEDs */
while (1)
FlashLEDs()
;

}

/***
 lo cal func tions
**/
void FlashLEDs()
{

count = 0;
PORTC = 0x0f;

422 Ap pen dix A

while (count <= MAX_COUNT)
{

count++;
}

count = 0;
PORTC = 0xf0;

while (count <= MAX_COUNT)
{

count++;
}

re turn;
}

Ex pres sions and State ments

Ex pres sions are the build ing blocks of high level com puter lan guages. An ex pres sion
is a char ac ter or a se quence of char ac ters (which can in clude one or more op er a tors)
that re sult in a unique value or pro gram ac tion. An ex pres sion can be com posed of nu -
meric or al pha nu meric char ac ters. The fol low ing are valid C lan guage ex pres sions:

x_vari able
3.1415
goto LABEL
Larray[]
"Le gal De part ment"

 4
z = (x * y)/2

This leads us to con clude that a vari able, a num ber, a string of char ac ters, a pro gram
con trol key word, a func tion call, and sev eral num bers or vari ables con nected by op er -
a tors are all con sid ered ex pres sions.

A state ment is the fun da men tal or ga ni za tional el e ment of a com puter lan guage.
In C lan guage, a state ment con sists of one or more ex pres sions. All state ments must
end in the semi co lon (;) sym bol, which is called the state ment ter mi na tor. In fact, in
C lan guage, the semi co lon sym bol con verts an ex pres sion into a state ment. The fol -
low ing valid C lan guage state ments were de rived from the ex pres sions listed above:

x_vari able = 4;
goto LABEL;
char Larray[] = "Le gal de part ment";
z = (x * y)/2;

Note in the pro grams listed ear lier in this ap pen dix that not all pro gram lines con -
sti tute state ments. For ex am ple, the lines con tain ing the #de fine di rec tive and the
main() func tion are not C lan guage state ments and there fore do not end in a semi co -
lon. Also, note that braces are not fol lowed by the semicolon.

Vari ables

The pro gram line

un signed int count;

 MPLAB C18 Lan guage Tu to rial 423

is a vari able dec la ra tion. In com puter ter mi nol ogy, a vari able is a mem ory struc ture
for hold ing pro gram data. In C lan guage, all vari ables must meet the fol low ing re quire -
ments:

1. A vari able is as signed a vari able name, which must meet the re quire ments for
iden ti fi ers listed pre vi ously in this chap ter.

2. A vari able must be of a cer tain vari able type.

3. A vari able must be de clared be fore it is used in a C lan guage pro gram. The vari -
able dec la ra tion must in clude the vari able name and the as signed data type. The
dec la ra tion can op tion ally ini tial ize the vari able to a value.

The vari able type de fines the cat e gory of in for ma tion stored in the vari able. In
this sense, a C vari able can be an in te ger, a char ac ter, a float ing point num ber, or a
char ac ter string, among oth ers. Ta ble A.2 lists the in te ger data types sup ported by
MPLAB C18.

Ta ble A.2

MPLAB C18 In te ger Data Types

MPLAB C18 also sup ports two float ing point. These are shown in Ta ble A.3

Ta ble A.3

MPLAB C18 Float ing Point Data Types

424 Ap pen dix A

-
-

-
-

-

-

-

-

 Scope and Life time of a Vari able

A vari able as sumes cer tain at trib utes at the time it is de clared. The two prin ci pal ones
are called the vari able's scope and life time. The term scope re fers to the part of a pro -
gram over which the vari able is rec og nized.

Re gard ing scope, MPLAB C18 lan guage vari ables are clas si fied as extern, reg is -
ter, static, auto, typedef, and over lay. Other pro gram ming lan guages use the term
global to rep re sent ex ter nal vari ables and the term lo cal to rep re sent au to matic
vari ables.

Vari ables of type extern are de clared out side all func tions, of ten at the be gin ning
of the pro gram. The scope (also called the vis i bil ity) of an ex ter nal vari able starts at
the point it is de clared and ex tends to the end of the pro gram. For this rea son if an
ex ter nal vari able is de clared be tween two func tions it will be vis i ble to the sec ond
func tion, but not to the first one, as in this ex am ple:

void main()
{
 // Can not see al pha.
 .
 .
{

int al pha;

user_1()
{
 // Can see and ac cess al pha
 .
 .
}

In this case, the vari able al pha is vis i ble and can be ref er enced by the user_1() func -
tion but not by main().

Vari ables of type auto (pre vi ously named au to matic) are de clared in side a func -
tion body (af ter the open ing brace). The name auto is re lated to the fact that these
vari ables au to mat i cally dis ap pear when the func tion con cludes its ex e cu tion. For
this rea son, the scope of au to matic vari ables is lim ited to the func tion in which they
are de clared, as in the fol low ing ex am ple:

void main()
{

 .
 .

{

user_1()
{
 int al pha;
 .
 .

}

 MPLAB C18 Lan guage Tu to rial 425

In this case the vari able al pha is vis i ble to the user_1() func tion but not the main()
func tion.

A vari able's life time re fers to the time span of pro gram ex e cu tion over which the
vari able re tains its value. The life time of au to matic vari ables is the ex e cu tion time
of the func tion that con tains it. In other words, au to matic vari ables are cre ated
when the func tion in which they are lo cated ex e cutes, and dis ap pear when the func -
tion con cludes. Ex ter nal vari ables, on the other hand, have a life time that ex tends
through the course of pro gram ex e cu tion. This means that an ex ter nal vari able re -
tains its value at all times.

The static key word is used in C lan guage to mod ify the scope and life time of vari -
ables. For in stance, a static vari able de clared in side a func tion has the same scope
as an au to matic vari able and the same life time as an ex ter nal vari able. For ex am ple,

void main()

{

 .

 .

{

user_1()

{

 static int al pha;

 .

 .

}

In this case, the in ter nal static vari able al pha is vis i ble only in side the func tion
user_1() but the value of al pha is pre served af ter the func tion con cludes. In this man -
ner, when ex e cu tion re turns to the user_1() func tion, the vari able al pha will still hold
its pre vi ous value.

Con stants

Us ing math e mat i cal ter mi nol ogy we of ten clas sify com puter data as vari ables and
con stants. In C lan guage, vari ables are as signed names and stored in a mem ory struc -
ture de ter mined by the vari able type, as pre vi ously dis cussed. The con tents of a vari -
able can be changed any where in the pro gram. For this rea son, a vari able can be
vi su al ized as a la beled con tainer, de fined by the pro gram mer, for stor ing a data ob ject.
Con stants, on the other hand, rep re sent val ues that do not change in the course of pro -
gram ex e cu tion. In the pro gram C_LEDs_Flash.c, the con stant MAX_COUNT is de -
fined in the fol low ing line:

#de fine MAX_COUNT 16000

In this case, the C lan guage #de fine di rec tive is used to give name and value to a
con stant that is used later by the pro gram. No tice that be cause #de fine is a di rec -
tive, the pro gram line does not con sti tute a state ment and does not end in the ; sym -
bol. Also that the = sign is not used in as sign ing a value to the constant.

426 Ap pen dix A

Al though the C lan guage al lows en ter ing val ues di rectly in state ments, the use of
undefined con stants is gen er ally con sid ered a bad pro gram ming prac tice, because
hard-coded con stants, in tro duced un ex pect edly, de crease the read abil ity of the
code and make cod ing er rors more likely.

Lo cal Func tions

Func tions can be used lo cally as subprograms. This al lows or ga niz ing and sim pli fy ing
code and pro vides a sim ple mech a nism for re us ing rou tines. Any func tion in a C pro -
gram that is not main() is de fined as a lo cal func tion.

In all func tions, the C lan guage re quires that the func tion name be fol lowed by a
left pa ren the sis sym bol. There can not be a char ac ter or sym bol be tween the last
char ac ter of the func tion name and the left pa ren the sis. The pa ren the ses fol low ing
the func tion name are used to en close data op tion ally passed to the func tion. The
data items en closed be tween the pa ren the ses sym bols are called the func tion ar gu -
ments. In side the func tion, these ar gu ments are re ferred to as pa ram e ters.

Some func tions have no ar gu ments, as is the case with the main(void) func tion
in the sam ple pro grams listed pre vi ously. The word void en closed in the func tion's
pa ren the sis in di cates that the func tion re ceives no pa ram e ters as ar gu ments. Al ter -
na tively, the term void can be as sumed and the func tion can be coded as

void main()

The func tion FlashLEDs() in the sam ple pro gram C_LEDs_Flash.c listed pre vi -
ously is coded as fol lows:.

void FlashLEDs()
{

count = 0;
PORTC = 0x0f;

while (count <= MAX_COUNT)
{

count++;
}

count = 0;
PORTC = 0xf0;

while (count <= MAX_COUNT)
{

count++;
}

re turn;
}

Func tions are dis cussed in de tail later in this appendix. They are in tro duced in tu -
itively at this point as a pro gram sub rou tine. The FlashLEDs() func tion uses the
vari able count and the con stant MAX_COUNT to in tro duce two de lays. In the first
de lay the red LEDs on Port C are turned on and the green LEDs are turned off. Dur -
ing the sec ond de lay, the red LEDs are off and the green LEDs are on. The while
state ment that keeps the LEDs turned on and off is dis cussed later in this ap pen dix.
No tice that, like main(), the func tion FlashLEDs() re turns no value and re ceives no
arguments by the caller.

 MPLAB C18 Lan guage Tu to rial 427

A.2.3 Cod ing Style
C lan guage is flex i ble in the use of white space (tabs, spaces, and other in ac tive char -
ac ters) and in the po si tion ing of sep a ra tors and de lim it ers so that the pro gram mer can
for mat the code ac cord ing to per sonal pref er ence. For ex am ple, in the pro grams
listed in this ap pen dix, we have placed the left brace de lim iter on a sep a rate line from
the func tion call and have used tabs to in dent pro gram lines, as fol lows:

void main(void)
{

// Initialize di rec tion reg is ters
TRISC = 0;
PORTC = 0;
// End less loop to flash LEDs
while (1)
FlashLEDs()
;

}

Other pro gram mers pre fer to type the left brace de lim iter in the same line as the
main func tion and main tain the pro gram lines flush with the left mar gin, in this
manner:

void main(void) {
// Initialize di rec tion reg is ters
TRISC = 0;
PORTC = 0;
// End less loop to flash LEDs
while (1)
FlashLEDs()
;
}

An other rea son for vari a tions in the use of white space is that some pro gram mers
use spaces, tabs, and com ment lines to em bel lish the source; en hance the ap pear -
ance; or to mark the be gin ning of func tions, rou tines, or other lo ca tions in the pro -
gram. For ex am ple,

/***
 lo cal func tions
**/

These com ment ban ners are use ful when try ing to find a pro gram func tion or
area dur ing ed it ing op er a tions, es pe cially in large pro grams. On the other hand,
some pro gram mers pre fer a more so ber style and avoid any un nec es sary text in
their code. Most per sonal cod ing styles are ac cept able, as long as they do not com -
pro mise the read abil ity of the code or the ba sic prin ci ples of clear, understandable
programs.

A.3 C Lan guage Data
One of the main func tions and a ma jor ad van tage of high-level pro gram ming lan -
guages, such as C lan guage, is that they sim plify the clas si fi ca tion, ma nip u la tion, and

428 Ap pen dix A

stor age of com puter data. Note that the word in for ma tion is of ten used as a syn onym
for the word data, al though, strictly speak ing, the term data re fers to the raw facts and
fig ures and the term in for ma tion to these facts af ter they have been pro cessed and re -
fined.

Data is a ge neric des ig na tion that ap plies to many types of ob jects. Com puter sci -
en tists of ten speak of sca lar data types to re fer to those that en code in di vid ual ob -
jects and to struc tured data types when re fer ring to those that en code a col lec tion
of in di vid ual ob jects. But, more com monly, we speak of nu meric, al pha nu meric,
date, and log i cal data types. Nu meric data is that with which we can per form math e -
mat i cal op er a tions, such as ba sic arith me tic, exponentiation, or the cal cu la tion of
tran scen den tal func tions. Al pha nu meric data are let ters and num bers con sid ered as
lan guage sym bols. The phrase “I am a 1st class dumb com puter” is a col lec tion of al -
pha nu meric char ac ters usu ally de scribed as a string.

Pro gram ming lan guages pro vide a means for stor ing and ma nip u lat ing data ob -
jects of sev eral types. Once a data item is as signed to a par tic u lar type, its pro cess -
ing will be per formed ac cord ing to the rules for that type. For ex am ple, data ob jects
as signed to al pha nu meric types can not be ma nip u lated ar ith met i cally, while nu -
meric data can not be sep a rated into its in di vid ual sym bols. The pro gram mer must
be care ful to as sign each data ob ject to the data type that cor re sponds with the ob -
ject's na ture, rather than with its ap pear ance. A tele phone num ber, for in stance, is
typ i cally con sid ered an al pha nu meric data type, as we usu ally have no need for per -
form ing arith me tic op er a tions on the dig its of a tele phone num ber. In C, all data ob -
jects are stored in the com puter's mem ory as an in te gral num ber of byte size units.
In con ven tional com put ers, each byte is made up of eight in di vid ual cells, called
bits.

A.3.1 Nu meric Data

Nu meric data is that with which we can per form math e mat i cal op er a tions. In other
words, nu meric data con sists of num ber sym bols used to rep re sent quan ti ties. This
def i ni tion ex cludes the use of num bers as de sig na tors, for ex am ple, a tele phone or a
so cial se cu rity num ber. It is dif fi cult to con ceive a need for per form ing arith me tic op -
er a tions on tele phone or so cial se cu rity num bers.

We have men tioned that nu meric data can ap pear in the form of vari ables or con -
stants. C lan guage nu meric con stants can be pre de fined by means of the #de fine di -
rec tive or they can be en tered ex plic itly in the op er a tions. Nu meric vari ables are
clas si fied into two data types, in te gral types, and float ing point types. The float ing
point types are some times called reals.

Each data type cor re sponds to a spe cific cat e gory of num bers; for ex am ple, the
in te ger data type al lows rep re sent ing whole num bers while the real data type al lows
rep re sent ing frac tional num bers. For each data type C pro vides sev eral type-speci fi -
ers that fur ther de ter mine the char ac ter is tic and range of rep re sent able val ues. The
nu meric data types sup ported by MPLAB C18 are shown in Ta ble A.2 and Ta ble A.3.

 MPLAB C18 Lan guage Tu to rial 429

A.3.2 Al pha nu meric Data
Al pha nu meric data re fers to items that serve as tex tual de sig na tors and that are not
the sub ject of con ven tional arith me tic. For ex am ple, the phrase “En ter ra dius: ” is an
al pha nu meric text string. By the same to ken, the let ters of the al pha bet and other
non-nu meric sym bols are of ten used as de sig na tors. We have also men tioned that the
pro gram mer can des ig nate one or more nu meric sym bols as al pha nu meric data if
these are used for nonmathematical pur poses. Such is of ten the case with tele phone
num bers, num bers used in street ad dresses, zip codes, so cial se cu rity num bers, and
oth ers. In C, al pha nu meric data be longs to the in te gral data type and re quires the char
specifier. This means that data items de fined us ing the char specifier are con sid ered a
num ber or a char ac ter, de pend ing on how the item is de fined in the pro gram. For ex -
am ple, the vari able dec la ra tion

char num_var = 65;

de fines a nu meric vari able named num_var and initializes it to a value of 65. On the
other hand, the dec la ra tion

char al pha_var = 'A';

de fines an al pha nu meric vari able named al pha_var and initializes it to the al pha nu -
meric char ac ter “A.” Note that in this case the sin gle quote sym bols are used to en -
close the al pha nu meric char ac ter. A string is a con tig u ous set of al pha nu meric
char ac ters. In prac tice, the set can con sist of a sin gle char ac ter. C strings can be de -
fined as con stants or as vari ables. A string con stant can be cre ated with the #de fine
state ment, for ex am ple,

#de fine USA "United States of Amer ica"

This di rec tive equates the name USA with the string in quotes. At com pile time,
the name USA is sub sti tuted with the de fined string.

A.3.3 Ar rays of Al pha nu meric Data
Most pro gram ming lan guages, C in cluded, al low the group ing of sev eral data items of
the same type into an in di vid u al ized data struc ture called an ar ray. In C, a string is de -
fined as an ar ray of char type el e ments and a string vari able (ar ray) is not con sid ered
an in de pend ent data type but a col lec tion of char type char ac ters.

The most im por tant char ac ter is tic that dis tin guishes an ar ray from other data
struc tures is that in an ar ray, all the el e ments must be long to the same data type.
Other C lan guage con structs (for ex am ple, a struc ture) can con tain el e ments of dif -
fer ent data types. These are dis cussed later in this ap pen dix. For ex am ple, in the
line

char col lege_addr[] = {"1211 N.W. By pass"};

the string vari able named col lege_addr is de fined as be ing of char type. If the dec la ra -
tion takes place out side a func tion (typ i cally be fore main()), the vari able is ex ter nal
and there fore vis i ble to all func tions in the mod ule as well as to other mod ules. The fol -
low ing ASCII graph shows the dec la ra tion and ini tial iza tion of an ar ray vari able:

430 Ap pen dix A

 __________________________ Stor age class
 | ____________________ Type specifier
 | | _____________ Ar ray name
 | | | _______ Num ber of el e ments
 | | | |
 | | | | _________________ Braces
 ----- --- ------- --- | |
 static char usa_name[14] = {"United States"};
 -------------- |
 | |
 Initializing string _________| |
 State ment tereminator _______________|

Note that in the pre ced ing code sam ple the bracket sym bols are used to iden tify
an ar ray. In this case, the num ber 14, en closed in the brack ets, is a count of the num -
ber of let ters in the initilization string (“United States”) plus one NULL ter mi na tor
that is au to mat i cally added by the com piler at the end of the ar ray. This char ac ter
count can be omit ted be cause the length of the ar ray is au to mat i cally cal cu lated at
com pile time. Also op tional in string ar rays are the brace sym bols en clos ing the
initialization string.

A.3.4 Ar rays of Nu meric Data
An ar ray can also con tain nu meric data. For ex am ple, the ar ray

int nums_array1[] = { 50, 60, 700 };

con tains the fol low ing nu meric val ues

nums_ar ray[0] = 50
nums_ar ray[1] = 60
nums_ar ray[2] = 700

Note that the in dex num ber used in ad dress ing the first ar ray el e ment is [0]. Also that
note the in dex can be rep re sented by a pro gram vari able, as in the fol low ing pro gram
to dis play all the el e ments of a nu mer i cal ar ray:

 int list1[] = { 10, 20, 30, 4000 };

void main() {
 int count;
 count = list1[0];
 . . .

In the pre vi ous code frag ment, the vari able count is as signed the value of the first el e -
ment of the ar ray list1[], which is 10.

A.4 In di rec tion
A C lan guage vari able can be vi su al ized as a la beled con tainer in the sys tem's mem ory
space. The la bel as so ci ated with the vari able is the iden ti fier that was as signed as a
name at the time of vari able dec la ra tion. For ex am ple, in the vari able dec la ra tion

 float ra dius = 7;

 MPLAB C18 Lan guage Tu to rial 431

the la bel for the vari able is the vari able name “ra dius.”

The con tents of a vari able is the string or nu meric value that it pres ently holds.
For ex am ple, af ter the ini tial iza tion line of the pre vi ous para graph, the vari able
named ra dius will have a con tent (or value) of 7. While a pro gram is ex e cut ing, the
con tents of vari ables can change due to user in put or as the re sult of pro cess ing op -
er a tions. For ex am ple, if the vari able num1 has a con tents of 4, the state ment

 num1 = num1 * 2;

will change its con tents to 8.

The third el e ment of a C lan guage vari able is its ad dress, which is a rep re sen ta -
tion of the vari able's lo ca tion in the sys tem mem ory space. It is in ter est ing to note
that while the pro gram mer as signs the vari able its name and can ini tial ize and
change its con tents, the ad dress of the vari able is de ter mined by C lan guage and
sys tem soft ware (com piler, linker, and loader).

A.4.1 Stor age of C Lan guage Vari ables
The con tents of a mem ory cell can be in ter preted as a nu meric value, part of a nu meric
rep re sen ta tion, or as an ASCII en cod ing of an al pha nu meric char ac ter. Also, mem ory
cells can be grouped to hold in te ger or float ing point num bers that ex ceed the range of
a sin gle byte (see Ta ble A.2) or as a string of al pha nu meric char ac ters in the form of a
string con stant or of an ar ray. For ex am ple, an un signed in te ger (range 0 to 65,535) re -
quires 2 bytes of stor age. There fore, the C state ments

un signed num1;
char let1;

cre ate an un signed in te ger vari able named num1 and re serve 2 bytes of mem ory for
this vari able, while for the char vari able let1, one byte of stor age is al lo cated. Later in
the pro gram the state ments

num1 = 44556;
 let1 = 'N';

de ter mine that the value 44556 is stored in the 2-byte space re served for the vari able
named num1 and that the ASCII en cod ing for the let ter N is stored in the 1-byte space
re served for the vari able let1.

A.4.2 Ad dress of Op er a tor
In C the pro gram mer can ob tain the ad dress of a vari able by means of the ad dress of
op er a tor, which is the & sym bol. Be cause the ad dress of a vari able is a con stant as -
signed by the sys tem soft ware, it can not be changed by the pro gram mer. For this rea -
son, the state ment

&num1 = 0x8600;

is il le gal.

432 Ap pen dix A

A.4.3 In di rec tion Op er a tor
In C a pointer is a vari able that holds the ad dress of an other vari able. This ad dress is
ob tained by means of the ad dress of op er a tor (& sym bol) men tioned in the pre vi ous
sec tion. Point ers are spe cial vari ables, and are man aged dif fer ently than con ven tional
ones. In the first place, pointer vari ables are de clared us ing the C in di rec tion op er a tor,
the * sym bol. For ex am ple, the state ment

char *add1;

de clares a pointer vari able named add1. It is im por tant to note that in the case of
pointer vari ables, the type does not re fer to the type of the pointer, but to the type of
vari able whose ad dress the pointer will store. In other words, af ter this dec la ra tion,
we will have cre ated a vari able named add1 that can be used as a pointer to any vari -
able of int type. The ac tual op er a tion of as sign ing an ad dress to a pointer vari able is
per formed by means of the ad dress of op er a tor, as in the fol low ing state ment

add1 = &num1;

Now the pointer vari able add1 holds the ad dress of the vari able num1.

Fig ure A.4 is a screen snap shot of the pro ject C_AddOf in this book's soft ware
pack age.

Fig ure A.4 Screen snapshot of a de bug session of the
 pro gram C_AddOff.c.

 MPLAB C18 Lan guage Tu to rial 433

 Note that there are two global vari able dec la ra tions in the pro gram C_AddOf.c.
The first vari able, named value, of type un signed char, is in i tial ized to a value of 12.
The sec ond vari able is a pointer to type un signed char. In main() the & op er a tor is
used to ob tain the ad dress of the vari able value that is stored in the pointer vari able
addof. In the ex am ple in Fig ure A.4 a break point is in serted in the while() loop and
the pro gram is run to the break point. When the cur sor is placed over the pointer
vari able addof, the ad dress of the vari able value is dis played (0x008C). In Fig ure
2.10 we can see that ad dress 0x0086 is lo cated in Bank 0 of the 18F452 memory
space.

Pointer vari ables would be of lim ited use if they served only as short hand for the
ex pres sion &num1. A pow er ful fea ture of C is that it also al lows the use of point ers
to ac cess, in di rectly, the con tents of a vari able. For ex am ple, once the pointer vari -
able addof in Fig ure A.4 holds the ad dress of the vari able value, we can add 0x10 to
the con tents of value us ing the fol low ing state ment

*addof = *addof + 0x10;

Ob serve that the * sym bol pre ced ing a pointer vari able in di cates the con tents of the
vari able whose ad dress the pointer holds, value in this case.

A.4.4 Point ers to Ar ray Vari ables
As sum ing that the pointer vari able addof holds the ad dress of the vari able value, the
fol low ing state ments will per form iden ti cal op er a tions:

value = value + 0x10;
 *addof = *addof + 0x10;

In this case there is no ad van tage to chang ing the value of a vari able by us ing a pointer
to its con tents rather than by us ing the vari able name. How ever, pointer vari ables be -
come par tic u larly use ful in ad dress ing ar ray el e ments. Con sider the ar ray

int array1[] = { 10, 20, 30, 4000, 5000 };

which cre ates five in te ger vari ables. These vari ables can be ac cessed by hard cod ing
the off set in the ar ray brack ets or by rep re sent ing the off set with an other vari able. In
this man ner, we could say

int num1;
.
.
num1 = array1[3];

or

 count = 3;
 num1 = array1[count];

In ei ther case, we would as sign the value 4000 (stored in the fourth ar ray el e -
ment) to the vari able num1.

434 Ap pen dix A

An other way of ac cess ing ar ray el e ments is by cre at ing a pointer vari able to hold
the ad dress of the first el e ment of the ar ray. For ex am ple, we first de clare a pointer
vari able to int type

int *add1;

then we can then set the pointer vari able to hold the ad dress of the first ar ray el e ment

add1 = &array1[0];

As is the case with con ven tional pointer vari ables, an ar ray pointer can be used
to gain ac cess to the con tents of a vari able by pre ced ing it with the in di rec tion op er -
a tor sym bol (*). For ex am ple, af ter initializing add1 with the ad dress of array1[0] we
can change the value of the first ar ray element by coding

*add1 = 100;

A.4.5 Pointer Arith me tic
We have seen that it is pos si ble in C lan guage to use point ers to gain ac cess to data el e -
ments within an ar ray. But we must pro ceed care fully, be cause C fol lows spe cial rules
re gard ing arith me tic with pointer vari ables.

In the pre vi ous para graphs we cre ated a nu mer i cal ar ray of type int, de fined a
pointer vari able, and ini tial ized it with the ad dress of the first ar ray el e ment. At this
point we were able to ac cess the first ar ray el e ment by initializing the pointer vari -
able to its ad dress. But how do we ac cess the next el e ment of the ar ray by means of
this pointer? Be cause each el e ment of a int data type re quires 2 bytes of stor age,
would we add 2 to the value of the pointer to ac cess the next el e ment in an ar ray of
int type? By the same ar gu ment, if the ar ray were of type float, would we add 4 to ac -
cess each suc ces sive el e ments? In re al ity ac cess ing ar ray el e ments by means of a
pointer is sim pli fied by the fact that C au to mat i cally takes into ac count the size of
the ar ray el e ments. For ex am ple, the state ments

add1++;

or

add1 = add1 + 1;

re sult in bump ing the pointer vari able to the next ar ray el e ment, what ever its size. In
other words, C lan guage pointer arith me tic is scaled to the size of the el e ments in the
ar ray. The fol low ing code frag ment in dexes through the el e ments of an ar ray of type
float by add ing one to the ar ray pointer vari able

float array2[] = { 10.1, 2022, 30.44, 4.01 };
void main()
{

float anum; float *add2;
add2 = &array2[0];
add2 = add2 + 1; // Re trieves the ad dress of 2022
anum = *add2; // anum = 2022

 add2 = add2 + 1; // Re trieves the ad dress of 30.44

 MPLAB C18 Lan guage Tu to rial 435

anum = *add2; // anum = 30.44
 add2 = add2 + 1; // Re trieves the ad dress of 4.01

anum = *add2; // anum = 4.01
}

A.5 C Lan guage Op er a tors
Op er a tors are the sym bols and spe cial char ac ters used in a pro gram ming lan guage to
change the value of one or more pro gram el e ments. The pro gram el e ments that are
changed by an op er a tor are called the op er and. We use the + sym bol to per form the
sum of two operands, as in the fol low ing ex am ple:

int val1 = 7;
int val2 = 3;
int val3 = val1 + val2;

In this code frag ment, the value of in te ger vari able val3 is found by add ing the
val ues of vari ables val1 and val2. Note that the + sym bol is also used in ap pend ing
strings. When used in this man ner, it is called the con cat e na tion op er a tor. String
con cat e na tion is dis cussed later in this appendix.

The fun da men tal C lan guage op er a tors can be func tion ally clas si fied as fol lows:

• Sim ple as sign ment

• Arith me tic

• Con cat e na tion

• In cre ment and dec re ment

• Log i cal

• Bitwise

• Com pound as sign ment

We first dis cuss the as sign ment, arith me tic, con cat e na tion, in cre ment, and dec re -
ment op er a tors. Later in this ap pen dix we deal with the log i cal and bitwise op er a -
tors.

Ac cord ing to the num ber of operands C language op er a tors are clas si fied as fol -
lows:

• unary

• bi nary

• ter nary

The one C lan guage ter nary op er a tor (?:) is dis cussed in the con text of de ci sion con -
structs later in this ap pen dix.

A.5.1 Op er a tor Ac tion
C language op er a tors are used in ex pres sions that pro duce pro gram ac tions. For ex -
am ple, if a, b, and c are vari ables, the ex pres sion

436 Ap pen dix A

c = a + b;

uses the = and the + op er a tors to as sign to the vari able c the value that re sults from
add ing the vari ables a and b. The op er a tors in this ex pres sion are the = (as sign ment)
and + (ad di tion) sym bols.

C language op er a tors must be used as el e ments of ex pres sions; they are mean ing -
less when used by them selves. In this sense, the term

-a;

is a triv ial ex pres sion that does not change the value of the vari able. On the other hand
the ex pres sion

b = -b;

as signs a neg a tive value to the vari able b.

A.5 2 As sign ment Op er a tor
While learn ing a pro gram ming lan guage, it is im por tant to keep in mind that the lan -
guage ex pres sions are not usu ally valid math e mat i cally. In the ex pres sion

a = a + 2;

we ob serve that it is math e mat i cally ab surd to state that the value of the vari able a is
the same as the value that re sult from add ing 2 to the vari able a. The rea son for this ap -
par ent ab sur dity is that C's = op er a tor does not rep re sent an equal ity but rather a sim -
ple as sign ment. The re sult of the state ment

b = b - 4;

is that the vari able b is “as signed” the value that re sults from sub tract ing 4 from its
own value. In other words, b be comes b – 4. It is im por tant to note that this use of the =
sign in C is lim ited to as sign ing a value to a stor age lo ca tion ref er enced by a pro gram
el e ment. For this rea son, a C ex pres sion con tain ing the = sign can not be in ter preted
al ge bra ically.

There are other dif fer ences be tween a C ex pres sion and an al ge braic equa tion. In
el e men tary al ge bra we learn to solve an equa tion by iso lat ing a vari able on the
left-hand side of the = sign, as fol lows:

 2x = y
 x = y/2

How ever, in C lan guage, the state ment line

2 * x = y;

gen er ates an er ror. This is due to the fact that pro gram ming lan guages, C in cluded, are
not de signed to per form even the sim plest al ge braic ma nip u la tions.

 MPLAB C18 Lan guage Tu to rial 437

If we look at a C lan guage ex pres sion that uses the as sign ment op er a tor, we no -
tice one part to the left of the = sign and an other one to the right. In any pro gram -
ming lan guage, the part to the left of the = sign is called the lvalue (short for left
value) and the one to the right is called the rvalue (short for right value). There fore,
an lvalue is an ex pres sion that can be used to the left of the = sign. In a C as sign ment
state ment, the lvalue must rep re sent a sin gle stor age lo ca tion. In other words, the
el e ment to the left of the = sign must be a vari able. In this man ner, if x and y are vari -
ables, the ex pres sion

 x = 2 * y;

is valid. How ever, the ex pres sion

 y + 2 = x;

is not valid be cause in this case, the lvalue is not a sin gle stor age lo ca tion but an ex -
pres sion in it self. By the same to ken, an ex pres sion with out an rvalue is il le gal; for ex -
am ple,

y = ;

An as sign ment ex pres sion with out an lvalue is also il le gal, such as

= x;

A.5.3 Arith me tic Op er a tors
C language arith me tic op er a tors are used to per form sim ple cal cu la tions. Some of C's
arith me tic op er a tors co in cide with the fa mil iar math e mat i cal sym bols. Such is the
case with the + and – op er a tors which in di cate ad di tion and sub trac tion. But not all
con ven tional math e mat i cal sym bols are avail able in a com puter key board. Oth ers
would be am big u ous or in com pat i ble with the rules of the lan guage. For ex am ple, the
con ven tional sym bol for di vi sion is not a stan dard key board char ac ter. On the other
hand, us ing the let ter x as a sym bol for mul ti pli ca tion is im pos si ble, be cause the lan -
guage would be un able to dif fer en ti ate be tween the math e mat i cal op er a tor and the al -
pha nu meric char ac ter. For these rea sons, C uses the / sym bol to in di cate di vi sion and
the * to in di cate mul ti pli ca tion.

Ta ble A.4 lists the C arith me tic op er a tors.

Ta ble A.4

C Lan guage Arith me tic Op er a tors

OPERATOR ACTION

 + Ad di tion
 – Sub trac tion
 * Mul ti pli ca tion
 / Di vi sion

 % Re main der

438 Ap pen dix A

Re main der Op er a tor

One of the op er a tors in Ta ble A.4 re quires ad di tional com ment. The % op er a tor gives
the re main der of a di vi sion. The % sym bol is also called the modulus op er a tor. Its ac -
tion is lim ited to in te ger operands. The fol low ing code frag ment shows its use:

 int val1 = 14;
 int re sult = val1 % 3;

In this case, the value of the vari able re sult is 2 be cause this is the re main der of di vid -
ing 14 by 3.

The re main der of a di vi sion finds many uses in math e mat ics and in pro gram ming.
Op er a tions based on the re minder are some times said to per form “clock arith me -
tic.” This is due to the fact that the con ven tional clock face is di vided into 12 hours,
which re peat in cy cles. We can say that the modulo of a clock is 12. The hour-of-day
from the pres ent time, af ter any num ber of hours, can be eas ily cal cu lated by the re -
main der of di vid ing the num ber of hours by 12 and add ing this value to the pres ent
time.

For ex am ple, it is 4 o'clock and you wish to cal cu late the hour-of-day af ter 27
hours have elapsed. The re main der of 27/12 is 3. The hour-of-day is then 4 + 3, which
is 7 o'clock. In C lan guage, you can ob tain the re main der with a sin gle op er a tor. The
fol low ing code frag ment shows the cal cu la tions:

int thisHour = 4;
int hoursPassed = 27;
int hourOfDay = thisHour + (hoursPassed % 12);

No tice that the ex pres sion

hoursPassed % 12

pro duces the re main der of 27/12, which is then added to the cur rent hour to ob tain the
new hour-of-day.

Mod u lar arith me tic finds many com puter uses. One of them is in cal cu lat ing func -
tions that have re peat ing val ues, called pe ri odic func tions. For ex am ple, the math
units of sev eral mi cro pro ces sor pro duces trig o no met ric func tions in the range 0 to
45 de grees. Soft ware must then use re main der cal cu la tions to scale the func tions to
any de sired an gle.

A.5.4 Con cat e na tion
In C lan guage the + op er a tor, which is used for arith me tic ad di tion, is also used to con -
cat e nate strings. The term “con cat e na tion” co mes from the Latin word catena, which
means chain. To con cat e nate strings is to chain them to gether. The fol low ing code
frag ment shows the ac tion of this op er a tor:

// De fine strings
String str1 = "con";
String str2 = "ca";

 MPLAB C18 Lan guage Tu to rial 439

String str3 = "ten";

String str4 = "ate";

// Form a new word us ing string con cat e na tion

String re sult = str1 + str2 + str3 + str4;

// re sult = "con cat e nate"

The op er a tion of the con cat e na tion op er a tor can be viewed as a form of string
“ad di tion." In C, if a nu meric value is added to a string, the num ber is first con verted
into a string of dig its and then con cat e nated to the string op er and, as shown in the
fol low ing code fragment:

String str1 = "Catch "; // De fine a string

int value = 22; // De fine an int

re sult = str5 + value; // Con cat e nate string + int

 // re sult = "Catch 22"

No tice that con cat e na tion re quires that at least one of the operands be a string. If
both operands are nu meric val ues, then arith me tic ad di tion takes place.

A.5.5 In cre ment and Dec re ment
Pro grams of ten have to keep count of the num ber of times an event, op er a tion, or a se -
ries of events or op er a tions has taken place. In or der to keep the tally count, it is con -
ve nient to have a sim ple form of add ing or sub tract ing 1 to the value of a vari able. C
language con tains sim ple op er a tors that al low this ma nip u la tion. These op er a tors are
called the in cre ment (++) and dec re ment (--).

The fol low ing ex pres sions add or sub tract 1 to the value of the op er and.

x = x + 1; // add 1 to the value of x

y = y - 1; // sub tract 1 from the value of y

The in cre ment and dec re ment op er a tors can be used to achieve the same re sult
in a more com pact way, as fol lows:

x++; // add 1 to the value of x

y--; // sub tract 1 from the value of y

The ++ and -- sym bols can be placed be fore or af ter an ex pres sion. When the sym -
bols are be fore the op er and, the op er a tor is said to be in pre fix form. When it fol -
lows the op er and, it is said to be in post fix form, as follows:

z = ++x; // Pre fix form

z = x++; // Post fix form

The pre fix and post fix forms re sult in the same value in unary state ments. For ex -
am ple, the vari able x is in cre mented by 1 in both of these state ments:

x++;

++x;

440 Ap pen dix A

How ever, when the in cre ment or dec re ment op er a tors are used in an as sign ment
state ment, the re sults are dif fer ent if the op er a tors are in pre fix or in post fix form.
In the first case (pre fix form), the in cre ment or dec re ment is first ap plied to the op -
er and and the re sult as signed to the lvalue of the ex pres sion. In the post fix form, the
op er and is first as signed to the lvalue and then the in cre ment or dec re ment is ap -
plied. The fol low ing code frag ment shows both cases:

int x = 7;
int y;
y = ++x; // y = 8, x = 8
y = x++; // y = 7, x = 8

A.5.6 Re la tional Op er a tors
Com put ers and dig i tal de vices make sim ple de ci sions. For ex am ple, a pro gram can
take one path of ac tion if two vari ables, a and b, are equal; an other path if a is greater
than b, and yet an other one if b is greater than a. The C lan guage re la tional op er a tors
are used to eval u ate if a sim ple re la tion ship be tween operands is true or false. Ta ble
A.5 lists the C lan guage re la tional op er a tors.

Ta ble A.5

C Lan guage Re la tional Op er a tors

OPERATOR ACTION

< Less than
> Greater than
<= Less than or equal to
>= Greater than or equal to
== Equal to
!= Not equal to

Other pro gram ming lan guages have spe cial op er a tors, called Boolean op er a tors,
that can store one of two log i cal val ues: TRUE or FALSE. C lan guage does not im ple -
ment Boolean data types. In stead, it uses in te ger vari ables that eval u ate to a pos i -
tive num ber if the re la tion is true and to 0 if it is false. The most com monly used
data type to en code Boolean val ues (FALSE = 0, TRUE = NOT ZERO) is an unsigned
char.

The == op er a tor is used to de ter mine if one op er and is equal to the other one. It is
un re lated to the as sign ment op er a tor (=), which has al ready been dis cussed. In the
fol low ing ex am ples we set the value of an un signed char vari able ac cord ing to a
com par i son be tween two nu meric vari ables, x and y.

boolean re sult;
int x = 4;
int y = 3;
re sult = x > y; // Case 1 - re sult true
re sult = x < y; // Case 2 - re sult false
re sult = x == 0; // Case 3 - re sult false
re sult = x != 0; // Case 4 - re sult true
re sult = x <= 4; // Case 5 - re sult true

 MPLAB C18 Lan guage Tu to rial 441

Note in case 3 the dif fer ent ac tion be tween the as sign ment and the re la tional op -
er a tor. In this case the as sign ment op er a tor (=) is used to as sign to the vari able re -
sult the Boolean true or false that re sults from com par ing x to 0. The com par i son is
per formed by means of the == op er a tor. The re sult is false be cause the value of the
vari able x is 4 at this point in the code. One com mon pro gram ming mis take is to use
the as sign ment op er a tor in place of the re la tional op er a tor, or vice versa.

A.5.7 Log i cal Op er a tors
The re la tional op er a tors de scribed in the pre vi ous sec tions are used to eval u ate
whether a con di tion re lat ing two operands is true or false. How ever, by them selves,
they serve only to test sim ple re la tion ships. In pro gram ming, you of ten need to de ter -
mine com plex con di tional ex pres sions. For ex am ple, to de ter mine if a user is a teen -
ager, you test whether the per son is older than twelve years, and youn ger than twenty
years.

 The log i cal op er a tors al low com bin ing two or more con di tional state ments into a
sin gle ex pres sion. As is the case with re la tional ex pres sions, ex pres sions that con -
tain log i cal op er a tors re turn true or false. Ta ble A.5 lists the C language logical
operators.

Ta ble A.5

C Lan guage Log i cal Op er a tors

OPERATOR ACTION

&& Log i cal AND
|| Log i cal OR
! Log i cal NOT

For ex am ple, if a = 6, b = 2, and c = 0, then the Boolean re sult eval u ates to ei ther
true or false, as fol lows:

un signed char re sult;
int a = 6;
int b = 2;
int c = 0;
re sult = a > b && c == 0; // Case 1 - re sult is true
re sult = a > b && c != 0; // Case 2 - re sult is false
re sult = a == 0 || c == 0; // Case 3 - re sult is true
re sult = a < b || c != 0; // Case 4 - re sult is false

In case 1, the Boolean re sult eval u ates to true be cause both re la tional el e ments in
the state ment are true. Case 4 eval u ates to false be cause the OR con nec tor re quires
that at least one of the re la tional el e ments be true and, in this case, both are false (a
> b and c = 0).

The log i cal NOT op er a tor is used to in vert the value of a Boolean vari able or to
test for the op po site. For ex am ple:

boolean re sult;
boolean tf = false;
re sult = (tf == !true); // re sult is true

442 Ap pen dix A

The pre ced ing code frag ment eval u ates to true be cause !true is false and tf is
false. The prin ci pal use of con di tional ex pres sions is in mak ing pro gram de ci sions.

A.5.8 Bitwise Op er a tors

Com put ers store data in in di vid ual elec tronic cells that are in one of two states, some -
times callled ON and OFF. These two states are rep re sented by the bi nary dig its 1 and
0. In prac ti cal pro gram ming, you of ten dis re gard this fact and write code that deals
with num bers, char ac ters, Boolean val ues, and strings. Stor ing a num ber in a vari able
of type dou ble, or a name in a String ob ject, does not usu ally re quire deal ing with in di -
vid ual bits. How ever, there are times when the code needs to know the state of one or
more data bits, or needs to change in di vid ual bits or groups of bits. Bit ma nip u la tions
are quite fre quent in pro gram ming em bed ded hard ware.

One rea son for ma nip u lat ing in di vid ual bits or bit fields is based in eco nom ics.
Sup pose an op er at ing sys tem pro gram is needed to keep track of the in put and out -
put de vices. In this case pro gram code may need to de ter mine and store the fol low -
ing in for ma tion:

• The num ber of out put de vices (range 0 to 3)

• If there is a pushbutton switch (yes or no)

• The num ber of avail able lines in Port C (range 0 to 7)

• If the de vice is equipped with EEPROM mem ory

One way to store this in for ma tion would be in con ven tional vari ables. You could
de clare the fol low ing vari able types:

un signed char outputDevices;

un signed char hasPB;

un signed char portCLines;

un signed char hasEEPROM;

One ob jec tion to stor ing each value in in di vid ual vari ables is the wasted mem ory.
When we de vote a char vari able for stor ing the num ber of out put de vise in the sys -
tem, we are wast ing con sid er able stor age space. A char vari able con sists of one
mem ory byte. This means that you can store 256 com bi na tions. How ever, in this par -
tic u lar ex am ple, the max i mum number of output devices is 3.

A more eco nom i cal al ter na tive, mem ory wise, would be to de vote to each item
the min i mum amount of stor age nec es sary for en cod ing all pos si ble states. In the
case of the num ber of out put de vices, you could do this with just two bits. Be cause
two bits al low rep re sent ing val ues from 0 to 3, which is suf fi cient for this data el e -
ment. By the same to ken, a sin gle bit would serve to re cord if a mouse is pres ent or
not. The con ven tion in this case, fol lowed by the C lan guage, is that a bi nary 1 rep -
re sents YES and a bi nary 0 rep re sents NO. The num ber of Port C lines (range 0 to 7)
could be en coded in a three-bit field, while an other sin gle bit would re cord the pres -
ence or ab sence of EEPROM mem ory. The to tal stor age would be as fol lows:

 MPLAB C18 Lan guage Tu to rial 443

Output de vices 2 bits
Pres ence of PB switch 1 bit
Num ber of Port C lines 3 bits
Pres ence of EEPROM mem ory 1

The to tal stor age re quired is 7 bits. Fig ure A.5 shows how the in di vid ual bits of a
byte vari able can be as signed to store this in for ma tion.

Fig ure A.5 Ex am ple of bitmapped data.

The op er a tion of as sign ing in di vid ual bits and bit fields is called bit-map ping. An -
other ad van tage of bitmapped data is that sev eral items of in for ma tion can be en -
coded in a sin gle stor age el e ment. Be cause bitmapped data is more com pact, it is
eas ier to pass and re trieve in for ma tion. For ex am ple, you could de vote a char vari -
able to store the bitmapped data in Fig ure A.5. The vari able could be de fined as fol -
lows:

un signed char systemDevices;

In or der to ma nip u late bitmapped data you must be able to ac cess in di vid ual bits
and bit fields. This is the func tion of the C language bitwise op er a tors. The op er a -
tors are listed in Ta ble A.6.

444 Ap pen dix A

Output devices field:
 00 = 0 devices
 01 = 1 device
 10 = 2 devices
 11 = 3 devices

Number of Port C lines field:
 000 = 0 lines
 001 = 1 line
 010 = 2 lines
 . . .
 111 = 7 lines

Pushbutton switch present bit :
 0 = no PB switch
 1 = PB switch

UNUSED

EEPROM memory present bit :
 0 = no EEPROM
 1 = EEPROM available

7 6 5 4 3 2 1 0 bits

Ta ble A.6

C Lan guage Bitwise Op er a tors

OPERATOR ACTION

& bitwise AND
| bitwise OR
^ bitwise XOR
~ bitwise NOT
<< bitwise left-shift
>> bitwise right-shift

In Ta ble A.6, the op er a tors &, |, ^, and ~ per form bitwise func tions on in di vid ual
bits. The con ven tion that a bi nary 1 cor re sponds with log i cal true, and a bi nary 0
with false, al lows us ing bi nary num bers to show the re sults of a log i cal or bitwise
op er a tion. For ex am ple

1 AND 0 = 0

1 AND 1 = 1

1 OR 0 = 1

NOT 1 = 0

A ta ble that lists all pos si ble re sults of a bitwise or log i cal op er a tion is called a
truth ta ble. Ta ble A.7 has the truth ta bles for AND, OR, XOR, and NOT. The ta bles
are valid for both log i cal and the bitwise operations.

Ta ble A.7

Log i cal Truth Ta bles

 AND | OR | XOR | NOT |

 ---------- ---------- ---------- --------

 0 0 | 0 0 0 | 0 0 0 | 0 0 | 1

 0 1 | 0 0 1 | 1 0 1 | 1 1 | 0

 1 0 | 0 1 0 | 1 1 0 | 1

 1 1 | 1 1 1 | 1 1 1 | 0

When us ing log i cal and bitwise op er a tors, you must keep in mind that al though
AND, OR, and NOT per form sim i lar func tions, the log i cal op er a tors do not change
the ac tual con tents of the vari ables. The bitwise op er a tors, on the other hand, ma -
nip u late bit data. Thus, the re sult of a bitwise op er a tion is of ten a value dif fer ent
from the previous one.

AND Op er a tor

The bitwise AND op er a tor (&) per forms a Boolean AND of the two operands. The rule
for the AND op er a tion is that a bit in the re sult is set only if the cor re spond ing bits are
set in both operands. This ac tion is shown in Ta ble A.7.

The AND op er a tor is fre quently used to clear one or more bits, or to pre serve one
or more bits in the op er and. This ac tion is con sis tent with the fact that ANDing with
a 0 bit clears the re sult bit, and ANDing with a 1 bit pre serves the orig i nal value of
the cor re spond ing bit in the other op er and.

 MPLAB C18 Lan guage Tu to rial 445

A spe cific bit pat tern used to ma nip u late bits or bit fields is some times called a
mask. An AND mask can be de scribed as a fil ter that passes the op er and bits that
cor re spond to a 1-bit in the mask, and clears the op er and bits that cor re spond to
0-bits. Fig ure A.6 shows ac tion of ANDing with a mask.

Fig ure A.6 Ac tion of the AND mask.

A pro gram can use the ac tion of the bitwise AND op er a tor to test the state of one
or more bits in an op er and. For ex am ple, a pro gram can AND the con tents of the
Port C reg is ter with a value in which the high-or der bit is set, as fol lows:

1 0 0 0 0 0 0 0

When ANDing the Port C reg is ter with a mask in which only the high-or der bit is
set, we can as sume that the seven low-or der bits of the re sult will be zero. Re call
that ANDing with a 0-bit al ways pro duces zero. Also recall that the value of the
high-or der bit of the re sult will be the same as the cor re spond ing bit in the other op -
er and, as shown in Figure A.7.

Fig ure A.7 AND-test ing a sin gle bit.

In Fig ure A.7 the high-or der bit of the re sult can be ei ther 0 or 1. Be cause the
seven low-or der bits are al ways zero, you can con clude that the re sult will be
non-zero if bit 7 of the op er and is 1. If the re sult is zero, then bit 7 of the op er and is
zero.

OR Op er a tor

The bitwise OR op er a tor (|) per forms the Boolean in clu sive OR of two operands. The
out come is that a bit in the re sult is set if at least one of the cor re spond ing bits in the
op er and is also set, as shown by the truth ta ble in Ta ble A.7. A fre quent use for the OR
op er a tor is to se lec tively set bits in an op er and. The ac tion can be de scribed by say ing
that ORing with a 1-bit al ways sets the re sult bit, whereas ORing with a 0-bit pre serves
the value of the cor re spond ing bit in the other op er and. For ex am ple, to make sure
that bits 5 and 6 of an op er and are set, we can OR it with a mask in which these bits are
1. This is shown in Fig ure A.8.

446 Ap pen dix A

 0101 1111 operand
bitwise AND 1111 0000 mask

 0101 0000 result

bit tested

 x x x x x x x x Port C
bitwise AND 1 0 0 0 0 0 0 0 mask

 ? 0 0 0 0 0 0 0 result

Fig ure A.8 Ac tion of the OR mask.

Be cause bits 4, 5, 6, and 7 in the mask are set, the OR op er a tion guar an tees that
these bits will be set in the re sult, in de pend ently of their value in the first op er and.

XOR Op er a tor

The bitwise XOR op er a tor (^) per forms the Boolean ex clu sive OR of the two
operands. This ac tion is de scribed by stat ing that a bit in the re sult is set if the cor re -
spond ing bits in the operands have op po site val ues. If the bits have the same value,
that is, if both bits are 1 or both bits are 0, the re sult bit is zero. The ac tion of the XOR
op er a tion cor re sponds to the truth ta ble of Ta ble A.7.

It is in ter est ing to note that XORing a value with it self al ways gen er ates a zero re -
sult, be cause all bits will nec es sar ily have the same value. On the other hand,
XORing with a 1-bit in verts the value of the other op er and, be cause 0 XOR 1 = 1 and
1 XOR 1 = 0 (see Ta ble A.7). By prop erly se lect ing an XOR mask the pro gram mer
can con trol which bits of the op er and are in verted and which are pre served. To in -
vert the two high-or der bits of an op er and, you XOR with a mask in which these bits
are set. If the re main ing bits are clear in the mask, then the orig i nal value of these
bits will be pre served in the re sult, as in shown in Fig ure A.9.

Fig ure A.9 Ac tion of the XOR mask.

NOT Op er a tor

The bitwise NOT op er a tor (~) in verts all bits of a sin gle op er and. In other words, it
con verts all 1-bits to 0 and all 0-bits to 1. This ac tion cor re sponds to the Boolean NOT
func tion, as shown in Ta ble A.7. Fig ure A.10 shows the re sult of a NOT op er a tion.

Fig ure A.10 Ac tion of the NOT op er a tor.

 MPLAB C18 Lan guage Tu to rial 447

 0101 0101 operand
bitwise OR 1111 0000 mask

 1111 0101 result

 0101 0101 operand
bitwise XOR 1111 0000 mask

 1010 0101 result

bitwise NOT 0101 0011 operand

 1010 1100 result

Shift-Left and Shift-Right Op er a tors

The C lan guage shift-left (<<) and shift- right (>>) op er a tors are used to move op er and
bits to the right or to the left. Both op er a tors re quire an op er and that spec i fies the
num ber of bits to be shifted. The fol low ing ex pres sion shifts left, by 2 bit po si tions, all
the bits in the vari able bitPattern:

un signed char bitPattern = 127;
bitPattern = bitPattern << 2;

The ac tion of a left shift by a 1-bit po si tion can be seen in Fig ure A.11.

 Fig ure A.11 Ac tion of the << op er a tor.

The op er a tion of the left-shift, as shown in Fig ure A.11, de ter mines that the most
sig nif i cant bit is dis carded. This could spell trou ble when the op er and is a signed
num ber, be cause in signed rep re sen ta tions the high-or der bit en codes the sign of
the num ber. There fore, dis card ing the high-or der bit can change the sign of the
value.

When ap ply ing the right-shift op er a tor the low-or der bit is dis carded and a zero is
en tered for the high-or der bit. The ac tion is shown in Fig ure A.12.

Fig ure A.12 Ac tion of the >> op er a tor.

448 Ap pen dix A

1 0 1 0 1 1 0 0

0 1 0 1 1 0 0 0

0 shifted in

OPERAND BEFORE << 1

OPERAND AFTER << 1

discarded

1 0 1 0 1 1 0 0

0 1 0 1 0 1 1 00 shifted in

OPERAND B EFORE > > 1

OPERAND AFTER > > 1

discarded

The use of the right-shift op er a tor on a neg a tive in te ger num ber re sults in con -
vert ing it to a pos i tive num ber by re plac ing the lead ing 1-bit with a 0-bit. The ANSI
Stan dard al lows im ple men ta tions to op tion ally han dle this case by prop a gat ing the
sign bit to the leftmost bit po si tion. How ever, MPLAB C18 does not im ple ment this
op tion and does not prop a gate the sign bit on a right shift.

A.5.9 Com pound As sign ment Op er a tors
C lan guage con tains sev eral com pound op er a tors that were de signed to make code
more com pact. The com pound as sign ment op er a tors con sist of a com bi na tion of the
sim ple as sign ment op er a tor (=) with an arith me tic or bitwise op er a tor. For ex am ple,
to add 5 to the vari able y, we can code

y = y + 5;

Al ter na tively, we can com bine the ad di tion op er a tor (+) with the sim ple as sign ment
op er a tor (=) as fol lows

y += 5;

In ei ther case, the fi nal value of y is its ini tial value plus 5, but the lat ter form re duces
the size of the pro gram. Ta ble A.8 lists the com pound as sign ment op er a tors.

Ta ble A.8

C Lan guage Com pound As sign ment Op er a tors

OPERATOR ACTION

+= Ad di tion as sign ment
–= Sub trac tion as sign ment
*= Mul ti pli ca tion as sign ment
/= Di vi sion as sign ment
%= Re main der as sign ment
&= Bitwise AND as sign ment
|= Bitwise OR as sign ment
^= Bitwise XOR as sign ment
<<= Left-shift as sign ment
>>= Right-shift as sign ment

The pro gram mer can re mem ber that in com pound as sign ments, the = sign al ways
co mes last. No tice that the com pound as sign ment is not avail able for the NOT (~)
bitwise unary op er a tor or for the unary in cre ment (++) or dec re ment (--) op er a tors.
The rea son is that unary (one el e ment) state ments do not re quire sim ple as sign -
ment; there fore, the com pound assignment form is meaningless.

A.5.10 Op er a tor Hi er ar chy
Pro gram ming lan guages have hi er ar chy rules that de ter mine the or der in which each
el e ment in an ex pres sion is eval u ated. For ex am ple, the ex pres sion

int value = 8 + 4 / 2;

 MPLAB C18 Lan guage Tu to rial 449

eval u ates to 6 be cause the C lan guage ad di tion op er a tor has higher pre ce dence than
the mul ti pli ca tion op er a tor. In this case, the com piler first cal cu lates 8 + 4 = 12 and
then per forms 12 / 2 = 6. If the di vi sion op er a tion were per formed first, then the vari -
able value eval u ates to 10. Ta ble A.9 lists the pre ce dence of the C lan guage op er a tors.

Ta ble A.9

Pre ce dence of C Lan guage Op er a tors

OPERATOR PRECEDENCE

. [] () High est
++ --
sizeof
~
!
+ - (ad di tion/sub trac tion)
& (ad dress of)
* (in di rec tion)
* / (mul ti pli ca tion/di vi sion)
% (re mainder)
<< >>
< > <= >= (re la tional)
== != (equal ity/in equal ity)
& (bitwise AND)
^
|
&& (log i cal AND)
||
?: (con di tional as sign ment)
= += -= *=
/= %= <<= >>=
&= ^= != Low est

As so cia tiv ity Rules

In some cases, an ex pres sion can con tain sev eral op er a tors with the same pre ce dence
level. When op er a tors have the same pre ce dence, the or der of eval u a tion is de ter -
mined by the as so cia tiv ity rules of the lan guage. As so cia tiv ity can be left-to-right or
right-to-left. In most pro gram ming lan guages, in clud ing C, the ba sic rule of as so cia tiv -
ity for arith me tic op er a tors is left-to-right. This is con sis tent with the way we read in
Eng lish and the West ern Eu ro pean lan guages.

In C lan guage, the as so cia tiv ity rules can be sumarized as fol lows:

• Bi nary and ter nary op er a tors are left-as so cia tive ex cept the con di tional and as -
sign ment op er a tors, which are right-as so cia tive.

• The unary and post fix op er a tors are de scribed as right-as so cia tive be cause the
ex pres sion * x ++ is in ter preted as * (x++) rather than as (*x) ++.

• All oth ers are right-as so cia tive.

Be cause of these vari a tions in the as so cia tiv ity rules, the pro gram mer must
ex er cise care in eval u at ing some ex pres sions. For ex am ple

450 Ap pen dix A

int a = 0;

int b = 4;

a = b = 7;

If the ex pres sion a = b = 7 is eval u ated left-to-right, then the re sult ing value of
vari able a is 4, and the value of b is 7. How ever, if it is eval u ated right-to-left, then
the value of both vari ables is 7. Be cause the as sign ment op er a tor has right-to-left as -
so cia tiv ity, the value of b is 7 and the value of a is also 7.

A.6 Di rect ing Pro gram Flow
The main dif fer ence be tween a dig i tal com put ing de vice and a cal cu lat ing ma chine is
that the com puter can make sim ple de ci sions. Pro grams are able to pro cess in for ma -
tion log i cally be cause of this de ci sion-mak ing abil ity. The re sult of a pro gram de ci sion
is to di rect pro gram ex e cu tion in one di rec tion or an other one, that is, to change pro -
gram flow. One of the most im por tant tasks per formed by the pro gram mer is the im -
ple men ta tion of the pro gram's pro cess ing logic. This im ple men ta tion is by means of
the lan guage's de ci sion con structs.

A.6.1 De ci sions Con structs

Mak ing a pro gram de ci sion re quires sev eral lan guage el e ments. Sup pose an ap pli ca -
tion must de ter mine if the vari able a is larger than b. If so, the pro gram must take one
course of ac tion. If both vari ables are equal, or if b is larger than a, then an other course
of ac tion is nec es sary. In other words, the pro gram has to make a com par i son, ex am -
ine the re sults, and take the cor re spond ing ac tion in each case. All of this can not be ac -
com plished with a sin gle op er a tor or key word, but re quires one or more ex pres sions
con tained in one or more state ments. This is why we re fer to de ci sion state ments and
de ci sion con structs, and not to de ci sion op er a tors. In pro gram ming, a con struct can
be de scribed as one or more ex pres sions, con tained in one or more state ments, all of
which serve to ac com plish a spe cific pur pose.

 C lan guage con tains sev eral high-level op er a tors and keywords that can be used
in con structs that make pos si ble se lec tion be tween sev eral pro cess ing op tions. The
ma jor de ci sion-mak ing mech a nisms are called the if and the switch con structs. The
con di tional op er a tor (?:), which is the only C lan guage op er a tor that con tains three
operands, is also used in decision-making constructs.

if Con struct

The C lan guage if con struct con sists of three el e ments:

1. The if key word

2. A test ex pres sion, called a con di tional clause

3. One or more state ments that ex e cute if the test ex pres sion is true

The sam ple pro gram named C_PBFlash.c in this book's on line soft ware re source,
reads the state of a pushbutton and takes ac tion if the switch is closed. The fol low -
ing code frag ment from the sam ple pro gram im ple ments the de ci sion:

 MPLAB C18 Lan guage Tu to rial 451

while(1)
{

if(!(PORTB & 0b00010000))
FlashRED();

}

In the pro gram C_PBFlash.c, the ac tion of flash ing the red LEDs is im ple mented
in the func tion FlashRED() not listed. The de ci sion is made in the state ment:

if(!(PORTB & 0b00010000))

The test con sists of per form ing a bitwise AND op er a tion (&) with the Port B lines and
a mask in which the bit to be tested (bit 4) is set and all other bits are zero. In this case
the pushbutton switch is wired to Port B line 4. The pushbutton switch is wired ac tive
low so it is nec es sary to per form a bitwise NOT (!) on the re sult of the bitwise AND op -
er a tion.

State ment Blocks

The sim ple form of the if con struct con sists of a sin gle state ment that ex e cutes if the
con di tional ex pres sion is true. The sam ple code listed pre vi ously uses a sim ple if con -
struct. But code will of ten need to per form more than one op er a tion ac cord ing to the
re sult of a de ci sion. C lan guage pro vides a sim ple way of group ing sev eral state ments
so that they are treated as a unit. The group ing is per formed by means of curly braces
({}) or ros ter sym bol. The state ments en closed within two ros ters form a com pound
state ment, also called a state ment block.

You can use state ment block ing to mod ify the code listed pre vi ously so that a sec -
ond func tion, named Beep(), ex e cutes if the if test re ports true. The code would be
as fol lows:

while(1)
{

if(!(PORTB & 0b00010000)) {
FlashRED();

 Beep();
}

}

The brace sym bols ({ and }) are used to as so ci ate more than one state ment with
the re lated if. In this ex am ple, both func tions, FlashRED() and Beep(), ex e cute if
the con di tional clause eval u ates to true and both are skipped if it eval u ates to false.

Nested if Construct

Sev eral if state ments can be nested in a sin gle con struct. The re sult is that the ex e cu -
tion of a state ment or state ment group is de ter mined not by a sin gle con di tion, but to
two or more. For ex am ple, the C_PBFlashX2.c pro gram, in the book's soft ware re -
source, is a dem on stra tion pro gram to mon i tor pushbutton switches No. 1 and 2 on
DemoBoard 18F452A (or equiv a lent cir cuit). If both switches are down, then four red
LEDs wired to Port C lines 0 to 3 are flashed. The fol low ing code frag ment from the
pro gram C_PBFlashX2.c im ple ments the de ci sion:

452 Ap pen dix A

void main(void)
{

// Initialize di rec tion reg is ters
TRISB = 0b00110000;// Port B, lines 4/5, set for in put

// ||_______ Pushbutton # 1
// |________ Pushbutton # 2

TRISC = 0; // Port C set for out put
PORTC = 0; // Clear all Port C lines

while(1)
{

if(!PORTBbits.RB4) {
if(!PORTBbits.RB5) {

FlashRED();
}

}
}

}

In the pre ced ing code frag ment, the if state ment that tests for pushbutton # 2 is
nested in side the if state ment that tests pushbutton # 1. In this case, the in ner if
state ment is never reached if the outer one eval u ates to false. Al though white space
has no ef fect on the code, text line in den ta tion does help vi su al ize log i cal flow. Fig -
ure A.13 is a flowchart of a nested if con struct.

 Fig ure A.13 Flowchart of a nested if con struct.

No tice that in this ex am ple that we have used a C18 li brary macro to iden tify bit 5
in Port B, as fol lows:

PORTBbits.RB5

 MPLAB C18 Lan guage Tu to rial 453

START

END

YES

YES

NO

NO

is pushbutton
1 pressed

?

Flash red LEDs

nested if

is pushbutton
2 pressed

?

The mac ros that de fine pin as sign ments are hard ware-spe cific fa cil i ties that are
part of the MPLAB C18 com piler. The func tions in the Soft ware Pe riph er als Li brary
are dis cussed in Chap ter 6.

else Con struct

An if con struct ex e cutes a state ment, or a state ment block, if the con di tional clause
eval u ates to true, but no al ter na tive ac tion is taken if the ex pres sion is false. The
if-else con struct al lows C lan guage to pro vide an al ter na tive pro cess ing op tions for
the case in which the con di tional clause is false. The else con struct is some times
called the if-else con struct.

Con sider the fol low ing pro gram frag ment from the pro gram C_PBFlash2.c in the
book's soft ware re source:

void main(void)

{

// Initialize di rec tion reg is ters

 TRISB = 0b00001000; // Port B, line 4, set for in put

// |

// |________ Pushbutton # 1

 TRISC = 0; // Port C set for out put

 PORTC = 0; // Clear all Port C lines

while(1)

{

if(!PORTBbits.RB4)

FlashRED();

else

FlashGREEN();

}

}

In this ex am ple, the red LEDs are flashed if bit 4 of Port B is clear; oth er wise the
green LEDs are flashed.

It is cus tom ary among C pro gram mers to align the if and else keywords in the
if-else con struct. This is an other ex am ple of the use of white space to clar ify pro -
gram flow. As in the case of the if clause, the else clause can also con tain a state -
ment block de lim ited by ros ters. A state ment block is nec es sary if more than one
state ment is to ex e cute on the else branch. Fig ure A.14 is a flowchart of the pre ced -
ing if-else con struct.

Dan gling else Case

Be cause the else state ment is op tional, it is pos si ble to have sev eral nested if con -
structs, not all of which have a cor re spond ing else clause. This case is some times
called the dan gling else case. A dan gling else state ment can give rise to un cer tainty
about the pair ing of the if and else clauses.

454 Ap pen dix A

 Fig ure A.14 Flowchart of an if-else con struct.

The dan gling else case typ i cally takes place when there are two ad ja cent if state -
ments, as in the case of the fol low ing frag ment with two if state ments and a sin gle
else clause:

if(a != 0)

 if(a < 10)
 Ac tion(1);
 else

 Action2();

In the pre ced ing code frag ment, the path of ex e cu tion is dif fer ent if the else clause is
paired with the in ner if state ment, or with the outer one. If the else clause is paired
with the first if state ment, it will ex e cute if the value of vari able a is not zero. How ever,
if the else clause is paired with the sec ond if state ment, it will ex e cute if the value of
the a vari able is greater than or equal to ten.

The gen eral rule used by the C lan guage in solv ing the dan gling else prob lem is
that each else state ment is paired with the clos est if state ment that does not have an
else, and that is lo cated in the same block. In den ta tion in the pre ced ing code frag -
ment helps you see that the else state ment is linked to the in ner if.

Be cause if-else pair ing re lates to pro gram blocks, ros ters can be used to force a
par tic u lar if-else as so ci a tion; for ex am ple,

if(a != 0) {
 if(a < 10)

 Ac tion(1);
}

else
 Action2();

 MPLAB C18 Lan guage Tu to rial 455

START

END

NO

else clause if clause

YESis pushbutton
1 pressed

?
Flash RED

LEDs
Flash GREEN

LEDs

In the pre ced ing code frag ment the clos est if state ment with out an else, and lo -
cated in the same block, is the state ment

if(a != 0)

No tice how the in den ta tion serves to show this as so ci a tion.

else-if Clause

You have seen how the dan gling else prob lem can the cause unpredicted as so ci a tion
of an else clause with an if state ment. The re la tion ship be tween two con sec u tive if
state ments can also cause prob lems. The flowchart in Fig ure A.13 shows the case of a
cas caded if con struct. In this case, the sec ond if state ment is con di tioned to the first
one be ing true. How ever, if the sec ond if state ment is not nested in the first one, then
its eval u a tion is in de pend ent of the re sult of the first if. The fol low ing vari a tion in the
cod ing shows this case:

while(1)
{

if(!PORTBbits.RB4)
FlashGREEN();

if(!PORTBbits.RB5)
FlashRED();

}

In this case the two con di tions are tested in de pend ently. If pin RB4 is clear then the
green LEDs are flashed. If pin RB5 is clear, then the red LEDs are flashed. In other
words, the sec ond if state ment is un re lated to the first one, there fore, the sec ond
state ment is al ways eval u ated.

The else-if con struct al lows sub or di nat ing the sec ond if state ment to the case of
the first one eval u at ing to false. All you have to do is to nest the sec ond if within the
else clause of the first one; for ex am ple,

int age;
. . .
if(age == 12)
 Print(12);
 else if(age == 13)
 Print(13);
 else if(age == 14)
 Print(14);
else
 Print(0);

In the pre ced ing code frag ment, the last if state ment ex e cutes only if all the pre -
ced ing if state ments have eval u ated to false. If one of the if state ments eval u ates to
true, then the rest of the con struct is skipped. In some cases, sev eral log i cal vari a -
tions of the con sec u tive if state ments may pro duce the de sired re sults, while in
other cases it may not. Flowcharting is an ef fec tive way of re solv ing doubts
regarding program logic.

456 Ap pen dix A

The else-if is a mere cod ing con ve nience. The same ac tion re sults if the else and
the if clause are sep a rated. For ex am ple,

if(age == 12)
 Print(12);

else
 if(age == 13)

Print(13);
 . . .

switch Con struct

It is a com mon pro gram ming tech nique to use the value of an in te ger vari able to di rect
ex e cu tion to one of sev eral pro cess ing rou tines. You have prob a bly seen pro grams in
which the user se lects among sev eral pro cess ing op tions by en ter ing a nu meric value.
The soft ware then makes a pro cess ing se lec tion based on this value.

The C lan guage switch con struct pro vides an al ter na tive mech a nism for se lect ing
among mul ti ple op tions. The switch con sists of the fol low ing el e ments:

1. The switch key word.

2. A con trol ling ex pres sion en closed in pa ren the ses; must be of in te ger type.

3. One or more case state ments fol lowed by an in te ger or char ac ter con stant, or an
ex pres sion that eval u ates to a con stant. Each case state ment ter mi nates in a co -
lon sym bol.

4. An op tional break state ment at the end of each case block. When the break is en -
coun tered, all other case state ments are skipped.

5. An op tional de fault state ment. The de fault case re ceives con trol if none of the
other case state ments have ex e cuted.

The switch con struct pro vides a sim ple al ter na tive to a com pli cated if, else-if, or
else chain. The gen eral form of the switch state ment is as fol lows:

switch (ex pres sion)
{
 case value1:
 state ment;
 state ment;
 . . .
 [break;]
 case value2:
 state ment;
 state ment;
 . . .
 [break;]
 ...
 [de fault:]
 state ment;
 state ment;
 . . .
 [break;]
}

 MPLAB C18 Lan guage Tu to rial 457

Note that the pre ced ing ex am ple uses a non ex is tent com puter lan guage, called
pseudocode. Pseudocode shows the fun da men tal logic of a pro gram ming con struct
with out com ply ing with the for mal re quire ments of any par tic u lar pro gram ming lan -
guage. There are no strict rules to pseudocode; the syn tax is left to the coder's imag i -
na tion. The pre ced ing pseudocode list ing com bines el e ments of the C lan guage with
sym bols that are not part of C. For ex am ple, the ... char ac ters (called el lip ses) in di cate
that other pro gram el e ments could fol low at this point while the bracket sym bols are
used to sig nal op tional com po nents. Nei ther the el lip ses nor the brack ets are part of
the C lan guage as used in this pseudocode.

The con trol ling ex pres sion of a switch con struct fol lows the switch key word and
is en closed in pa ren the ses. The ex pres sion, usu ally a vari able, must eval u ate to an
in te ger type. It is pos si ble to have a con trol ling ex pres sion with more than one vari -
able, one that con tains lit eral val ues, or per form in te ger arith me tic within the con -
trol ling ex pres sion. Each case state ment marks a po si tion in the switch con struct. If
the case state ment is true, ex e cu tion con tin ues at the code line that fol lows the case
key word. The case key word is fol lowed by an in te ger or char ac ter con stant, or an
ex pres sion that eval u ates to an in te ger or char ac ter con stant. The case con stant is
en closed in sin gle quo ta tion sym bols (tic marks) if the con trol state ment is an ASCII
char ac ter.

The fol low ing code frag ment from the sam ple pro gram C_Switch_Demo.c in the
book's soft ware re source, shows a case con struct. The pro gram uses the C lan guage
switch con struct to di rect ex e cu tion ac cord ing to the set ting of four DIP switches
wired to Port A lines 2 to 5 in Demo Board 18F452-A or equiv a lent cir cuit. LEDs
wired to Port C lines 0 to 7 are flashed as fol lows:

DIP switch x = LEDs flashed
1 - PORTA 2 0000 00xx

 2 - PORTA 3 0000 xx00
 3 - PORTA 4 00xx 0000
 4 - PORTA 5 xx00 0000
 No DIP closed 0x0x 0x0x

Op er at ing code is as fol lows:

void main(void)
{

un signed char DIPs = 0;

// Init Port A for dig i tal op er a tion
PORTA = 0; // Clear port
LATA = 0; // and latch reg is ter
// ADCON1 is the con fig u ra tion reg is ter for the A/D
// func tions in Port A. A value of 0b011x sets all
// lines for dig i tal op er a tion
ADCON1 = 0b00000110; // Dig i tal mode all Port A lines
// Initialize di rec tion reg is ters
TRISA = 0b00111100;// Port A lines 2-5 set for in put

// to ac ti vate DIP switches
TRISC = 0; // Port C set for out put
PORTC = 0; // Clear all Port C lines

458 Ap pen dix A

while(1)
{

DIPs = (PORTA >> 2); // DIPs are ac tive low
switch(DIPs)
{

case 0b00000001: // DIP # 1 closed
FlashLED(0b00000011);
break;

case 0b00000010: // DIP # 2 closed
FlashLED(0b00001100);
break;

case 0b00000100: // DIP # 3 closed
FlashLED(0b00110000);
break;

case 0b00001000: // DIP # 4 closed
FlashLED(0b11000000);
break;

de fault:
FlashLED(0b01010101);
break;

}
}

}
/**
 lo cal func tions
***/
void FlashLED(un signed char pat tern)
{

PORTC = pat tern;
Delay1KTCYx(200);
PORTC = 0x00;
Delay1KTCYx(200);
re turn;

}

Be cause the case con stant is a nu meric type (un signed char), the case con stants
do not re quire tic marks. The fol low ing code frag ment shows a case con struct in
which the switch vari able is of type int.

char let ter = 'A';
. . .
switch (let ter)
{
 case 'A':
 ...
 break;
 case 'B':
 ...
 break;
. . .
}

The break key word is op tional, but if it is not pres ent at the end of a case block,
then the fol low ing case block or the de fault block ex e cutes. In other words, ex e cu -
tion in a switch con struct con tin ues un til a break key word or the end of the con -
struct is en coun tered. When a break key word is en coun tered, ex e cu tion is
im me di ately di rected to the end of the switch con struct. A break state ment is not re -

 MPLAB C18 Lan guage Tu to rial 459

quired on the last block (case or de fault state ment), al though it is some times
included for readability.

The blocks of ex e cu tion within a switch con struct are en closed in ros ters; how -
ever, the case and the de fault keywords au to mat i cally block the state ments that fol -
low. Ros ters are not nec es sary to in di cate the first-level ex e cu tion block within a
case or de fault state ment.

Con di tional Ex pres sions

C lan guage ex pres sions usu ally con tain a sin gle op er and; how ever, there is one ter -
nary op er a tor that uses two operands. The ter nary op er a tor is also called the con di -
tional op er a tor. A con di tional ex pres sion is used to sub sti tute a sim ple if-else
con struct. The syn tax of a con di tional state ment can be sketched as fol lows:

expTest ? expTrue : expFalse;

In the above pseudocode expTest, expTrue, and expFalse are C lan guage ex pres -
sions. Dur ing ex e cu tion, expTest is first tested. If it is true, then expTrue ex e cutes.
If it is false, then expFalse ex e cutes. For ex am ple, as sign the value of the smaller of
two in te ger vari ables (named a and b) to a third vari able named min. Con ven tional
code could be as follows:

int a, b, min;
...

if (a < b)
 min = a;
else
 min = b;

With the con di tional op er a tor, the code can be short ened and sim pli fied, as fol lows:

min = (a < b) ? a : b;

In the above state ment, the con di tional ex pres sion is formed by the el e ments to
the right of the as sign ment op er a tor (=). There are three el e ments in the rvalue:

1. The ex pres sion (a < b), which eval u ates ei ther to log i cal true or false.

2. The ex pres sion ? a de ter mines the value as signed to the lvalue if the ex pres sion (a
< b) is true.

3. The ex pres sion : b de ter mines the value as signed to the lvalue if the ex pres sion (a
< b) is false.

The lvalue is the el e ment to the left of the equal sign in an as sign ment ex pres sion.
The rvalue is the el e ment to the right of the equal sign.

A.7 Loops and Pro gram Flow Con trol
Of ten, com puter pro grams must re peat the same task a num ber of times. Think of a
bur glar alarm sys tem in which the soft ware must dis able the alarm when ever the user
en ters a spe cific con trol code fol lowed by a pass word. A rea son able de sign for this

460 Ap pen dix A

pro gram would be a rou tine that con tin u ally mon i tors the key pad for in put and, on de -
tect ing a dis abling com mand, prompts the user for a pass word and if cor rect, pro -
ceeds to turn off the alarms. The re peated pro cess ing takes place in a pro gram
con struct usu ally called a loop. In this sec tion we dis cuss three C lan guage loop con -
structs: the for loop, the while loop, and the do-while loop.

A.7.1 Loops and It er a tions
Loops do not of fer func tion al ity that is not oth er wise avail able in a pro gram ming lan -
guage. Loops just save cod ing ef fort and make pro grams more log i cal and ef fi cient. In
many cases, cod ing would be vir tu ally im pos si ble with out loops. Imag ine an ap pli ca -
tion that es ti mates the tax li a bil ity for each res i dent of the state of Min ne sota. With out
loops, you may have to spend the rest of your life writ ing the code.

In talk ing about loops it is con ve nient to have a word that rep re sents one en tire
trip through the pro cess ing rou tine. We call this an it er a tion. To it er ate means to do
some thing re peat edly. Each tran si tion through the state ment or group of state ments
in the loop is an it er a tion. Thus, when talk ing about a pro gram loop that re peats a
group of state ments three times, we speak of the first, the sec ond, and the third
iteration.

A.7.2 El e ments of a Pro gram Loop
A loop al ways in volves three steps:

1. The ini tial iza tion step is used to prime the loop vari ables to an ini tial state.

2. The pro cess ing step per forms the pro cess ing. This is the por tion of the code that
is re peated dur ing each it er a tion.

3. The test ing step eval u ates the vari ables or con di tions that de ter mine the con tin u -
a tion of the loop. If they are met, the loop con tin ues. If not, the loop ends.

A loop struc ture can be used to cal cu late the fac to rial. The fac to rial is the prod -
uct of all the whole num bers that are equal to or less than the num ber. For ex am ple,
fac to rial 5 (writ ten 5!) is

5! = 5 * 4 * 3 * 2 * 1 = 120

In cod ing a rou tine to cal cu late the fac to rial, you can use one vari able to hold the
ac cu mu lated prod uct and an other one to hold the cur rent fac tor. The first vari able
could be named facProd and the sec ond one curFactor. The loop to cal cu late
facProd can be as follows:

1. Ini tial ize the vari ables facProd to the num ber whose fac to rial is to be cal cu lated
and the vari able curFactor to this num ber mi nus one. For ex am ple, to cal cu late
5!, you make facProd = 5 and curFactor = 4.

2. Dur ing each it er a tion, cal cu late the new value of facProd by mak ing facProd =
curFactor times facProd. Sub tract one from curFactor.

3. If curFactor is greater than 1, re peat step 2; if not, ter mi nate the loop.

Fig ure A.15 is a flowchart of the logic used in the fac to rial cal cu la tion de scribed
above.

 MPLAB C18 Lan guage Tu to rial 461

Fig ure A.15 Fac to rial flowchart.

No tice that in the fac to rial cal cu la tion we test for a fac tor greater than 1 to ter mi -
nate the loop. This elim i nates mul ti ply ing by 1, which is a triv ial op er a tion.

A.7.3 for Loop

The for loop is the sim plest it er a tive con struct of C lan guage. The for loop re peats the
ex e cu tion of a pro gram state ment or state ment block a fixed num ber of times. A typ i -
cal for loop con sists of the fol low ing steps:

1. An ini tial iza tion step that as signs an ini tial value to the loop vari able.

2. One or more pro cess ing state ments. It is in this step where the cal cu la tions take
place and the loop vari able is up dated.

3. A test ex pres sion that de ter mines the ter mi na tion of the loop.

The gen eral form of the for loop in struc tion is shown in Fig ure A.16.

462 Ap pen dix A

START

END

NO

YES
is

curFactor > 1
?

STEP 1: (initialization)
 facProd = number
 curFactor = number - 1

STEP 3:

STEP 2: (processing)
 facProd = facProd * curFactor
 curFactor = curFactor - 1

factorial = facProd

Fig ure A.16 El e ments of the for loop con struct.

We can use the for loop in the fol low ing code frag ment for cal cu lat ing the fac to -
rial ac cord ing to the flowchart in Fig ure A.15.

int num ber = 5; // Fac to rial to be cal cu lated
int facProd, curFactor; // Lo cal vari ables
// Ini tial iza tion step
facProd = num ber; // Ini tial ize op er a tional vari able
for (curFactor = num ber - 1; curFactor > 1; curFactor--)
// Pro cess ing step
 facProd = curFactor * facProd;
// Done
// The vari able facProd now holds the fac to rial

No tice that the ex pres sion

for(curFactor = num ber - 1; curFactor > 1; curFactor --)

con tains the loop ex pres sion and that it in cludes el e ments from Steps 1, 2, and 3. The
first state ment (curFactor = num ber - 1) sets the ini tial value of the loop vari able. The
sec ond state ment (curFactor > 1) con tains the test con di tion and de ter mines if the
loop con tin ues or if it ends. The third state ment (curFactor --) di min ishes the loop
vari able by 1 dur ing each it er a tion.

Also no tice that while the for loop ex pres sion does not end in a semi co lon, it
does con tain semi co lon sym bols. In this case, the semi co lon sym bol is used to sep a -
rate the ini tial iza tion, test, and up date el e ments of the loop. This ac tion of the semi -
co lon sym bol al lows the use of mul ti ple state ments in each el e ment of the loop
ex pres sion, as in the fol low ing case:

un signed int x;
un signed int y;
for(x = 0, y = 5; x < 5; x++, y--)
 Print("x is: " + x, " y is: " + y);

In the pre ced ing code, the semi co lons serve to de limit the ini tial iza tion, con tin u a -
tion, and up date phases of the for loop. The ini tial iza tion stage (x = 0, y = 5) sets the
vari ables to their ini tial val ues. The con tin u a tion stage (x < 5) tests the con di tion
dur ing which the loop con tin ues. The up date stage (x++, y--) in cre ments x and dec -
re ments y dur ing each it er a tion. The comma op er a tor is used to sep a rate the
components in each loop phase.

 MPLAB C18 Lan guage Tu to rial 463

 for keyword
 initializing element
 test element
 update element

 for(var = 0; var < 5; var++)
 {
 // processing statements
 }

The mid dle phase in the for loop state ment, called the test ex pres sion, is eval u -
ated dur ing each loop it er a tion. If this state ment is false, then the loop ter mi nates
im me di ately. Oth er wise, the loop con tin ues. For the loop to ex e cute the first time,
the test ex pres sion must ini tially eval u ate to true. No tice that the test ex pres sion
de ter mines the con di tion un der which the loop ex e cutes, rather than its
termination. For ex am ple,

for(x = 0; x == 5; x++)

 Print(x);

The Print() state ment in the pre ced ing loop will not ex e cute be cause the test ex -
pres sion x == 5 is ini tially false. The fol low ing loop, on the other hand, ex e cutes
end lessly be cause the ter mi nat ing con di tion is as signed a new value dur ing each
iteration.

int x;

for (x = 0; x = 5; x++)

 Print(x);

In the pre ced ing loop the mid dle el e ment should have been x = = 5. The state -
ment x = 5 as signs a value to x and al ways eval u ates true. It is a very com mon mis -
take to use the as sign ment op er a tor (=) in place of the com par i son operator (= =).

It is also pos si ble for the test el e ment of a for loop to con tain a com plex log i cal
ex pres sion. In this case, the en tire ex pres sion is eval u ated to de ter mine if the con di -
tion is met. For ex am ple,

int x, y;

for(x = 0, y = 5; (x < 3 || y > 1); x++, y--)

The test ex pres sion

(x < 3 || y > 1)

eval u ates to true if ei ther x is less than 3 or if y is greater than 1. The val ues that de ter -
mine the end of the loop are reached when the vari able x = 4 or when the vari able y = 1.

Com pound State ment in Loops

We have seen that the ros ter sym bols ({ and }) are used in C lan guage to group sev eral
state ments into a sin gle block. State ment blocks are used in loop con structs to make
pos si ble per form ing more than one pro cess ing op er a tion.

while Loop

The C lan guage while loop re peats a state ment or state ment block “while” a cer tain
con di tion eval u ates to true. Like the for loop, the while loop re quires ini tial iza tion,
pro cess ing, and test ing steps. The dif fer ence is that in the for loop, the ini tial iza tion
and test ing steps are part of the loop it self, but in the while loop these steps are lo cated
out side the loop body.

464 Ap pen dix A

The pro gram C_LEDs_Flash.c in the book's soft ware re source con tains a func -
tion with a while loop to im ple ment a do-noth ing time de lay. The code for the func -
tion named FlashLEDs() is a fol lows:

void FlashLEDs()
{
// Func tion uses a while loop to im ple ment a do-noth ing de lay

count = 0;
PORTC = 0x0f;

while (count <= MAX_COUNT)
{

count++;
}

count = 0;
PORTC = 0xf0;

while (count <= MAX_COUNT)
{

count++;
}

re turn;
}

Fig ure A.17 shows the el e ments of the while loop.

Fig ure A.17 El e ments of the while loop con struct.

do-while Loop

A fea ture of the while loop is that if the test con di tion is ini tially false, the loop never
ex e cutes. For ex am ple, the while loop in the fol low ing code frag ment will not ex e cute
the state ment body be cause the vari able x eval u ates to 0 be fore the first it er a tion:

int x = 0;
. . .
while (x != 0)
. . .;

In the do-while loop, the test ex pres sion is eval u ated af ter the loop ex e cutes.
This en sures that the loop ex e cutes at least once, as in the fol low ing example:

int x = 0;
do

while (x != 0);

In the case of the do-while loop, the first it er a tion al ways ex e cutes be cause the
test is not per formed un til af ter the loop body ex e cutes. Fig ure A.18 shows the el e -
ments of the do-while loop.

 MPLAB C18 Lan guage Tu to rial 465

loopVar = 0; External initialization
while(loopVar != 10) Loop continuation test
{
 // Processing statements
 loopVar++; Loop variable update
}

Fig ure A.18 El e ments of the do-while loop con struct.

In many cases, the pro cess ing per formed by the do-while loop is iden ti cal to the
one per formed by the while loop. Note that the test ex pres sion in a do-while loop
ter mi nates in a semi co lon sym bol. Be cause a while state ment does not con tain a
semi co lon, it is a fre quent pro gram ming mis take to omit it in the do-while loop.

A.8 Break ing the Flow
Some com puter pro grams per form sim ple func tions ex e cute lin early, that is, they
start at the first in struc tion or state ment and con tinue, in or der, un til they reach the
last one. This is the pre ferred scheme be cause these pro grams are easy to fol low and
un der stand. How ever, it some times hap pens that a sim ple ex e cu tion pat tern is not
pos si ble be cause the code must abruptly change the or der of ex e cu tion to an other lo -
ca tion. C pro vides four state ments that al low abrupt changes in the or der of ex e cu tion
of a pro gram. These are named goto, break, con tinue, and re turn. The first three (goto,
break, and con tinue) are dis cussed in the sec tions that fol low. The re turn state ment is
dis cussed in the con text of func tions, later in this Ap pen dix.

A.8.1 goto State ment
The C lan guage goto state ment trans fers ex e cu tion un con di tion ally to a spe cific lo ca -
tion in the pro gram. The des ti na tion lo ca tion, at which ex e cu tion re sumes, is marked
by a name fol lowed by a co lon sym bol. This com bi na tion of name and co lon sym bol is
called a la bel. For ex am ple, the fol low ing code frag ment tests the vari able named “di -
vi sor” for a zero value and, if zero, trans fers ex e cu tion to a pro gram branch la beled
DIVISION_ERROR:

if (di vi sor == 0)
goto DIVISION_ERROR;

.

.

.

DIVISION_ERROR:
.
.
.

The abuse of the goto state ment can lead to pro grams in which ex e cu tion jumps
around the code in an in con sis tent and hard-to-fol low man ner. Pro gram mers some -
times say that this cod ing style gen er ates spa ghetti code, in ref er ence to a pro gram
logic that is as dif fi cult to un ravel as a bowl of un cut spa ghetti. Be cause the goto
state ment can al ways be sub sti tuted by other C lan guage struc tures, its use is op -
tional and dis cre tion ary. On the other hand, most au thors agree that the goto state -

466 Ap pen dix A

loopVar = 0; External initialization
do Start of loop
{
 // Processing statements
 loopVar++; Loop variable update
}
while(loopVar != 10); Loop continuation test

ment pro vides a con ve nient way of di rectly ex it ing nested loops, espe cially in the
case of er rors or other un for seen con di tions, and that its use is le git i mate in these
or sim i lar cir cum stances. Some times in or der to avoid the use of a goto state ment,
we must pro duce code that is even more difficult to follow and understand.

A.8.2 break State ment
The C lan guage break state ment pro vides a way for ex it ing a switch con struct or the
cur rently ex e cut ing level of a loop. The break state ment can not be used out side a
switch or loop struc ture. The sam ple pro gram named C_Break_Demo.c in the book's
soft ware re source is a dem on stra tion pro gram that shows the ac tion of a C lan guage
break state ment by in ter rupt ing the/ ex e cu tion of an if state ment block. The pro gram
reads the state of the four DIP switches wired to Port A. If DIP switches num ber 2 and
3 are closed, a break state ment ex e cutes and the if con struct is aborted. Oth er wise,
the sta tus of the four DIP switches is ech oed in the green LEDs of Demo Board
18F452-A or equiv a lent cir cuit. Code is as follows:

//**
// main pro gram
//**
void main(void)
{

un signed char DIPs = 0;

// Init Port A for dig i tal op er a tion
PORTA = 0; // Clear port
LATA = 0; // and latch reg is ter
// ADCON1 is the con fig u ra tion reg is ter for the A/D
// func tions in Port A. A value of 0b011x sets all
// lines for dig i tal op er a tion
ADCON1 = 0b00000110; // Dig i tal mode all Port A lines
// Initialize di rec tion reg is ters
TRISA = 0b00111100;// Port A lines 2-5 set for in put

// to ac ti vate DIP switches
TRISC = 0; // Port C set for out put
PORTC = 0; // Clear all Port C lines

while(1)
{

DIPs = (PORTA >> 2); // DIPs are ac tive low
if(DIPs == 0b00000110){ // Test DIPs 2 and 3

FlashLED(0x00);
break; // Exit if state ment

}
else

FlashLED(DIPs);
}

}

//**
// lo cal func tions
//**
void FlashLED(un signed char pat tern)
{

PORTC = pat tern;
Delay1KTCYx(200);
PORTC = 0x00;

 MPLAB C18 Lan guage Tu to rial 467

Delay1KTCYx(200);
re turn;

}

In the case of a nested loop, the break state ment ex its the loop level at
which it is lo cated, as shown in the fol low ing code frag ment.

main()
{
 un signed int num ber = 1;
 char let ter;
 ...
 while (num ber < 10) {
 Print(num ber);
 num ber ++;
 for (let ter = 'A'; let ter < 'G'; let ter ++) {
 Print(let ter);
 if (let ter == 'C')
 break;
 }
 }
}

The code listed above con tains two loops. The first one, a while loop, dis plays a
count of the num bers from 1 to 9. The sec ond one, or in ner loop, dis plays the cap i tal
let ters A to F, but the if test and as so ci ated break state ment in ter rupt ex e cu tion of
this nested loop as soon as the let ter C is reached. In this ex am ple, be cause the
break state ment acts on the cur rent loop level only, the outer loop re sumes count -
ing num bers un til the value 10 is reached. In this pro gram we have used a func tion
named Print() to dem on strate flow of ex e cu tion. Such a func tion does not ex ist in C
lan guage and is a nor in the sam ple code and should be considered as pseudocode.

The break state ment is also used in the switch con struct, de scribed pre vi ously. In
this case, the break state ment forces an exit out of the cur rently ex e cut ing case
block.

A.8.3 con tinue State ment
While the break state ment can be used with ei ther a switch or a loop con struct, the
con tinue state ment op er ates only in loops. The pur pose of the con tinue state ment is
to by pass all not yet ex e cuted state ments in the loop and re turn to the be gin ning of the
loop con struct. Con tinue can be used with for, while, and do loops. For ex am ple, the
fol low ing pro gram con tains a for loop to dis play the let ters A to D; how ever, the con -
tinue state ment serves to by pass the let ter C, which is not dis played.

main()
{
 un signed char let ter;

.

.

.
 for (let ter = 'A'; let ter < 'E'; let ter ++) {
 if (let ter == 'C')
 con tinue;

468 Ap pen dix A

 Print(let ter);
 }
}

Like the goto state ment pre vi ously dis cussed, the abuse of the con tinue state -
ment of ten leads to code that is dif fi cult to fol low and de ci pher.

A.9 Func tions and Struc tured Pro gram ming
Early-day pro gram mers dis cov ered that their code of ten re peated iden ti cal op er a -
tions. For ex am ple, a geo met ri cal ap pli ca tion that con tains a rou tine to cal cu late the
area of a cir cle may have the code re peated sev eral times. This leads to wasted cod ing
ef fort and to un nec es sary pro gram size. A pos si ble so lu tion is to cre ate an in de pend -
ent pro gram el e ment that re ceives the ra dius pa ram e ter from the main pro gram, pro -
ceeds to cal cu late the area, and then re turns the re sult to the main code. The
con struc tion, of ten called a sub rou tine, can be re used as of ten as nec es sary by the
main pro gram with con sid er able sav ings in pro gram ming ef fort and in pro gram stor -
age.

In C lan guage sub rou tines are called func tions. Ex cept for the spe cial pro ce dure
named main(), a C lan guage pro gram need not con tain other func tions. In fact, any
C pro gram ming op er a tion, no mat ter how com pli cated or so phis ti cated, can al ways
be per formed with out us ing func tions.

We have al ready seen some func tions; for ex am ple, we know that all C lan guage
pro grams must con tain a func tion called main() and that ex e cu tion al ways starts at
this func tion, no mat ter where it ap pears in the source file. We have also en coun -
tered spe cial hard ware li brary func tions that are part of MPLAB C18 and that are
cov ered in the book's main text. In ad di tion, we have used lo cal func tions in some
of our sam ple pro grams with out a rig or ous de scrip tion of their struc ture and ap pli -
ca tion. In the sec tions that fol low we cor rect this sit u a tion and dis cuss the de tails of
C lan guage func tions. These pro gram mer-cre ated func tions sim plify the task of de -
sign ing and cod ing, im prove a pro gram's read abil ity and co he sive ness, and make it
eas ier to un der stand and main tain the code.

In or der to dis tin guish this type of func tion from the main() func tion and from
the func tions avail able in C lan guage and hard ware li brar ies, we will re fer to them
as pro gram mer de clared func tions, or sim ply as func tions. Any fu ture ref er ence to
the main() func tion or to li brary func tions will be clearly spelled out.

A.9.1 Mod u lar Con struc tion
Mod u lar pro gram con struc tion is one of the core prin ci ples of a meth od ol ogy called
struc tured pro gram ming. The idea be hind mod u lar con struc tion is to break a pro cess -
ing task into smaller units that are eas ier to an a lyze, code, and main tain. A well-de -
signed pro gram is di vided into a few fun da men tal func tions that con sti tute its
prin ci pal mod ules. Be cause func tions can con tain other em bed ded func tions, the pro -
cess of di vid ing a pro gram into in di vid ual mod ules can con tinue un til pro cess ing
reaches the sim plest pos si ble stage. In this man ner the main mod ules may con tain sec -
ond-level mod ules, and the sec ond-level mod ules may con tain third-level mod ules,
and so on.

 MPLAB C18 Lan guage Tu to rial 469

A prop erly de signed func tion should per form a spe cific and well-de fined set of
pro cess ing op er a tions. Each func tion con tains a sin gle en try and a sin gle exit point.
The in di vid ual func tions should be kept within a man age able size. In prac tice, a well
con ceived func tion rarely ex ceeds two or three pages of code. Ex cept where pro -
gram per for mance is an is sue, it is better pro gram ming prac tice to di vide pro cess ing
into sev eral smaller func tions than to cre ate a sin gle, more com pli cated one.

A.9.2 Struc ture of a Func tion
A pro gram mer-de fined func tion in C lan guage can be de scribed as a col lec tion of dec -
la ra tions and state ments, grouped un der a func tion name, and de signed to per form a
spe cific task. Ev ery func tion con tains three clearly iden ti fi able el e ments:

1. The func tion pro to type (also called the dec la ra tion)

2. The func tion def i ni tion (or the func tion it self)

3. The func tion call

Func tion Pro to type

We have seen that a char ac ter is tic of C is that all vari ables must be de clared, spec i fy -
ing name and data type, be fore they can be used, how ever, the orig i nal ver sion of C
(de fined by Kernighan and Ritchie in their 1978 book The C Pro gram ming Lan guage)
did not re quire the pre-dec la ra tion of func tions. Later on, the C ANSI Com mit tee de -
cided that this prac tice was in con sis tent with the lan guage's han dling of vari ables and
tended to ob scure the code. There fore, the ANSI stan dard for C lan guage in tro duced
the pre-dec la ra tion of func tions. This op er a tion is called func tion prototyping.

A func tion pro to type is a pre-dec la ra tion of the func tion's name, the data type of
the re turned value, and the num ber and data types of the ar gu ments passed to it.
The pro to type must ap pear be fore the main() func tion. Fig ure A.19 shows the el e -
ments of a func tion pro to type.

Fig ure A.19 El e ments of a func tion pro to type.

In the pro gram C_LEDs_Flash.c listed pre vi ously, the lo cal func tion FlashLEDs()
is prototyped as fol lows:

// Func tion pro to types
void FlashLEDs(un signed char);

Be cause a func tion pro to type is re quired be fore the func tion is called by code, it
is pos si ble to avoid it by plac ing a func tion's dec la ra tion in a lo ca tion in the code

470 Ap pen dix A

 data type of returned value
 function name

 double Add_two(float, float);

 data type for
 arguments
 statement terminator

that pre cedes the func tion call. The one ob jec tion to this way of avoid ing func tion
pro to types is that it forces the pro gram mer to place func tions be fore their call. The
re sult is a code list ing that starts with func tions other than main().

Func tion Def i ni tion

The func tion it self ap pears in the source file ei ther af ter its pro to type or be fore it is
ref er enced. There are two sec tions of the func tion def i ni tion that can be clearly iden ti -
fied: the func tion dec la ra tion sec tion (some times called the header) and the func tion
body sec tion. The dec la ra tion sec tion, which is rem i nis cent of the pro to type, con tains
the func tion name, the re turn type, and the data type of the pa ram e ters passed to the
func tion. The func tion body sec tion, which is en closed in braces, con tains the dec la -
ra tions and state ments re quired for per form ing the func tion's pro cess ing op er a tions.
Fig ure A.20 shows the dec la ra tion sec tion of a func tion def i ni tion.

Fig ure A.20 Dec la ra tion sec tion of a func tion def i ni tion.

Note that, un like the pro to type, the dec la ra tion sec tion of the func tion def i ni tion
does not end in a semi co lon sym bol. Also note that the for mal pa ram e ter list in -
cludes the pa ram e ter names and their data types, while in the pro to type, the names
are not ref er enced. This list ing of pa ram e ter names and types in the func tion def i ni -
tion serves as a dec la ra tion for these vari ables.

The body sec tion of the func tion def i ni tion is where the ac tual pro cess ing takes
place. It can in clude all the pro gram el e ments of the C lan guage, such as vari able
dec la ra tions, keywords, state ments, and any le gal pro gram el e ment. There is no
struc tural dif fer ence be tween the body of a pro gram mer-de fined func tion and the
body of the main() func tion.

The re turn key word, dis cussed later in this chap ter, ends the ex e cu tion of a func -
tion. Re turn can in clude a vari able, con stant, ex pres sion or state ment, con ven tion -
ally en closed in pa ren the ses, which rep re sents the value re turned by the func tion.
The only re stric tion is that the type of the ac tual re turned value must con form to the
one listed in the dec la ra tion and in the pro to type.

Func tion Call

A pro gram mer de fined func tion re ceives con trol when the func tion's name is ref er -
enced in a pro gram state ment. This ref er ence, or func tion call, ap pears within the
main() or an other pro gram mer de fined func tion. Fur ther more, C al lows a func tion to
call it self; this op er a tion is called re cursion. The fol low ing triv ial pro gram re quests
from the user the ra dius of a cir cle and uses a func tion called Circum to cal cu late its
cir cum fer ence.

 MPLAB C18 Lan guage Tu to rial 471

 data type of returned value
 function name
 formal parameter list

 double Add_two(float a, float b)

 parameter
 separator

#de fine PI 3.14159

float GetCircum(float);
float cir cum fer ence;

main()
{

float ra dius = 12.44;

cir cum fer ence = GetCircum(ra dius);
}

float GetCircum(float r)
{

re turn((r + r) * PI);
}

Re turn Key word

The re turn key word is used in C lan guage to end the ex e cu tion of a func tion and re turn
con trol to the line fol low ing the func tion call. We have seen that a re turn state ment
can con tain an ex pres sion, con ven tion ally en closed in pa ren the sis, that rep re sents
the value re turned to the caller. In the func tion GetCircun() listed above, the re turn
state ment

re turn((r + r) * PI);

also per forms the cir cum fer ence cal cu la tion. The func tion could have been coded so
that the cir cum fer ence is first stored in a lo cal vari able; for ex am ple,

float GetCircum(float r)
{

float cir;
cir = (r + r) * PI;
re turn (cir);

}

Be cause the pa ren the sis sym bols are op tional, the re turn state ment in the pre vi -
ous code sam ple could have been coded in the form

re turn cir;

If no value is as so ci ated with the re turn state ment, then the re turned value is un -
de fined. If no re turn state ment ap pears in a func tion body, then the func tion con -
cludes at its last state ment, that is, when it en coun ters the clos ing brace (}). In this
case, pro gram mers some times say that the func tion “fell off the edge.” Func tions
that re turn no val ues should be prototyped and de clared with a re turn value of type
void. The re turn state ment can also be used to re turn a con stant to the calling pro -
gram; for ex am ple,

re turn (6);

472 Ap pen dix A

A re turn state ment can ap pear any where in the func tion body. A func tion can
con tain more than one re turn state ment, and each one can re turn a dif fer ent value
to the caller; for ex am ple,

if (pro gram_er ror > 0)
 re turn (1);
else

re turn (0);

In con clu sion, a C func tion can con tain no re turn state ment, in which case ex e cu -
tion con cludes at the clos ing brace (func tion falls of the edge) and the re turned
value is un de fined. Al ter na tively, a func tion can con tain one or more re turn state -
ments. A re turn state ment can appear in the form

re turn;

In this case, no value is re turned to the caller. Or a re turn state ment can re turn a
con stant, op tion ally en closed in pa ren the ses

re turn 0;

or

re turn (1);

Fi nally, a re turn state ment can re turn a vari able or in clude an ex pres sion:

re turn (er ror_code);
re turn((r + r) * PI);
re turn 2 * ra dius;

If a func tion re turns no value, it should be prototyped and de clared of void type.
In this case, the re turn state ment, if used, does not con tain an ex pres sion.

Match ing Ar gu ments and Pa ram e ters

The pro to type and the dec la ra tion of a func tion must in clude (in pa ren the ses) a list of
the vari ables whose value will be passed to the func tion, called the for mal pa ram e ter
list. In Fig ure A.20, the for mal pa ram e ter list in cludes the type float vari ables a and b.
The func tion call con tains, also in pa ren the ses, the names of the vari ables whose
value is passed to the func tion. Note that the term func tion ar gu ment re lates to the
vari ables ref er enced in the func tion call, while the term func tion pa ram e ter re fers to
the vari ables listed in the func tion dec la ra tion. In other words, a value passed to a
func tion is an ar gu ment from the view point of the caller and a pa ram e ter from the
view point of the func tion it self. The pro gram mer should re mem ber that data is passed
to a func tion in the or der in which the ar gu ments are ref er enced in the call and the pa -
ram e ters listed in the func tion dec la ra tion. In other words, the first ar gu ment in the
func tion call cor re sponds to the first pa ram e ter in the header sec tion of the func tion
dec la ra tion. The sec ond ar gu ment ref er enced in the call is as signed to the sec ond pa -
ram e ter in the dec la ra tion, and so on.

 MPLAB C18 Lan guage Tu to rial 473

A.10 Vis i bil ity of Func tion Ar gu ments
The value re turned by a func tion is as so ci ated with the func tion name and not with the
vari able or vari ables that ap pear in the re turn state ment. For this rea son, the vari able
ref er enced in a func tions re turn state ment can be an au to matic vari able be cause it is
not used to re turn a value to main(). Also ob serve that the func tion re turns a sin gle
value to the caller. There are sev eral ways of get ting around this lim i ta tion, some of
are dis cussed in the fol low ing para graphs.

A.10.1 Us ing Ex ter nal Vari ables
Func tions can re ceive and re turn val ues. The func tion def i ni tion

float GetCircum(float ra dius);

de scribes a func tion that re ceives and re turns ar gu ments of type float. The ar gu ment
passed to the func tion, in this case the ra dius of the cir cle, is not the vari able it self but
a copy of its value at the time of the func tion call. This method, usu ally de scribed as
pass ing by value, al lows the func tion to use this tem po rary copy of a vari able's value
but not to change the vari able it self. In this man ner, the GetCircum() func tion can not
change the value of the vari able named ra dius, which is vis i ble only in side main(). The
same lim i ta tion ap plies to ar gu ments re turned by a func tion.

The pass by value fea ture of C pro vides a way for pro tect ing vari ables from un ex -
pected or un de sired changes. This ac tion is due to the fact that the scope of an au to -
matic vari able is the func tion in which it was de clared. On the other hand, ex ter nal
vari ables are vis i ble to all func tions that ap pear later in the code. This mech a nism
pro vides an al ter na tive way of pass ing data be tween func tions. For ex am ple, the
pro gram to cal cu late the cir cum fer ence of a cir cle could also be coded us ing the ex -
ter nal vari ables, as in the fol low ing sam ple:

#de fine PI 3.14159

void GetCircum(void);

float ra dius, cir; /* <== ex ter nal vari ables /*

main()

{

ra dius = 12.33;

GetCircum();

// Now the global vari able cir holds the circumference

re turn(0);

}

void GetCircum(void)

{

cir = (ra dius + ra dius) * PI;

re turn;

}

474 Ap pen dix A

In this code sam ple the vari ables ra dius and cir are de clared out side the main()
func tion. There fore they are vis i ble to main() and to GetCircum(). Be cause both
func tions are able to ac cess data di rectly from stor age, no val ues are passed to
Circum() in the call. By the same to ken, the re sults of the cir cum fer ence cal cu la -
tions are re cov ered by main() in the ex ter nal vari able named cir. Be cause no pa ram -
e ters are passed to or re turned by the func tion Circum(), it is prototyped and
de clared us ing the void key word. In this man ner, the for mat void func tion() is used
when a func tion re turns no ar gu ments. While the for mat func tion(void) serves as a
no tice to the com piler that the func tion is passed no ar gu ments. By ex ten sion, the
for mat void func tion(void) rep re sents a func tion that nei ther receives nor returns
arguments to or from the caller.

A.10.2 Pass ing Data by Ref er ence
The mech a nism of a C lan guage func tion al lows pass ing to it mul ti ple ar gu ments but a
sin gle one can be re turned to the caller. We have seen how it is pos si ble to over come
this lim i ta tion us ing ex ter nal vari ables that are vis i ble both to the call ing and to the
called func tions. An other way in which a func tion can change the value of one or more
of the caller's vari ables is by pass ing to the func tion the ad dress of these vari ables. In
this case, we can say that the de fault mode of op er a tion (pass ing func tion ar gu ments
by value) is cir cum vented and the func tion ar gu ments are passed by ref er ence.

Point ers and Func tions

We have seen that a C lan guage pro gram can ob tain the ad dress of a vari able (the &
sym bol is the ad dress of op er a tor) and how the * sym bol (in di rec tion op er a tor) is used
to cre ate vari ables that hold the ad dress of an other vari able. It is by means of these op -
er a tors that a call ing rou tine can pass to a func tion the ad dress of a vari able, and the
called func tion can ac cess the con tents of an ex ter nal vari able. The pro cess is shown
in the fol low ing code frag ment:

#de fine PI 3.14159

void CircCalc(float *, float *, float *);

main()
{

float ra dius = 12.33;
float di am e ter, cir cum fer ence;

CircCalc(&ra dius, &di am e ter, &cir cum fer ence);
// Data for the di am e ter and cir cum fer ence is now
// stored in the cor re spond ing lo cal vari ables
re turn(0);

}

void CircCalc(float *rad, float *dia, float *circ)
{

*dia = *rad + *rad;
*circum = *dia * PI;
re turn;

}

 MPLAB C18 Lan guage Tu to rial 475

In this case, note that the func tion CircCalc() is prototyped and de clared of void
re turn type. This is due to the fact that the func tion will ac cess the caller's vari able
di rectly and, there fore, will not re turn a value in the con ven tional way. Also note
that the vari ables named ra dius, di am e ter, and cir cum fer ence are de clared in side
main(), which would nor mally make them in vis i ble to CircCalc(). How ever, the
function call statement

CircCalc(&ra dius, &di am e ter, &cir cum fer ence);

passes to the func tion the ad dress of the vari ables ra dius, di am e ter, and cir cum fer -
ence, rather than a copy of their cur rent value. The fact that the func tion CircCalc() re -
ceives point ers, rather than val ues, can be seen in the func tion pro to type as well as in
the dec la ra tion:

void CircCalc(float *rad, float *dia, float *circum)

In this case *rad, *dia, and *circum are pointer vari ables that hold the ad dresses
of the vari able named ra dius, di am e ter, and cir cum fer ence re spec tively.

Pass ing Ar ray Vari ables

We have seen how a pointer vari able is used to gain ac cess to the el e ments of an ar ray,
and, in pre vi ous para graphs, we dis cussed how a func tion can re ceive the ad dress of a
vari able en coded in a pointer. The fol low ing code frag ment dem on strates some sim -
ple ma nip u la tions in pass ing an ar ray to a func tion.

void ShowArray(char *);

main()
{
static char USA_name[] = "United States of Amer ica";

ShowArray(USA_name);
re turn(0);

}

void ShowArray(char *USA_name_ptr)
{

un signed int coun ter = 0;

while(USA_name_ptr[coun ter]) {
Print(*USA_name_ptr[coun ter]);

re turn;
}

Note that ar rays must be passed by ref er ence if the func tion is to have ac cess to
its el e ments. For this rea son, the func tion dec la ra tion

void Show_ar ray(char *USA_name_ptr)

con tains a pointer vari able to an ar ray of char type. This pointer, named
USA_name_ptr, al lows the func tion to ac cess the el e ments of an ar ray de clared in

476 Ap pen dix A

main(). In the pre vi ous code list ing, the func tion ShowArray() first dis plays the ar ray
us ing a pointer.

A.10.3 Func tion-Like Mac ros
We have seen how the #de fine di rec tive can be used to as so ci ate an iden ti fier with a
con stant; for ex am ple,

#de fine PI 3.1415927

which there af ter as signs the con stant value 3.1415927 to the iden ti fier PI. By the same
prin ci ple the #de fine di rec tive can be used to as sign a string value to an iden ti fier; for
ex am ple, the pro gram line

#de fine MSU "Min ne sota State Uni ver sity\n"

as signs the string en closed in dou ble quo ta tion marks to the iden ti fier MSU. There af -
ter, any ref er ence to MSU will be re placed with the string “Min ne sota State Uni ver -
sity\n”. Note that it is con ven tional prac tice in C to use up per case let ters for
iden ti fi ers as so ci ated with the #de fine di rec tive.

Macro Ar gu ment

In ad di tion to the lit eral re place ment of a nu meric or string value for an iden ti fier, C al -
lows the use of an ar gu ment as the re place ment el e ment of a #de fine di rec tive. This
con struc tion is usu ally called a macro. The most im por tant el e ment in the macro con -
cept is the sub sti tu tion or re place ment that takes place when the macro is en coun -
tered dur ing com pi la tion. This sub sti tu tion, some times called the macro ex pan sion, is
han dled by a sec tion of the com piler called the pre pro cessor.

The sim plest ver sion of a macro ar gu ment is a macro for mula; for ex am ple,

#de fine PI 3.1415927
#de fine DOUBLE_PI 2 * PI

In this case, the macro for mula DOUBLE_PI gen er ates the prod uct of the con -
stant 2 times 3.1415927, which is rep re sented by the iden ti fier PI de fined in an other
macro.

Fi nally, a macro can con tain an ar gu ment that is re placed by a vari able on ex pan -
sion, as in the fol low ing code frag ment:

#de fine PI 3.1415926
#de fine CIRC(x) ((x + x) * PI)

In this ex am ple, the macro named CIRC cal cu lates the cir cum fer ence of any vari -
able (rep re sented by x in the macro def i ni tion). Re gard ing the macro ar gu ment, it is
im por tant to note that the re placed vari able, which can be any le gal C iden ti fier, is
en closed in pa ren the ses fol low ing the macro name. Also note that there can be no
space be tween the macro name and the ar gu ment's left pa ren the sis. This use of
spaces as sep a ra tors in the macro def i ni tion cre ates a lex i cal pe cu liar ity that some -

 MPLAB C18 Lan guage Tu to rial 477

times con fuses the nov ice pro gram mer. A fi nal point to keep in mind is that the
macro definition does not end in a semicolon.

The use of pa ren the ses in the ar gu ment makes mac ros some what rem i nis cent of
C func tions, to the point that some au thors speak of func tion-like mac ros. How ever,
there are dif fer ences be tween a macro and a func tion. Per haps the most im por tant
one is that the macro ex pan sion is the re place ment of the iden ti fier (the macro
name) by its equiv a lent ex pres sion. There fore, the code gen er ated dur ing a macro
ex pan sion is in line, while a func tion call re quires that ex e cu tion be trans ferred to
the func tion body and then re turned to the line fol low ing the call. The call/re turn
op er a tion as so ci ated with func tions brings about an over head in ex e cu tion time.
This de ter mines that if iden ti cal cal cu la tions are en coded as a macro and as a func -
tion, the func tion will take slightly lon ger to ex e cute than the equiv a lent macro. On
the other hand, we have seen that the macro is ex panded ev ery time that the macro
name is ref er enced in the code, whereas a func tion ap pears only once. This means
that a macro that is ref er enced more than once will add more to the size of the ex e -
cut able file than an equiv a lent func tion.

A.11 Struc tures, Bit Fields, and Un ions

In dig i tal sys tems, a re cord is de fined as a set of re lated data items. A typ i cal ex am ple
is the re cord for an in di vid ual em ployee in an or ga ni za tion's da ta base. Typ i cally, an
em ployee re cord holds the em ployee's name, ad dress, So cial Se cu rity num ber, mail -
ing ad dress, base sal ary or wage, num ber of de pend ents, and other per ti nent in for ma -
tion. To store this in for ma tion in a com puter pro gram, we will have to re sort to sev eral
dif fer ent data types. For ex am ple, string items, such as the em ployee's name, So cial
Se cu rity num ber, and mail ing ad dress, would go into ar rays of type char. Dec i mal data
items, such as sal ary or wage, would be stored in vari ables of type real. Fi nally, in te -
gral data items, such as the num ber of de pend ents, would prob a bly be en coded us ing
the un signed char or int data types.

We have seen that C lan guage ar rays are a col lec tion of data items of the same
type (see Sec tion 3.1). For this rea son, a data re cord that con sists of data items of
dif fer ent type can not be stored in a sin gle ar ray. A C lan guage struc ture is a data
struc ture that can con tain one or more vari ables of the same or of dif fer ent types.
The struc ture al lows treat ing a group of re lated items as a unit, such as the em -
ployee re cord pre vi ously men tioned, thus help ing the pro gram mer or ga nize and
man age the more com pli cated data pro cess ing op er a tions.

Al though C lan guage struc tures share some of the prop er ties of func tions and of
ar rays, they con sti tute a dis tinct pro gram ming con cept. In fact, C struc tures con tain
lex i cal el e ments that have be come char ac ter is tic of the C lan guage.

A.11.1 struc ture Dec la ra tion

Like other el e ments of the C lan guage, struc tures must be pre-de clared. This op er a -
tion usu ally re quires two dis tinct steps: the struc ture type dec la ra tion and the struc -
ture vari able dec la ra tion.

478 Ap pen dix A

struc ture type Dec la ra tion

In the struc ture type dec la ra tion, the pro gram mer de fines the struc ture name,
some times called the struc ture tag, and lists one or more as so ci ated vari ables,
called the struc ture mem bers. These mem bers can be of dif fer ent data types. Fig ure
A.21 shows the el e ments of a struc ture type declaration.

Fig ure A.21 El e ments of a struc ture type dec la ra tion.

Note the fol low ing char ac ter is tics of a struc ture type dec la ra tion.

1. Starts with the key word struct.

2. The iden ti fier fol low ing the struct key word is the struc ture tag. The tag de fines a
struc ture type.

3. The el e ments of the struc ture are en closed in braces, in a sim i lar man ner as the
body of a func tion.

4. Ends in a semi co lon.

Be cause the struc ture is a pat tern of data ob jects to be as so ci ated in stor age, the
struc ture tag is not a vari able name, but a type name. In other words, a struc ture is a
pro gram mer-de fined data type. The type dec la ra tion can be vi su al ized as a de scrip -
tion of a tem plate to be used in group ing sev eral data ob jects, which can be of dif -
fer ent type. The type dec la ra tion, which is rem i nis cent of the func tion pro to type,
serves as a mere de scrip tion of a struc ture and there fore as signs no phys i cal stor -
age space; it cre ates a struc ture tem plate.

struc ture vari able Dec la ra tion

Once the struc ture type dec la ra tion has de fined the tag and data for mat for a struc -
ture, the pro gram can al lo cate stor age space for one or more struc tures by means of
the struc ture vari able dec la ra tion. For ex am ple, once the type of struc ture for em -
ployee data (see Fig ure A.21) has been de clared, the pro gram can as sign stor age space
for five em ploy ees, as fol lows:

 MPLAB C18 Lan guage Tu to rial 479

 keyword
 tag

 struct employee_data
 {
 char name[30];
 char SS_num[12];
 float wage;
 float hours_worked;
 unsigned char dependents;
 };

 terminator

 delimiters

strusture
members

struct em ployee_data shop_fore man;
struct em ployee_data ma chin ist_1;
struct em ployee_data ma chin ist_2;
struct em ployee_data welder_1;
struct em ployee_data welder_2;

Here af ter, the pro gram will have re served stor age for five struc tures, of the type
de clared in Fig ure A.21. In this ex am ple, each struc ture re quires the fol low ing mem -
ory space, in clud ing the string ter mi na tor codes:

MEMBER BYTES
 char name [30] 31
 char SS_num [12] 13
 float wage 4
 float hours_worked 4
 un signed char de pend ents 1

 to tal stor age 53 bytes

Note that each struc ture vari able dec la ra tion state ment per forms a sim i lar op er a -
tion as a vari able dec la ra tion; that is, it re serves stor age for a data item and as signs
to it a par tic u lar identifier (name).

C lan guage also al lows de clar ing a struc ture vari able at the same time as the type
dec la ra tion; for ex am ple,

struct em ployee_data
{
char name [30];
char SS_num [12];
float wage;
float hours_worked;
un signed int de pend ents;
} welder_1, welder_2;

In this case, the vari ables welder_1 and welder_2, of the struc ture tag em -
ployee_data, are de clared at the time of the type dec la ra tion.

A.11.2 Ac cess ing Struc ture El e ments
We have seen that in di vid ual ar ray el e ments are ac cessed by means of a sub script that
en codes the rel a tive po si tion of each item in the ar ray. In ac cess ing a par tic u lar mem -
ber of a struc ture, we must take into ac count both the type dec la ra tion and the vari -
able dec la ra tion. C lan guage pro vides a mem ber ship op er a tor sym bol, rep re sented by
a dot (.), which is also called the dot op er a tor or the mem ber of op er a tor. By means of
the mem ber ship op er a tor, we can con nect a struc ture mem ber (de fined in the struc -
ture type dec la ra tion) and a vari able name, as in the state ment

ma chin ist_1.wage = 14.55;

This state ment cre ates an ad dress able vari able by re lat ing the struc ture vari able “ma -
chin ist_1” with the struc ture el e ment “wage.” The fol low ing code frag ment dem on -

480 Ap pen dix A

strates struc ture type and vari able dec la ra tions and the use of the mem ber ship
op er a tor:

main()

{

 float sal ary;

 /* Struc ture type dec la ra tion */

 struct em ployee_data

 {

 char name [30];

 char SS_num [12];

 float wage;

 float hours_worked;

 un signed int de pend ents;

 };

 /* Struc ture vari able dec la ra tion */

 struct em ployee_data ma chin ist_1;

 struct em ployee_data ma chin ist_2;

 /* Use of the mem ber ship op er a tor */

 ma chin ist_1.wage = 14.55;

 ma chin ist_2.wage = 16.00;

 ma chin ist_1.hours_worked = 12;

 ma chin ist_2.hours_worked = 40;

 ...

Initializing Struc ture Vari ables

Like con ven tional vari ables, struc ture vari ables can be in i tial ized at the time they are
de clared. The ini tial iza tion of a struc ture vari able, which is rem i nis cent of the ini tial -
iza tion of an ar ray vari able, can be seen in the fol low ing state ment:

 static struct em ployee_data ma chin ist_1 =

 { "Joe Smith", "234 43 274", 14.55, 40.2, 5 };

Note that as is the case with ar rays (see Sec tion 3.1) a struc ture vari able must be
de clared static if it is to be in i tial ized in side a func tion. By the same to ken, func tion
vari ables de clared ex ter nal do not re quire the static key word. An al ter na tive style
for initializing func tion vari ables is to place each item on a sep a rate line, as fol lows:

 static struct em ployee_data ma chin ist_2 =

 {

 "Jim Jones",

 "200 12 345",

 16.00,

 10.5,

 2

 };

 MPLAB C18 Lan guage Tu to rial 481

Ma nip u lat ing a Bit Field

We have seen how the bitwise op er a tors can be used to ma nip u late the in di vid ual bits
within an in te gral data type. These op er a tions can be fur ther sim pli fied us ing the #de -
fine di rec tive to iso late in di vid ual bits or fields. For ex am ple, be cause each bi nary
digit cor re sponds to a power of 2, we can mask the in di vid ual bits as fol lows:

#de fine BIT0_MASK 01

#de fine BIT1_MASK 02

#de fine BIT2_MASK 04

#de fine BIT3_MASK 08

#de fine BIT4_MASK 16

#de fine BIT5_MASK 32

#de fine BIT6_MASK 64

#de fine BIT7_MASK 128

There af ter, a pro gram can use these bit masks in con junc tion with the bitwise op -
er a tors AND, OR, XOR, and NOT (see Sec tion 5.2) to test and change the in di vid ual
bits in an in te gral variable.

In ad di tion to the bitwise op er a tors, C al lows the def i ni tion of in di vid ual bits
within a struc ture com posed of one or more mem bers of an in te gral data type. This
spe cial ized type of struc ture is called a bit field. The fol low ing is a bit field struc ture
dec la ra tion

struct low_bits

{

un signed int bit0 : 1;

un signed int bit1 : 1;

un signed int bit2 : 1;

un signed int bit3 : 1;

un signed int bits4_7 : 4;

un signed int pad ding : 8;

} mask_1;

No tice that the co lon sym bol is used in the type dec la ra tion of a bit field struc -
ture to as sign a di men sion to each field. In the above dec la ra tion for the tag
low_bits, the first four fields, named bit0, bit1, bit2, and bit3, are de clared to be 1 bit
wide, while the field named bits4_7 is de clared to be 4 bits wide, and the field
named pad ding is de clared to be 8 bits wide.

We have seen that a struc ture vari able can be cre ated at the time of the type dec -
la ra tion. In the pre vi ous bit field, we cre ated a vari able named mask_1. The fields in
this vari able can now be ac cessed by means of the mem ber ship op er a tor (.) in the
man ner ex plained pre vi ously. For ex am ple, we can ini tial ize bits 0 to 3 to a value of
one and the re main ing bits to zero with the state ments

 mask_1.bit0 = mask_1.bit1 = mask_1.bit2 = mask_1.bit3 = 1;

 mask_1.bits4_7 = mask_1.pad ding = 0;

482 Ap pen dix A

How ever, C does not al low di rect ac cess to a bit field vari able. In other words, a C
state ment can not ref er ence the vari able mask_1 as it would a con ven tional vari able.
For ex am ple, the pro gram frag ment

un signed int value, re sult;
value = 127;
re sult = value & mask_1;

is il le gal be cause the bitwise AND (&) op er a tor can not be ap plied to a struc ture vari -
able. The only op er a tions that can be per formed on struc tures are to ob tain the struc -
ture's ad dress by means of the ad dress of (&) op er a tor and to ac cess the struc ture
mem bers. There fore, a struc ture vari able such as mask_1 can not be ac cessed as a
unit. How ever, be cause there are no re stric tions re gard ing point ers to struc tures we
can use the ad dress of and the in di rec tion op er a tors to gain ac cess to a bit field vari -
able. The fol low ing code frag ment shows the nec es sary ma nip u la tions:

main()
{

 struct
 {
 un signed int bit0 : 1;
 un signed int bit1 : 1;
 un signed int bits2_6 : 5;
 un signed int bit7 : 1;
 un signed int pad ding : 8;
 } mask;

 un signed char value, re sult;
 un signed int *maskptr;
 /* Cre ate a pointer to an */
 /* un signed int vari able */

 mask.bit0 = mask.bit1 = mask.bit7 = 1;
 mask.bits2_6 = mask.pad ding = 0;

 maskptr = (un signed int *)&mask;
 /* Ini tial ize the pointer */
 /* to the ad dress of the */
 /* struc ture vari able */

 Print("\nMask is: %u", mask);

 Print("bit0 is: ", mask.bit0);
 Print("bit1 is: ", mask.bit1);
 Print("bits2_6 is: ", mask.bits2_6);
 Print("bit7 is: ", mask.bit7);

 value = 127;
 re sult = value & *maskptr;
 /* Now it is pos si ble to */
 /* ac cess the en tire bit */
 /* field through the */
 /* con tents of the pointer */

 Print("Con tents of maskptr vari able is: ", *maskptr);
 Print("Re sult of ANDing 127 with mask is: ", re sult);

 MPLAB C18 Lan guage Tu to rial 483

 re turn(0);
}

Type Cast ing

The pre ced ing code frag ment con tains the state ment

 maskptr = (un signed int *)&mask;

that as signs the ad dress of the struc ture vari able named mask to the pointer vari able
named maskptr. Note that the state ment as signs the ad dress of an ar ray (&mask) to a
pointer vari able of type un signed int (maskptr). This ma neu ver is nec es sary be cause
we are try ing to ac cess the struc ture as a unit. The el e ment en closed in pa ren the ses,
called a type cast, in di cates to the com piler that we are forc ing a type con ver sion. In
this case, the forced con ver sion con sists of as sign ing the ad dress of a struc ture to an
un signed int pointer.

If the as sign ment state ment did not in clude a type cast (in pa ren the ses), the com -
piler would gen er ate a warn ing mes sage in di cat ing that an in di rec tion op er a tion re -
ferred to val ues of dif fer ent type, how ever, the pro gram would com pile and run. In
many cases, the type cast serves the ad di tional pur pose of doc u ment ing and clar i fy -
ing the pro gram mer's in ten tions.

A.11.3 Un ions
A un ion is a vari a tion on the con cept of struc ture in which the mem ber vari ables can
hold dif fer ent data types at dif fer ent times. The un ion type dec la ra tion con sists of a
list of data types matched with the vari ables names in a sim i lar man ner to that of a
struc ture type dec la ra tion. This means that the un ion vari able dec la ra tion is sim i lar to
a struc ture vari able dec la ra tion ex cept that the struc ture dec la ra tion causes the com -
piler to re serve stor age for all the mem bers listed, whereas in the un ion dec la ra tion
the com piler re serves space for the larg est mem ber in the ag gre gate. In other words,
the mem bers of a struc ture vari able have their own mem ory space while the mem bers
of a un ion vari able share a com mon mem ory space. This means that in re la tion to un -
ions, the pro gram mer must keep track of the cur rent oc cu pant of the com mon mem -
ory space. The fol low ing code frag ment dem on strates the use of a un ion to hold three
dif fer ent data items of type dou ble, float, and int:

un ion vari_data
{
dou ble num_type1;
float num_type2;
int num_type3;
};

main()
{

un ion vari_data first_set; /* De clare the un ion vari able */
 /* named first_set */

first_set.num_type3 = 12; /* Store an in te ger in un ion */
...

484 Ap pen dix A

first_set.num_type2 = 22.44; /* Store a float in un ion */

...

first_set.num_type1 = 0.023; /* Store a dou ble in un ion */

...

A.11.4 Struc tures and Func tions

Be cause of the lim i ta tion that struc tures can not be ac cessed as a unit, a C pro gram
can not pass a struc ture to a func tion di rectly. Nev er the less, as in the case of bit fields,
we can get around this lim i ta tion by stor ing the ad dress of the struc ture in a pointer
vari able and pass ing this ad dress to the func tion. Keep in mind that the value of a
struc ture vari able (the struc ture mem ber) can be passed as a pa ram e ter.

Point ers to Struc tures

The dec la ra tion, ini tial iza tion, and pass ing of struc ture point ers is quite sim i lar to that
of con ven tional pointer vari ables. Nev er the less, the han dling of struc ture point ers re -
quires spe cial sym bols and op er a tors. In the first place, the pointer dec la ra tion must
spec ify that the ob ject of the pointer is a struc ture. For ex am ple, the state ment

struct tri an gle *tr_ptr;

cre ates a pointer to a struc ture of the tag tri an gle. But the struc ture pointer must be in -
i tial ized to a par tic u lar struc ture, not to a tem plate. For ex am ple, if tri an gle is the tag
for a struc ture tem plate, the state ment

tr_ptr = &tri an gle;

is il le gal. How ever, the state ment

struct tri an gle tr1;

cre ates a struc ture vari able named tr1, ac cord ing to the tag tri an gle. There af ter, we
can ini tial ize a pointer to the struc ture tr1 as fol lows:

tr_ptr = &tr1;

Pointer Mem ber Op er a tor

Ac cess ing in di vid ual struc ture mem bers by means of a pointer re quires a spe cial sym -
bol called the pointer mem ber op er a tor. This op er a tor sym bol con sists of a dash and
an an gle bracket com bined to sim u late an ar row (–>). For in stance, if one mem ber of
the struc ture tr1 is named side_a, we can use the pointer mem ber op er a tor as fol lows

tr_ptr -> side_a

Note that the pointer mem ber op er a tor (->) is com bined with the struc ture pointer in a
sim i lar man ner as the mem ber ship op er a tor (.) is com bined with the struc ture name.

 MPLAB C18 Lan guage Tu to rial 485

Pass ing Struc tures to Func tions

Struc tures, like other vari ables, can be de clared ex ter nal in or der to make them vis i -
ble to all func tions in a pro gram. Lo cal struc tures (de clared in side a func tion) can be
passed to other func tions by means of struc ture point ers, which then can use the
pointer mem ber op er a tor to gain ac cess to the data stored in the struc ture. The fol low -
ing code frag ment uses a func tion named per im e ter() to cal cu late the per im e ter of a
tri an gle whose sides are stored in a struc ture.

 struct tri an gle
 {
 float side_a;
 float side_b;
 float side_c;
 };

 void per im e ter(struct tri an gle *);

main()
{
 struct tri an gle tr1; /* De clar ing struc ture vari ables */
 struct tri an gle *tr_ptr;

 tr1.side_a = 12.5; /* Initializing vari ables */
 tr1.side_b = 7.77;
 tr1.side_c = 22.5;
 tr_ptr = &tr1;

 per im e ter(tr_ptr); /* Call ing the func tion */
 re turn(0);
}

void per im e ter(struct tri an gle *tr1_ptr)
{
 float a, b, c, p;
 a = tr1_ptr > side_a;
 b = tr1_ptr > side_b;
 c = tr1_ptr > side_c;
 p = a + b + c;
 Print("Per im e ter is: ", p);
 re turn;
}

In the pre ced ing code frag ment, note the fol low ing points:

1. The struc ture dec la ra tion is ex ter nal. This makes the func tion tag vis i ble to all
func tions.

2. The pro to type for the func tion named per im e ter de clares a struc ture pointer vari -
able as the ar gu ment passed to the func tion. This is done in the state ment

 void per im e ter(struct tri an gle *);

 Also note that the name of the struc ture vari able need not ap pear in the pro to type.

3. The ac tual struc ture is de clared in main(), as is the struc ture pointer vari able.
These dec la ra tions take place in the state ments

486 Ap pen dix A

 struct tri an gle tr1;
 struct tri an gle *tr_ptr;

4. Ini tial iza tion of struc ture vari ables (mem bers) is per formed in the con ven tional
man ner by means of the mem ber ship op er a tor.

 tr1.side_a = 12.5;
 tr1.side_b = 7.77;
 tr1.side_c = 22.5;

The pointer vari able is in i tial ized us ing the ad dress of op er a tor.

 tr_ptr = &tr1;

5. The func tion named per im e ter() is de clared to re ceive a struc ture pointer in the
line

void per im e ter(struct tri an gle *tr1_ptr)

 The pointer name (tr1_ptr) is a lo cal vari able and there fore need not co in cide
with the one ref er enced in main.

6. The func tion gains ac cess to the data stored in the struc ture mem bers in the state -
ments

a = tr1_ptr -> side_a;
 b = tr1_ptr -> side_b;
 c = tr1_ptr -> side_c;

Ac cess to struc ture data through a struc ture pointer vari able (tr1_ptr) re quires
the use of the pointer mem ber op er a tor.

A.11.5 Struc tures and Un ions in MPLAB C18
MPLAB C18 sup ports struc tures, bit fields, and un ions in com pli ance with the re quire -
ments of the ANSI stan dard. In ad di tion, the MPLAB C18 con tains ex ten sions to the
stan dard that fa cil i tate C pro gram ming in em bed ded sys tems. One such ex ten sion is
the sup port for anon y mous struc tures in side of un ions. An anon y mous struc ture has
the form

struct { mem ber-list };

It is de signed to de fine an un named ob ject, al though the names of the mem bers of
an anon y mous struc ture must be dis tinct from other names in the scope in which
the struc ture is declared.

For ex am ple, the pro ces sor-spe cific header file p18f452.h con tains sev eral anon y -
mous struc tures in side un ions that help ac cess the bits, bit fields, and hard ware reg -
is ters of the 18F452 de vice. The un ion named PORTAbits is de fined as fol lows:

extern vol a tile near un signed char PORTA;
extern vol a tile near un ion {
 struct {
 un signed RA0:1;
 un signed RA1:1;
 un signed RA2:1;
 un signed RA3:1;

 MPLAB C18 Lan guage Tu to rial 487

 un signed RA4:1;
 un signed RA5:1;
 un signed RA6:1;
 };
 struct {
 un signed AN0:1;
 un signed AN1:1;
 un signed AN2:1;
 un signed AN3:1;
 un signed :1;
 un signed AN4:1;
 un signed OSC2:1;
 };
 struct {
 un signed :2;
 un signed VREFM:1;
 un signed VREFP:1;
 un signed T0CKI:1;
 un signed SS:1;
 un signed CLK0:1;
 };
 struct {
 un signed :5;
 un signed LVDIN:1;
 };
} PORTAbits;

Be cause of this un ion dec la ra tion and its anon y mous struc tures, a pro gram can
test if bit 3 of Port A is set with the ex pres sion

if(PORTAbits.RA3)

In this ex pres sion we have used the un ion PORTAbits and the mem ber RA3 of an
anon y mous struc ture de f ined within this un ion. In the pro gram named
C_Bitfield_Demo.c, in the book's soft ware re source, we have used de fine state -
ments to ex tend the PORTAbits un ion de fined in the header file p18f452.h. This al -
lows us to in clude the bitfield in the Demo Board 18F452-A. Al ter na tively, the
header file can be ed ited with an ad di tional struc ture that de fines these bits. Code is
as follows:

#de fine SW1 RA2
#de fine SW2 RA3
#de fine SW3 RA4
#de fine SW4 RA5
#de fine DIPSW PORTAbits

...

while(1)
{
pat tern = 0;
// Cas caded if state ments us ing the new bitfields and the
// alias de fined for the PORTAbits un ion
if(DIPSW.SW1)

pat tern |= 0b00000001;
if(DIPSW.SW2)

pat tern |= 0b00000010;

488 Ap pen dix A

if(DIPSW.SW3)
pat tern |= 0b00000100;

if(DIPSW.SW4)
pat tern |= 0b00001000;

FlashLED(pat tern);

 MPLAB C18 Lan guage Tu to rial 489

Ap pen dix B

De bug ging 18F De vices

B.1 Art of De bug ging
De tect ing and cor rect ing pro gram de fects are an im por tant part of pro gram de vel op -
ment. In an ideal world, a pro gram could be de signed and con structed fol low ing prin -
ci ples that would pre clude de fects and en sure that the re sult ing code cor rectly
per forms all the func tions re quired of it and would do so with min i mal com plex ity. A
field of soft ware en gi neer ing some times called sci en tific pro gram ming or for mal
spec i fi ca tions has ex plored the pos si bil ity of us ing pred i cate cal cu lus to de velop pro -
grams fol low ing a meth od ol ogy that pre cludes er rors and en sures the code it self is
proof that it solves the in tended tasks. The work of Edsger W. Dijkstra, Da vid Gries,
and Ed ward Co hen has in ves ti gated this meth od ol ogy but, un for tu nately, so far it has
not been found to be use ful in prac ti cal pro gram ming. Un til this or an other rig or ous
pro gram de sign and cod ing meth od ol ogy suc ceeds, we will con tinue to be stuck with
pro gram bugs, be cause they are a nat u ral con se quence of trial-and-er ror pro gram -
ming.

The pre vi ous state ment should not be in ter preted to mean that pro gram ming is,
by ne ces sity, a hap haz ard pro cess. Good pro gram de sign and cod ing prin ci ples,
based on solid soft ware en gi neer ing, gen er ate code that may not be log i cally per fect
or math e mat i cally prov able but is cer tainly better struc tured and more ef fec tive. In
this sense, that art of pro gram ming is more think ing than writ ing code. Most pro -
gram mers spend less time in de sign con sid er ations than would be re quired for a
solid pro gram struc ture. Know ing that em bed ded sys tems are of ten coded by en gi -
neers rather than com puter sci en tists.

Fur ther more, through out this book we have at tempted to dem on strate and em -
pha size the ad van tages of well-com mented and well-struc tured code. The typ i cal
pro gram ming stu dent's at ti tude that states, “I will now write the code and later
come back and add the com ments” is guar an teed to fail. The main rea son for pro -
gram com ments is to leave a re cord of the thoughts that were on the pro gram mer's

491

mind at cod ing time. Post pon ing this task is a self-de feat ing prop o si tion. Most pro -
fes sional pro gram mers will agree that a pro gram is as good as its com ments, and the
most valu able at trib ute of an ex cel lent pro gram mer is the abil ity to write solid code
dec o rated with clear and el e gant com ments. De bug ging badly com mented or care -
lessly de signed code is usu ally a fu tile ef fort. In many such cases, we are forced to
con clude that it will be sim pler and eas ier to re write the code from scratch than to
try to fix a messy and disorganized piece of bad programming.

B.1.1 Pre lim i nary De bug ging

In all the ex am ples dis cussed in this appendix we have as sumed a pro gram that as sem -
bles or com piles cor rectly. This pre lim i nary step usu ally con sists of find ing er rors in
syn tax or fun da men tal pro gram struc ture that make the as sem bly or the com pile pro -
cess fail. The di ag nos tics pro vided by the de vel op ment soft ware are help ful in lo cat -
ing and cor rect ing the syn tax or con struc tion er rors.

One of the pos si ble causes of er rors at the de vel op ment stage is the in cor rect se -
lec tion of de vel op ment tools. For ex am ple, as sem bly lan guage pro grams can be de -
vel oped in ab so lute or relocatable code, and each type re quires a par tic u lar
de vel op ment tool set. At tempt ing to build a relocatable pro gram us ing an as sem bly
file for ab so lute code will gen er ate er rors that re late to an in com pat i ble de vel op -
ment en vi ron ment. The use of cod ing tem plates for each type of program helps to
prevent these errors.

An other fre quent source of pre lim i nary or de vel op men tal er rors is the in cor rect
se lec tion of the MCU de vice. If the pro ces sor or its #in clude file were de fined in the
source, then the de vel op ment en vi ron ment re turns a “header file mis match” er ror.
Oth er wise, the in di vid ual er rors are listed by of fend ing source line. This can re sult
in a long list of er rors all caused by a sin gle flaw. Un for tu nately, there is no way of
ig nor ing the set ting of the de vice con fig u ra tion se lected in the MPLAB Con fig ure
menu. This is due to the fact that the MPLAB en vi ron ment is modified to match the
individual processor selected.

Once the code as sem bles and com piles with out er ror and an ex e cut able file (.hex
for mat) is gen er ated, de bug ging can pro ceed to the next step.

B.1.2 De bug ging the Logic

A pro gram of any com plex ity is an ex er cise in in tu itive logic, if not in for mal logic. Pro -
gram mers of ten mar vel at the ba sic log i cal er rors that flaws our think ing. Some times
we re fer to these el e men tary er rors in rea son ing as “stu pid” or “dumb” mis takes. De -
tect ing and cor rect ing the more sub tle er rors in our log i cal think ing can be a for mi da -
ble task. The pri mary, per haps the only prac ti cal tools at this stage are flowcharting
and code step anal y sis. Build ing a flowchart based on the ac tual code of ten re veals el -
e men tary er rors in rea son ing. Sin gle-step ping ex e cu tion of the of fend ing code with
the help of a debugger can be used to make cer tain that pro cess ing ac tu ally fol lows the
nec es sary log i cal steps. In other words, logic flaws can con sist of er rors in the log i cal
think ing it self, or in the code not fol low ing the pre de fined logic.

492 Ap pen dix B

B.2 Soft ware De bug ging
What ever the rea son that a pro gram does not per form as ex pected, it is con ve nient to
have schemes and tools that al low for in spect ing and test ing the code. These range in
com plex ity from sim ple de vices and tech niques de vel oped by the pro gram mer to
more-or-less so phis ti cated sys tems that al low in spect ing the code, vari ables, and data
at ex e cu tion time. In the pres ent sec tion we dis cuss soft ware de bug ging, that is, lo cat -
ing and fix ing flaws and de fects in the pro gram code. In Sec tion B.3 we dis cuss tools
and tech niques for de bug ging both the hard ware and the soft ware.

B.2.1 Debugger-Less De bug ging

Even with out any de bug ging tools it is of ten pos si ble to de tect a pro gram er ror by
skill ful trick ery. For ex am ple, a pro gram fails by ap par ently hang ing up be fore its ter -
mi na tion but the pro gram mer can not tell at which of it var i ous stages this is hap pen -
ing. If the hard ware con tains sev eral LEDs or if these can be at tached to the
bread board cir cuit, the pro gram can be mod i fied to make calls to light up each one of
the LEDs at dif fer ent stages of ex e cu tion. The pro gram mer can then run the code and
ob serve which is the last LED that lights up in or der to tell the stage at which the pro -
gram is fail ing. Sim i larly, the fail point can be ech oed with a nu meric code on a seven-
seg ment LED or a mes sage dis played on an LCD de vice if these are avail able in the
hard ware.

An other prim i tive de bug ging tech nique that can be used if LEDs or other out put
de vices are un avail able is stor ing an er ror code in EEPROM mem ory. In Chap ter 10
we de vel oped sim ple EEPROM write rou tines in both C and assembly lan guage that
can be used for this pur pose. Most pro gram mers pro vide util i ties to read and dis -
play EEPROM mem ory. The of fend ing pro gram can be mod i fied to store a spe cific
code in an EEPROM mem ory ad dress. The microcontroller can be placed on the tar -
get board, the pro gram ex e cuted, and then the MCU re moved and re placed in the
pro gram ming board in or der to inspect the code stored in its EEPROM.

Ei ther one of these meth ods is not suit able for ev ery oc ca sion but there are cases
in which we must re sort to them due to the lack of a code or hard ware debugger.

B.2.2 Code Im age De bug ging

The most el e men tary de bug ging tool is a pro gram that sim u lates pro gram ex e cu tion
by pro vid ing a soft ware model of the cir cuit be ing ex am ined. MPLAB SIM, which is
fur nished with the MPLAB de vel op ment en vi ron ment, is one such sim u la tor-debugger
for the PIC MCUs.

MPLAB SIM sim u lates the hard ware at the reg is ter level, not the pin level. With
the sim u la tor, RB0 rep re sents the value in bit0 of PORTB, not the value on the pin
RB0. This is due to the fact that the sim u la tor pro vides only a soft ware model, not
the ac tual de vice hard ware. In many cases, the bi nary val ues stored at the reg is ter
bit level and the pin level are the same. How ever, there are cases in which the pin
and port bit lev els are dif fer ent. For ex am ple, the ADC com para tor re quires that
port reg is ter read '0', which may not be the value in the ac tual pin. Ad di tion ally, de -
vice I/O pins are of ten mul ti plexed with those of other func tions or pe riph er als. In

 De bug ging 18F De vices 493

this case, the sim u la tor rec og nizes the pin names de fined in the cor re spond ing .inc
file, al though most mul ti plexed bit/pin names may be used interchangeably.

MPLAB SIM al lows the fol low ing op er a tions:

• Mod ify ob ject code and reexecute it

• In ject ex ter nal stim uli to pro vide the sim u la tion of hard ware sig nals

• Set pin and reg is ter val ues

• Trace the ex e cu tion of the pro gram

• De tect “dead” code ar eas

• Ex tract pro gram data for in spec tion

B.2.3 MPLAB SIM Fea tures
The MPLAB SIM debugger pro vides two ba sic modes of code ex e cu tion: run and step.
The step mode in cludes a vari a tion called an i mate.

Run Mode

In Run mode pro gram code is ex e cuted un til a break point is en coun tered or un til the
Halt com mand is re ceived. Sta tus in for ma tion is up dated when pro gram ex e cu tion is
halted.

Run mode is en tered ei ther by click ing the Run but ton on the De bug toolbar (see
Fig ure B-1 later in this ap pen dix), by se lect ing Debugger>Run from the menu bar, or
by press ing <F9> on the key board. The Run mode is halted us ing a break point or
other type of break, for ex am ple, “Halt on Trace Buffer Full”. The Run mode is man -
u ally halted by ei ther click ing the Halt but ton on the De bug toolbar, se lect ing
Debugger>Halt from the menu bar, or press ing <F5> on the keyboard.

Step Mode

There are sev eral types of Step modes: Step Into, Step Over, and Step Out. The Step
modes are dis cussed in Sec tion B.6.2.

An i mate

The An i mate vari ant of the Step mode causes the debugger to ac tu ally ex e cute sin gle
steps while run ning, up dat ing the val ues of the reg is ters as it runs. An i mate ex e cutes
the pro gram slower than the Run func tion. This al lows view ing the reg is ter val ues as
they change in a Spe cial Func tion Reg is ter win dow or in the Watch win dow. To halt
An i mate, use the menu op tion Debugger>Halt in stead of the toolbar Halt or <F5>.

Mode Dif fer ences

Func tions and fea tures that work in Run mode do not al ways work when in Step or An -
i mate mode. For ex am ple:

• Pe riph eral mod ules do not work, or do not work as ex pected, when code is
stepped.

• Some in ter rupts do not work when code is stepped. Be cause some pe riph er als are
not run ning, their in ter rupts will not oc cur.

494 Ap pen dix B

• Step ping in volves ex e cut ing one line of code and then halt ing the pro gram. Be -
cause open MPLAB IDE win dows are up dated on Halt, step ping may be slow. It is
pos si ble to min i mize as many win dows as pos si ble to im prove ex e cu tion speed.

Build Con fig u ra tions

MPLAB IDE pro vides two op tions for build ing a pro ject: De bug and Re lease. When the
Quickbuild op tion is se lected for as sem bly lan guage pro grams, only the Re lease op -
tion is avail able. In pro grams con tained in an MPLAB pro ject, a Build Op tion drop-
down box is vis i ble in the Pro ject Man ager toolbar. The Build Op tion can also be se -
lected by the Build Con fig u ra tion com mand in the Pro ject menu.

Pro grams as sem bled in the Re lease con fig u ra tion with the Quickbuild op tion can
be de bugged us ing MPLAB SIM, but not with hard ware debuggers.

Set ting Break points

Break points are debugger con trols that pro duce a con di tional pro gram halt. Dur ing
the halt pro gram, ex e cu tion can be eval u ated by ob serv ing mem ory, reg is ter, or vari -
able. Break points can be set in the file (ed i tor) win dow, in the pro gram mem ory win -
dow, or in the dis as sem bly win dow, as fol lows:

• Dou ble-click ing on the line of code where you want the break point. Dou ble-click
again to re move the break point. For this to work, the “Dou ble Click Tog gles
Break point” must have been se lected in the Ed i tor>Prop er ties di a log.

• Dou ble-click ing in the win dow gut ter, in the next line of code where the break -
point is wanted. Dou ble-click ing again re moves the break point.

• Plac ing the cur sor over the line of code where the break point is de sired then,
right- click ing to pop up a menu and se lect “Set Break point.” Once a break point is
set, “Set Break point” will change to “Re move Break point” and “Dis able break -
point.” Other op tions on the pop-up menu un der Break points are for de let ing, en -
abling, or dis abling all break points.

• Open ing the Break point di a log (Debugger>Break points) to set, de lete, en able, or
dis able break points. A de bug tool must have been se lected be fore this op tion is
avail able.

B.2.4 PIC 18 Spe cial Sim u la tions
The con di tions listed in the fol low ing subsec tions re fer to the sim u la tion of PIC 18 de -
vices.

Re set Con di tions

MPLAB SIM sup ports all Re set con di tions. The con di tion caus ing the re set can be de -
ter mined by the set ting in the RCON reg is ter, such as the Time-Out (TO) and
Power-Down (PD) bits. How ever, the de vice can not be re set by tog gling the MCLR line
us ing stim u lus con trol. Stim u lus fea tures are de scribed later in this ap pen dix.

Sleep

If a sleep in struc tion is in the code stream, the sim u la tor will ap pear “asleep” un til a
wake-up from sleep con di tion oc curs. If the Watch dog Timer has been en abled, it will

 De bug ging 18F De vices 495

wake up the pro ces sor from sleep when it times out, de pend ing on the pre/postscaler
set ting.

Watch dog Timer

The Watch dog Timer is fully sim u lated in the sim u la tor. The pe riod is de ter mined by
the pre/postscaler Con fig u ra tion bits WDTPS0:2. The WDT is dis abled by clear ing the
WDTEN bit un less it is en abled by the SWDTEN bit of the WDTCON reg is ter. Set ting
the Con fig u ra tion bit WDTEN to 1 will en able the WDT re gard less of the value of the
SWDTEN bit.

A WDT time-out is sim u lated when WDT is en abled, proper pre/postscaler is set,
and WDT ac tu ally over flows. On WDT time-out, the sim u la tor will halt or Re set, de -
pend ing on the se lec tion on the Break Op tions tab of the Set tings di a log
(Debugger>Settings).

Spe cial Reg is ters

To aid in de bug ging PIC 18 de vices, cer tain items that are nor mally not ob serv able are
de fined as “spe cial” reg is ters. For ex am ple, be cause prescalers can not be de clared in
user code as “reg is ters,” the fol low ing spe cial sym bols are avail able as Spe cial Func -
tion Reg is ters:

T0PRE (Prescaler for Timer 0)
WDTPRE (Prescaler for WDT)

B.2.5 PIC 18 Pe riph er als
The fol low ing pe riph er als are sup ported by MPLAB SIM:

• Tim ers

• CCP/ECCP

• PWM

• Com para tors

• A/D Con verter

• USART

• EEPROM Data Mem ory

• Remapping of I/O pins

• OSC Con trol of IO

• IO Ports

Tim ers are sup ported, ex cept those that use an ex ter nal crys tal. Timer in ter rupts
on over flow and wake-up from sleep are also sup ported. Com para tor modes that do
not use Vref are sim u lated. Com para tor pins can not be tog gled. The A/D Con verter
mod ule is sim u lated in all reg is ters, tim ing func tions, and in ter rupts. Here again,
sim u la tion is at the reg is ter level. USART and UART func tions are func tion ally sup -
ported with cer tain lim i ta tions. EEPROM data mem ory is fully sim u lated.
Remapping and the lock/un lock func tions of I/O pins are sup ported. I/O ports are
sup ported at the reg is ter level for input/output/ interrupts, and changes.

496 Ap pen dix B

B.2.6 MPLAB SIM Con trols
The ba sic con trols are avail able in an MPLAB SIM con trol win dow dis played when the
debugger is se lected or when the De bug toolbar is dis played from the View com mand.
The win dow is shown in Fig ure B.1.

 Fig ure B.1 MPLAB SIM con trol window.

Once MPLAB SIM is se lected with the Debugger>>Se lect tool com mand, the
MPLAB SIM con trol win dow is dis played in the MPLAB com mands line. The win dow
can be moved to an other area of the desk top as the win dow shown in Fig ure B.1.

The Run but ton in Fig ure B.2 will start pro gram ex e cu tion for the first time at ad -
dress 0x000. If a break point stopped ex e cu tion, then the Run but ton will re sume it
at the fol low ing in struc tion code. Ex e cu tion con tin ues un til a break point is
reached, the Stop but ton is pressed, or the pro gram terminates.

The An i mate but ton starts a pro gram an i ma tion. An i ma tion is a method of ex e cu -
tion that al lows se lect ing the step time for each in struc tion. The rate is set in the
Sim u la tor Set tings di a log and the An i ma tion/Realtime Up dates tab. The slider al -
lows se lect ing an an i ma tion range from 0 to 5 sec. The up dates re fer to how of ten
the Watch window is updated.

The three Step but tons re fer to sin gle-step ping ex e cu tion. In as sem bly lan guage,
sin gle step ping re fers to ex e cut ing one ma chine in struc tion at a time. In a C lan -
guage pro gram sin gle step ping re fers to one line of a high-level pro gram state ment.
The Step into but ton moves the pro gram coun ter to the next in struc tion to be ex e -
cuted, whether it is the next one in line or an in struc tion in side a pro ce dure call.

 De bug ging 18F De vices 497

 Run

Stop

Animate

Reset

Breakpoints

Step into

Step over

Step out

The Step over but ton al lows by pass ing sub rou tines. When a call is en coun tered in
the code, the Step over com mand causes the break point to be set at the in struc tion
fol low ing the call. The Step out but ton stops ex e cu tion at the re turn ad dress of the
cur rent sub rou tine. This allows breaking out of the subroutine currently executing.

The Re set but ton is used to re start the de bug ging sec tion by re turn ing ex e cu tion
to the pro gram's first line of code. The Re set com mand does not erase ex ist ing
break points or debugger setup switches and parameters.

Fi nally, the but ton la beled B dis plays a di a log box that al lows set ting a break -
point at an ad dress or line num ber, in clud ing the source file path, re mov ing a sin gle
or all break points, en abling and dis abling in di vid ual break points, and dis plays the
limit num ber of break points and the num ber of avail able break points. Most con ve -
niently, a break point can be set or re moved by dou ble-click ing the desired code line
in the editor.

B.2.7 View ing Com mands

Sev eral com mands in the MPLAB View menu al low in spect ing pro gram el e ments dur -
ing de bug ging. Al though per haps the sim plest and most use ful way of view ing reg is -
ters and pro gram com po nents is by plac ing the cur sor over the de sired name and
MPLAB dis plays a flag show ing its con tents. The view debugger-re lated view com -
mands avail able in MPLAB SIM are the fol low ing:

• Dis as sem bly List ing

• EEPROM

• File Reg is ters

• Hard ware Stack

• Lo cals

• Pro gram Mem ory

• Spe cial Func tion Reg is ters

• Watch

• Sim u la tor Trace

• Sim u la tor Logic An a lyzer

In the subsec tions that fol low we dis cuss the View menu com mands whose con -
tents are not ob vi ous. The Sim u la tor and Trac ing func tions are dis cussed in a sep a -
rate section.

Dissasembly List ing

This view com mand dis plays a dis as sem bly of the code be ing de bugged show ing ad -
dresses and in struc tion opcodes. Fig ure B.2 shows a few lines of a dis as sem bly list ing
of the sam ple pro gram LedFlash_PB_F18.asm.

498 Ap pen dix B

Fig ure B.2 Dis as sem bly list ing.

In Fig ure B.2 the right-hand col umn of the list ing shows the orig i nal source code.
The sec ond line, right-to-left, is the con sec u tive line num ber. The next col umn, la -
beled Gen er ated Source, con tains the source gen er ated by the as sem bler or com -
piler. No tice that this col umn shows the in struc tion mne mon ics in cap i tal let ters
and lists the ac tual ad dress of el e ments rep re sented by pro gram names in the orig i -
nal source. Also note that im plicit operands are dis played in this col umn, as is the
mem ory bank (ACCESS) used by the in struc tion. The col umns la beled Address and
Opcode require no explanation.

File Reg is ters

This com mand dis plays the ad dress and con tents of the file reg is ters in the for mat of a
con ven tional mem ory dump. Fig ure B.3 shows a File Reg is ters screen.

 Fig ure B.3 File Reg is ters screen.

 De bug ging 18F De vices 499

Address
Opcode
Generated Source

Source Listing
Line Number

0022 EC2C CALL 0x58, 0 129: call command

0024 F000 NOP

130: ; Z flag set if PB#1

; pressed

0026 B4D8 BTFSC 0xfd8, 0x2, ACCESS 131: btfsc STATUS,Z

0028 EF18 GOTO 0x30 132: goto greenLEDs

Hard ware Stack

The pro ces sor's hard ware stack is mapped into the sim u la tor's data mem ory space.
All 32 stack lo ca tions can be viewed in a dis play win dow, as shown in Fig ure B.4.

 Fig ure B.4 Hard ware Stack window.

Lo cals

The Lo cals win dow al lows mon i tor ing au to matic vari ables that have lo cal scope. This
screen is used in pro jects coded in high-level lan guages such as C.

Pro gram Mem ory

The Pro gram Mem ory com mand in the View menu dis plays a win dow that shows the
con tents of all lo ca tions in the pro gram mem ory space of the cur rent pro ces sor. The
de fault pro gram mem ory screen is shown in Fig ure B.5.

 Fig ure B.5 Pro gram Mem ory window.

The Sta tus line of the Pro gram Mem ory screen in Fig ure B.5 shows the three dis -
play modes avail able. Opcode Hex is the de fault mode and dis plays the data in a
con ven tional screen dump for mat. The Ma chine dis play mode shows data as it ap -
pears in the Gen er ated Source line of a dis as sem bly list ing (see Fig ure B.2). The
Sym bolic dis play mode shows the data in the user's source code format.

500 Ap pen dix B

The var i ous subcommands avail able in the Pro gram Mem ory com mand are listed
by press ing the right mouse but ton in the win dow's dis play area. Fig ure B.6 shows
the com mands menu.

 Fig ure B.6 Com mands in the Pro gram Mem ory win dow.

Spe cial Func tion Reg is ters

The Spe cial Func tion Reg is ters win dow dis plays the con tents of the SFRs avail able in
the se lected pro ces sor. The con tents of this win dow are the same as the File Reg is ters
win dow men tioned pre vi ously (see Fig ure B.3), how ever; the for mat is more con ve -
nient be cause each SFR name is in cluded and sev eral num ber for mats are avail able. If
a data mem ory reg is ter is not phys i cally im ple mented on a par tic u lar de vice, it may
not ap pear in the SFR dis play win dow. How ever, some tools such as sim u la tors some -
times al low view ing reg is ters that do not ex ist on the ac tual de vice, such as
prescalers. Fig ure B.7 is a screen snap shot of the Spe cial Func tion Reg is ters win dow.

 De bug ging 18F De vices 501

 Fig ure B.7 Spe cial Func tion Reg is ters window.

While de bug ging, the reg is ters that have changed dur ing pro gram ex e cu tion are
shown in red char ac ters in the FSR win dow. In Fig ure B.7 these are shown in gray
characters.

Watch

The Watch win dow is one of the most use ful com mands in the View menu while de bug -
ging. The win dow's Sta tus line al lows se lect ing up to four watch win dows. The Watch
win dow al lows se lect ing the vari ables and SFRs that are mean ing ful to your ap pli ca -
tion or de bug ging ses sion. Fig ure B.8 is a screen snap shot of a Watch win dow.

 Fig ure B.8 Watch window snap shot.

The Up date col umn is used to set the data cap ture or the runtime watch func tion
of dif fer ent debugger. The Ad dress col umn dis plays the hex lo ca tion of the sym bol
or SFR. You may en ter a spe cific ad dress to watch by click ing the Ad dress col umn
of the first avail able row. Ad dresses pre ceded by the debugger with the let ter “P” in -
di cate that the sym bol is de fined in program memory.

To add a SFR or Sym bol to the Watch win dow click the cor re spond ing tri an gle
sym bol to ex pand the win dow, se lect the de sired el e ment, and then click the Add

502 Ap pen dix B

SFR or Add Sym bol but ton. The value in the Watch win dow can be changed by dou -
ble click ing the ex ist ing value box. Bi nary in for ma tion in hex, dec i mal, bi nary, or
char can be dis played by right click ing the cor re spond ing col umn header. Drag and
drop can be used to re-arrange the Watch variables.

The subcommands avail able in the Watch win dow are dis played by right-click ing
the win dow area. Fig ure B.9 is a screen snap shot of the re sult ing menu.

 Fig ure B.9 Watch window subcommand menu.

While de bug ging, the con tents of the Watch win dow are up dated on a pro gram
halt. Watch win dow col umns can be resized by drag ging the line that sep a rates two
col umns. A col umn of the Watch win dow can be made in vis i ble by right click ing the
col umn header, se lect ing more from the menu, and then click ing the Hide but ton in
the dis played di a log box. Col umns made in vis i ble can be re dis played by sim i larly
click ing on the Show but ton. Col umns can be re or dered by drag ging and dripping
the column header.

 De bug ging 18F De vices 503

Watch Win dow in C language

The fol low ing fea tures of the Watch win dow are avail able to C lan guage code:

• The Bitfield value Mouseover is made avail able by us ing the right mouse but ton in
an ac tive Watch win dow menu.

• A pointer to an in trin sic type or struc ture can be made vis i ble by en ter ing the
pointer vari able name (for ex am ple, *thisPtr) in the Sym bol Name field.

• A struc ture mem ber name is made vis i ble by en ter ing its name in the Sym bol
Name field, for ex am ple, porta.ra2. The vari able must be in the form
struct.membername.

• A struc ture pointer mem ber name is made vis i ble by en ter ing the name in the Sym -
bol Name field, for ex am ple, porta>pin2. The vari able must be in the form
struct->membername.

The Watch win dow dis plays 16 bits for the PIC18 MCU com piler type short long
int.

B.2.8 Sim u la tor and Trac ing
MPLAB SIM sup ports a Trace func tion and its cor re spond ing win dow, which is avail -
able from the View menu. The Trace win dow is used to mon i tor pro ces sor op er a tion.
Trace is en abled in the Sim u la tor Set tings di a log box as shown in Fig ure B.10.

 Fig ure B.10 Trace options in Sim u la tor Set tings di a log.

The Trace win dow is dis played by se lect ing the Sim u la tor Trace op tion in the
View menu. Fig ure B.11 is a screen snap shot of a Trace win dow.

504 Ap pen dix B

 Fig ure B.11 Screen snap shot of Trace window.

The im age in Fig ure B.11 shows trac ing ex e cu tion through an end less loop in the
sam ple pro gram. Some of the col umns col umns have ob vi ous con tents. The first col -
umn, la beled Line, re fers to the line num ber, which is the cy cle's rel a tive po si tion.
The col umn la beled SA dis plays the ad dress of the source data. The col umn la beled
SD is the value of the source data, in this case the it er a tion num ber in the loop be ing
traced. Col umn DA shows the ad dress of the des ti na tion data and col umn DD the
value of the des ti na tion data. The col umn la beled Cy cles is a se quen tial count of
machine cycles or seconds.

Set ting Up a Trace

Up to 32,767 in struc tion cy cles can be dis played in the Trace buffer. Set ting up a trace
is done from the Ed i tor screen. Right-click ing a source code line dis plays a menu
whose first four en tries re late to the Trace func tion. The two trace modes are la beled
fil ter-in and fil ter-out, These modes are mu tu ally ex clu sive and set ting one clears the
other one.

To setup a trace, use the ed i tor cur sor to high light a line to be traced, and then se -
lect the Add Fil ter-in Trace or Add Fil ter-out Trace op tions from the menu. Lines se -
lected for a trace are marked with a rect an gle sym bol on the ed i tor's right mar gin. In
the Fil ter-in op tion, the code se lected is the one traced by the debugger. In the Fil -

 De bug ging 18F De vices 505

ter-out mode, the code se lected is ex cluded from the trace. Traces are re moved
from the ed i tor menu by se lect ing Re move Fil ter Trace or Re move All Fil ter Traces.
The Re move Fil ter Trace op tion is use ful in re mov ing one or more lines from the
code being traced.

Trace Menu

Trac ing code is an ad vanced debugger func tion most use ful in de tect ing pro gram
hang-ups. The Trace subcommands are dis played on a menu by right-click ing on the
Trace win dow. Fig ure B.12 shows this menu.

 Fig ure B.12 Trace subcommands.

The Close subcommand closes the Trace win dow. The Find com mand opens the
Find di a log. The Find subcommand al lows en ter ing a string to be lo cated in the
Trace win dow. The Find di a log al lows en ter ing a string or se lect ing from a list of
names ref er enced in the code. The search can be di rected to match the whole world
and to match or ingnore the case. The search di rec tion can be up or down in the
code. Use the What field to en ter a string of text you want to find, or se lect text from
the drop-down list. Fig ure B.13 shows the Find dialog box.

506 Ap pen dix B

 Fig ure B.13 Trace/Find di a log.

The Find Next subcommand lo cates the next in stance of the string de fined with
the Find subcommand. The <F3> key serves as a short cut to this subcommand. The
Go To subcommand jumps to the item se lected in the popup, which can be one of
the fol low ing:

• Trig ger (jump to the trig ger lo ca tion)

• Top (jump to the top of the win dow)

• Bot tom (jump to the bot tom of the win dow)

• Go To Trace Line (go to the spec i fied trace line)

• Go To Source Line (open a File win dow and go to the se lected source line)

The Show Source subcommand is used to show or hide the source code list ing on
the bot tom of the win dow. The win dow bar di vid ing the trace and source code may
be dragged to resize each por tion. The Re load re loads the trace win dow with the
con tents of the trace buffer. The Re set Time Stamp subcommand re set, the time
stamp con di tion ally on pro ces sor Re set, on run, or man u ally — or forces an im me di -
ate re set by selecting Reset Now.

The Dis play Time subcommand dis plays the time stamp as a cy cle count. Time
can be dis played in elapsed sec onds or in en gi neer ing for mat. The subcommand
Clear Trace Buffer clears the con tents of the Trace buffer and win dow. The
subcommand Sym bolic Dis as sem bly uses names for SFRs and sym bols in stead of
numeric addresses.

The subcommand Out put to File ex ports the con tents of the trace mem ory win -
dow to a file. A di a log box al lows en ter ing a file name and se lect ing save op tions.
The Re fresh subcommand re freshes the view able con tents of the win dow. The Prop -
er ties subcommand dis plays a di a log that al lows se lect ing the col umns dis played as
well as the pixel width of each column.

B.2.9 Stim u lus
Soft ware debuggers such as MPLAB SIM have the lim i ta tion that the ac tion of hard -
ware de vices can not be mod eled or traced. This means that if a pro gram fails while in -
ter act ing with a hard ware com po nent, it will be dif fi cult to de tect the rea son for the
fail ure by sim ple code trac ing. For ex am ple, sup pose a pro gram that mon i tors the ac -
tion of a pushbutton switch, wired ac tive high, to Port C, line 2. Now sup pose that

 De bug ging 18F De vices 507

while ex e cut ing the pro gram, press ing the pushbutton switch fails to pro duce the ex -
pected ac tion. In this case, de bug ging the code by means of con ven tional trac ing can -
not help.

The Stim u lus sim u la tor that is part of MPLAB SIM pro vides as sis tance in these
cases by al low ing the sim u la tion of hard ware sig nals. For ex am ple, we can set up a
Stim u lus win dow that al lows us to pro duce a change in the state of a spe cific pin in
a port reg is ter. Fol low ing the pre vi ous ex am ple we could de fine pin 2 of PORTC so
that it re ports low but be comes high when the but ton la beled <Fire> is pressed.
Now we can run the pro gram un der the debugger, in sert a break point in the code
that is ex pected to ex e cute when the pushbutton is pressed, and click on the <Fire>
but ton to change the state of pin 2, PORTC, to low. In this case, ex e cu tion reach ing
the break point in di cates that the code is responding as expected.

It is a fact that the sim u la tion pro vided by Stim u lus, al though pow er ful and use -
ful, does not en tirely sub sti tute a hard ware debugger. If in the pre vi ous ex am ple the
pushbutton switch is de fec tive, or has been wired im prop erly, the sim u la tion can not
de tect the flaw. In other words, a soft ware sim u la tion as sumes that the hard ware is
op er at ing cor rectly. A hard ware debugger, such as MPLAB ICD2 dis cussed later in
the ap pen dix, al lows us to ac tu ally mon i tor the sig nal on the board and fol low
execution when the physical device is active.

An other lim i ta tion of soft ware sim u la tors is that some de vices are quite dif fi cult
to model. For ex am ple, a typ i cal Liq uid Crys tal Dis play re quires three con trol lines
and four or eight data lines. Try ing to use a soft ware sim u la tor to find a de fect in
LCD code could be a fruitless endeavor.

Stim u lus Ba sics

Stim u lus pro vides a sim u la tion of hard ware sig nals that are re ceived by the de vice.
For ex am ple, a change in the level of a sig nal or a pulse to an I/O pin of a port. Stim u lus
can also be used to change the val ues in an SFR (Spe cial Func tion Reg is ter) or any
other el e ment in data mem ory.

Stim u lus may need to hap pen at a cer tain in struc tion cy cle or a spe cific time dur -
ing the sim u la tion. It is also pos si ble that a stim u lus may need to oc cur when a con -
di tion is sat is fied, for ex am ple, when ex e cu tion has reached a cer tain in struc tion.
Ba si cally, there are two types of stimulus:

• Asyn chron ous stim uli con sist of a one-time change to the state of an I/O pin or to
RCREG used in USART op er a tion. The ac tion is trig gered by “fir ing” a but ton in
the Stim u lus win dow.

• Syn chro nous stim uli con sist of a pre de fined se ries of sig nal/data changes to an I/O
pin, SFR, or GPR (as would be the case with a clock cy cle).

The Stim u lus di a log al lows de fin ing when, what, and how ex ter nal stim uli are to
hap pen. The di a log is used to cre ate both asyn chron ous and syn chro nous stim uli on
a stim u lus work book. A more ad vanced Stim u lus Con trol Lan guage (SCL) can be
used to cre ate a file for cus tom stim uli. The el e ments of the ba sic mode stim u lus are
shown in Figure B.14.

508 Ap pen dix B

Fig ure B.14 Ba sic mode stim u lus.

The Stim u lus set tings are saved to a Work book file. Both syn chro nous and asyn -
chron ous stim uli be come avail able when the Stim u lus di a log win dow is open. More
ad vanced use of the Stim u lus al lows ex port ing the syn chro nous stim u lus to an SCL
file.

Us ing Stim u lus

Se lect Debugger>Stim u lus>New Work book to start the Stim u lus di a log. To open an
ex ist ing work book, se lect Debugger>Stim u lus>Open Work book. The Stim u lus win -
dow must be open for Stim u lus to be ac tive. The Stim u lus di a log is shown in Fig ure
B.15.

 Fig ure B.15 Stim u lus dialog window.

 De bug ging 18F De vices 509

Stimulus Dialog

MPLAB SIM
Simulator

Stimulus

Synchronous
Stimulus

Asynchronous
Stimulus

Workbook
File

To set up a an asyn chron ous sim u la tion, click on the Asynch tab. A sim u la tion is
in i tial ized by click ing the var i ous el e ments in a row. A row is re moved by se lect ing it
and then click ing the De lete Row but ton. There are two types of asyn chron ous sim -
u la tions: reg u lar sim u la tions are based on ac ti vat ing pins and SFRs while mes -
sage-based stim uli are used mainly in pro grams that used USART or UART
operations.

Asynch Tab

The row la beled <Fire> trig gers the stim u lus in that row. A stim u lus must be set up be -
fore the <Fire> com mand can be used.

Se lect ing the Pin/SFR col umn and then click ing the ex pan sion but ton dis plays a
list of el e ments to which the stim u lus can be ap plied. The drop-down list in cludes
pins and Spe cial Func tion Reg is ters that can be trig gered.

The <Ac tion> but ton is func tional only af ter the PIN/SFR has been se lected. The
avail able op tions in the drop-down list in clude “Set High,” “Set Low,” “Tog gle,”
“Pulse High,” or “Pulse Low.”

If “Pulse” is cho sen as an Ac tion, then the Width col umn pro vides a way to spec -
ify the num ber of units for the pulse, and the col umn la beled Units al lows se lect ing
in struc tion cy cles, nano sec onds, mi cro sec onds, mil li sec onds, or seconds.

With reg u lar stim u lus, the com ments field is used to note or as a re minder, as
shown in the first and third rows in Fig ure B.15.

Mes sage-Based Stim u lus:

Mes sage-based stim uli are avail able when RCREG is se lected in the Pin/SFR col umn.
In this case, the Ac tion col umn al lows choosing ei ther “File Mes sage” or “Di rect Mes -
sage.” The “File Mes sage” op tion means that the mes sages to be used will be con -
tained in a file. The “Di rect Mes sage” op tion means that the Com ments/Mes sage cell
will be used to de fine a one-line mes sage packet.

With Mes sage-Based Stim u lus, the Com ments/Mes sage col umn is used to spec ify
or change the stim u lus mes sage. If it is a text mes sage, the string must be en closed
in dou ble quotes, as in Fig ure B.15.

Pin/Reg is ter Ac tions Tab

When the Pin/Reg is ter Ac tions tab is se lected, the ba sic syn chro nous pin or reg is ter
ac tions may be en tered. This is the sim plest time-based stim u lus. Some pos si ble uses
for this tab could be:

• Ini tial ize pin states at time zero so when a sim u la tion is re started, the pins will be
in a pre de ter mined state af ter each POR.

• I/O port pins do not change state on a re set. In this case, the sim u la tor starts off by
treat ing all IO pins as in puts of a zero state.

• Set a reg is ter to a value at a spe cific time.

510 Ap pen dix B

• Set mul ti ple in ter rupt flags at ex actly the same time. This al lows see ing the ef fect
within the in ter rupt han dler for pri or ity.

• Cre ate a pulse train with dif fer ent pe ri ods of a pulse over time, or an ir reg u lar
wave form based on run time

• Re peat a se quence of events for en dur ance test ing.

To en ter data first se lect the unit of time in the “Time Units” list box. The units
are cy cles, hours-min utes-sec onds, mil li sec onds, mi cro sec onds, and nano sec onds.
The num ber of units (dec i mal for mat) is then en tered in the Time col umn. Click ing
on the text that states “Click here to Add Sig nals” al lows open ing the Add/Re move
Pin/Reg is ters di a log. This di a log box is used to add or re move pins, reg is ters, or
other sig nals to which the stim u lus will be ap plied. The se lec tions will be come the
ti tles of the col umns. Fill out each row, en ter ing a trig ger time in the (“Time”) and
value for each pin/reg is ter col umn. Trig ger time for each row is accumulative time
be cause the simulation began.

Check the checkbox “Re peat af ter X (dec)” to re peat the stim u lus on the tab af ter
the last stim u lus has oc curred. Spec ify a de lay in ter val for re peat ing the stim u lus.
To re start at a spe cific time, make a se lec tion from the “re start at: (dec)” list box.
The list box se lec tions are de ter mined by the trig ger times (in the Time col umn) for
each row. Once the tab is filled, you may pro ceed to an other tab or click Ap ply to
use the stim u lus. To re move a pre vi ously ap plied stim u lus, click Re move. Fig ure
B.16 is a screen snap shot of the Pin/Reg is ter Actions tab in the Stimulus dialog.

Fig ure B.16 Snap shot of the Pin/Reg is ter Ac tion tab.

 De bug ging 18F De vices 511

Ad vanced Pin/Reg is ter Tab

The Ad vanced Pin/Reg is ter tab in the Stim u lus screen al lows en ter ing com plex syn -
chro nous pin/reg is ter ac tions. The Ad vanced di a log is shown in Fig ure B.17.

Fig ure B.17 Ad vanced Pin/Reg is ter tab screen snapshot.

For en ter ing data for ad vanced ac tions, first de fine the con di tions and then the
trig gers. The name for the con di tion be ing spec i fied is au to mat i cally gen er ated
when you en ter data in any other col umn. This name is used to iden tify the con di -
tion in the Con di tion col umn of the De fine Trig gers sec tion of this tab. The When
Changed con di tion de fines the change con di tion. This con di tion is true when the
value of the pin/reg is ter in Col umn 2 (its type spec i fied in Col umn 1) changes to the
re la tion ship of Col umn 3 to the value of Column 4. The columns operate as follows:

• Col umn 1 is used to se lect the type of pin/reg is ter, ei ther “SFR,” “Bitfield,” “Pin,” or
“All” of the above. This will fil ter the con tent of Col umn 2.

• Col umn 2 is used to se lect the pin/reg is ter to which the con di tion will ap ply.

• Col umn 3 is used to se lect the con di tion, ei ther equal (=), not equal (!=), less than
or equal (<=), greater than or equal (>=), less than (<), or greater than (>).

• Col umn 4 is used to en ter the value for the con di tion.

Cer tain pre cau tions must be taken when us ing FSR val ues as con di tions be cause
con di tions will only oc cur when the SFR is up dated by the user code, not the pe riph -
eral. For ex am ple, sup pose the con di tion within the Ad vanced Pin Stim u lus di a log is
set up to trig ger when TMR2 = 0x06. Then when TMR2 is in cre mented past 0x06, the

512 Ap pen dix B

con di tion is not met. How ever, if the fol low ing se quence is ex e cuted in user code,
then the condition will occur:

movlw 0x06
movwf TMR2

For ex am ple, a con di tions can con sist of a reg is ter be ing set equal to a value, as
shown in Fig ure B.18.

Fig ure B.18 Def i ni tion of Con di tion di a log.

Re fer ring to the con di tion in Fig ure B.18, if PORTC has an ini tial value of 0xff or
never reaches this value, the con di tion will never be met and the stim u lus will not
be applied.

Clock Stim u lus Tab

The Clock Stim u lus tab re fers to a low or high pulse ap plied to a pin. The Clock Stim u -
lus di a log is shown in Fig ure B.19.

Fig ure B.19 Clock Stim u lus di a log.

 De bug ging 18F De vices 513

The fol low ing el e ments in the Clock Stim u lus di a log de fine its op er a tion:

• La bel is a unique, op tional name as signed to s spe cific clock stim u lus.

• Pin de fines the in di vid ual pin on which the clocked stim u lus is ap plied.

• Ini tial de fines the ini tial state of the clocked stim u lus. It can be low or high.

• Low Cy cles al lows en ter ing a value for the num ber of low cy cles in a clock pulse.
High Cy cles al lows en ter ing a value for the num ber of high cy cles in a clock pulse.

• Be gin de fines the left-side area at the lower part of the Clock Stim u lus di a log (see
Fig ure B.19). In the Be gin area, the fol low ing el e ments can be de fined: At Start
(de fault) be gins the stim u lus im me di ately on pro gram run. PC= be gins the stim u -
lus when the pro gram coun ter equals the en tered value. Cy cle= be gins the stim u -
lus when the in struc tion cy cle count equals the en tered value. Pin= se lects the
spe cific pin.

• End de fines the right-side area at the lower part of the Clock Stim u lus di a log (see
Fig ure B.19). In the End area the fol low ing el e ments can be de fined: Never (de -
fault) ap plies the stim u lus un til pro gram halt. PC= ends the stim u lus when the
pro gram coun ter equals the en tered value. Cy cle= ends the stim u lus when the in -
struc tion cy cle count equals the en tered value. Pin= ends the stim u lus when the
se lected pin has the se lected value (low or high).

• Com ments adds de scrip tive in for ma tion about the stim u lus.

Reg is ter In jec tion Tab

Stim u lus al lows in ject ing reg is ters with val ues de fined in a file. En ter in for ma tion for
reg is ter in jec tion here. A sin gle byte is in jected into Gen eral Pur pose Reg is ters but
more than one byte may be in jected for ar rays. Fig ure B.20 is a screen snap shot of the
Reg is ter In jec tion tab of the Stim u lus di a log.

Fig ure B.20 Reg is ter In jec tion di a log.

514 Ap pen dix B

The fol low ing col umns (see Fig ure B.20) are used for Reg is ter In jec tion data:

• La bel al lows as sign ing an op tional name to the spe cific Reg is ter In jec tion.

• Reg/Var al lows se lect ing from a drop-down list a des ti na tion reg is ter for data in -
jec tion. Listed reg is ters in clude SFRs (top of list) and any GPRs used (bot tom of
list). The GPR reg is ters are shown only af ter the pro gram is com piled.

• Trig ger se lects when to trig ger in jec tion. For most reg is ters, the Trig ger is ei ther
on De mand or when the PC equals a spec i fied value.

• PC Value is used for en ter ing a PC value for trig ger ing in jec tion. The value can be
an ab so lute ad dress or a la bel in the code.

• Width re fers to the num ber of bytes to be in jected if Trig ger = PC.

• Data File name al lows brows ing for the in jec tion data file.

• Wrap is Yes in di cates that once all the data from the file has been in jected, start
again from the be gin ning of the file. Wrap is No in di cates that once all the data
from the file has been in jected, the last value will con tinue to be used.

• For mat al lows se lect ing the for mat of the in jec tion file. For mat for a Reg u lar Data
File For mat can be Hex (ASCII hex a dec i mal), Raw (in ter preted as bi nary), SCL ,
or Dec (ASCII dec i mal). For Mes sage-Based Data File, format can be Pkt (Hex or
Raw packet for mat).

• Com ments is used to add op tional de scrip tive in for ma tion about the reg is ter in -
jec tion.

Reg is ter Trace Tab

Un der cer tain con di tions, Stim u lus al lows that spe cific reg is ters be saved (traced) to
a file dur ing a debugger run ses sion. Fig ure B.21 is a screen snap shot of the di a log
screen for the Reg is ter Trace op tion.

Fig ure B.21 Reg is ter Trace tab.

 De bug ging 18F De vices 515

The fol low ing col umns (see Fig ure B.21) are used for en ter ing Reg is ter Trace
data:

• La bel al lows as sign ing an op tional name to the spe cific Reg is ter In jec tion.

• Reg/Var al lows se lect ing from a drop-down list a des ti na tion reg is ter for data in -
jec tion. Listed reg is ters in clude SFRs (top of list) and any GPRs used (bot tom of
list). The GPR reg is ters are shown only af ter the pro gram is com piled.

• Trig ger se lects when to trig ger the trace. For most reg is ters, the Trig ger is ei ther
on De mand or when the PC equals a spec i fied value.

• PC Value is used for en ter ing a PC value for trig ger ing the trace. The value can be
an ab so lute ad dress or a la bel in the code.

• Width re fers to the num ber of bytes to be in jected if Trig ger = PC.

• Trace File name al lows brows ing for the lo ca tion of the trace file.

• For mat al lows se lect ing the for mat of the in jec tion file. For mat for a Reg u lar Data
File for mat can be Hex (ASCII hex a dec i mal), Raw (in ter preted as bi nary), SCL , or
Dec (ASCII dec i mal).

• Com ments is used to add op tional de scrip tive in for ma tion about the reg is ter in -
jec tion.

B.3 Hard ware De bug ging
Soft ware debuggers such as MPLAB SIM (dis cussed in pre vi ous sec tions) are so phis ti -
cated and use ful tools in de tect ing de fects and flaws in the code. How ever, very of ten
code is not the sole cul prit of the mal func tion ing of an em bed ded sys tem. In some
cases, the rea son for the flaw lies in a hard ware or wir ing de fect and the en gi neer must
re sort to elec tronic test ers, log i cal probes, and ul ti mately os cil lo scopes to lo cate and
fix the prob lem. A de fec tive hard ware com po nent has been the source of more than
one mon u men tal de bug ging prob lem. In other cases, per haps the most com mon, an
em bed ded sys tem mal func tions but we are un able to tell if the cause re sides in hard -
ware, in soft ware, or in the in ter ac tion of both of these el e ments. Hard ware debuggers
al low test ing a pro gram as it ex e cutes in the cir cuit, thus pro vid ing in for ma tion that
can not be ob tained with soft ware debuggers or by elec tronic test ing alone.

B.3.1 Micro chip Hard ware Pro gram mers/Debuggers
Micro chip and other ven dors make avail able hard ware debuggers that range from en -
try-level de vices to ex pen sive pro fes sional tools used mostly in in dus try. Micro chip
re fers to hard ware debuggers as in-cir cuit de vices. The fol low ing sub sec tions de -
scribe the var i ous hard ware debuggers sup plied by Micro chip for the 18F PIC fam ily
at the pres ent time.

MPLAB ICD2

An en try-level in-cir cuit debugger and in-cir cuit se rial pro gram mer, MPLAB ICD2 pro -
vides the fol low ing fea tures.

• Real-time and sin gle-step code ex e cu tion

• Break points, Reg is ter, and Vari able Watch/Mod ify

516 Ap pen dix B

• In-cir cuit de bug ging

• Tar get Vdd mon i tor

• Di ag nos tic LEDs

• RS-232 se rial or USB in ter face to a host PC

MPLAB ICD2 is still avail able in the mar ket place but has been superseded by
MPLAB ICD3. Micro chip has stated that MPLAB ICD2 will not sup port de vices re -
leased af ter 2010, and is not rec om mended for new de signs. MPLAB ICD2 is de -
scribed in greater de tail in Sec tion B.3.3.

MPLAB ICD3

Fol low-up ver sion of MPLAB ICD2. The MPLAB ICD 3 is de scribed as an in-cir cuit
debugger sys tem used for hard ware and soft ware de vel op ment of Micro chip PIC
microcontrollers (MCUs) and dsPIC Dig i tal Sig nal Con trol lers (DSCs) that are based
on In-Cir cuit Se rial Pro gram ming (ICSP) and En hanced In-Cir cuit Se rial Pro gram -
ming 2-wire se rial in ter faces.

The debugger sys tem will ex e cute code like an ac tual de vice be cause it uses a de -
vice with built-in em u la tion cir cuitry, in stead of a spe cial debugger chip, for em u la -
tion. All avail able fea tures of a given de vice are ac ces si ble in ter ac tively, and can be
set and mod i fied by the MPLAB IDE interface.

MPLAB ICE 2000

An in-cir cuit em u la tor that pro vides em u la tion in real-time of in struc tions and data
paths. Fig ure B.22 shows the com po nents fur nished in the MPLAB ICE 2000 package.

Fig ure B.22 Com po nents of MPLAB ICE 2000.

 De bug ging 18F De vices 517

MPLAB ICE 2000 al lows the fol low ing op er a tions:

• De bug the ap pli ca tion on your own hard ware in real-time.

• Use both hard ware and soft ware break points.

• Mea sure tim ing be tween events.

• Set break points based on in ter nal and/or ex ter nal sig nals.

• Mon i tor in ter nal file reg is ters.

• Em u late at full speed (up to 48 MHz).

• Se lect os cil la tor source in soft ware.

• Pro gram the ap pli ca tion clock speed.

• Trace data bus ac tiv ity and time stamp events.

• Set com plex trig gers based on pro gram and data bus events, and ex ter nal in puts.

MPLAB ICE 4000

MPLAB ICE 4000 is an In-Cir cuit Em u la tor (ICE) de signed to em u late PIC18X
microcontrollers and dsPIC dig i tal sig nal pro ces sors. It uses an em u la tion pro ces sor
to pro vide full-speed em u la tion and vis i bil ity into both the in struc tion and the data
paths dur ing ex e cu tion. Fig ure B.24 shows the com po nents of the MPLAB ICE 4000
sys tem.

 Fig ure B.23 Com po nents of MPLAB ICE 4000.

In Fig ure B.23, the em u la tor pod con nects to the PC through a USB port. The pod
con tains the hard ware nec es sary to per form the com mon em u la tor func tions, such
as trace, break and em u late. The pro ces sor mod ule in serts into two slots on top of
the em u la tor pod. It con tains the hard ware re quired in or der to em u late a spe cific
device or family of devices.

The flex ca ble con nects the de vice adapter to the pro ces sor mod ule. De vice
adapt ers are in ter change able as sem blies that al low the em u la tor to in ter face to a

518 Ap pen dix B

tar get ap pli ca tion. It is the de vice adapter that has con trol logic for the tar get ap pli -
ca tion to pro vide a clock sig nal and power to the pro ces sor mod ule. The tran si tion
socket is con nected to the de vice adapter. Tran si tion sock ets are avail able in var i -
ous styles to al low a com mon de vice adapter to be con nected to one of the sup -
ported sur face-mount pack age styles. Logic probes can be con nected to the logic
probe connector on the emulator pod.

MPLAB REAL ICE

Real Ice is the high end of the Micro chip debuggers de scribed as “eco nom i cal.” The
oth ers are MPLAB PICkit 3, MPLAB ICD2, and MPLAB ICD3. The MPLAB REAL ICE is
de scribed as an in-cir cuit em u la tor that sup ports hard ware and soft ware de bug ging. It
is com pat i ble with Micro chip MCUs and Dig i tal Sig nal Con trol lers that sup port In-Cir -
cuit Se rial Pro gram ming (ICSP) ca pa bil i ties.

MPLAB REAL ICE ex e cutes code in a pro duc tion de vice be cause these Micro chip
de vices have built-in em u la tion cir cuitry. All avail able fea tures of a given de vice are
ac ces si ble in ter ac tively, and can be set and mod i fied by the MPLAB IDE in ter face.
The fol low ing are features of the emulator:

• Pro ces sors run at max i mum speeds

• De bug ging can be done with the de vice in-cir cuit

• No em u la tion load on the pro ces sor bus

• Sim ple in ter con nec tion

• Ca pa bil ity to in cor po rate I/O data

• In stru mented Trace (MPLAB IDE and Com piler As sisted)

• PIC32 In struc tion Trace

In ad di tion to em u la tor func tions, the MPLAB REAL ICE in-cir cuit em u la tor sys -
tem also may be used as a pro duc tion pro gram mer.

MPLAB PICkit 2 and PICkit 3

These are starter kits that can be used as pro gram mers and debuggers, and in clude the
fol low ing com po nents:

• The PICkit 2 De vel op ment Pro gram mer/Debugger

• USB ca ble

• PICkit Starter Kit and MPLAB IDE CD-ROMs

• A demo board with a PIC microcontroller de vice

The PICkit prod ucts are the most in ex pen sive pro gram mer/debuggers sold by
Micro chip. Both kits are sold in sev eral pack ages, in clud ing a Starter Kit and a De -
bug Ex press kit.

B.3.2 Us ing Hard ware Debuggers
The hard ware debuggers de scribed in the pre vi ous sec tion all pro vide con sid er able
ad van tages over their soft ware coun ter parts. For tu nately, hard ware debuggers are
eas ier to use than soft ware sim u la tors, such as MPLAB SIM de scribed ear lier in this

 De bug ging 18F De vices 519

ap pen dix. The rea son is that much of the sig nal, port, and de vice mod el ing and sim u la -
tion pro vided by Stim u lus or sim i lar soft ware is not nec es sary in hard ware de vices be -
cause the sig nals and de vices are read di rectly from the hard ware. For ex am ple, to
test a pro gram that reads an in put de vice, such as a pushbutton switch, a soft ware
debugger re quires that a stim u lus be set up on the port line to which the switch will be
con nected. The pro gram mer can then test the ac tion of the pro gram by “fir ing” the pin
that rep re sents the switch and ob serv ing the re sult ing code flow. The hard ware
debugger con nected to the tar get board re ports the sta tus of the phys i cal line con -
nected to the ac tual switch, mak ing the soft ware simulation unnecessary.

An other con sid er ation that lim its the use of soft ware em u la tors (such as MPLAB
SIM) is that their use as sumes that the hard ware op er ates per fectly, and that the
wir ing and com po nent in ter con nec tions are also cor rect. The em u lated pushbutton
switch is a vir tual de vice that never fails to pro duce the ex pected re sult. In the real
world, sys tems of ten fail be cause com po nents are de fec tive or have been in cor -
rectly con nected. The hard ware debugger al lows us to read the ac tual sig nal on the
board and to de tect any elec tronic, mechanical, or connectivity defect.

Which Hard ware Debugger?

All the hard ware debuggers listed and de scribed in Sec tion B.3.1 are us able to some
de gree. The high-end de vices, such as ICE 2000 and ICE 4000, are de signed for pro fes -
sional ap pli ca tion and can be used as pro duc tion tools for pro gram ming and prod uct
de vel op ment. The low-end de vices, such as MPLAB PIKkit 2 and 3, MPLAB ICD2 and
ICD3, and MPLAB REAL ICE, are not in tended as pro duc tion tools and have lim ited
func tion al ity.

The min i mal func tion al ity re quired of a hard ware debugger is the abil ity to set a
break point, to sin gle-step through code, and to in spect mem ory and code. All of the
prod ucts de scribed pre vi ously have these ca pa bil i ties. In later sec tions we de scribe
the op er a tion of the MPLAB ICD2 debugger.

ICSP

All En hanced MCU de vices can be In-Cir cuit Se rial Pro grammed (ICSP) while in the
end ap pli ca tion cir cuit. This re quires one line for clock, one line for data, and three
other lines for power, ground, and the pro gram ming volt age. ICSP al lows as sem bling a
prod uct with a blank microcontroller, which can be later pro grammed with the lat est
ver sion of the soft ware. The ap pli ca tion cir cuit must be de signed to al low all the pro -
gram ming sig nals to be di rectly con nected to the microcontroller. Fig ure B.24 shows a
typ i cal cir cuit for ICSP operations.

In Fig ure B.24 no tice the fol low ing fea tures:

1. The MCLR/VPP pin is iso lated from the rest of the cir cuit.

2. Two pins are de voted to CLOCK and DATA.

3. There is ca pac i tance on each of the VDD, MCLR/VPP, CLOCK, and DATA pins.

4. There are a min i mum and max i mum op er at ing volt ages for VDD.

5. The cir cuit board must have an os cil la tor.

520 Ap pen dix B

Fig ure B.24 ICSP cir cuit el e ments.

In-se ries de bug ging pro vided by the de vices men tioned pre vi ously as sumes con -
nec tiv ity to sup port ICSP

B.3.3 MPLAB ICD2 Debugger Con nec tiv ity
Micro chip has de scribed MP[LAB ICD2 and ICD3 as cost-ef fi cient al ter na tives to their
more ex pen sive ICE em u la tors. The trade-off of the ICD prod ucts is that the de vel oper
must de sign prod ucts to be ICD com pat i ble. Some of the re quire ments of the in-cir cuit
debugger are

• The in-cir cuit debugger re quires ex clu sive use of some hard ware and soft ware re -
sources of the tar get.

• The tar get microcontroller must have a func tion ing clock and be run ning.

• The ICD can de bug only when all the links in the sys tem are fully func tional.

An em u la tor pro vides mem ory and a clock, and can run code even with out be ing
con nected to the tar get ap pli ca tion board. Dur ing the de vel op ment and de bug ging
cy cle, an ICE pro vides the most power to get the sys tem fully func tional, whereas
an ICD may not be able to de bug at all if the ap pli ca tion does not run. On the other
hand, an in-cir cuit de bug con nec tor can be placed on the ap pli ca tion board and con -
nected to an ICD even af ter the sys tem has been pro duced, al low ing easy test ing,
de bug ging, and re pro gram ming of the ap pli ca tion. Even though an ICD has some
draw backs in com par i son to an ICE, in this situation it has some distinct
advantages:

• The ICD does not re quire ex trac tion of the microcontroller from the tar get board
in or der to in sert an ICE probe.

• The ICD can re pro gram the firm ware in the tar get ap pli ca tion with out any other
con nec tions or equip ment.

An ICE em u lates the tar get microcontroller by means of cus tom hard ware. An
ICD, on the other hand, uses hard ware on the tar get microcontroller it self to re pro -
duce some of the func tions of an ICE. An ICD also em ploys soft ware run ning on the
tar get to per form ICE-like func tions and, as a re sult, re lies on the tar get

 De bug ging 18F De vices 521

microcontroller for some mem ory space, CPU con trol, stack stor age, and I/O pins
for communication.

Con nec tion from Mod ule to Tar get

The MPLAB ICD 2 is con nected to the tar get board with a mod u lar tele phone con nec -
tor. The six-con duc tor ca ble fol lows RJ 12 spec i fi ca tions. When wir ing your own sys -
tems, it is im por tant to note that RJ 11 ca bles and plugs may look iden ti cal to the RJ 12
but have four ac tive con nec tors in stead of six. In the ICD 2, only five of the six RJ 12
lines are used. Fig ure B.25 shows the pin num bers and wir ing of a tar get board com -
pat i ble with MPLAB ICD 2.

Fig ure B.25 MPLAB ICD 2 connections to the tar get board.

Fig ure B.25 shows the con nec tions of the five pins of the mod u lar jack RJ 12. No -
tice that the con nec tor socket has the lock ing tab fac ing down, to ward the board. If
the RJ 12 socket in the de vice has the lock ing tab fac ing up, then the ca ble wir ing
must be reversed.

The ac tual con nec tions to the PIC 18F se ries microcontroller (as well as many
other MPUs that sup port in-cir cuit de bug ging) re quire the fol low ing five lines:

1. Line 1 on the con nec tor goes to the VPP/MCLR pin on the tar get. In the 18F452,
this is pin 1.

2. Line 2 on the con nec tor goes to the VDD line on the tar get microcontroller. In the
16F452, this is the 5-volt source lines which can be ei ther pin 11 or 32.

3. Line 3 on the con nec tor goes to ground on the de vice. In the 18F452, this can be
ei ther pin 12 or pin 31.

4. Line 4 on the con nec tor goes to the PGD pin on the tar get de vice. In the 18F452,
this is pin 40.

5. Line 5 on the con nec tor goes to the PGC pin on the tar get de vice. In the 18F452,
this is pin 39.

Fig ure B.26 shows the ac tual wir ing.

522 Ap pen dix B

Locking
tab

Fig ure B.26 ICD 2 connection to target board.

In the cir cuit of Fig ure B.26, pin 2 (VDD) can sup ply a lim ited amount of power to
the tar get ap pli ca tion. Ac tu ally, only three lines are ac tive and rel e vant to MPLAB
ICD 2 op er a tion: VPP/MCLR, PGC, and PGD. If MPLAB ICD 2 does not have volt age
on its VDD line (pin 2 of the ICD con nec tor), ei ther from power be ing sup plied to
the tar get by MPLAB ICD 2 or from a sep a rate tar get power sup ply, it will not op er -
ate.

De bug Mode Re quire ments

To use MPLAB ICD 2 in de bug mode, the fol low ing re quire ments must be met:

1. MPLAB ICD 2 must be con nected to a PC.

2. The MPLABf the tar get de vice. VSS and VDD are also re quired to be con nected
ICD 2 must be con nected to the VPP, PGC, and PGD pins obetween the MPLAB
ICD 2 and tar get de vice.

3. The tar get PIC MCU must have power and a func tional, run ning os cil la tor.

The tar get PIC MCU must have its con fig u ra tion words pro grammed as fol lows:

• The os cil la tor bits should match the tar get os cil la tor.

• The tar get must not have the Watch dog Timer en abled.

• The tar get must not have code pro tec tion en abled.

• The tar get must not have ta ble read pro tec tion en abled.

De bug Mode Prep a ra tion

The first pre pa ra tory step con sists of set ting MPLAB ICD 212 as the cur rent debugger.
This is ac com plished in the Debugger>Se lect Tool di a log.

 De bug ging 18F De vices 523

• When Debugger>Pro gram is se lected, the ap pli ca tion code is pro grammed into
the microcontroller mem ory via the ICSP pro to col.

• A small “de bug ex ec u tive” pro gram is loaded into the high area of pro gram mem -
ory of the tar get PIC MCU. The ap pli ca tion pro gram must not use this re served
space. This space typ i cally re quires 0x120 words of pro gram mem ory.

• Spe cial “in-cir cuit de bug” reg is ters in the tar get PIC MCU are en abled. These al -
low the de bug ex ec u tive to be ac ti vated by the MPLAB ICD 2.

• The tar get PIC MCU is held in re set by keep ing the VPP/MCLR line low.

De bug Ready State

Fig ure B.27 shows the con di tions of the de bug ready state.

Fig ure B.27 MPLAB ICD 2 de bug ready state.

Test ing the MPLAB ICD 2 de bug state is ac com plished by ex e cut ing a Build-All
com mand on the pro ject. The break point is set early in the pro gram code. When a
break point is set from the user in ter face of the MPLAB IDE, the ad dress of the
break point is stored in the spe cial in ter nal de bug reg is ters of the tar get PIC MCU.
Com mands on PGC and PGD com mu ni cate di rectly to these reg is ters to set the
breakpoint address.

Next, the Debugger>Run func tion or the Run icon (for ward ar row) is pressed
from MPLAB IDE. This raises the VPP/MCLR line to al low the tar get to run; the tar -
get will start from ad dress zero and ex e cute un til the pro gram coun ter reaches the
break point ad dress pre vi ously stored.

Af ter the in struc tion at the break point ad dress is ex e cuted, the in-cir cuit de bug
mech a nism of the tar get microcontroller trans fers the pro gram coun ter to the de -
bug ex ec u tive and the user's ap pli ca tion is halted.

524 Ap pen dix B

MPLAB ICD 2 com mu ni cates with the de bug ex ec u tive via the PGC and PGD
lines. Through these lines, the debugger gets the break point sta tus in for ma tion and
sends it back to the MPLAB IDE. The MPLAB IDE then sends a se ries of que ries to
MPLAB ICD 2 to get in for ma tion about the tar get microcontroller, such as file reg is -
ter con tents and the processor's state.

The de bug ex ec u tive runs like an ap pli ca tion in pro gram mem ory. It uses one or
two lo ca tions on the hard ware stack and about four teen file reg is ters for its tem po -
rary vari ables. If the microcontroller does not run, for any rea son, such as no os cil -
la tor, a faulty power sup ply con nec tion, shorts on the tar get board, etc., then the
de bug ex ec u tive can not com mu ni cate with MPLAB ICD 2. In this case, MPLAB IDE
will issue an error message.

An other way to get a break point is to press the MPLAB IDE's Halt but ton. This
tog gles the PGC and PGD lines in such a way that the in-cir cuit de bug mech a nism of
the tar get PIC MCU switches the pro gram coun ter from the user's code in pro gram
mem ory to the de bug ex ec u tive. At this time, the tar get ap pli ca tion pro gram is ef -
fec tively halted, and MPLAB IDE uses MPLAB ICD 2 com mu ni ca tions with the de -
bug ex ec u tive to in ter ro gate the state of the target PIC MCU.

Bread board De bug ging

Most com mer cial demo boards, in clud ing PICDEM 2 PLUS, dsPICDEM, and LAB X1,
and this book's Demo Boards, are wired for com pat i bil ity with MPLAB ICD 2. These
boards have the fe male RJ 12 con nec tor and can be hooked up to ICD 2 mod ules as pre -
vi ously de scribed. Demo boards are a great learn ing tool, and the con nec tiv ity to ICD
2 al lows for gain ing skills in hard ware de bug ging.

How ever, when de vel op ing a new cir cuit, it would be a co in ci dence to find a com -
mer cial demo board that du pli cates the com po nents and con nec tors. Be cause most
new sys tems are de vel oped on bread boards it is quite use ful to con nect the bread -
board cir cuit to the debugger hard ware. Con ven tional fe male RJ 12 con nec tors can -
not be used on a bread board but there are sev eral con nec tors on the mar ket that
can. One type con tains pig tails that can be plugged into the moth er board while the
other end is an RJ 12 fe male con nec tor. This device is shown in Figure B.28.

Fig ure B.28 Wired RJ 12 con nec tor for bread board use.

 De bug ging 18F De vices 525

The wires in the con nec tor in Fig ure B.28 are color coded. Other vari a tions are
also avail able on the mar ket.

B.4 MPLAB ICD 2 Tu to rial
We have de vel oped a very sim ple ex am ple to dem on strate de bug ging us ing the
MPLAB ICD 2 debugger. The sam ple pro ject is named ICD2_Tu tor.mcp, and the sin gle
source file is LedFlash_Reloc.asm.

B.4.1 Cir cuit Hard ware
The cir cuit used in this tu to rial con sists of four pushbutton switches and four LEDs.
Fig ure B.29 shows the cir cuit di a gram.

 Fig ure B.29 Cir cuit diagram for de bug ging tu to rial.

526 Ap pen dix B

Osc

+5V

+5V

+5V

+5V

+5V +5V +5V

+5V

R
=

1
0

K

R
=

1
0

K

R
=

1
0

K

R
=

1
0

K

R
=

1
0

K

R
=

3
8

0
 O

h
m

PB #1 PB #2 PB #3

PB #4
POWER

ON/OFF LED

RESET
SWITCH

R
=

3
3

0
 O

h
m

X
 4

1
8

F
4

5
2

MCLR

RA0

RA1

RA2

RA3

RA4

RA5

RE0

RE1

RE2

Vdd

Vss

OSC1

OSC2

RC0

RC1

RC2

RC3

RD0

RD1

RPD

RPC

RB5

RB4

RB3

RB2

RB1

RBO

Vdd

Vss

RD7

RD6

RD5

RD4

RC7

RC6

RC5

RC4

RD3

RD2

+5v

RJ-12

MCLR

RJ 12 (1)

6 5 4 3 2 1

B.4.2 LedFlash_Reloc Pro gram
The pro gram LedFlash_Reloc.asm mon i tors ac tion on four pushbutton switches
wired to lines RB0 to RB3 in PORT B and lights the cor re spond ing LED wired lo lines
RC0 to RC3 in PORT C. The pushbutton switches and LEDs are paired as fol lows:

 LED to pushbutton as so ci a tion:
 RB3 - RB2 - RB1 - RB0 ==> Pushbuttons
 | | | |
 RC3 - RC2 - RC1 - RC0 ==> LEDs

In this tu to rial, a de fect in the code has been in tro duced in ten tion ally to dem on -
strate de bug ging. It con sists of the fact that be cause the pushbutton switches are
wired ac tive low, the value in PORT B lines 0 to 3 must be in verted be fore it is re -
flected in PORT C. Howevwer, if the negf in struc tion is used, the re sults are in cor -
rect be cause negf gen er ates a two's com ple ment re sult. Many mi cro pro ces sors and
microcontrollers con tain a pure NOT in struc tion that turns all the one bits to zero
and all zero bits to one, but the in struc tion set of the PIC 18 fam ily does not in clude
this opcode. In this case, the pure NOT is ob tained us ing xorlw with a mask of 1-dig -
its for the field to be negated:

xorlw B'00001111'

This works be cause XORing with a 1 digit in verts the bit in the other op er and.

B.4.3 Relocatable Code
MPLAB ICD 2 re quires that the pro gram be built us ing relocatable code. Ad di tion ally,
the code must com ply with the re quire ments and re stric tions of the ICD 2 sys tem.
MPASM as sem bler, used with MPLINK ob ject linker, has the abil ity to gen er ate ob ject
mod ules and ex e cut able files. How ever, writ ing source code that as sem bles into an
ob ject mod ule is slightly dif fer ent from writ ing ab so lute code. MPASM as sem bler rou -
tines de signed for ab so lute ad dress as sem bly will re quire mi nor mod i fi ca tions to com -
pile cor rectly into relocatable ob ject mod ules.

Header Files

The stan dard header files (such as p18f452.inc) should be used when gen er at ing the
ob ject mod ule.

Pro gram Mem ory

In relocatable code, pro gram mem ory code must be or ga nized into log i cal code sec -
tions. This means that the code must be pre ceded by a code sec tion dec la ra tion fol -
low ing the for mat

[la bel] code [ROM_ad dress]

In the sam ple pro gram, the code sec tions are de fined as fol lows:

Re set_Vec tor code 0x000
goto Start

; Start ap pli ca tion be yond vec tor area

code 0x002A

 De bug ging 18F De vices 527

Start:

If more than one code sec tion is de fined in a source file, each sec tion must have a
unique name. If the name is not spec i fied (as in the sam ple pro gram), it will be given
the de fault name .code. Each pro gram mem ory sec tion must be con tig u ous within a
sin gle source file. A sec tion may not be bro ken into pieces within a sin gle source
file. The phys i cal ad dress of the code can be fixed by sup ply ing the op tional ad dress
pa ram e ter of the code di rec tive. Sit u a tions where this might be necessary are

• To spec ify re set and in ter rupt vec tors

• To en sure that a code seg ment does not over lap page bound aries

Con fig u ra tion Re quire ments

Af ter the con ven tional list and in clude di rec tives, the source code sets the re quired
con fig u ra tion bits as fol lows:

;===
; con fig u ra tion bits
;===
; Con fig u ra tion bits set as re quired for MPLAB ICD 2
 config OSC = HS ; As sumes high-speed res o na tor
 config WDT = OFF ; No watch dog timer
 config LVP = OFF ; No low volt age pro tec tion
 config DEBUG = OFF ; No back ground debugger
 config PWRT = OFF ; Power on timer dis abled
 config CP0 = OFF ; Code pro tec tion off
 config CP1 = OFF
 config CP2 = OFF
 config CP3 = OFF
 config WRT0 = OFF ; Write pro tec tion off
 config WRT1 = OFF
 config WRT2 = OFF
 config WRT3 = OFF
 config EBTR0 = OFF ; Ta ble read pro tec tion off
 config EBTR1 = OFF
 config EBTR2 = OFF
 config EBTR3 = OFF

In the PIC 18 fam ily the config di rec tive is not pre ceded by one or more un der -
score char ac ters, as is the case with other PICs.

RAM Al lo ca tions

Relocatable code will build with out er ror if data is de fined us ing the equ di rec tives
that are com monly used when pro gram ming in ab so lute code. But this prac tice is
likely to gen er ate linker er rors. Ad di tion ally, vari ables de fined with the equ di rec tive
are also not vis i ble to the MPLAB ICD 2 debugger. MPLAB MASM sup ports sev eral di -
rec tives that are com pat i ble with relocatable code and that make the vari able names
vis i ble at de bug time. The ones most of ten used are

• udata de fines a sec tion of uninitialized data. Items de fined in a udata sec tion are
not in i tial ized and can be ac cessed only through their names.

• udata_acs de fines a sec tion of uninitialized data that is placed in the ac cess area.
In PIC 18 de vices, ac cess RAM is al ways used for data de fined with the udada_acs
di rec tive. Ap pli ca tions use this area for the data items most of ten used.

528 Ap pen dix B

• udata_ovr de fines a sec tion of ovr uninitialized, over laid data. This data sec tion is
used for vari ables that can be de clared at the same ad dress as other vari ables in
the same mod ule or in other linked mod ules, such as tem po rary vari ables.

• udata_shr de fines a sec tion of uninitialized, shared data. This di rec tive is used in
de fin ing data sec tions for PIC12/16 de vices.

• idata de fines a sec tion of in i tial ized data. This di rec tive forces the linker to gen er -
ate a lookup ta ble that can be used to ini tial ize the vari ables in this sec tion to the
spec i fied val ues. When linked with MPLAB C18 code, these lo ca tions are in i tial -
ized dur ing ex e cu tion of the start-up code. The lo ca tions re served by this sec tion
can be ac cessed only by the de fined la bels or by in di rect ac cesses.

The fol low ing ex am ple shows the use of sev eral RAM al lo ca tion di rec tives:

udata_acs 0x10 ; Al lo cated at ad dress 0x10
j res 1 ; Data in ac cess bank
temp res 1

idata
ThisV db 0x29 ; In i tial ized data
Aword dw 0xfe01

udata ; Al lo cated by the Linker
varx res 1 ; One byte re served
vary res 1 ; An other byte

The lo ca tion of a sec tion may be fixed in mem ory by sup ply ing the op tional ad -
dress, as in the udata_acs ex am ple listed pre vi ously. If more than one of a sec tion
type is spec i fied, each one must have a unique name. If a name is not pro vided, the
de fault sec tion names are .idata, .udata, .udata_acs, .udata_shr, and .udata_ovr.

When de fin ing in i tial ized data in an idata sec tion, the di rec tives db, dw, and data
can be used. The db di rec tive de fines suc ces sive bytes of data, while the dw di rec -
tive de fines suc ces sive words; for examp,le

 idata
Bytes db 1,2,3
Words dw 0x1234,0x5678
String db "This is a test",0

LedFlash_Reloc.asm Pro gram

The pro gram LedFlash_Reloc that is part of the ICD2_Tu tor pro ject is used as a sim ple
dem on stra tion of hard ware de bug ging with MPLAB ICD 2. The elec tronic files for the
pro ject and pro gram are found in the book's on line soft ware pack age.

; File name: LedFlash_Reloc.asm
; Pro ject name: ICD2_Tu tor.mcp
; Date: Feb ru ary 11, 2013
; Au thor: Julio Sanchez
; PIC 18F452
;
;===
; De scrip tion:
; A dem on stra tion pro gram for the tu to rial on MPLAB ICD 2
; is pre sented in Ap pen dix B. Pro gram mon i tors ac tion on the

 De bug ging 18F De vices 529

; four pushbutton switches and lights the cor re spond ing
; LED if the switch is closed.
;
; LED to pushbutton as so ci a tion:
; RB3 - RB2 - RB1 - RB0 ==> Pushbuttons
; | | | |
; RC3 - RC2 - RC1 - RC0 ==> LEDs
;
; Bug:
; Because the pushbutton switches are wired ac tive low,
; the value in PORT B lines 0 to 3 must be in verted be fore
; it is re flected in PORT C. If the negf in struc tion is
; used the re sults are in cor rect because negf gen er ates a
; two's com ple ment re sult. Because the in struc tion set does
; not in clude a pure NOT op er a tor, the cor rect re sult
; is ob tained us ing xorlw with a mask of one-dig its for
; the field to be ne gated: xorlw B'00001111'
;
; Pro gram uses relocatable code (re quired for MPLAB ICD 2
; op er a tion). Code in cludes sev eral nop in struc tions to
; fa cil i tate in sert ing break points
;===
;

list p=18f452
; In clude file, change di rec tory if needed
in clude "p18f452.inc"

; ==
; con fig u ra tion bits
;===
; Con fig u ra tion bits set as re quired for MPLAB ICD 2
 config OSC = HS ; As sumes high-speed res o na tor

config WDT = OFF ; No watch dog timer
config LVP = OFF ; No low volt age pro tec tion
config DEBUG = OFF ; No back ground debugger

 config PWRT = OFF ; Power on timer dis abled
 config CP0 = OFF ; Code pro tec tion block x = 0-3
 config CP1 = OFF
 config CP2 = OFF
 config CP3 = OFF
 config WRT0 = OFF ; Write pro tec tion block x = 0-3
 config WRT1 = OFF
 config WRT2 = OFF
 config WRT3 = OFF
 config EBTR0 = OFF ; Ta ble read pro tec tion block x = 0-3
 config EBTR1 = OFF
 config EBTR2 = OFF
 config EBTR3 = OFF

;==
; vari ables in PIC RAM
;==

udata_acs
; De clare vari ables at 2 mem ory lo ca tions in acess RAM
j res 1
temp res 1
;===

; Start at the re set vec tor
Re set_Vec tor code 0x000

goto Start
; Start ap pli ca tion be yond vec tor area

530 Ap pen dix B

code 0x002A
Start:

clrf TRISC ; PORTC all lines are out put
; PORT B lines 0 to 3 to in put
 movlw B'00001111'
 movff WREG,temp
 movwf TRISB
 clrf PORTC
 nop
read_PBs:
; Read pushbuttron switches
 nop
 movf PORTB,W ; PORTB to W
; The negf in struc tion fails because it pro duces a re sult
; in two's com ple ment form. It must be re placed with the
; xorlw in struc tion that fol lows
 negf WREG ; Ne gate???
; xorlw B'00001111' ; XOR with mask to NOT
 movff WREG,PORTC ; To PORT C
 nop
 goto read_PBs

 end

B.4.4 De bug ging Ses sion
Run ning the LedFlash_Reloc pro gram un der MPLAB ICD 2 or any other hard ware
debugger im me di ately shows that the pro gram mal func tions as orig i nally coded.
Pushbuttons num ber 3 and 2 per form as ex pected but pushbuttons num ber 1 and 0 do
not. Breakpointing at the end of the read_PBs: rou tine im me di ately shows that the
negf in struc tion does not pro duce the de sired re sults. Be cause the de fault con tents of
Port B is xxxx1111B, in vert ing the bits should re sult in xxxx0000B, which is not the
case be cause the re sult ing value is xxxx0001B.

The er ror re sults from the fact that the negf in struc tion gen er ates a two's com ple -
ment of the tar get op er and. The NOT in struc t ion that is used in many
microcontrollers and mi cro pro ces sors pro duces a bi nary ne ga tion of the op er and in
which each bi nary dig its is com ple mented, but there is no NOT opcode in the 18F
pro ces sor fam ily. In pro ces sors that do not pro vide a ne gate in struc tion (such as
negf), the two's com ple ment can be ob tained by com ple ment ing all bi nary dig its and
add ing one to the re sult. This im plies that the re sult of a negf in struc tion can be con -
verted into a pure NOT by subtracting one from the result.

 De bug ging 18F De vices 531

Ap pen dix C

Build ing Your Own Cir cuit Boards

Sev eral meth ods have been de vel oped for mak ing printed cir cuit boards on a small
scale, as would be con ve nient for the ex per i menter and pro to type de vel oper. If you
look through the pages of any elec tron ics sup ply cat a log, you will find kits and com po -
nents based on dif fer ent tech nol o gies of var i ous lev els of com plex ity. The method we
de scribe in this ap pen dix is per haps the sim plest one be cause it does not re quire a
pho to graphic pro cess.

The pro cess con sists of the fol low ing steps:

1. The cir cuit di a gram is drawn on the PC us ing a gen eral-pur pose or a spe cial ized
draw ing pro gram.

2. A print out is made of the cir cuit draw ing on pho to graphic pa per.

3. The print out is trans ferred to a cop per-clad cir cuit board blank by iron ing over
the back side with a house hold clothes iron.

4. The re sult ing board is placed in an etch ing bath that eats away all the cop per, ex -
cept the cir cuit im age ironed onto the board sur face.

5. The board is washed of etchant, cleaned, drilled, and the com po nents sol dered to
it in the con ven tional man ner.

6. Op tion ally, an other im age can be ironed onto the back side of the board to pro vide
com po nent iden ti fi ca tion, lo gos, etc.

The fol low ing URL con tains de tailed in for ma tion on mak ing your own PCBs:

Http://www.fullnet.com/u/tomg/gooteedr.htm

C.1 Draw ing the Cir cuit Di a gram
Any com puter draw ing pro gram serves this pur pose. We have used CorelDraw™ but
there are sev eral spe cial ized PCB draw ing pro grams avail able on the Internet. The fol -
low ing is a cir cuit board draw ing used by us for a PIC flasher cir cuit de scribed in the
text:

533

Fig ure C.1 PIC flasher circuit board draw ing.

Note in the draw ing that the cir cuit lo ca tions where the com po nents are to be sol -
dered con sist of small cir cu lar pads, usu ally called sol der pads. The illustration in
Fig ure C.2 zooms into the lower cor ner of the draw ing to show the de tails of the sol -
der pads.

Fig ure C.2 De tail of cir cuit board pads.

Quite of ten it is nec es sary for a cir cuit line to cross be tween two stan dard pads.
In this case, the pads can be mod i fied so as to al low it. The mod i fied pads are shown
in Fig ure C.3.

534 Ap pen dix C

 Fig ure C.3 Mod ified circuit boards pads

C.2 Print ing the PCB Di a gram
The cir cuit di a gram must be printed us ing a la ser printer. Inkjet ton ers do not pro duce
an im age that re sist the ac tion of the etchant. Al though in our ex per i ments we used La -
ser Jet print ers it is well doc u mented that vir tu ally any la ser printer will work. La ser
copi ers have also been used suc cess fully for cre at ing the PCB cir cuit im age.

With the method we are de scrib ing, the width of the traces can be come an is sue.
The traces in the PCB im age of Fig ure B-1 are 2 points, which is 0.027". Traces half
that width and less have been used suc cess fully with this method but as the traces
be come thin ner the en tire pro cess be comes more crit i cal. For most sim ple cir cuits
0.020" traces should be a use ful limit. Also be care ful not to touch the glossy side of
the pa per or the printed im age with fin gers.

Note that the pat tern is drawn as if you were look ing from the com po nent side of
the board.

C.3 Trans ferring the PCB Im age
Users of this method state that one of the most crit i cal el e ments is the pa per used in
print ing the cir cuit. Pin holes in some pa pers can de grade the im age to the point that
the cir cuit lines (es pe cially if they are very thin) do not etch cor rectly. An other prob -
lem re lates to re mov ing the ironed-on pa per from the board with out dam ag ing the
board sur face.

Glossy, coated inkjet-printer pa per works well. Even better re sults can be ob -
tained with glossy photo pa per. We use a com mon high-gloss pho to graphic pa per
avail able from Sta ples® and sold un der the name of “pic ture pa per.” The 30 sheets,
8-by-10 size, have the Sta ples® num ber B031420197 1713. The UPC barcode is: 7
18103 02238 5.

 Build ing Your Own Cir cuit Boards 535

Trans ferring the im age onto the board blank is done by ap ply ing heat from a com -
mon clothes iron, set on the hot test set ting, onto the pa per/board sand wich. In most
irons, the hot test set ting is la beled “linen.” Af ter go ing over the back of the pa per
sev eral times with the hot iron, the pa per be comes fused to the cop per side of the
blank board. The board/pa per sand wich is then al lowed to soak in wa ter for about
10 min utes, af ter which the pa per can be re moved by peel ing or light scrub bing with
a tooth brush. It has been men tioned that Hewlett-Packard™ toner car tridges with
microfine par ti cles work better than the store-brand toner car tridges.

C.4 Etch ing the Board
Once the pa per has been re moved and the board washed, it is time to pre pare the
board for etch ing. The pre lim i nary op er a tions con sist of rub bing the cop per sur face of
the board with Scotchbrite® plas tic abra sive pad and then scrub bing the sur face with
a pa per towel soaked with ac e tone sol vent.

When the board is rubbed and clean, it is time to etch the cir cuit. The etch ing so -
lu tion con tains ferric chlo ride and is avail able from Ra dio Shack™ as a so lu tion and
from Jameco Elec tron ics™ as a pow der to be mixed by the user. PCB ferric chloride
etchant should be han dled with rub ber gloves and rub ber apron be cause it stains
the skin and uten sils. Also, con cen trated acid fumes from ferric chlo ride so lu tion
are toxic and can cause se vere burns. These chem i cals should be han dled ac cord ing
to cau tions and warn ings posted in the con tain ers.

The ferric chloride so lu tion should be stored and used in a plas tic or glass con -
tainer, never metal. Faster etch ing is ac com plished if the etch ing so lu tion is first
warmed by plac ing the bot tle in a tub of hot wa ter. Once the board is in the so lu tion,
face up, the con tainer is rocked back and forth. It is also pos si ble to aid in the cop -
per re moval by rub bing the sur face with a rub ber-gloved fin ger.

C.5 Fin ishing the Board
The etched board should be washed well, first in wa ter and then in lac quer thin ner or
ac e tone; ei ther sol vent works. It is better to just rub the board sur face with a pa per
towel soaked in the sol vent. Keep in mind that most sol vents are flam ma ble and ex plo -
sive, and also toxic.

Af ter the board is clean, the mount ing holes can be drilled us ing the sol der pads
as a guide. A small elec tric drill at high rev o lu tions, such as a Dremmel® tool, works
well for this op er a tion. The stan dard drill size for the mount ing holes is 0.035
inches. A #60 drill (0.040 inches) also works well. Once all the holes are drilled, the
com po nents can be mounted from the back side and sol dered at the pads.

C.6 Back side Im age
The com po nent side (back side) of the PCB can be printed with an im age of the com po -
nents to be mounted or with lo gos or other text. A sin gle-sided blank board has no cop -
per coat ing on the back side so the im age is just ironed on with out etch ing. Prob a bly
the best time to print the back side im age is af ter the board has been etched and drilled,
but be fore mount ing the com po nents.

536 Ap pen dix C

Be cause the im age is to be trans ferred di rectly to the board, it must be a mir ror
im age of the de sired graph ics and text. Most draw ing pro grams con tain a mir ror ing
trans for ma tion so the back side im age can be drawn us ing the com po nent side as a
guide, and then mir rored hor i zon tally be fore iron ing it on the back side of the board.

 Build ing Your Own Cir cuit Boards 537

Ap pen dix D

PIC18 In struc tion Set

This appendix de scribes the in struc tions in the PIC 18 fam ily. Not all in struc tions are
im ple mented in all de vices but all of them work in the18F452 PIC dis cussed in the text.

Ta ble D.1

Mid-Range PIC In struc tion Set

 BITS
 MNEMONIC OPERAND DESCRIPTION CYCLES AFFECTED

BYTE-ORIENTED OPERATIONS:

ADDWF f,d Add WREG and f 1 C,DC,Z
ADDWFC f, d, a Add WREG and Carry bit to f 1 C, DC, Z,

OV, N
ANDWF f,d AND WREG with f 1 Z
CLRF f Clear f 1 Z
COMF f,d Com ple ment f 1 Z
CPFSEQ f,a Com pare f with WREG, skip = 1-3 None
CPFSGT f,a Com pare f with WREG, skip > 1-3 None
CPFSLt f,a Com pare f with WREG, skip < 1-3 None
DECF f,d Dec re ment f 1 Z
DECFSZ f,d,a Dec re ment, skip if 0 1(2) None
DCFSNZ f,d,a Dec re ment, skip if Not 0 1(2) None
INCF f,d In cre ment f 1 Z
INCFSZ f,d In cre ment, skip if 0 1(2) None
INFSNZ f,d In cre ment, skip if Not 0 1(2) None
IORWF f,d In clu sive OR WREG and f 1 Z
MOVF f,d Move f 1 Z
MOVFF fs,fd Move word to word 2 None
MOVWF f Move WREG to f 1 None
MULWF f, a Mul ti ply WREG with f 1 None
NEGF f, a Ne gate f 1 C,DC,Z,
RLCF f,d,a Ro tate left through carry 1 C,Z,N
RLNCF f,d,a Ro tate left (no carry) 1 Z,N
RRCF f,d,a Ro tate right through carry 1 C,Z,N
RRNCF f,d,a Ro tate right (no carry) 1 Z,N
SETF f,a Set f 1 None

(con tin ues)

539

Ta ble D.1

Mid-Range PIC In struc tion Set (con tin ued)

BITS
 MNEMONIC OPERAND DESCRIPTION CYCLES AFFECTED

SUBFWB f,d,a Sub tract f from WREG 1 C,DC,Z,
(with bor row) OV,N

SUBWF f,d,a Sub tract WREG from f 1 C,DC,Z.
OV,N

SUBWFB f,d,a Sub tract WREG from f 1 C,DC,Z,
(with bor row) OV,N

SWAPF f,d Swap nib bles in f 1 None
TSTFSZ f,a Test f, skip if 0 1 None
XORWF f,d,a XOR WREG with f 1 Z,N

 BIT-ORIENTED OPERATIONS

BCF f,b Bit clear in f 1 None
BSF f,b Bit set in f 1 None
BTFSC f,b Bit test, skip if clear 1 None
BTFSS f,b Bit test, skip if set 1 None
BTG f,d,a Tog gle bit f 1 None

LITERAL AND CONTROL OPERATIONS
ADDLW k Add lit eral and WREG 1 C,DC,Z
ANDLW k AND lit eral and WREG 1 Z
BC n Branch if carry 1 None
BN n Brach if negatve 1 None
BNC n Branch if not carry 1 None
BNN n Branch if not neg a tive 1 None
BNOV n Branch if not oveerflow 1 None
BNZ n Brach if not zero 1 None
BOV n Branch if over flow 1 None
BRA n Branch un con di tion ally 1 None
BZ n Branch if zero 1 None
CALL k Call pro ce dure 2 None
CLRWDT - Clear watch dog timer 1 TO,PD
DAW - Dec i mal ad just WREG 1 TO,PD
GOTO k Go to ad dress 2 None
IORLW k In clu sive OR lit eral with WREG

1 Z
MOVLB k Move lit eral to BSR 1 None
MOVLW k Move lit eral to WREG 1 None
MULLW k Mul ti ply lit eral and WREG 1 None
NOP - No op er a tion 1 None
POP - Pop re turn stack 1 None
PUSH - Push re turn stack 1 None
LFSR f,k Move lit eral to FSR 1 None
RETLW K Re turn with lit eral in WREG 1 None
RETFIE - Re turn from in ter rupt 2 -
RETLW k Re turn lit eral in WREG 2 -
RETURN - Re turn from pro ce dure 2 -
RCALL n Rel a tive call 2 None
RESET Soft ware re set 1 ALL FLAGS
RETFIE s Re turn from in ter rupt 2 GIE,GIEH

PEIE,GIEL

(con tin ues)

540 Ap pen dix D

Ta ble D.1

Mid-Range PIC In struc tion Set (con tin ued)

BITS
 MNEMONIC OPERAND DESCRIPTION CYCLES AFFECTED

LITERAL AND CONTROL OPERATIONS

SLEEP - Go into SLEEP mode 1 TO,
PDSUBLW k Sub tract lit eral and WREG 1 C,DC,Z
XORLW k Ex clu sive OR lit eral 1 Z

with WREG

DATA AND PROGRAM MEMORY OPERATIONS

TBLRD* Ta ble read 2 None
TBLRD*+ Post-in cre ment ta ble read 2 None
TBLRD*- Post-dec re ment table read 2 None
TBLRD+* Pre-in cre ment table read 2 None
TBLWT* Ta ble write 2 None
TBLWT*+ Post-in cre ment ta ble write 2 None
TBLWT*- Post-dec re ment ta ble write 2 None
TBLWT+* Pre-in cre ment ta ble write 2 None

Leg end:
f = file reg is ter
d = des ti na tion: 0 = WREG

 1 = file reg is ter
b = bit po si tion
k = 8-bit con stant

 PIC18 In struc tion Set 541

Ta ble D.2

 Con ven tions Used in In struc tion De scrip tions

FIELD DESCRIPTION

f Reg is ter file ad dress (0x00 to 0x7F)
WREG Work ing reg is ter (ac cu mu la tor) also w.
b Bit ad dress within an 8-bit file reg is ter (0 to 7)
k Lit eral field, con stant data, or la bel (may be ei ther an 8-bit or an

11-bit value)
x Don't care (0 or 1)
d Des ti na tion se lect;

d = 0: store re sult in W,
d = 1: store re sult in file reg is ter f.

dest Des ti na tion ei ther the WREG reg is ter or the spec i fied reg is terfile
lo ca tion

label La bel name
TOS Top of Stack
PC Pro gram Coun ter
PCLATH Pro gram Coun ter High Latch
GIE Global In ter rupt En able bit
WDT Watch dog Timer
!TO Time-Out bit
!PD Power-Down bit
[] Op tional el e ment

 [XXX] Con tents of mem ory lo ca tion pointed at by XXX register
() Con tents
-> As signed to
< > Reg is ter bit field
ital ics User-de fined term

542 Ap pen dix D

ADDLW Add Lit eral and WREG

Syn tax: [la bel] ADDLW k
Op er ands: k in range 0 to 255
Op er a tion: (WREG) + k -> WREG
Sta tus Af fected: C, DC, Z
De scrip tion: The con tents of WREG are added to the eight

bit lit eral 'k' and the re sult is placed in WREG.
Words: 1
Cycles: 1

Example1:

ADDLW 0x15
Be fore In struc tion: WREG = 0x10
Af ter In struc tion: WREG = 0x25

Ex am ple 2:

ADDLW var1
Be fore In struc tion: WREG = 0x10
var1 is data memory variable
var1 = 0x37
Af ter In struc tion: WREG = 0x47

 PIC18 In struc tion Set 543

ADDWF Add WREG and f

Syn tax: [la bel] ADDWF f,d
Op er ands: f in range 0 to 127

d = 0 / 1
Op er a tion: (W) + (f) -> des ti na tion
Sta tus Af fected: C, DC, Z
De scrip tion: Add the con tents of the WREG reg is ter

with reg is ter 'f'. If 'd' is 0 the re sult is stored
in WREG. If 'd' is 1, the re sult is stored
back in Reg is ter 'f'.

Words: 1
Cycles: 1

Ex am ple 1:

ADDWF FSR,0
Be fore In struc tion:

WREG = 0x17
FSR = 0xc2

Af ter In struc tion:
WREG = 0xd9
FSR = 0xc2

Ex am ple 2:

 ADDWF INDF, 1
be fore In struc tion:

WREG = 0x17
FSR = 0xC2
Con tents of Ad dress (FSR) = 0x20

Af ter In struc tion:
WREG = 0x17
FSR = 0xC2
Con tents of Ad dress (FSR) = 0x37

544 Ap pen dix D

ADDWFC Add WREG and Carry bit to f

Syn tax: [la bel] ANDLW k
Operands: 0 ≤ k ≤ 255
Op er a tion: (WREG).AND. (k) -> WREG
Sta tus Af fected: Z, N
En cod ing: 0000 1011 kkkk kkkk
De scrip tion: The con tents of WREG are ANDed with

the eight bit lit eral 'k'. There sult is placed in
WREG.

Words: 1
Cy cles: 1

Ex am ple 1:

 ANDLW 0x5F ; And con stant to W
Be fore In struc tion:

WREG = 0xA3
Z, N = x

Af ter In struc tion:
WREG = 0x03
Z = 0
N = 0

Ex am ple 2:

ANDLW MYREG ; And ad dress of MYREG
; to WREG

Be fore In struc tion:
WREG = 0xA3
Ad dress of MYREG † = 0x37
Z, N = x
† MYREG is a sym bol for a
data mem ory lo ca tion

Af ter In struc tion:
WREG = 0x23
Z = 0
N = 0

 PIC18 In struc tion Set 545

ANDWF AND WREG with f

Syn tax: [la bel] ANDWF f, d, a
Operands: 0 ≤ f ≤ 255
Op er a tion: (WREG).AND. (f) -> des ti na tion
Sta tus Af fected: Z, N
De scrip tion: The con tents of WREG is ANDed with the

con tents of Reg is ter 'f'.
The 'd' bit se lects the des ti na tion for the
op er a tion. If 'd' is 1 the re sult is stored back in
the File Reg is ter. If 'd' is 0 the re sult is
stored in WREG.
The 'a' bit se lects which bank is ac cessed for
the op er a tion. If a is 1, the bank spec i fied
by the BSR Reg is ter is used. If a is 0, the
ac cess bank is used.

Words: 1
Cy cles: 1
Ex am ple 1:

ANDWF REG1, 1, 1 ; And WREG with REG1
Be fore In struc tion:

WREG = 0x17
REG1 = 0xC2
Z, N = x

Af ter In struc tion:
WREG = 0x17
REG1 = 0x02
Z = 0, N = 0

Ex am ple 2:

ANDWF REG1, 0, 1 ; And WREG with REG1
 ; (des ti na tion WREG)
Be fore In struc tion:

WREG = 0x17
REG1 = 0xC2
Z, N = x

 Af ter In struc tion:
WREG = 0x02
REG1 = 0xC2
Z = 0, N = 0

546 Ap pen dix D

BC Branch if Carry

Syn tax: [la bel] BC n
Operands: -128 ≤ f = ≤127
Op er a tion: If carry bit is set

(PC + 2) + 2n -> PC
Sta tus Af fected: None
De scrip tion: If the Carry bit is '1', then the pro gram will

branch. The 2's com ple ment num ber
(the off set) is added to the PC. Be cause the
PC will have in cre mented to fetch the next
in struc tion, the new ad dress will be (PC+2)+2n.
This in struc tion is then a two-cy cle in struc tion.

Words: 1
Cy cles: 1 (2)

 Ex am ple 1:
HERE BC C_CODE
. ; If C bit is not set
. ; execute this code
C_CODE
. ; Else, execute this code
.

 Ex am ple 2:
HERE BC $ + OFFSET ; If carry bit is set,
NO_C GOTO PROCESS_CODE ; branch to HERE+

; OFFSET
PLUS0 •
PLUS1 •
PLUS2 •
PLUS3 •
PLUS4 •
PLUS5 •
PLUS6 •

 Case 1: Be fore In struc tion:
PC = ad dress HERE
C = 0

Af ter In struc tion:
PC = ad dress NO_C

 Case 2: Before Instruction:

 PIC18 In struc tion Set 547

PC = ad dress HERE
 C = 1

Af ter In struc tion:
PC = ad dress HERE + OFFSET

548 Ap pen dix D

BCF Bit Clear f

Syn tax: [la bel] BCF f,b
Op er ands: f in range 0 to 127

b in range 0 to 7
Op er a tion: 0 ->f
Sta tus Af fected: None
De scrip tion: Bit 'b' in Reg is ter 'f' is cleared.
Words: 1
Cycles: 1

Ex am ple 1:

BCF reg1,7
Be fore In struc tion: reg1 = 0xc7 (1100 0111)
Af ter In struc tion: reg1 = 0x47 (0100 0111)

Ex am ple 2:

BCF INDF,3
Be fore In struc tion: WREG = 0x17

 FSR = 0xc2
[FSR]= 0x2f

Af ter In struc tion:
WREG = 0x17
FSR = 0xc2
[FSR] = 0x27

 PIC18 In struc tion Set 549

BN Branch if Neg a tive

Syn tax: [la bel] BN n
Operands: -128 ≤ f ≤ 127
Op er a tion: If neg a tive bit is 1

(PC + 2) + 2n -> PC
Sta tus Af fected: None
De scrip tion: If the Neg a tive bit is 1, then the pro gram will

branch. The 2's com ple ment num ber is added
to the PC. Be cause the PC will have
in cre mented to fetch the next in struc tion, the
new ad dress will be (PC+2)+2n. This
in struc tion is then a two-cy cle in struc tion.

 Ex am ple 1:
HERE BN N_CODE ; If N bit is not set
NOT_N • ; execute this code

•
GOTO MORE_CODE
N_CODE • ; Else, this code will

• ; execute
Case 1: Before Instruction:

PC = ad dress HERE
N = 0

Af ter In struc tion:
PC = ad dress NOT_N

Case 2: Be fore In struc tion:
PC = ad dress HERE
N = 1

Af ter In struc tion:
PC = ad dress N_CODE

 Ex am ple 2:
HERE BN $ + OFFSET ; If neg a tive bit is

; set
NOT_N GOTO PROCESS_CODE ; branch to HERE

; + OFFSET
PLUS0 •
PLUS1 •
PLUS2 •
PLUS3 •

550 Ap pen dix D

PLUS4 •
PLUS5 •
PLUS6 •

 Case 1:
Be fore In struc tion:

PC = ad dress HERE
N = 0

Af ter In struc tion:
PC = ad dress NOT_N

 Case 2:
Be fore In struc tion:

PC = ad dress HERE
N = 1

Af ter In struc tion:

PC = ad dress HERE + OFFSET

 PIC18 In struc tion Set 551

BNC Branch if Not Carry

Syn tax: [la bel] BNC n
Operands: -128 ≤ f ≤ 127
Op er a tion: If carry bit is ’0’

(PC + 2) + 2n . PC
Sta tus Af fected: None
De scrip tion: If the Carry bit is ’0’, then the pro gram will

branch. The 2’s com ple ment num ber is added
to the PC. Be cause the PC will have
in cre mented to fetch the next in struc tion, the
new ad dress will be (PC+2)+2n. This
in struc tion is then a two-cy cle in struc tion.

Words: 1
Cy cles: 1 (2)

 Ex am ple 1:
HERE BNC NC_CODE ; If C bit is set
CARRY . ; Execute this code

.
GOTO MORE_CODE

NC_CODE . ; Else, this code
. ; executes

 Ex am ple 2:
HERE BNC $+OFFSET ; If carry bit clear
CARRY GOTO PROCESS_CODE

 ; branch to HERE +
 ; OFFSET

PLUS0 .
PLUS1 .
PLUS2 .
PLUS3 .
PLUS4 .
PLUS5 .
PLUS6 .

 Case 1: Before Instruction::
PC = ad dress HERE
C = 0

552 Ap pen dix D

Af ter In struc tion:
PC = ad dress HERE + OFFSET

 Case 2: Be fore In struc tion;
PC = ad dress HERE
C = 1

Af ter In struc tion;
PC = address CARRY

 PIC18 In struc tion Set 553

BNN Branch if Not Neg a tive

Syn tax: [la bel] BNN n
Operands: -128 ≤ f = ≤ 127
Op er a tion: If neg a tive bit is ’0’

(PC + 2) + 2n . PC
Sta tus af fected: None
De scrip tion: If the Neg a tive bit is ’0’, then the pro gram wil

branch.The 2’s com ple ment num ber is added
to the PC. Be cause the PC will have
in cre mented to fetch the next in struc tion, the
new ad dress will be (PC+2)+2n. This
in struc tion is then a two-cy cle in struc tion.

Words: 1
Cy cles: 1 (2)

 Ex am ple 1:
HERE BNN POS_CODE ; If N bit is set
NEG . ; execute this code

.
GOTO MORE CODE

POS_CODE
.
.

Case 1: Be fore In struc tion:
PC = ad dress HERE
N = 0

Af ter In struc tion:
PC = ad dress POS_CODE

Case 2: Be fore In struc tion:
PC = ad dress HERE
N = 1

Af ter In struc tion:
PC = ad dress NEG

 Ex am ple 2:
 HERE BNN $+OFFSET ; If negative
 NEG GOTO PROCESS CODE ; If bit is

; clear, branch
; to here +

554 Ap pen dix D

; OFFSET
PLUS0 .
PLUS1 .
PLUS2 .
PLUS3 .
PLUS4 .
PLUS5 .
PLUS6 .

 Case 1: Be fore In struc tion:

PC = ad dress HERE
N = 0

Af ter In struc tion:
PC = ad dress HERE + OFFSET

 Case 2: Be fore In struc tion:

PC = ad dress HERE
N = 1

Af ter In struc tion:
PC = address NEG

 PIC18 In struc tion Set 555

BNOV Branch if Not Over flow

Syn tax: [la bel] BNOV n
Operands: -128 ≤ f ≤ 127
Op er a tion: If over flow bit is ’0’

(PC + 2) + 2n . PC
Sta tus Af fected: None
De scrip tion: If the Over flow bit is ’0’, then the pro gram will

branch. The 2’s com ple ment num ber is added
to the PC. Be cause the PC will have
in cre mented to fetch the next in struc tion, the
new ad dress will be (PC+2)+2n. This
in struc tion is then a two-cy cle in struc tion.

Words: 1
Cy cles: 1 (2)

 Ex am ple 1:
HERE BNOV NOV_CODE
OVFL . ; If overflow bit is set

. ; execute this code
GOTO MORE_CODE

NOV_CODE . ; Else, this code will
. ; execute

Case 1:
Be fore In struc tion:

PC = ad dress HERE
OV = 0

Af ter In struc tion:
PC = ad dress NOV_CODE

Case 2:
Be fore In struc tion:

PC = ad dress HERE
OV = 1

Af ter In struc tion:
PC = ad dress OVFL

 Ex am ple 2:

 HERE BNOV $+OFFSET ; If over flow bit
OVFL GOTO PROCESS_CODE ; is clear,

 ; branch here

556 Ap pen dix D

; + OFFSET
PLUS0 .
PLUS1 .
PLUS2 .
PLUS3 .
PLUS4 .
PLUS5 .
PLUS6 .

 PIC18 In struc tion Set 557

BNZ Branch if Not Zero

Syn tax: [la bel] BNZ n
Operands: -128 ≤ f ≤ 127
Op er a tion: If zero bit is ’0’

(PC + 2) + 2n . PC
Sta tus Af fected: None
De scrip tion: If the Zero bit is ’0’, then the pro gram will

branch. The 2’s com ple ment num ber is added
to the PC. Be cause the PC will have
in cre mented to fetch the next in struc tion, the
new ad dress will be (PC+2)+2n. This
in struc tion is then a two-cy cle in struc tion.

Words: 1
Cy cles: 1 (2)

 Ex am ple 1:
HERE BNC Z_CODE ; If Z bit is set,
ZERO . ; execute this

; code
GOTO MORE_CODE

Z_CODE .
.

Case 1: Be fore In struc tion:
PC = ad dress HERE
Z = 0

Af ter In struc tion:
PC = ad dress Z_CODE

Case 2: Be fore In struc tion:
PC = ad dress HERE
Z = 1

Af ter In struc tion:
PC = address ZERO

 Ex am ple 2:
HERE BNC $ + OFFSET

; If zero bit is clear
; branch to here

ZERO GOTO PROCESS_CODE
PLUS0 .

558 Ap pen dix D

PLUS1 .
PLUS2 .
PLUS3 .
PLUS4 .
PLUS5 .
PLUS6 .

Case 1: Be fore In struc tion:
PC = ad dress HERE
Z = 0

Af ter In struc tion:
PC = ad dress HERE + OFFSET

Case 2: Be fore In struc tion:
PC = ad dress HERE
Z = 1

Af ter In struc tion:
PC = ad dress ZERO

 PIC18 In struc tion Set 559

BOV Branch if Over flow

Syn tax: [la bel] BOV n
Operands: -128 ≤ f ≤ 127
Op er a tion: If over flow bit is ’1’

(PC + 2) + 2n . PC
Sta tus Af fected: None
De scrip tion: If the Over flow bit is ’1’, then the pro gram will

branch. The 2’s com ple ment num ber is added
to the PC. Be cause the PC will have
in cre mented to fetch the next in struc tion, the
new ad dress will be (PC+2)+2n. This
in struc tion is then a two-cy cle in struc tion.

Words: 1
Cy cles: 1 (2)

 Ex am ple 1:
HERE BOV OV_CODE ; If OV bit is set

; execute this code
OVFL .

.
GOTO MORE_CODE

OV_CODE . ; Else, this code will
. ; execute

Case 1: Be fore In struc tion:
PC = ad dress HERE
OV = 0

Af ter In struc tion:
PC = ad dress OVFL

Case 2: Be fore In struc tion:
PC = ad dress HERE
OV = 1

Af ter In struc tion:
PC = ad dress OV_CODE

 Ex am ple 2:
HERE BOV $+OFFSET ; If OV bit

; is set

560 Ap pen dix D

; branch to HERE +
; OFFSET

OVFL GOTO PROCESS_CODE
PLUS0 .
PLUS1 .
PLUS2 .
PLUS3 .
PLUS4 .
PLUS5 .
PLUS6 .

 Case 1: Be fore In struc tion:
PC = ad dress HERE
OV = 0

Af ter In struc tion:
PC = ad dress OVFL

 Case 2: Be fore In struc tion:
PC = ad dress HERE
OV = 1

Af ter In struc tion:
PC = ad dress HERE + OFFSET

 PIC18 In struc tion Set 561

BRA Branch Un con di tional

Syn tax: [la bel] BRA n
Operands: -1024 ≤ f ≤ 1023
Op er a tion: (PC + 2) + 2n . PC
Sta tus Af fected: None
De scrip tion: The 2’s com ple ment num ber is added to

the PC. Be cause the PC will have in cre mented
to fetch the next in struc tion, the new ad dress
will be (PC+2)+2n. This in struc tion is a
two-cy cle in struc tion.

Words: 1
Cy cles: 2

 Ex am ple:
HERE BRA THERE ; Branch to a

. ; program memory

. ; location (THERE)

. ; Which must be < 1023

. ; locations forward.
THERE .

Be fore In struc tion:
PC = ad dress HERE

Af ter In struc tion:
PC = ad dress THERE

562 Ap pen dix D

BSF Bit Set f

Syn tax: [la bel] BSF f,b
Op er ands: f in range 0 to 127

b in range 0 to 7
Op er a tion: 1-> f
Sta tus Af fected: None
De scrip tion: Bit 'b' in reg is ter 'f' is set.
Words: 1
Cycles: 1

 Ex am ple 1:
BSF reg1,6
Be fore In struc tion: reg1 = 0011 1010
Af ter In struc tion: reg1 = 0111 1010

 Ex am ple 2:
BSF INDF,3
Be fore In struc tion:

WREG = 0x17
FSR = 0xc2
[FSR] = 0x20

Af ter In struc tion:
WREG = 0x17
FSR = 0xc2
[FSR] = 0x28

 PIC18 In struc tion Set 563

BTFSC Bit Test f, Skip if Clear

Syn tax: [la bel] BTFSC f,b
Op er ands: f in range 0 to 127

b in range 0 to 7
Op er a tion: skip next in struc tion if (f) = 0
Sta tus Af fected: None
De scrip tion: If bit 'b' in reg is ter 'f' is '0' then the next

in struc tion is skipped. If bit 'b' is '0' then the
next in struc tion (fetched dur ing the cur rent in
struction ex e cu tion) is dis carded, and a NOP
is ex e cuted in stead, mak ing this a 2 cy cle
in struc tion.

Words: 1

 Ex am ple:
repeat:

btfsc reg1,4
goto repeat

Case 1: Be fore In struc tion:
PC = $
reg1 = xxx0 xxxx

Af ter In struc tion:
Because reg1<4>= 0,
PC = $ + 2 (goto skiped)

Case 2: Be fore In struc tion:
PC = $
reg1= xxx1 xxxx

Af ter In struc tion:
Because FLAG<4>=1,
PC = $ + 1 (goto executed)

564 Ap pen dix D

BTFSS Bit Test f, Skip if Set

Syn tax: [la bel] BTFSC f,b
Op er ands: f in range 0 to 127

b in range 0 to 7
Op er a tion: skip next in struc tion if (f) = 1
Sta tus Af fected: None
De scrip tion: If bit 'b' in Reg is ter 'f' is '1', then the next

in struc tion is skipped. If bit 'b' is '0', then the
next in struc tion (fetched dur ing the cur rent
in struc tion ex e cu tion) is dis carded, and a NOP
is ex e cuted in stead, mak ing this a two-cy cle
in struc tion.

Words: 1
Cycles: 1(2)

 Example:
repeat:

btfss reg1,4
goto repeat

Case 1: Be fore In struc tion:
PC = $
Reg1 = xxx1 xxxx

Af ter In struc tion:
Because Reg1<4>= 1,
PC = $ + 2 (goto skiped)

Case 2: Be fore In struc tion:
PC = $
Reg1 = xxx0 xxxx

Af ter In struc tion:
Because Reg1<4>=0,
PC = $ + 1 (goto executed)

 PIC18 In struc tion Set 565

BTG Bit Tog gle f

Syn tax: [la bel] BTG f, b, a
Operands: 0 ≤ f ≤ 255

0 =< b =< 7
a = [0,1]
(f) -> f

Op er a tion: ~(f) -> f
Sta tus Af fected: None
De scrip tion: Bit 'b' in Reg is ter 'f' is tog gled.

The ’a’ bit se lects which bank is ac cessed for
the op er a tion. If ’a’ is 1, the bank spec i fied by
the BSR Reg is ter is used. If ’a’ is 0, the ac cess
bank is used.

Words: 1
Cy cles: 1

 Example 1:
 BTG LATC, 7, 1 ; Toggle the value of

; bit 7 in the LATC
; Reg is ter

Be fore In struc tion:
LATC = 0x0A

Af ter In struc tion:
LATC = 0x8A

 Ex am ple 2:
BTG INDF0, 3, 1 ; Tog gle the value of

; bit 3 in the
; reg is ter pointed to
; by the value in the
; FSR0 (FSR0H:FSR0L)
; Reg is ter

Be fore In struc tion:
FSR0 = 0xAC2
Con tents of Ad dress

(FSR0)= 0x20
Af ter In struc tion:

FSR0 = 0xAC2
Con tents of Ad dress

(FSR0)= 0x28

566 Ap pen dix D

BZ Branch if Zero

Syn tax: [la bel] BZ n
Operands: -128 ≤ f ≤ 127
Op er a tion: If zero bit is ’1’

(PC + 2) + 2n . PC
Sta tus Af fected: None
De scrip tion: If the Zero bit is ’1’, then the pro gram will

 branch. The 2’s com ple ment num ber is added
 to the PC. Be cause the PC will have
 in cre mented to fetch the next in struc tion, the

 new ad dress will be PC+2+2n. This in struc tion
 is then a two-cy cle in struc tion.

Words: 1
Cy cles: 1 (2)

 Ex am ple 1:
HERE BZ Z_CODE ; If zero bit is
ZERO . ; clear, execute

; this code
GOTO MORE_CODE

Z_CODE . ; Else, this code
. ; executes

Case 1: Be fore In struc tion:
PC = ad dress HERE
Z = 0

Af ter In struc tion:
PC = ad dress ZERO

Case 2: Be fore In struc tion:
PC = ad dress HERE
Z = 1

Af ter In struc tion:
PC = ad dress Z_CODE

 Example 2:
 HERE BZ $+OFFSET ; If zero bit is

; set, branch to
; HERE + OFFSET

NZERO GOTO PROCESS_CODE
PLUS0 .

 PIC18 In struc tion Set 567

PLUS1 .
PLUS2 .
PLUS3 .
PLUS4 .
PLUS5 .
PLUS6 .

Case 1: Be fore In struc tion:
PC = ad dress HERE
Z = 0

Af ter In struc tion:
PC = ad dress NZERO

Case 2: Be fore In struc tion:
PC = ad dress HERE
Z = 1

Af ter In struc tion:
PC = address HERE + OFFSET

568 Ap pen dix D

CALL Call Sub rou tine

Syn tax: [la bel] CALL k
Op er ands: k in range 0 to 2047
Op er a tion: (PC) + -> TOS,

k-> PC<10:0>,
(PCLATH<4:3>)-> PC<12:11>

Sta tus Af fected: None
De scrip tion: Call Sub rou tine. First, the 13-bit re turn ad dress

(PC+1) is pushed onto the stack. The
eleven-bit im me di ate ad dress is loaded into PC
bits <10:0>. The up per bits of the PC are
loaded from PCLATH<4:3>. CALL is a
two cy cle in struc tion.

Words: 1
Cycles: 2

 Ex am ple:
HERE CALL THERE,1 ; Call subroutine

; THERE. This is a
; fast call so the
; BSR, WREG, and
; STATUS are forced
; onto the Fast
; Register Stack

Be fore In struc tion:
PC = AddressHere

Af ter In struc tion:
TOS = Ad dress Here + 1
PC = Ad dress There

 PIC18 In struc tion Set 569

CLRF Clear f

Syn tax: [la bel] CLRF f
Op er ands: f in range 0 to 127
Op er a tion: 00h ->f

1-> Z
Sta tus Af fected: Z
De scrip tion: The con tents of Reg is ter 'f' are cleared

and the Z bit is set.
Words: 1
Cycles: 1

 Ex am ple 1:
CLRF FLAG_REG,1

Be fore In struc tion:
FLAG_REG = 0x5A

Af ter In struc tion:
FLAG_REG = 0x00

 Ex am ple 2:
 CLRF INDF0,1 ; Clear the register

; pointed at by FSR0
; (FSR0H:FSR0L)

Be fore In struc tion:
FSR0 = 0xc2
Contents of address
FSR0= 0xAA
z = x

Af ter In struc tion:
FSR0 = 0xc2
Contents of address
FSR0 = 0x00
Z = 1

570 Ap pen dix D

CLRWDT Clear Watch dog Timer

Syn tax: [la bel] CLRWDT
Operands: None
Op er a tion: 00h -> WDT

0 -.> WDT prescaler count,
1 ->.~ TO
1 -> ~. PD

Sta tus Af fected: TO, PD
De scrip tion: CLRWDT in struc tion clears the Watch dog

Timer. It also clears the postscaler count of the
WDT. Sta tus bits TO and PD are set.

Words: 1
Cy cles: 1

 Ex am ple:
CLRWDT ; Clear the Watch dog

; Timer count value
Be fore In struc tion:

WDT coun ter = x
WDT postscaler

count = 0
WDT postscaler = 1:128
TO = x
PD = x

Af ter In struc tion:
WDT coun ter = 0x00
WDT postscaler
count = 0
WDT postscaler = 1:128
TO = 1
PD = 1

 PIC18 In struc tion Set 571

COMF Com ple ment f

Syn tax: [la bel] COMF f, d, a
Operands: 0 ≤ f ≤ 255

d = [0,1]
a = [0,1]

Op er a tion: ~(f) -> des ti na tion
Sta tus Af fected: Z, N
De scrip tion: The con tents of Reg is ter 'f' are 1’s

com ple mented. The ’d’ bit se lects the
des ti na tion for the op er a tion.If 'd' is 1; the re sult
is stored back in the File Reg is ter 'f'. If 'd' is 0,
the re sult is stored in the WREG Reg is ter. The
’a’ bit se lects which bank is ac cessed for the
op er a tion. If ’a’ is 1, the bank spec i fied by the
BSR Reg is ter is used. If ’a’ is 0, the ac cess
bank is used.

Words: 1
Cy cles: 1

 Ex am ple:
COMF REG1, 0, 1 ; Com ple ment the

; value in Reg is ter REG1 and
; place the re sult in the WREG
; Reg is ter

Case 1: Be fore In struc tion:
REG1 = 0x13 ; 0001 0011
Z, N = x

Af ter In struc tion:
REG1 = 0x13
WREG = 0xEC ; 1110 1100
Z = 0
N = 1

Case 2: Be fore In struc tion:
REG1 = 0xFF ; 1111 1111
Z, N = x

Af ter In struc tion:
REG1 = 0xFF
WREG = 0x00 ; 0000 0000

572 Ap pen dix D

Z = 1
N = 0

Case 3: Be fore In struc tion:
REG1 = 0x00 ; 0000 0000
Z, N = x

Af ter In struc tion:
REG1 = 0x00
WREG = 0xFF ; 1111 1111
Z = 0
N = 1

 PIC18 In struc tion Set 573

CLRF Clear f

Syn tax: [la bel] CLRF f,a
Operands 0 ≤ f ≤ 255

a ε [0,1]
Op er a tion: 00h -> f

1 -> Z
Sta tus Af fected: Z
De scrip tion: Reg is ter f is cleared and the Zero bit (Z) is set.
Words: 1
Cycles: 1

 Ex am ple:
 CLRF FLAG_REG, 1 ; Clear Reg is ter FLAG_REG
Be fore In struc tion:

FLAG_REG = 0x5A
Z = x

Af ter In struc tion:
FLAG_REG = 0x00
Z = 1

574 Ap pen dix D

CLRWDT Clear Watch dog Timer

Syn tax: [la bel] CLRWDT
Operands: None
Op er a tion: 00h -> WDT

0 -> WDT prescaler count,
1 -> TO
1 -> PD

Sta tus Af fected: TO, PD
De scrip tion: CLRWDT in struc tion clears the Watch dog

Timer. It also clears the prescaler
count of the WDT. Sta tus bits TO and PD are
set. The in struc tion does not change the
as sign ment of the WDT prescaler.

Words: 1
Cy cles: 1

 Ex am ple:
CLRWDT
Be fore In struc tion: WDT coun ter= x

WDT prescaler = 1:128
Af ter In struc tion: WDT coun ter=0x00

WDT prescaler count=0
TO = 1
PD = 1
WDT prescaler = 1:128

 PIC18 In struc tion Set 575

COMF Com ple ment f

Syn tax: [la bel] COMF f,d
Operands: f in range 0 to 127

d is 0 or 1
Op er a tion: (f) -> des ti na tion
Sta tus Af fected: Z,N
De scrip tion: The con tents of Reg is ter 'f' are 1’s

com ple mented. If 'd' is 0, the re sult is stored in
WREG. If 'd' is 1, the re sult is stored back in
Reg is ter 'f'.

Words: 1
Cy cles: 1

 Ex am ple 1:
comf reg1,0
Be fore In struc tion: reg1 = 0x13

Af ter In struc tion: reg1 = 0x13

WREG = 0xEC

 Ex am ple 2:
 comf INDF,1

Be fore In struc tion: FSR = 0xc2

[FSR]= 0xAA

Af ter In struc tion: FSR = 0xc2

[FSR] = 0x55

 Ex am ple 3:
 comf reg1,1

Be fore In struc tion: reg1= 0xff

Af ter In struc tion: reg1 = 0x00

576 Ap pen dix D

CPFSEQ Com pare f with WREG, Skip if Equal

Syn tax: [la bel] CPFSEQ f, a
Operands: 0 ≤ f ≤ 255

a ε [0,1]
Op er a tion: (f) - (WREG)

skip if (f) = (WREG)
Sta tus Af fected: None
De scrip tion: Com pares the con tents of Reg is ter 'f' to the

 con tents of WREG Reg is ter by per form ing an
un signed sub trac tion. If 'f' = WREG, then the
fetched in struc tion is dis carded and a NOP is
ex e cuted in stead, mak ing this a two-cy cle
in struc tion. The ’a’ bit se lects which bank is
ac cessed for the op er a tion. If ’a’ is 1, the bank
 spec i fied by the BSR Reg is ter is used. If ’a’ is
 0, the ac cess bank is used.

Words: 1
Cy cles: 1 (2 or 3)

 Ex am ple:
 HERE CPFSEQ FLAG,1 ; Compare the

; value in Register
; FLAG to WREG. Skip
; the porgram memory
; if they are equal

Case 1: Be fore In struc tion:
PC = ad dress HERE
FLAG = 0x5A
WREG = 0x5A ; FLAG - WREG = 0

Af ter In struc tion:
PC = ad dress EQUAL ; The two

; values were equal
Case 2: Be fore In struc tion:

PC = ad dress HERE
FLAG = 0xA5
WREG = 0x5A ; FLAG - WREG = 0x4B

Af ter In struc tion:
PC = ad dress NEQUAL ; The two

; values were not
; equal

 PIC18 In struc tion Set 577

CPFSGT Com pare f with WREG, Skip if Greater

Syn tax: [la bel] CPFSGT f, a
Operands: 0 ≤ f ≤ 255

a ε [0,1]
Op er a tion: (f) - (WREG)

skip if (f) > (WREG) (un signed com par i son)
Sta tus Af fected: None
De scrip tion: Com pares the con tents of Reg is ter 'f' to the

 con tents of WREG Reg is ter by per form ing an
un signed sub trac tion. If 'f' > WREG, then the
fetched in struc tion is dis carded and a NOP is
ex e cuted in stead, mak ing this a two-cy cle
in struc tion. The ’a’ bit se lects which bank is
ac cessed for the op er a tion. If ’a’ is 1, the bank
spec i fied by the BSR Reg is ter is used. If ’a’ is
0, the ac cess bank is used.

Words: 1
Cy cles: 1 (2 or 3)

 Ex am ple:
 HERE CPFSGT FLAG,1 ; Compare the

; value in Register
; FLAG to WREG. Skip
; the porgram memory
; if FLAG > WREG

Case 1: Be fore In struc tion:
PC = ad dress HERE
FLAG = 0x5A
WREG = 0x5A ; FLAG - WREG = 0

Af ter In struc tion:
PC = ad dress NGT ; The two

; values were equal
Case 2: Be fore In struc tion:

PC = ad dress HERE
FLAG = 0xA5
WREG = 0x5A ; FLAG - WREG = 0x4B

Af ter In struc tion:
PC = ad dress NEQUAL ; The two

; values were not
; equal

578 Ap pen dix D

CPFSLT Com pare f with WREG, Skip if Less

Syn tax: [la bel] CPFSLT f, a
Operands: 0 ≤ f ≤ 255

a ε [0,1]
Op er a tion: skip if (f) < (WREG)
Sta tus Af fected: None
De scrip tion: Com pares the con tents of Reg is ter 'f' to the

con tents of WREG Reg is ter by per form ing an
un signed sub trac tion. If 'f'< WREG, then the
fetched in struc tion is dis carded and a NOP is
ex e cuted in stead, mak ing this a two-cy cle
in struc tion. The ’a’ bit se lects which bank is
ac cessed for the op er a tion. If ’a’ is 1, the bank
 spec i fied by the BSR Reg is ter is used. If ’a’ is
 0, the ac cess bank is used.

Words: 1
Cy cles: 1 (2 or 3)

 Ex am ple:
 HERE CPFSLT FLAG,1 ; Compare the

; value in Register
; FLAG to WREG. Skip
; the porgram memory
; if FLAG < WREG

Case 1: Be fore In struc tion:
PC = ad dress HERE
FLAG = 0x5A
WREG = 0x5A ; FLAG - WREG = 0x00

Af ter In struc tion:
PC = ad dress NLT ; The two

; values were equal
Case 2: Be fore In struc tion:

PC = ad dress HERE
FLAG = 0xA5
WREG = 0x5A ; FLAG - WREG = 0x4B

Af ter In struc tion:
PC = ad dress NEQUAL ; FLAG < WREG

; Skip the next
; instruction

 PIC18 In struc tion Set 579

DAW Dec i mal Ad just WREG Reg is ter

Syn tax: [la bel] DAW
Operands: None
Op er a tion: If [WREG<3:0> >9] or [DC = 1] then

(WREG<3:0>) + 6 . WREG<3:0>;
else
(WREG<3:0>) . WREG<3:0>;
If [WREG<7:4> >9] or [C = 1] then
(WREG<7:4>) + 6 . WREG<7:4>;
else
(WREG<7:4>) . WREG<7:4>;

Sta tus Af fected: C

De scrip tion: DAW ad justs the eight-bit value in WREG
re sult ing from the ear lier ad di tion of two

vari ables (each in packed BCD for mat) and
produces a cor rect packed BCD re sult.

Words: 1
Cy cles: 1

 Ex am ple:
 HERE DAW ; Dec i mal Ad just WREG

Case 1:
 Be fore In struc tion:

WREG = 0x0F ; 0x0f = 15 decimal
C = x

Af ter In struc tion:
WREG = 0x15
C = 0

Case 2:
Be fore In struc tion:

WREG = 0x68 ; 0x68 = 104 decimal
C = x

Af ter In struc tion:
PC = 0x04
C = 1 ; Indicated decimal

; rollover
Case 3:

Be fore In struc tion:
WREG = C6 ; 0xc6 = 198 decimal

580 Ap pen dix D

C = x

Af ter In struc tion:

PC = 98

C = 1 ; Carry to in di cate

; dec i mal roll over

 PIC18 In struc tion Set 581

DECF Dec re ment f

Syn tax: [la bel] DECF f,d
Op er ands: f in range 0 to 127

d is ei ther 0 or 1
Op er a tion: (f) - 1 -> des ti na tion
Sta tus Af fected: Z
De scrip tion: Dec re ment Reg is ter 'f'. If 'd' is 0, the re sult is

stored in WREG. If 'd' is 1, the re sult is stored
back in Reg is ter 'f'.

Words: 1
Cycles: 1

Ex am ple 1:

decf count,1
Be fore In struc tion: count = 0x01

Z = 0
Af ter In struc tion: count = 0x00

Z = 1

Ex am ple 2:

decf INDF,1
Be fore In struc tion: FSR = 0xc2

[FSR] = 0x01
Z = 0

Af ter In struc tion: FSR = 0xc2
[FSR] = 0x00
Z = 1

Ex am ple 3:

decf count,0
Be fore In struc tion: count = 0x10

WREG = x
Z = 0

Af ter In struc tion: count = 0x10
WREG = 0x0f

582 Ap pen dix D

DECFSZ Dec re ment f, Skip if 0

Syn tax: [la bel] DECFSZ f,d
Op er ands: f in the range 0 to 127

d is ei ther 0 or 1
Op er a tion: (f) - 1 -> des ti na tion; skip if re sult = 0
Sta tus Af fected: None
De scrip tion: The con tents of Reg is ter 'f' are

dec re ment ed. If 'd' is 0, the re sult is placed
in WREG. If 'd' is 1, the re sult isplaced
back in Reg is ter 'f'. If the re sult is 0,
then the next in struc tion (fetched dur ing
the cur rent in struc tion ex e cu tion) is
dis carded and NOP is ex e cuted in stead,
mak ing this a two-cy cle in struc tion.

Words: 1
Cycles: 1(2)

Ex am ple:

here:
decfsz count,1
goto here

Case 1:
 Be fore In struc tion: PC = $

 count = 0x01
Af ter In struc tion: count = 0x00

PC = $ + 2 (goto skipped)
Case 2:

 Be fore In struc tion: PC = $
count = 0x04

Af ter In struc tion: count = 0x03
PC = $ + 1 (goto executed)

 PIC18 In struc tion Set 583

DCFSNZ Dec re ment f, Skip if Not 0

Syn tax: [la bel] DCFSNZ f, d, a
Operands: 0 ≤ f ≤ 255

d ε [0,1]]
a ε [0,1]

Op er a tion: (f) - 1 -> des ti na tion; skip if re sult ≠ 0
Sta tus Af fected: None
De scrip tion: The con tents of Reg is ter 'f' are

dec re ment ed. If the re sult is not 0, then
the next in struc tion (fetched dur ing the
cur rent in struc tion ex e cu tion) is dis carded
and an NOP is ex e cuted in stead, mak ing
this a 2-cy cle in struc tion.
The ’d’ bit se lects the des ti na tion for the
op er a tion.
If 'd' is 1, the re sult is stored back in the
File Reg is ter 'f'.
IIf 'd' is 0, the re sult is stored in WREG.
The ’a’ bit se lects which bank is ac cessed
for the op er a tion.
If ’a’ is 1, the bank spec i fied by the BSR
Reg is ter is used. If ’a’ is 0, the ac cess
bank is used.

Words: 1
Cy cles: 1 (2 or 3)

 Ex am ple:
 HERE DCFSNZ CNT, 1, 1 ; Decrement the

; register CNT. If CNT
; not equal to zero, then
; skip the next
; instruction

GOTO LOOP
CONTINUE

.

.
Case 1: Be fore In struc tion:

PC = ad dress HERE
CNT = 0x01

584 Ap pen dix D

Af ter In struc tion:
CNT = 0x00
PC = ad dress HERE + 2

Case 2: Be fore In struc tion:
PC = ad dress HERE
CNT = 0x02

Af ter In struc tion:
CNT = 0x01

PC = ad dress CONTINUE

 PIC18 In struc tion Set 585

GOTO Un con di tional Branch
Syn tax: [la bel] GOTO k
Operands: 0 ≤ k ≤ 2047
Op er a tion: k -> PC<20:0>

0 -> PC<0>
Sta tus Af fected: None
De scrip tion: GOTO al lows an un con di tional branch

any where within the en tire 2Mbyte
mem ory range. The 20-bit im me di ate value ’k’
is loaded into PC<20:1>. GOTO is al ways a
two-cy cle in struc tion.

Words: 1
Cycles: 2

Ex am ple:

HERE GOTO THERE
Af ter In struc tion:

PC = address of THERE

586 Ap pen dix D

INCF In cre ment f

Syn tax: [la bel] INCF f,d
Op er ands: f in range 0 to 127

d is ei ther 0 or 1
Op er a tion: (f) + 1 -> des ti na tion
Sta tus Af fected: Z
De scrip tion: The con tents of Reg is ter 'f' are in cre mented. If

'd' is 0, the re sult is placed in WREG. If 'd'
is 1, the re sult is placed back in reg is ter 'f'.

Words: 1
Cycles: 1

Ex am ple 1:

INCF COUNT,1
Be fore In struc tion: count = 0xff

Z = 0
Af ter In struc tion: count = 0x00

Z = 1

Ex am ple 2:

INCF INDF,1
Be fore In struc tion: FSR = 0xC2

[FSR] = 0xff
Z = 0

Af ter In struc tion: FSR = 0xc2
[FSR] = 0x00
Z = 1

Ex am ple 3:

 INCF COUNT,0
Be fore In struc tion: count = 0x10

WREG = x
Z = 0

Af ter In struc tion: count = 0x10
WREG = 0x11
Z = 0

 PIC18 In struc tion Set 587

INCFSZ In cre ment f, Skip if 0

Syn tax: [la bel] INCFSZ f,d
Op er ands: f in range 0 to 127

d is ei ther 0 or 1
Op er a tion: (f) + 1 -> des ti na tion, skip if re sult = 0
Sta tus Af fected: None
De scrip tion: The con tents of Reg is ter 'f' are in cre mented. If

'd' is 0, the re sult is placed in WREG. If 'd'
is 1, the re sult is placed back in Reg is ter 'f'.
If the re sult is 0, then the next in struc tion
(fetched dur ing the cur rent in struc tion
ex e cu tion) is dis carded and NOP is ex e cuted
in stead, mak ing this a tqo-cy cle in struc tion.

Words: 1
Cycles: 1(2)

Ex am ple:

HERE:
INCFSZ COUNT,1

 GOTO HERE
 Case 1:

Be fore In struc tion: PC = $
count = 0x10

Af ter In struc tion: count = 0x11
PC = $ + 1 (goto executed)

 Case 2:
Be fore In struc tion: PC = $

count = 0x00
Af ter In struc tion: count = 0x01

PC = $ + 2 (goto skipped)

588 Ap pen dix D

INFSNZ In cre ment f, Skip if Not 0

Syn tax: [la bel] INFSNZ f, d, a
Operands: 0 ≤ f ≤ 255

d ε [0,1]
a ε [0,1]

Op er a tion: (f) + 1 -> des ti na tion, skip if re sult ≠ 0
Sta tus Af fected: None
De scrip tion: The con tents of Reg is ter 'f' are in cre mented. If

the re sult is not 0, then the next in struc tion
(fetched dur ing the cur rent in struc tion
ex e cu tion) is dis carded and NOP is ex e cuted
in stead, mak ing this a two-cy cle in struc tion.
The ’d’ bit se lects the des ti na tion for the
op er a tion.
If 'd' is 1, the re sult is stored back in the File
Reg is ter 'f'.
if 'd' is 0, the re sult is stored in WREG.
The ’a’ bit se lects which bank is ac cessed for
the op er a tion.
If ’a’ is 1, the bank spec i fied by the BSR
Reg is ter is used. If ’a’ is 0, the ac cess bank is
used.

Words: 1
Cy cles: 1 (2 or 3)

 Ex am ple:
HERE INFSNZ CNT,1,0

; Increment register CNT
; if CNT not equal 0, skip
; the next instruction

ZERO GOTO LOOP
NZERO .

.
Case 1: Be fore In struc tion:

PC = ad dress HERE
CNT = 0xFF

Af ter In struc tion
CNT = 0x00
PC = ad dress ZERO

 PIC18 In struc tion Set 589

Case 2: Be fore In struc tion:
PC = ad dress HERE
CNT = 0x00

Af ter In struc tion
CNT = 0x01
PC = ad dress NZERO

590 Ap pen dix D

IORLW In clu sive OR Lit eral with WREG

Syn tax: [la bel] IORLW k
Op er ands: k is in range 0 to 255
Op er a tion: (WREG).OR. k -> WREG
Sta tus Af fected: Z
De scrip tion: The con tent of WREG is ORed with the eight

bit lit eral 'k'. The re sult is placed in WREG.
Words: 1
Cycles: 1

 Ex am ple 1:
iorlw 0x35
Be fore In struc tion: WREG = 0x9a
Af ter In struc tion: WREG = 0xbfF

Z = 0
Ex am ple 2::

iorlw myreg
Be fore In struc tion: WREG = 0x9a
Myreg is a variable representing a
location
in PIC RAM. [Myreg] = 0x37
Af ter In struc tion: WREG = 0x9F

Z = 0
Ex am ple 3:

iorlw 0x00
Be fore In struc tion: WREG = 0x00
Af ter In struc tion: WREG = 0x00

 PIC18 In struc tion Set 591

IORWF In clu sive OR WREG with f

Syn tax: [la bel] IORWF f,d
Op er ands: f is in range 0 to 127

d is ei ther 0 or 1
Op er a tion: (W).OR. (f) -> des ti na tion
Sta tus Af fected: Z
De scrip tion: In clu sive OR WREG with reg is ter 'f'. If 'd' is 0,

the re sult is placed in WREG. If 'd' is 1, the
 re sult is placed back in Register 'f'.

Words: 1
Cycles: 1

Ex am ple 1:

IORWF RESULT,0
Be fore In struc tion: result = 0x13

WREG = 0x91
Af ter In struc tion: result = 0x13

WREG = 0x93
Z = 0

Ex am ple 2:

IORWF INDF,1
Be fore In struc tion: WREG = 0x17

FSR = 0xc2
[FSR] = 0x30

Af ter In struc tion: WREG = 0x17
FSR = 0xc2
[FSR] = 0x37
Z = 0

Ex am ple 3:

IORWF RESULT,1
Case 1: Be fore In struc tion:

 result = 0x13
WREG = 0x91

Af ter In struc tion: result = 0x93
WREG = 0x91
Z = 0

Case 2: Be fore In struc tion: result = 0x00
WREG = 0x00

Af ter In struc tion: result = 0x00
WREG = 0x00
Z = 1

592 Ap pen dix D

LFSR Load 12-Bit Lit eral to FSR

Syn tax: [la bel] LFSR f,k
Operands: 0 ≤ f ≤ 2

0 ≤ k ≤ 4095
Op er a tion: k −> FSRx
Sta tus Af fected: None
De scrip tion: The 12-bit lit eral 'k' is loaded into the File

Se lect Reg is ter (FSR Reg is ter) pointed to by 'f':
f = 00 −> FSR0
f = 01 ->. FSR1
f = 10 −> FSR2
f = 11 ->. Re served

Words: 2
Cy cles: 2

 Ex am ple:
LFSR 2, 0x123 ; Load the 12-bit FSR2

; with 123h
Be fore In struc tion:

FSR0H = 0x05
FSR0L = 0xA5
FSR1H = 0x05
FSR1L = 0xA5
FSR2H = 0x05
FSR2L = 0xA5

Af ter In struc tion:
FSR0H = 0x05
FSR0L = 0xA5
FSR1H = 0x05
FSR1L = 0xA5
FSR2H = 0x01

FSR2L = 0x23

 PIC18 In struc tion Set 593

MOVLW Move Lit eral to WREG

Syn tax: [la bel] MOVLW k
Op er ands: k in range 0 to 255
Op er a tion: k- > WREG
Sta tus Af fected: None
De scrip tion: The eight-bit lit eral 'k' is loaded into WREG.

The don’t cares will as sem ble as 0’s.
Words: 1
Cycles: 1

Ex am ple 1:

movlw 0x5a
Af ter In struc tion: WREG = 0x5A

Ex am ple 2:

movlw myreg
Be fore In struc tion: WREG = 0x10

[myreg] = 0x37
Af ter In struc tion: WREG = 0x37

594 Ap pen dix D

MOVF Move f

Syn tax: [la bel] MOVF f,d
Op er ands: f is in range 0 to 127

d is ei ther 0 or 1
Op er a tion: (f) -> des ti na tion
Sta tus Af fected: Z
De scrip tion: The con tent of Reg is ter ’f’ is moved to a

des ti na tion de pend ent upon the sta tus of ’d’. If
’d’ = 0, des ti na tion is WREG. If ’d’ = 1, the
des ti na tion is file reg is ter ’f’ it self. ’d’ = 1 is
use ful to test a file reg is ter be cause sta tus flag
Z is af fected.

Words: 1
Cycles: 1

Ex am ple 1:

MOVF FSR,0
Be fore In struc tion: WREG = 0x00

FSR = 0xc2
Af ter In struc tion: WREG = 0xc2

Z = 0

Ex am ple 2:

MOVF INDF,0
Be fore In struc tion: WREG = 0x17

FSR = 0xc2
[FSR] = 0x00

Af ter In struc tion: WREG = 0x17
FSR = 0xc2
[FSR] = 0x00
Z = 1

Ex am ple 3:

MOVF FSR,1
Case 1: Be fore In struc tion: FSR = 0x43

Af ter In struc tion: FSR = 0x43
Z = 0

Case 2: Be fore In struc tion: FSR = 0x00
Af ter In struc tion: FSR = 0x00

Z = 1

 PIC18 In struc tion Set 595

MOVFF Move f to f

Syn tax: [la bel] MOVFF fs, fd
Operands: 0 ≤ fs ≤ 4095

0 ≤ fd ≤ 4095
Op er a tion: (fs) ->. fd
Sta tus Af fected: None
De scrip tion: The con tents of Source Reg is ter 'fs' are moved

 to Des ti na tion Reg is ter 'fd'. Lo ca tion of source
'fs' can be any where in the 4096 byte data
space (000hto FFFh), and lo ca tion of
des ti na tion 'fd' can also be any where from
000h to FFFh. MOVFF is par tic u larly use ful for
trans fer ring a data mem ory lo ca tion to a
Pe riph eral Reg is ter (such as the trans mit buffer
 or an I/O port) with out af fect ing the WREG
Reg is ter.
Note: The MOVFF in struc tion can not use the
 PCL, TOSU, TOSH, andTOSL as the
Des ti na tion Reg is ter

Words: 2
Cy cles: 2

Ex am ple 1:

MOVFF REG1, REG2 ; Copy the con tents
; of Reg is ter REG1 to
; Reg is ter REG2

Be fore In struc tion:
REG1 = 0x33
REG2 = 0x11

Af ter In struc tion:
REG1 = 0x33
REG2 = 0x33

 Ex am ple 2:

MOVFF REG2, REG1 ; Copy the con tents of
; Reg is ter REG2 to
; Reg is ter REG1

Be fore In struc tion:
REG1 = 0x33
REG2 = 0x11

596 Ap pen dix D

Af ter In struc tion:
REG1 = 0x11
REG2 = 0x11

:

 PIC18 In struc tion Set 597

MOVLB Move Lit eral to low nib ble in BSR

Syn tax: [la bel] MOVLB k
Operands: 0 ≤ k ≤ 15
Op er a tion: k ->. BSR<3:0>
Sta tus Af fected: None
De scrip tion: The 4-bit lit eral 'k' is loaded into the Bank

Se lect Reg is ter (BSR).
Words: 1
Cy cles: 1

Ex am ple:

 MOVLB 5 ; Mod ify Least Sig nif i cant
; nib ble of BSR Reg is ter
; to value 5

Be fore In struc tion:
BSR = 0x02

Af ter In struc tion:
BSR = 0x05

598 Ap pen dix D

MOVWF Move WREG to f

Syn tax: [la bel] MOVWF f
Op er ands: f in range 0 to 127
Op er a tion: (WREG) -> f
Sta tus Af fected: None
De scrip tion: Move data from WREG to Reg is ter 'f'.
Words: 1
Cycles: 1

Ex am ple 1:

movwf OPTION_REG
Be fore In struc tion: OPTION_REG = 0xff

WREG = 0x4f
Af ter In struc tion: OPTION_REG = 0x4f

WREG = 0x4f

Ex am ple 2:

 movwf INDF
Be fore In struc tion: WREG = 0x17

FSR = 0xC2
[FSR] = 0x00

Af ter In struc tion: WREG = 0x17
FSR = 0xC2
[FSR] = 0x17

 PIC18 In struc tion Set 599

MULLW Mul ti ply Lit eral with WREG

Syn tax: [la bel] MULLW k
Operands: 0 ≤ k ≤ 255
Op er a tion: (WREG) x k -> PRODH:PRODL
Sta tus Af fected: None
De scrip tion: An un signed mul ti pli ca tion is car ried out

be tween the con tents of WREG and the 8-bit
lit eral 'k'. The 16-bit re sult is placed in
 PRODH:PRODL Reg is ter Pair. PRODH
con tains the high byte. WREG is un changed.
None of the sta tus flags are af fected.
Nei ther an over flow nor carry is pos si ble in this
 op er a tion. A zero re sult is pos si ble but not
de tected.

Words: 1
Cy cles: 1
Ex am ple :

 MULLW 0xC4 ; Mul ti ply the WREG Reg is ter
; with the con stant value
; C4h

Be fore In struc tion:
WREG = 0xE2
PRODH = x
PRODL = x

Af ter In struc tion:
WREG = 0xE2
PRODH = 0xAD
PRODL = 0x08

600 Ap pen dix D

MULWF Mul ti ply WREG with f

Syn tax: [la bel] MULWF f,a
Operands: 0 ≤ f ≤ 255

a ε [0,1]
Op er a tion: (WREG) x (f) -> PRODH:PRODL
Sta tus Af fected: None
De scrip tion: An un signed mul ti pli ca tion is car ried out

be tween the con tents of WREG and the value
in Reg is ter File Lo ca tion 'f'. The 16-bit re sult is
placed in the PRODH:PRODL Reg is ter Pair.
 PRODH con tains the high byte.
Both WREG and 'f' are un changed.
None of the sta tus flags are af fected.
Nei ther an over flow nor carry is pos si ble in this
op er a tion. A zero re sult is pos si ble but not
de tected.
The ’a’ bit se lects which bank is ac cessed for
 the op er a tion.
If ’a’ is 1, the bank spec i fied by the BSR
Reg is ter is used. If ’a’ is 0, the ac cess bank is
used.

Words: 1
Cy cles: 1

 Ex am ple:
 MULWF MYREG, 1 ; Mul ti ple the WREG

; Reg is ter with the value
; in MYREG Reg is ter

Be fore In struc tion:
WREG = 0xE2
MYREG = 0xB5
PRODH = x
PRODL = x

Af ter In struc tion:
WREG = 0xE2
MYREG = 0xB5
PRODH = 0x9F
PRODL = 0xCA

 PIC18 In struc tion Set 601

NEGF Ne gate f

Syn tax: [la bel] NEGF f,a
Operands: 0 ≤ f ≤ 255

a ε. [0,1]
Op er a tion: ~(f) + 1 -> (f)
Sta tus Af fected: C, DC, Z, OV, N
De scrip tion: Lo ca tion ’f’ is ne gated us ing two’s com ple ment.

The re sult is placed in the data mem ory
lo ca tion 'f'. The ’a’ bit se lects which bank is
 ac cessed for the op er a tion. If ’a’ is 1; the bank
spec i fied by the BSR Reg is ter is used.
If ’a’ is 0; the ac cess bank is used.

Words: 1
Cy cles: 1

 Ex am ple:
 NEGF MYREG, 1 ; 2’s com ple ment the value

; in MYREG
Case 1: Be fore In struc tion:

MYREG = 0x3A
C, DC, Z, OV, N = x

Af ter In struc tion
MYREG = 0xC6
C =0
DC = 0
Z =0
OV = 0
N =1

Case 2: Be fore In struc tion:
MYREG = 0xB0
C, DC, Z, OV, N = x

Af ter In struc tion
MYREG = 0x50
C =0
DC = 1
Z =0
OV = 0
N =0

Case 3: Be fore In struc tion:
MYREG = 0x00

602 Ap pen dix D

C, DC, Z, OV, N = x
Af ter In struc tion

MYREG = 0x00
C =1
DC = 1
Z =1
OV = 0
N =0

 PIC18 In struc tion Set 603

NOP No Op er a tion

Syn tax: [la bel] NOP
Op er ands: None
Op er a tion: No op er a tion
Sta tus Af fected: None
De scrip tion: No op er a tion.
Words: 1
Cycles: 1

Ex am ple:

nop
Be fore In struc tion: PC = $
f ter In struc tion: PC = $ + 1

604 Ap pen dix D

OPTION Load Op tion Reg is ter

Syn tax: [la bel] OPTION
Operands: None
Op er a tion: (WREG) -> OPTION_REG
Sta tus Af fected: None
De scrip tion: The con tents of WREG is loaded in the

OPTION_REG reg is ter. This in struc tion is
sup ported for code com pat i bil ity with

 PIC16C5X prod ucts. Be cause OPTION_REG
is a Read able/writable reg is ter, code can
di rectly ad dress it with out us ing this
in struc tion.

Words: 1
Cy cles: 1

Ex am ple:

movlw b’01011100’
option

 PIC18 In struc tion Set 605

POP POP Top of Re turn Stack

Syn tax: [la bel] POP
Operands: None
Op er a tion: (TOS) -> bit bucket
Sta tus Af fected: None
De scrip tion: The Top of Stack (TOS) value is pulled off the

 re turn stack and is dis carded. The TOS
 value then be comes the pre vi ous value that
 was pushed onto the re turn stack.
This in struc tion is pro vided to en able the user
 to man age the re turn stack to in cor po rate a
 soft ware stack.

Words: 1
Cy cles: 1

 Ex am ple:
HERE POP ; Mod ify the Top of Stack

; (TOS). The TOS points to
; what was one level down

Be fore In struc tion
TOS = 0x0031A2
Stack (1 level down) = 0x014332

Af ter In struc tion
TOS = 0x014332
PC = HERE + 2

606 Ap pen dix D

PUSH PUSH Top of Re turn Stack

Syn tax: [la bel] PUSH
Operands: None
Op er a tion: PC -> (TOS)
Sta tus Af fected: None
De scrip tion: The pre vi ous Top of Stack (TOS) value is

pushed down on the stack. The
PC is pushed onto the top of the re turn stack.
This in struc tion is pro vided to en able the user
 to man age the re turn stack to in cor po rate a
 soft ware stack.

Words: 1
Cy cles: 1

 Ex am ple:
 HERE PUSH ; PUSH cur rent Pro gram

; Coun ter value onto the
; hard ware stack

Be fore In struc tion:
PC = 0x000124
TOS = 0x00345A

Af ter In struc tion:
PC = 0x000126
TOS = 0x000124
Stack (1 level down)

= 0x00345A

 PIC18 In struc tion Set 607

RCALL Rel a tive Call

Syn tax: [la bel] RCALL n
Operands: -1024 ≤ n ≤ 1023
Op er a tion: (PC + 2) −> TOS,

(PC + 2) + 2n -> PC
Sta tus Af fected: None
De scrip tion: Sub rou tine call with a jump up to 1K from the

 cur rent lo ca tion. First, the re turn ad dress
 (PC+2) is pushed onto the stack. Then the 2’s
com ple ment num ber ’2n’ is added to the PC.
Be cause the PC will have in cre mented to fetch
the next in struc tion, the new ad dress will be
PC+2+2n. This in struc tion is a two-cy cle
in struc tion.

Words: 1
Cy cles: 2
Ex am ple:

HERE RCALL Sub1 ; Call a pro gram mem ory
; lo ca tion (Sub1)
; this lo ca tion must be
; < 1024 lo ca tions for ward
; or > 1025 lo ca tions
; back ward

Be fore In struc tion:
PC = Ad dress (HERE)
TOS = 0x0031A2

Af ter In struc tion:
PC = Ad dress (Sub1)
TOS = Ad dress (HERE + 2)
Stack (1 level down)

= 0x0031A2

608 Ap pen dix D

RESET Re set De vice

Syn tax: [la bel] RESET
Operands: None
Op er a tion: Force all reg is ters and flag bits

that are af fected by a MCLR re set
to their re set con di tion.

Sta tus Af fected: All
De scrip tion: This in struc tion pro vides a way to ex e cute a

soft ware re set.
Words: 1
Cy cles: 1

 PIC18 In struc tion Set 609

RETFIE Re turn from In ter rupt

Syn tax: [la bel] RETFIE
Op er ands: None
Op er a tion: TOS -> PC,

1 -> GIE
Sta tus Af fected: None
De scrip tion: Re turn from In ter rupt. The 13-bit ad dress at the

Top of Stack (TOS) is loaded in the PC. The
Global In ter rupt En able bit, GIE (INTCON<7>),
Is au to mat i cally set, en abling In ter rupts. This is
a two-cy cle in struc tion.

Words: 1
Cycles: 2

Ex am ple:

retfie
Af ter In struc tion: PC = TOS

GIE = 1

610 Ap pen dix D

RETLW Re turn with Lit eral in WREG

Syn tax: [la bel] RETLW k
Op er ands: k in range 0 to 255
Op er a tion: k -> WREG

TOS -> PC
Sta tus Af fected: None
De scrip tion: WREG is loaded with the eight bit lit eral 'k'.

The pro gram coun ter is loaded 13-bit
ad dress at the Top of Stack (the re turn
ad dress). This is a two-cy cle in struc tion.

Words: 1
Cycles: 2

Ex am ple:

movlw 2 ; Load WREG with desired
; Table offset

call table ; When call returns WREG
; con tains value stored
; in ta ble

Table:
addwf pc ; WREG = off set
retlw .22 ; First table entry
retlw .23 ; Second table entry
retlw .24
.
.
.
retlw .29 ; Last table entry
Be fore In struc tion: WREG = 0x02
Af ter In struc tion: WREG = .24

 PIC18 In struc tion Set 611

RETURN Re turn from Sub rou tine

Syn tax: [la bel] RETURN
Op er ands: None
Op er a tion: TOS -> PC
Sta tus Af fected: None
De scrip tion: Re turn from sub rou tine. The stack is POPed

and the top of the stack (TOS) is loaded into
 the pro gram coun ter. This is a two-cy cle
in struc tion.

Words: 1
Cycles: 2

Ex am ple:

RETURN
Af ter In struc tion

PC = TOS

612 Ap pen dix D

RLCF Ro tate Left f through Carry

Syn tax: [la bel] RLCF f,d,a
Op er ands: f in range 0 to 127

d is ei ther 0 or 1
a is ei ther 0 or 1

Op er a tion: See de scrip tion be low
Sta tus Af fected: C,Z,N
De scrip tion: The con tents of Reg is ter 'f' are ro tated one bit

to the left through the Carry Flag. If 'd' is 0, the
re sult is placed in WREG. If 'd' is 1, the re sult is
stored back in Register 'f'.

Words: 1
Cycles: 1

Ex am ple 1:

RLF REG1,0
Be fore In struc tion: reg1 = 1110 0110

C = 0
Af ter In struc tion: reg1 = 1110 0110

WREG =1100 1100
C =1

Ex am ple 2:

 RLF INDF,1
Case 1: Be fore In struc tion: WREG = xxxx xxxx

FSR = 0xc2
 [FSR] = 0011 1010
C = 1

Af ter In struc tion: WREG = 0x17
FSR = 0xc2
 [FSR] = 0111 0101
C = 0

Case 2: Be fore In struc tion: WREG = xxxx xxxx
FSR = 0xC2
 [FSR] = 1011 1001
C = 0

Af ter In struc tion: WREG = 0x17
FSR = 0xC2
 [FSR] = 0111 0010
C = 1

 PIC18 In struc tion Set 613

RLNCF Ro tate Left f (No Carry)

Syn tax: [la bel] RLNCF f, d, a
Operands: 0 ≤ f ≤ 127

d ε [0,1]
a ε [0,1]

Op er a tion: See de scrip tion be low
Sta tus Af fected: Z, N
De scrip tion: The con tents of Reg is ter 'f' are ro tated one bit

to the left. The Carry Flag bit is not af fected.
The ’d’ bit se lects the des ti na tion for the
op er a tion.
If 'd' is 1, the re sult is stored back in the File
Reg is ter 'f'.
If 'd' is 0, the re sult is stored in WREG.
The ’a’ bit se lects which bank is ac cessed for
 the op er a tion. If ’a’ is 1, the bank spec i fied by
the BSR Reg is ter is used. If ’a’ is 0, the ac cess
bank is used.

Words: 1
Cy cles: 1
Ex am ple:

RLNCF REG1, 0, 1 ; Ro tate the value in REG1

; 1 bit po si tion left and

; bit 7 loads into bit 0.

; Then place the re sult in

; the WREG Reg is ter

Be fore In struc tion:

REG1 = 1110 0110

Z, N = x

Af ter In struc tion:

REG1 = 1110 0110

WREG = 1100 1101

Z = 0

N = 1

614 Ap pen dix D

RRCF Ro tate Right f through Carry

Syn tax: [la bel] RRF f,d,a
Operands: f in range 0 to 127

d is ei ther 0 or 1
a is ei ther 0 or 1

Op er a tion: See de scrip tion be low
Sta tus Af fected: C,Z,N
De scrip tion: The con tents of reg is ter 'f' are ro tated one bit to

the right through the Carry Flag. If 'd' is 0 the
re sult is placed in WREG. If 'd' is 1 the re sult is
placed back in reg is ter 'f'.

Words: 1
Cy cles: 1

 Ex am ple 1:
RRCFREG1,0
Be fore In struc tion: reg1= 1110 0110

WREG = xxxx xxxx
C = 0

Af ter In struc tion: reg1= 1110 0110
WREG = 0111 0011
C = 0

 Ex am ple 2:
RRF INDF,1

Case 1: Be fore In struc tion: WREG = xxxx xxxx
FSR = 0xc2
 [FSR] = 0011 1010
C = 1

Af ter In struc tion: WREG = 0x17
FSR = 0xC2
[FSR] = 1001 1101
C = 0

Case 2: Be fore In struc tion: WREG = xxxx xxxx
FSR = 0xC2
[FSR] = 0011 1001
C = 0

Af ter In struc tion: WREG = 0x17
FSR = 0xc2
[FSR] = 0001 1100

 PIC18 In struc tion Set 615

C = 1

RRNCF Ro tate Right f (No Carry)

Syn tax: [la bel] RRNCF f, d, a
Operands: k in range 0 to 255
Op er a tion: k - (W) -> W
Sta tus Af fected: C, DC, Z
De scrip tion: WREG is sub tracted (2’s com ple ment method)

from the eight-bit lit eral 'k'. The re sult is placed
in WREG.

Words: 1
Cy cles: 1

 Ex am ple:
 RRNCF REG1, 0, 1; Ro tate the value in REG1

; 1 bit po si tion right and
; bit 0 loads into bit 7.
; Then place the re sult in
; the WREG Reg is ter

Be fore In struc tion:
REG1 = 1110 0110
WREG = x
Z, N = 1

Af ter In struc tion:
REG1 = 1110 0110
WREG = 0111 0011
Z = 0
N = 0

616 Ap pen dix D

SETF Set f

Syn tax: [la bel] SETF f, a
Operands: 0 ≤ f ≤ 255

a ε. [0,1]
Op er a tion: FFh ->. f
Sta tus Af fected: None
De scrip tion: The con tents of the spec i fied reg is ter are set.

The ’a’ bit se lects which bank is ac cessed for
 the op er a tion. If ’a’ is 1, the bank spec i fied by
the BSR Reg is ter is used. If ’a’ is 0, the ac cess
bank is used.

Words: 1
Cy cles: 1

 Ex am ple:
 SETF FLAG_REG, 1 ; Set all the bits in

; Reg is ter FLAG_REG
Be fore In struc tion:

FLAG_REG = 0x5A
Af ter In struc tion:

FLAG_REG = 0xFF

 PIC18 In struc tion Set 617

SLEEP En ter SLEEP mode

Syn tax: [la bel] SLEEP
Operands: None
Op er a tion: 00h ->. WDT,

0 -> WDT prescaler count,
1 -> ~ TO,
0 -> ~. PD

Sta tus Af fected: TO, PD
De scrip tion: The power-down sta tus bit, PD is cleared.

Time-out sta tus bit, TO is set. Watch dog Timer
 and its prescaler count are cleared. The
pro ces sor is put into SLEEP mode with the
os cil la tor stopped.

Words: 1
Cy cles: 1

 Ex am ple:
 SLEEP ; Turn off the de vice

; os cil la tor. This is the
; low est power mode

Be fore In struc tion:
TO = ?
PD = ?

Af ter In struc tion:
TO = 1†

PD = 0
† If WDT causes wake-up, this bit is
 cleared

618 Ap pen dix D

SUBFWB Sub tract f from WREG with bor row

Syn tax: [la bel] SUBFWB f, d, a
Operands: 0 ≤ f ≤ 255

d ε [0,1]
a ε [0,1]

Op er a tion: (WREG) – (f) – (C) -> des ti na tion
Sta tus Af fected: C, DC, Z, OV, N
De scrip tion: Sub tract Reg is ter 'f' and carry flag (bor row)

from WREG (2’s com ple ment method). The ’d’
bit se lects the des ti na tion for the op er a tion.
If 'd' is 1; the re sult is stored back in the File
Reg is ter 'f'. If 'd' is 0; the re sult is stored in the
WREG Reg is ter.
The ’a’ bit se lects which bank is ac cessed for
the op er a tion.
If ’a’ is 1; the bank spec i fied by the BSR
Reg is ter is used.
If ’a’ is 0; the ac cess bank is used.

Words: 1
Cy cles: 1
Ex am ple:

 SUBFWB MYREG, 1, 1 ; WREG - MYREG - bor row
; bit

Be fore In struc tion
MYREG = 0x37
WREG = 0x10
C, DC, Z, OV, N = x
C = 0

Af ter In struc tion
MYREG = 0xA8
WREG = 0x10
C = 0
DC = 0
Z = 0
OV = 0

N = 1

 PIC18 In struc tion Set 619

SUBLW Sub tract WREG from Lit eral

Syn tax: [la bel] SUBLW k
Operands: k in range 0 to 255
Op er a tion: k - (W) -> W
Sta tus Af fected: C, DC, Z
De scrip tion: WREG is sub tracted (2’s com ple ment method)

from the eight-bit lit eral 'k'. The re sult is placed
in WREG.

Words: 1
Cy cles: 1

Ex am ple 1:

sublw 0x02
Case 1: Be fore In struc tion: WREG = 0x01

C = x
Z = x

Af ter In struc tion: WREG = 0x01
C = 1 if re sult +
Z = 0

Case 2: Be fore In struc tion: WREG = 0x02
C = x
Z = x

Af ter In struc tion: WREG = 0x00
C = 1 ; re sult = 0
Z = 1

Case 3: Be fore In struc tion: WREG = 0x03
C = x
Z = x

Af ter In struc tion: WREG = 0xff
C = 0 ; re sult -
Z = 0

Ex am ple 2:

 sublw myreg
Be fore In struc tion: WREG = 0x10

[myreg] = 0x37
Af ter In struc tion WREG = 0x27

C = 1 ; re sult +

620 Ap pen dix D

SUBWF Sub tract W from f

Syn tax: [la bel] SUBWF f,d,a
Operands: f is in the range 0 to 255

d is ei ther 0 or 1
a is ei ther 0 or 1

Op er a tion: (f) - (WREG) -> des ti na tion
Sta tus Af fected: C, DC, Z, OV, N
De scrip tion: Sub tract (2’s com ple ment method)

.WREG Reg is ter from Reg is ter 'f'.
The ’d’ bit se lects the des ti na tion for
the op er a tion. If 'd' is 1, the re sult is
stored back in the File Reg is ter 'f'. If 'd' is
0, the re sult is stored in WREG.
The ’a’ bit se lects which bank is
ac cessed for the op er a tion. If ’a’ is 1, the
bank spec i fied by the BSR Reg is ter is
used. If ’a’ is 0, the ac cess bank is
used.

Words: 1
Cy cles: 1
Ex am ple:

 SUBWF REG1, 1, 1 ; Sub tract the value in
; WREG Reg is ter from REG1,
; plac ing the re sult in REG1

Case 1: Be fore In struc tion:

REG1 = 3

WREG = 2

C, DC, Z, OV, N = x

Af ter In struc tion:
REG1 = 1

WREG = 2

C =1

DC = 1

Z =0

OV = 0

N =0

; re sult is pos i tive

 PIC18 In struc tion Set 621

SUBWFB Sub tract W from f with Bor row

Syn tax: [la bel] SUBWFB f, d, a
Operands: f is be tween 0 and 255

d is ei ther 0 or 1
a is ei ther 0 or 1

Op er a tion: (f) - (WREG) - (C) -> des ti na tion
Sta tus Af fected: C, DC, Z, OV, N
De scrip tion: Sub tract (2's com ple ment method) WREG

Reg is ter from Reg is ter 'f' with bor row.
The d bit se lects the des ti na tion for the
op er a tion. If 'd' is 1; the re sult is stored back in
the File Reg is ter 'f'.If 'd' is 0; the re sult is stored
in WREG.
The a bit se lects which bank is ac cessed for
the op er a tion. If a is 1, the bank spec i fied by
the BSR Reg is ter is used. If a is 0, the ac cess
bank is used.

Words: 1
Cy cles: 1
Ex am ple:

 SUBWF REG1, 1, 1 ; Sub tract the value
; WREG from REG1, plac ing the
; re sult in REG1

Case 1: Be fore In struc tion:
REG1 = 3
WREG = 2
C =1
DC, Z, OV, N = x

Af ter In struc tion:
REG1 = 1
WREG = 2
C =1
DC = 1
Z =0
OV = 0
N =0
; result is positive

622 Ap pen dix D

SWAPF Swap Nib bles in f

Syn tax: [la bel] SWAPF f,d
Op er ands: f in range 0 to 127

d is ei ther 0 or 1
Op er a tion: (f<3:0>) -> des ti na tion<7:4>,

(f<7:4>) -> des ti na tion<3:0>
Sta tus Af fected: None
De scrip tion: The up per and lower nib bles of Reg is ter 'f' are

ex changed. If 'd' is 0, the re sult is placed in
WREG. If 'd' is 1, the re sult is placed in
Reg is ter 'f'.

Words: 1
Cycles: 1

Ex am ple 1:

SWAPF REG,0
Be fore In struc tion: reg1 = 0xa5
Af ter In struc tion: reg1 = 0xa5

WREG = 0x5a

Ex am ple 2:

 SWAPF INDF,1
Be fore In struc tion:

WREG = 0x17
FSR = 0xc2
[FSR] = 0x20

Af ter In struc tion:
WREG = 0x17
FSR = 0xC2
[FSR] = 0x02

Ex am ple 3:

 SWAPF REG,1
Be fore In struc tion:

reg1 = 0xa5
Af ter In struc tion:

reg1 = 0x5a

 PIC18 In struc tion Set 623

TBLRD Ta ble Read

Syn tax: [la bel] TBLRD[*, *+, *-, or +*]
Operands: 0 ≤ m ≤ 3
Op er a tion: if TBLRD *,

(Prog Mem (TBLPTR)) -> TABLAT;
TBLPTR - No Change;

if TBLRD *+,
(Prog Mem (TBLPTR)) -> TABLAT;
(TBLPTR) +1 −> TBLPTR;

if TBLRD *-,
(Prog Mem (TBLPTR)) −> TABLAT;
(TBLPTR) -1 -> TBLPTR;

if TBLRD +*,
(TBLPTR) +1-> TBLPTR;
(Prog Mem (TBLPTR)) -> TABLAT;

Sta tus Af fected: None
De scrip tion: This in struc tion is used to read the con tents of

Pro gram Mem ory. To ad dress the pro gram
mem ory, a pointer called Ta ble Pointer
(TBLPTR) is used. The TBLPTR (a 21-bit
pointer) points to each byte in the pro gram
mem ory.
TBLPTR has a 2Mbyte ad dress range. The
LSb of the TBLPTR se lects which byte of the
pro gram mem ory lo ca tion to ac cess.
TBLPTR[0] = 0: Least Sig nif i cant byte of
Pro gram Mem ory Word TBLPTR[0] = 1: Most
Sig nif i cant byte of Pro gram Mem ory Word
The Pro gram Mem ory word ad dress is the
 same as the TBLPTR ad dress, ex cept that the
LSb of TBLPTR (TBLPTR[0]) is al ways forced
 to ’0’.
The TBLRD in struc tion can mod ify the value of
 TBLPTR as fol lows:

• no change
• post-in cre ment
• post-dec re ment
• pre-in cre ment

Words: 1
Cy cles: 2

624 Ap pen dix D

 Ex am ple 1:
 TBLRD*+ ; Read byte ad dressed by

; TBLPTR, then in cre ment
; TBLPTR

Be fore In struc tion:
TABLAT = x
TBLPTR = 0x00A356
Con tents of Ad dress (TBLPTR)= 0x34

Af ter In struc tion:
TABLAT = 0x34
TBLPTR = 0x00A357

 Ex am ple 2:
 TBLRD+* ; In cre ment TBLPTR, then

; Read byte ad dressed by
; TBLPTR

Be fore In struc tion:
TABLAT = x
TBLPTR = 0x00A357
Con tents of Ad dress (TBLPTR)= 0x12
Con tents of Ad dress (TBLPTR + 1)= 0x28

Af ter In struc tion:
TABLAT = 0x28
TBLPTR = 0x00A358

 PIC18 In struc tion Set 625

TBLWT Ta ble Write

Syn tax: [la bel] TBLWT[*, *+, *-, +*]
Operands: 0 ≤ m ≤ 3
Op er a tion: if TBLWT*,

(TABLAT) −> Prog Mem (TBLPTR) or Hold ing
 Register1;
TBLPTR - No Change;

if TBLWT*+,
(TABLAT) . Prog Mem (TBLPTR) or Hold ing
 Register1;
(TBLPTR) +1 ->. TBLPTR;

if TBLWT*-,
(TABLAT) . Prog Mem (TBLPTR) or Hold ing
 Register1;
(TBLPTR) -1 ->. TBLPTR;

if TBLWT+*,
(TBLPTR) +1 ->. TBLPTR;
(TABLAT) . Prog Mem (TBLPTR) or Hold ing
Register1;

Note 1: The use of a Hold ing Reg is ter(s) is de vice
 spe cific. Please re fer to the De vice Data Sheet for
 in for ma tion on the op er a tion of the TBLWT
 in struc tion with the Pro gram Mem ory.

Sta tus Af fected: None
De scrip tion: This in struc tion is used to pro gram the con tents of

Pro gram Mem ory. To ad dress the pro gram mem ory,
a pointer called Ta ble Pointer (TBLPTR) is
used.
The TBLPTR (a 21-bit pointer) points to each byte
in the pro gram mem ory. TBLPTR has a 2 MBtye
ad dress range. The LSb of the TBLPTR se lects
 which byte of the pro gram mem ory lo ca tion to
 ac cess.
TBLPTR[0] = 0: Least Sig nif i cant byte of Pro gram
Mem ory Word
TBLPTR[0] = 1: Most Sig nif i cant byte of Pro gram
Mem ory Word
The Pro gram Mem ory word ad dress is the same as
the TBLPTR ad dress, ex cept that the LSb of
TBLPTR (TBLPTR[0]) is al ways forced to ’0’.

626 Ap pen dix D

The TBLWT in struc tion can mod ify the value of
TBLPTR as fol lows:

• no change
• post-in cre ment
• post-dec re ment
• pre-in cre ment

Words: 1
Cy cles: 2 (many if long write to in ter nal pro gram mem ory)

 Ex am ple 1:
 TBLWT*+ ; Write byte ad dressed by

; TBLPTR, then in cre ment TBLPTR
Be fore In struc tion:

TABLAT = 0x55
TBLPTR = 0x00A356
Con tents of (TBLPTR) = 0x34

Af ter In struc tion:
TBLPTR = 0x00A357
Con tents of (TBLPTR) = 0x55

 Ex am ple 2:
TBLWT+* ; In cre ment TBLPTR, then Write

; byte ad dressed by TBLPTR
Be fore In struc tion:

TABLAT = 0xAA
TBLPTR = 0x00A357
Con tents of (TBLPTR) = 0x12
Con tents of (TBLPTR + 1) = 0x28

Af ter In struc tion:
TBLPTR = 0x00A358
Con tents of (TBLPTR) = 0x12
Con tents of (TBLPTR + 1) = 0xAA

 PIC18 In struc tion Set 627

TSTFSZ Test f, Skip if 0

Syn tax: [la bel] TSTFSZ f, a
Operands: 0 ≤ f ≤ 255

a is ei ther 0 or 1]
Op er a tion: Skip if (f) = 0
Sta tus Af fected: None
De scrip tion: If Reg is ter 'f' = 0, the next in struc tion fetched is

dis carded and a NOP is ex e cuted (two NOPs if
the fetched in struc tion is a two-cy cle
in struc tion).
The ’a’ bit se lects which bank is ac cessed for
the op er a tion.
If ’a’ is 1, the bank spec i fied by the BSR
Reg is ter is used.
If ’a’ is 0, the ac cess bank is used.

Words: 1
Cy cles: 1 (2 or 3)
Ex am ple:

HERE TSTFSZ REG1,1 ; If REG1 = 0 then
; skip the next
; program memory
; address

NZERO .
ZERO .
Be fore In struc tion:

REG1 = 0xAF
PC = Ad dress (HERE)

Af ter In struc tion:
PC = Ad dress (NZERO)

628 Ap pen dix D

TRIS Load TRIS Reg is ter

Syn tax: [la bel] TRIS f
Op er ands: f in range 5 to 7
Op er a tion: (W) -> TRIS reg is ter f;
Sta tus Af fected: None
De scrip tion: The in struc tion is sup ported for code

com pat i bil ity with the PIC16C5X prod ucts.
Be cause TRIS reg is ters are read able and
writable, code can ad dress these reg is ters
di rectly.

Words: 1
Cy cles: 1

Ex am ple:

MOVLW B'00000000'
TRIS PORTB

 PIC18 In struc tion Set 629

XORLW Ex clu sive OR Lit eral with WREG

Syn tax: [la bel] XORLW k
Op er ands: k in range 0 to 255
Op er a tion: (WREG).XOR. k -> WREG
Sta tus Af fected: Z
De scrip tion: The con tents of WREG are XORed with

the eight bit lit eral 'k'. The re sult is placed in
WREG.

Words: 1
Cycles: 1

Ex am ple 1:

XORLW b’10101111’
Be fore In struc tion:

WREG = 1011 0101
Af ter In struc tion:

WREG = 0001 1010
Z = 0

Ex am ple 2:

 XORLW MYREG
Be fore In struc tion:

WREG = 0xaf
[Myreg] = 0x37

Af ter In struc tion:
WREG = 0x18
Z = 0

630 Ap pen dix D

XORWF Ex clu sive OR WREG with f

Syn tax: [la bel] XORWF f,d
Op er ands: f in range 0 to 127

d is ei ther 0 or 1
Op er a tion: (W).XOR. (f) -> des ti na tion
Sta tus Af fected: Z
De scrip tion: Ex clu sive OR the con tents of WREG with

Reg is ter 'f'. If 'd' is 0, the re sult is stored in
WREG. If 'd' is 1, the re sult is stored
back in reg is ter 'f'.

Words: 1
Cycles: 1

Ex am ple 1:

XORWF REG,1
Be fore In struc tion:

WREG = 1011 0101
reg = 1010 1111

Af ter In struc tion:
reg = 0001 1010
WREG = 1011 0101

Ex am ple 2:

XORWF REG,0
Be fore In struc tion:

WREG = 1011 0101
reg = 1010 1111

Af ter In struc tion:
reg = 1010 1111
WREG = 0001 1010

Ex am ple 3:

 XORWF INDF,1
Be fore In struc tion:

WREG = 1011 0101
FSR = 0xc2
[FSR] = 1010 1111

Af ter In struc tion:
WREG = 1011 0101
FSR = 0xc2
[FSR] = 0001 1010

 PIC18 In struc tion Set 631

Appendix E

Number Sys tems and Data En coding

This appendix pres ents the back ground ma te rial nec es sary for un der stand ing and us -
ing the num ber sys tems and nu meric data stor age struc tures em ployed in dig i tal de -
vices as well as the data types used by elec tronic-dig i tal ma chines.

E.1 Dec i mal and Bi nary Sys tems
The Hindu-Arabic nu mer als, or dec i mal sys tem, has been adopted by prac ti cally all
the na tions and cul tures of the world. This sys tem was in tro duced into Eu rope by the
Arabs who had been us ing it be cause 800 A.D. and prob a bly had cop ied it from the
Hindu. It is a ten-sym bol po si tional sys tem of num bers that in cludes the spe cial sym -
bol for 0. The Latin ti tle of the first book on the sub ject of the so-called “In dian num -
bers” is Liber Algorismi de Numero Indorum. The au thor is the Arab math e ma ti cian
al-Khowarizmi.

The most sig nif i cant fea ture of the Hindu-Arabic nu mer als is the pres ence of a
spe cial sym bol (0), which by it self rep re sents no quan tity. Nev er the less, the sym bol
0 is com bined with the other ones to rep re sent larger quan ti ties. The prin ci pal char -
ac ter is tic of dec i mal num bers is that the value of each digit de pends on its ab so lute
mag ni tude and on its po si tion in the digit string. This po si tional char ac ter is tic, in
con junc tion with the use of the spe cial sym bol 0 as a place holder, al lows the fol low -
ing rep re sen ta tions:

 1 = one

 10 = ten

 100 = hun dred

 1000 = thou sand

E.1.1 Bi nary Num ber Sys tem

The com put ers built in the United States dur ing the early 1940s used dec i mal num -
bers. It was in 1946 that von Neumann, Burks, and Goldstine pub lished a trend-set ting
pa per ti tled “Pre lim i nary Dis cus sion of the Log i cal De sign of an Elec tronic Com put -
ing In stru ment,” in which they pro posed the use of bi nary num bers in com put ing de -
vices ar gu ing that bi nary num bers are more com pact and ef fi cient.

633

An other ad van tage of the bi nary sys tem is that, in dig i tal de vices, the bi nary sym -
bol 1 can be equated with the elec tronic state ON, and the bi nary sym bol 0 with the
state OFF. Fur ther more, the two sym bols of the bi nary sys tem can also rep re sent
con duct ing and nonconducting states, pos i tive or neg a tive, or any other bi-val ued
con di tion. It has been proven that in dig i tal elec tron ics, two steady states are eas ier
to im ple ment and more re li able than a ten-digit en cod ing.

E.1.2 Ra dix or Base of a Num ber Sys tem
We have seen that in a po si tional num ber sys tem, the weight of each col umn is de ter -
mined by the to tal num ber of sym bols in the set, in clud ing zero. In the dec i mal sys tem,
the weight of each digit is a power of ten, and a power of two in the bi nary sys tem. The
num ber of sym bols in the set is called the base or ra dix of the sys tem. Thus the base of
the dec i mal sys tem is 10, and the base of the bi nary sys tem is 2. No tice that the in -
crease in col umn weight from right to left is purely con ven tional. You could con struct
a num ber sys tem in which the col umn weights in crease in the op po site di rec tion. In
fact, in the orig i nal Hindu notation, the most sig nif i cant digit was placed at the right.

E.2 Dec i mal ver sus Bi nary Num bers
We have seen that the bi nary sys tem of num bers uses two sym bols, 1 and 0. This is the
sim plest pos si ble set of sym bols with which we can count and per form arith me tic.
Most of the dif fi cul ties in learn ing and us ing the bi nary sys tem re sult from this sim plic -
ity. Fig ure E.1 shows six teen groups of four elec tronic cells each in all pos si ble com bi -
na tions of two states.

Fig ure E.1 Elec tronic cells and bi nary num bers.

634 Appendix E

Note that bi nary num bers match the phys i cal state of each elec tronic cell. If we
think of each cell as a min ia ture light bulb, then the bi nary num ber 1 can be used to
rep re sent the state of a charged cell (light ON) and the bi nary num ber 0 to rep re sent
the state of an un charged cell (light OFF).

E.2.1 Hex a dec i mal and Oc tal
Bi nary num bers are con ve nient in dig i tal elec tron ics; how ever, one of their draw -
backs is the num ber of sym bols re quired to en code large val ues. For ex am ple, the
num ber 9134 is rep re sented in four dec i mal dig its. How ever, the bi nary equiv a lent
10001110101110 re quires four teen dig its. In ad di tion, large bi nary num bers are dif fi -
cult to re mem ber.

One pos si ble so lu tion is to use other sym bols to rep re sent groups of bi nary dig its.
In this man ner a group of three bi nary num bers al low eight pos si ble com bi na tions,
thus we could use the dec i mal dig its 0 to 7 to rep re sent each pos si ble com bi na tion
of three bi nary dig its. This group ing of three bi nary dig its, called an oc tal rep re sen -
ta tion, gives rise to the fol low ing ta ble:

 bi nary oc tal
 0 0 0 0
 0 0 1 1
 0 1 0 2
 0 1 1 3
 1 0 0 4
 1 0 1 5
 1 1 0 6
 1 1 1 7

The oc tal en cod ing serves as a short hand rep re sen ta tion for groups of three-digit bi -
nary num bers.

Hex a dec i mal num bers (base 16) are used for rep re sent ing val ues en coded in four
bi nary dig its. Be cause there are only ten dec i mal dig its, the hex a dec i mal sys tem
bor rows the first six let ters of the al pha bet (A, B, C, D, E, and F). The re sult is a set
of six teen sym bols, as fol lows:

 0 1 2 3 4 5 6 7 8 9 A B C D E F

Most mod ern com put ers are de signed with mem ory cells, reg is ters, and data
paths in mul ti ples of four bi nary dig its. Ta ble E.1 lists some com mon units of mem -
ory stor age.

Ta ble E.1

Units of Mem ory Stor age

UNIT BITS HEX DIGITS HEX RANGE

 Nib ble 4 1 0 to F
 Byte 8 2 0 to FF

 Word 16 4 0 to FFFF
 Doubleword 32 8 0 to FFFFFFFF

 Number Sys tems and Data En coding 635

In most dig i tal elec tronic de vices, mem ory ad dress ing is or ga nized in mul ti ples of
four bi nary dig its. Here again, the hex a dec i mal num ber sys tem pro vides a con ve -
nient way to rep re sent ad dresses. Ta ble E.2 lists some com mon mem ory ad dress ing
units and their hex a dec i mal and dec i mal range.

Ta ble E.2

Units of Mem ory Ad dressing

 UNIT DATA PATH ADDRESS RANGE
IN BITS DECIMAL HEX

1 para graph 4 0 to 15 0-F
1 page 8 0 to 255 0-FF
1 ki lo byte 16 0 to 65,535 0-FFFF
1 mega byte 20 0 to 1,048,575 0-FFFFF
4 giga bytes 32 0 to 4,294,967,295 0-FFFFFFFF

E.3 Char ac ter Rep re sen ta tions
Over the years, data rep re sen ta tion schemes have of ten been de ter mined by the var i -
ous con ven tions used by the dif fer ent hard ware man u fac turers. Ma chines have had
dif fer ent word lengths and dif fer ent char ac ter sets, and have used var i ous schemes
for stor ing char ac ters and data. For tu nately, in mi cro pro ces sor and microcontroller
de sign the en cod ing of char ac ter data has not been sub ject to ma jor dis agree ments.

His torically, the meth ods used to rep re sent char ac ters have var ied widely, but the
ba sic ap proach has al ways to choose a fixed num ber of bits and then map the var i -
ous bit com bi na tions to the var i ous char ac ters. The num ber of bits of the stor age
for mat lim its the to tal num ber of dis tinct char ac ters that can be rep re sented. In this
man ner, the 6-bit codes used on a num ber of ear lier com put ing ma chines al low rep -
re sent ing 64 char ac ters. This range al lows in clud ing the up per case let ters, the dec i -
mal dig its, some spe cial char ac ters, but not the low er case let ters. Com puter
man u fac tur ers that used the 6-bit for mat of ten ar gued that their cus tom ers had no
need for low er case let ters. Now a days, 7- and 8-bit codes that al low rep re sent ing the
low er case let ters have been adopted al most uni ver sally.

Most of the world (ex cept IBM) has stan dard ized char ac ter rep re sen ta tions by
us ing the ISO (In ter na tional Stan dards Or ga ni za tion) code. ISO ex ists in sev eral na -
tional vari ants; the one used in the United States is called ASCII, which stands for
Amer i can Stan dard Code for In for ma tion In ter change. All mi cro com put ers and
microcontrollers use ASCII as the code for char ac ter rep re sen ta tion.

E.3.1 ASCII

ASCII is a char ac ter en cod ing based on the Eng lish al pha bet. ASCII was first pub -
lished as a stan dard in 1967 and was last up dated in 1986. The first 33 codes, re ferred
to as non-print ing codes, are mostly ob so lete con trol char ac ters. The re main ing 95
print able char ac ters (start ing with the space char ac ter) in clude the com mon char ac -
ters found on a stan dard key board, the dec i mal dig its, and the up per- and low er case
char ac ters of the Eng lish al pha bet. Ta ble E.3 lists the ASCII char ac ters in dec i mal,
hex a dec i mal, and bi nary.

636 Appendix E

Ta ble E.3

ASCII Char ac ter Rep re sen ta tion

 DECIMAL HEX BINARY VALUE

000 000 00000000 an nual (Null char ac ter)
001 001 00000001 SOH (Start of Header)
002 002 00000010 STX (Start of Text)
003 003 00000011 ETX (End of Text)
004 004 00000100 EOT (End of Trans mis sion)
005 005 00000101 ENQ (En quiry)
006 006 00000110 ACK (Ac knowl edg ment)
007 007 00000111 BEL (Bell)
008 008 00001000 BS (Back space)
009 009 00001001 HT (Hor i zon tal Tab)
010 00A 00001010 LF (Line Feed)
011 00B 00001011 VT (Ver ti cal Tab)
012 00C 00001100 FF (Form Feed)
013 00D 00001101 CR (Car riage Re turn)
014 00E 00001110 SO (Shift Out)
015 00F 00001111 SI (Shift In)
016 010 00010000 DLE (Data Link Es cape)
017 011 00010001 DC1 (XON)(De vice Con trol 1)
018 012 00010010 DC2 (De vice Con trol 2)
019 013 00010011 DC3 (XOFF)(De vice Con trol 3)
020 014 00010100 DC4 (De vice Con trol 4)
021 015 00010101 NAK (- Ac knowl edge)
022 016 00010110 SYN (Syn chro nous Idle)
000 000 00000000 an nual (Null char ac ter)
023 017 00010111 ETB (End of Trans. Block)
024 018 00011000 CAN (Can cel)
025 019 00011001 EM (End of Me dium)
026 01A 00011010 SUB (Sub sti tute)
027 01B 00011011 ESC (Es cape)
028 01C 00011100 FS (File Sep a ra tor)
029 01D 00011101 GS (Group Sep a ra tor)
030 01E 00011110 RS (Re quest to Send)
031 01F 00011111 US (Unit Sep a ra tor)
032 020 00100000 SP (Space)
033 021 00100001 ! (ex cla ma tion mark)
034 022 00100010 “ (dou ble quote)
035 023 00100011 # (num ber sign)
036 024 00100100 $ (dol lar sign)
037 025 00100101 % (per cent)
038 026 00100110 & (am per sand)
039 027 00100111 ‘ (sin gle quote)
040 028 00101000 ((left/open ing pa ren the sis)
041 029 00101001) (right/clos ing pa ren the sis)
042 02A 00101010 * (as ter isk)
043 02B 00101011 + (plus)
044 02C 00101100 , (comma)
045 02D 00101101 - (mi nus or dash)
046 02E 00101110 . (dot)
047 02F 00101111 / (for ward slash)
048 030 00110000 0 (dec i mal dig its ...)
049 031 00110001 1

(con tin ues)

 Number Sys tems and Data En coding 637

Ta ble E.3

ASCII Char ac ter Rep re sen ta tion (conitnued)

 DECIMAL HEX BINARY VALUE

050 032 00110010 2
051 033 00110011 3
052 034 00110100 4
053 035 00110101 5
054 036 00110110 6
055 037 00110111 7
056 038 00111000 8
057 039 00111001 9
058 03A 00111010 : (co lon)
059 03B 00111011 ; (semi-co lon)
060 03C 00111100 < (less than)
061 03D 00111101 = (equal sign)
062 03E 00111110 > (greater than)
063 03F 00111111 ? (ques tion mark)
064 040 01000000 @ (AT sym bol)
065 041 01000001 A
066 042 01000010 B
067 043 01000011 C
. . .
090 05A 01011010 Z
091 05B 01011011 [(left/open ing bracket)
092 05C 01011100 \ (back slash)
093 05D 01011101] (right/clos ing bracket)
094 05E 01011110 ^ (cir cum flex)
095 05F 01011111 _ (un der score)
096 060 01100000 ` (ac cent)
097 061 01100001 a
098 062 01100010 b
099 063 01100011 c
...
122 07A 01111010 z
123 07B 01111011 { (left/open ing brace)
124 07C 01111100 | (ver ti cal bar)
125 07D 01111101 } (right/clos ing brace)
126 07E 01111110 ~ (tilde)
127 07F 01111111 DEL (de lete)

E.3.2 EBCDIC and IBM

In spite of ASCII's gen eral ac cep tance, IBM con tin ues to use its one EBCDIC (Ex -
tended Bi nary Coded Dec i mal In ter change Code) for char ac ter en cod ing. Thus, IBM
main frames and mid-range sys tems such as the AS/400 still use a char ac ter set pri mar -
ily de signed for punched card tech nol ogy.

EBCDIC uses the full 8 bits avail able to it, so par ity check ing can not be used on
an 8-bit sys tem. Also, EBCDIC has a wider range of con trol char ac ters than ASCII.
EBCDIC char ac ter en cod ing is based on Bi nary Coded Dec i mal (BCD), which we
dis cuss later.

638 Appendix E

E.3.3 Unicode

One of the lim i ta tions of the ASCII code is that an 8-bit rep re sen ta tion is lim ited to 256
com bi na tions, which is not enough for all the char ac ters of lan guages such as Jap a -
nese and Chi nese. This lim i ta tion of the ASCII led to the de vel op ment of encodings
that would al low rep re sent ing large char ac ter sets. Unicode has been pro posed as a
uni ver sal char ac ter en cod ing stan dard that can be used for rep re sen ta tion of text for
com puter pro cess ing.

Unicode at tempts to pro vide a con sis tent way of en cod ing mul ti lin gual text and
thus makes it pos si ble to ex change text files in ter na tion ally. The de sign of Unicode
is based on the ASCII code but goes be yond the Latin al pha bet to which ASCII is
lim ited. The Unicode Stan dard pro vides the ca pac ity to en code all the char ac ters
used for the writ ten lan guages of the world. Like ASCII, Unicode as signs each char -
ac ter a unique nu meric value and name. Unicode uses three en cod ing forms that use
a com mon rep er toire of char ac ters. These forms al low en cod ing as many as a mil -
lion char ac ters.

The three en cod ing forms of the Unicode Stan dard al low the same data to be
trans mit ted in byte, word, or dou ble word for mat, that is in 8-, 16- or 32-bits per
char ac ter. UTF-8 is a way of trans form ing all Unicode char ac ters into a vari able
length en cod ing of bytes. In this for mat, the Unicode char ac ters cor re spond ing to
the fa mil iar ASCII set have the same byte val ues as ASCII. By the same to ken,
Unicode char ac ters trans formed into UTF-8 can be used with ex ist ing soft ware.

UTF-16 is de signed to bal ance ef fi cient ac cess to char ac ters with eco nom i cal use
of stor age. It is rea son ably com pact, and all the heavily used char ac ters fit into a
sin gle 16-bit code unit, while all other char ac ters are ac ces si ble via pairs of 16-bit
code units. UTF-32 is used where mem ory space is no con cern, but fixed width, sin -
gle code unit ac cess to char ac ters is de sired. In UTF-32, each Unicode char ac ter is
rep re sented by a sin gle 32-bit code.

E.4 En coding of In te gers

For un signed in te gers there is lit tle doubt that the bi nary rep re sen ta tion is ideal. Suc -
ces sive bits in di cate pow ers of 2, with the most sig nif i cant bit at the left and the least
sig nif i cant one on the right, as is cus tom ary in the dec i mal sys tem. Fig ure E.2 shows
the digit weights and the con ven tional bit num ber ing in the bi nary en cod ing.

In or der to per form arith me tic op er a tions, the dig i tal ma chine must be ca pa ble of
stor ing and re triev ing nu mer i cal data. The stor age for mats are de signed to min i mize
space and op ti mize pro cess ing. His tor i cally, nu meric data was stored in data struc -
tures de vised to fit the char ac ter is tics of a spe cific ma chine, or the pref er ences of
its de sign ers. It was in 1985 that the In sti tute of Elec tri cal and Elec tron ics En gi -
neers (IEEE) and the Amer i can Na tional Stan dards In sti tute (ANSI) for mally ap -
proved math e mat i cal stan dards for en cod ing and stor ing nu mer i cal data in dig i tal
de vices.

 Number Sys tems and Data En coding 639

Fig ure E.2 Bi nary digit weights and num ber ing.

Data stored in pro ces sor reg is ters, mag netic me dia, op ti cal de vices, or punched
tape, is usu ally en coded in bi nary. Thus, the pro gram mer and the op er a tor can usu -
ally ig nore the phys i cal char ac ter is tics of the stor age me dium. This means that the
bit pat tern 10010011 can be en coded as holes in a strip of pa per tape, as mag netic
charges on a my lar-coated disk, as pos i tive volt ages in an in te grated cir cuit mem ory
cell, or as min ute crat ers on the sur face of the CD. In all cases 10010011 rep re sents,
the dec i mal num ber 147.

E.4.1 Word Size

In elec tronic dig i tal de vices, the bi-sta ble states are rep re sented by a sin gle bi nary
digit, or bit. Cir cuit de sign ers group sev eral in di vid ual cells to form a unit of stor age
that holds sev eral bits. In a par tic u lar ma chine, the ba sic unit of data stor age is called
the word size. Word size in com puters of ten ranges from 8 to 128 bits, in pow ers of 2.
Microcontrollers and other dig i tal de vices some times use word sizes that are de ter -
mined by their spe cif ic ar chi tec tures. For ex am ple, the mid-range PIC
microcontrollers use a 14-bit word size.

 In most dig i tal ma chines, the small est unit of stor age in di vid u ally ad dress able is
8 bits (one byte). In di vid ual bits are not di rectly ad dress able and must be ma nip u -
lated as part of larger units of data stor age.

E.4.2 Byte Or der ing

The stor age of a sin gle-byte in te ger can be done ac cord ing to the scheme in Fig ure E.2.
How ever, the max i mum value that can be rep re sented in 8 bits is the dec i mal num ber
255. To rep re sent larger bi nary in te gers re quires ad di tional stor age area. Be cause

640 Appendix E

DIGIT POSITIONAL WEIGHT
7

2 = 128
62 = 64
52 = 32
42 = 16
32 = 8
22 = 4
12 = 2
02 = 1

0 (LEAST SIGNIFICANT BIT)
1
2
3
4
5
6
7 (MOST SIGNIFICANT BIT)

mem ory is usu ally or ga nized in byte-size units, any dec i mal num ber larger than 255
will re quire more than one byte of stor age. In this case, the en cod ing is pad ded with
the nec es sary lead ing ze ros. Fig ure E.3 is a rep re sen ta tion of the dec i mal num ber
21,141 stored in two con sec u tive data bytes.

Fig ure E.3 Rep re sen ta tion of an un signed in te ger.

One is sue re lated to us ing mul ti ple mem ory bytes to en code bi nary in te gers is the
suc ces sive lay out of the var i ous byte-size units. In other words, does the rep re sen ta -
tion store the most sig nif i cant byte at the low est num bered mem ory lo ca tion, or
vice versa? For ex am ple, when a 32-bit bi nary in te ger is stored in a 32-bit stor age
area, we can fol low the con ven tional pat tern of plac ing the low-or der bit on the
right-hand side and the high-or der bit on the left, as we did in Fig ure E.3. How ever,
if the 32-bit num ber is to be stored into four byte-size mem ory cells, then two pos si -
ble stor age schemes are ob vi ous. as shown in Fig ure E.4.

Fig ure E.4 Byte or der ing schemes.

In the low-to-low stor age scheme, the low-or der 8 bits of the op er and are stored
in the low-or der mem ory byte; the next group of 8-bits is moved to the fol low ing
mem ory byte in low-to-high or der, and so on. Con ceiv ably, this scheme can be de -
scribed by say ing that the “lit tle end” of the op er and is stored first, that is, in low est
mem ory. Ac cord ing to this no tion, the stor age scheme is de scribed as the lit -
tle-endian for mat. If the “big-end” of the op er and, that is, the high est val ued bits, are
stored in the low mem ory ad dresses, then the byte or der ing is said to be in
big-endian for mat. Some Intel pro ces sors (like those of the 80x86 fam ily) fol low the
lit tle-endian for mat. This is easy to re mem ber be cause Intel rhymes with lit tle. On
the other hand, some Motorola pro ces sors (like those of the 68030 fam ily) fol low
the big-endian for mat, while still oth ers (such as the MIPS 2000) can be con fig ured
to store data in ei ther for mat.

 Number Sys tems and Data En coding 641

= 01010010 10010101 = 21,141

binary

machine storage

decimal

32 bits 32 bits

memory bytes
memory bytes

low low

low
low

high

LOW-TO-LOW STORAGE SCHEME HIGH-TO-LOW STORAGE SCHEME

high

high
high

Of ten, the pro gram mer needs to be aware of the byte-or der ing scheme, for ex am -
ple, to re trieve mem ory data into pro ces sor reg is ters so as to per form multi-byte
arith me tic, or to con vert data stored in one for mat to the other one. This last op er a -
tion can be de scribed as a sim ple byte swap. For ex am ple, if the hex value 01020304
is stored in four con sec u tive mem ory cells in low-to-high or der (lit tle-endian for -
mat), it ap pears in mem ory (low-to-high) as the val ues 04030201. Con vert ing this
data to the big-endian for mat con sists of swap ping the in di vid ual bytes so that they
are stored in the or der 01010304. Fig ure E.5 is a di a gram of a byte swap op er a tion.

Fig ure E.5 Data for mat con ver sion by byte swap ping.

E.4.3 Sign-Mag ni tude Rep re sen ta tion

Rep re senting signed num bers re quires a way of dif fer en ti at ing be tween pos i tive and
neg a tive mag ni tudes. One pos si ble scheme is to de vote one bit to rep re sent the sign.
Typically the high-or der bit is set to de note neg a tives and re set to de note positives.
Using this con ven tion, the dec i mal num bers 93 and – 93 are rep re sented as fol lows:

 01011101 bi nary = 93 dec i mal

 11011101 bi nary = -93 dec i mal

 |

 |—————————- sign bit

This way of des ig nat ing neg a tive num bers, called a sign-mag ni tude rep re sen ta -
tion, cor re sponds to the con ven tional way in which we write neg a tive and pos i tive
num bers long hand; that is, we pre cede the num ber by its sign. Sign-mag ni tude rep -
re sen ta tion has the fol low ing char ac ter is tics:

1. The ab so lute value of pos i tive and neg a tive num bers is the same.

2. Pos i tive num bers can be dis tin guished from neg a tive num bers by ex am in ing the
high-or der bit.

3. There are two pos si ble rep re sen ta tions for zero, one neg a tive (10000000B) and
one pos i tive (00000000B).

But a ma jor lim i ta tion of sign-mag ni tude rep re sen ta tion is that the pro cess ing re -
quired to per form ad di tion is dif fer ent from that for sub trac tion. While this is not in -
sur mount able, there are other nu meric rep re sen ta tions that avoid this prob lem. A
con se quence of sign-mag ni tude rep re sen ta tion is that, in some cases, it is nec es sary
to take into ac count the mag ni tude of the operands in or der to de ter mine the sign of
the re sult. Also, the pres ence of a neg a tive zero re duces the nu mer i cal range of the
rep re sen ta tion and is, for most prac ti cal uses, an un nec es sary com pli ca tion.

642 Appendix E

23 16

23 16

31 24

31 24

15 8

15 8

7 0

7 0

But the most im por tant lim i ta tions of the sign-mag ni tude for mat are the com pli -
cated rules re quired for the ad di tion of signed num bers. For ex am ple, con sid er ing
two operands la beled x and y, the fol low ing rules must be ob served for per form ing
signed ad di tion:

1. If x and y have the same sign, they are added di rectly and the re sult is given the
com mon sign.

2. If x is larger than y, then y is sub tracted from x and the re sult is given the sign of x.

3. If y is larger than x, then x is sub tracted from y and the re sult is given the sign of y.

4. If ei ther x or y is 0 or −0, the re sult is the non-zero el e ment.

5. If both x and y are −0, then the sum is 0.

E.4.4 Ra dix Com ple ment Rep re sen ta tion
The ra dix com ple ment of a num ber is de fined as the dif fer ence be tween the num ber
and the next in te ger power of the base that is larger than the num ber. In dec i mal num -
bers the ra dix com ple ment is called the ten's com ple ment. In the bi nary sys tem, the ra -
dix com ple ment is called the two's com ple ment. For ex am ple, the ra dix com ple ment
of the dec i mal num ber 89 (ten's com ple ment) is cal cu lated as fol lows:

 100 = higher power of 10
 – 89

 11 = ten's com ple ment of 89

The use of ra dix com ple ments to sim plify ma chine sub trac tion op er a tions can
best be seen in an ex am ple. Sup pose the op er a tion x = a – b with the fol low ing val -
ues:

 a = 602
 b = 353

 602
 – 353

 x = 249

No tice that in the pro cess of per form ing long hand sub trac tion, we had to per form two
bor row op er a tions. Now con sider that the ra dix complement (ten's com ple ment) of
353 is

 1000 – 353 = 647

Using com ple ments, we can re for mu late sub trac tion as the ad di tion of the ten's
com ple ment of the sub tra hend, as fol lows:

 602
 + 647

 1249
 |____________ dis carded digit

 Number Sys tems and Data En coding 643

The re sult is ad justed by dis card ing the digit that over flows the num ber of dig its
in the operands.

In dec i mal arith me tic, there is lit tle ad van tage in re plac ing sub trac tion with ten's
com ple ment ad di tion. The work of cal cu lat ing the ten's com ple ment can cels out
any other pos si ble ben e fit. How ever, in bi nary arith me tic, the use of ra dix com ple -
ments en tails sig nif i cant com pu ta tional ad van tages — prin ci pally be cause bi nary
ma chines can cal cu late com ple ments eas ily and rap idly.

The two's com ple ment of a bi nary num ber can be ob tained in the same man ner as
the ten's com ple ment of a dec i mal num ber, that is, by sub tract ing the num ber from
an in te ger power of the base that is larger than the num ber. For ex am ple, the two's
complement of the bi nary num ber 101 is:

 1000B = 2^3 = 8 dec i mal (higher power of 2)

 – 101B = 5 dec i mal

 _________ _________

 011B = 3 dec i mal

And the two's complement of 10110B is cal cu lated as fol lows:

 100000B = 2^5 = 32 dec i mal (higher power of 2)

 – 10110B = 22 dec i mal

 _______ __________

 01010B 10 dec i mal

You can per form the bi nary sub trac tion of 11111B (31 dec i mal) mi nus 10110B (22
dec i mal) by find ing the two's com ple ment of the sub tra hend, add ing the two
operands, and dis card ing any over flow digit, as fol lows:

 11111B = 31 dec i mal

 + 01010B = 10 dec i mal (two's com ple ment of 22)

 101001B

 dis card______|

 01001B = 9 dec i mal (31 mi nus 22 = 9)

In ad di tion to the ra dix com ple ment rep re sen ta tion, there is a di min ished ra dix
rep re sen ta tion that is some times use ful. This en cod ing, some times called the ra -
dix-mi nus-one form, is cre ated by sub tract ing 1 from an in te ger power of the base
that is larger than the num ber, then sub tract ing the op er and from this value. In the
dec i mal sys tem, the di min ished ra dix rep re sen ta tion is some times called the nine's
com ple ment.

In the bi nary sys tem, the di min ished ra dix rep re sen ta tion is called the one's com -
ple ment. The one's com ple ment of a bi nary num ber is ob tained by sub tract ing the
num ber from an in te ger power of the base that is larger than the num ber, mi nus one.
For ex am ple, the one's com ple ment of the bi nary num ber 101 (5 dec i mal) can be
cal cu lated as fol lows:

644 Appendix E

 1000B = 2^3 = 8 dec i mal

 111B = 1000B mi nus 1 = 7 dec i mal
 101B 5 dec i mal
 ______ _________
 010B = 2 dec i mal

An in ter est ing fea ture of one's com ple ment is that it can also be ob tained by
chang ing ev ery 1 bi nary digit to a 0 and ev ery 0 bi nary digit to a 1. In the above ex -
am ple 010B is one's com ple ment of 101B. In this con text the 0 bi nary digit is said to
be the com ple ment of the 1 bi nary digit, and vice versa. Most mod ern com put ers
con tain an in struc tion that in verts all the dig its of a value by trans form ing all 1 dig -
its into 0, and all 0 dig its into 1. The op er a tion is also known as a ne ga tion.

It is also in ter est ing that the two's com ple ment can be ob tained by add ing one to
the one's com ple ment of a num ber. There fore, in stead of cal cu lat ing

 100000B
 – 10110B

 01010B

we can find the two's com ple ment of 10110B as fol lows:

 10110B = num ber
 01001B = change 0 to 1 and 1 to 0 (one's com ple ment)
 + 1B then add 1

 01010B = two's com ple ment

This al go rithm pro vides a con ve nient way of cal cu lat ing the two's com ple ment in
a ma chine equipped with a com ple ment in struc tion. Finally, the two's com ple ment
can be ob tained by sub tract ing the op er and from zero and dis card ing the over flow.

E.4.5 Sim pli fi ca tion of Sub trac tion
We have seen that the ra dix com ple ment of a num ber is the dif fer ence be tween the
num ber and an in te ger power of the base that is larger than the num ber. Fol low ing this
rule, we cal cu late the ra dix com ple ment of the bi nary num ber 10110 as fol lows

 100000B = 2^5 = 32 dec i mal
 – 10110B = 22 dec i mal
 _______ __________
 01010B 10 dec i mal

How ever, some times the ma chine cal cu la tion of the two's com ple ment of the
same value pro duces a dif fer ent re sult; for ex am ple,

 100000000B = 28 = 256 dec i mal
 – 00010110B = 22 dec i mal
 __________ ___________
 11101010B 234 dec i mal

 Number Sys tems and Data En coding 645

The dif fer ence is due to the fact that in the long hand method, we have used the
next higher in te ger power of the base com pared to the value of the sub tra hend (in
this case, 100000B), while in the ma chine cal cu la tions we use the next higher in te -
ger power of the base com pared to the op er and's word size, which is nor mally ei -
ther 8 or 16 bits. In the above ex am ple, the op er and's word size is 8 bits and the next
high est in te ger power of 2 is 100000000B.

In re al ity, the re sults of two's com ple ment sub trac tion are valid as long as the
min u end is an in te ger power of the base that is larger than the sub tra hend. For ex -
am ple, to per form the bi nary sub trac tion of 00011111B (31 dec i mal) mi nus
00010110B (22 dec i mal), we can find the two's com ple ment of the sub tra hend and
add, dis card ing any over flow digit, as fol lows:

 00011111B = 31 dec i mal
 + 11101010B = 234 dec i mal (two's com ple ment of 22)

 100001001B
 dis card____|
 00001001B = 9 dec i mal (31 mi nus 22 = 9)

In ad di tion to the sim pli fi ca tion of sub trac tion, two's com ple ment arith me tic has
the ad van tage that there is no rep re sen ta tion for neg a tive 0. While both the two's
com ple ment and the one's com ple ment schemes can be used to im ple ment bi nary
arith me tic, sys tem de sign ers usu ally pre fer the two's com ple ment.

E.5 Bi nary En coding of Frac tional Num bers
In any po si tional num ber sys tem, the weight of each in te ger digit can be de ter mined
by the for mula:

 P = d * BC

where d is the digit, B is the base or ra dix, and C is the zero-based col umn num ber,
start ing from right to left. There fore, the value of a multi-digit pos i tive in te ger to n dig -
its can be ex pressed as a sum of the digit val ues:

 dn*Bn + dn-1*Bn-1 + dn-2*Bn-2 + ... + d0*B0

where d is the value of the digit and B is the base or ra dix of the num ber sys tem. This
rep re sen ta tion can be ex tended to rep re sent frac tional val ues. Re call ing that

we can ex tend the se quence to the right of the ra dix point, as in Fig ure E.6.

In the dec i mal sys tem, the value of each digit to the right of the dec i mal point is
cal cu lated as 1/10, 1/100, 1/1000, and so on. The value of each suc ces sive digit of a
bi nary frac tion is the re cip ro cal of a power of 2; there fore the se quence is 1/2, 1/4,
1/8, 1/16, etc. Fig ure E.6 shows the po si tional weight of the in te ger and the frac -
tional dig its in a bi nary num ber.

646 Appendix E

x
x

n
n

− = 1

Fig ure E.6 Po si tional weights in a bi nary fraction.

E.5.1 Fixed-Point Rep re sen ta tions
The bi nary en cod ing and stor age of frac tional num bers (also called real num bers)
pres ents sev eral dif fi cul ties. The first one is re lated to the lo ca tion of the ra dix point.
Be cause there are only two sym bols in the bi nary set, and both are used to rep re sent
the nu mer i cal value of the num ber, there is no other sym bol avail able for the dec i mal
point.

One pos si ble so lu tion is to pre-for mat the field of dig its that rep re sent the in te ger
part and the one that rep re sents the frac tional part. For ex am ple, if a real num ber is
to be en coded in two data bytes, we can as sign the high-or der byte to the in te ger
part and the low-or der byte to the frac tional part. In this case, the pos i tive dec i mal
num ber 58.125 could be en coded as shown in Fig ure E.7.

Fig ure E.7 Bi nary fixed-point rep re sen ta tion.

In Fig ure E.7 we take for granted that the bi nary point is po si tioned be tween the
eighth and the ninth digit of the en cod ing. Fixed-point rep re sen ta tions as sume that
what ever dis tri bu tion of dig its is se lected for the in te ger and the frac tional part of
the rep re sen ta tion is main tained in all cases. This is the great est lim i ta tion of the
fixed-point for mats. Sup pose we want to store the value 312.250. This num ber can
be rep re sented in bi nary as fol lows:

 Number Sys tems and Data En coding 647

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

INTEGER PART
72 = 128
62 = 64
52 = 32
42 = 16
32 = 8
22 = 4
1

2 = 2
02 = 1

FRACTIONAL PART
-1.500 1/2 2
-2.250 1/4 2
-3.125 1/8 2
-4.0625 1/16 2
-5.03125 1/32 2
-6

.015625 1/64 2
-7.0078125 1/128 2
-8

.00390625 1/256 2

radix point

= 00111010 00100000 = 58.125

binary decimal

implied binary point

 312 = 100111000
 .250 = .01

In this case the to tal num ber of bi nary dig its re quired for the bi nary en cod ing is
11, which means that the num ber can be phys i cally stored in a 16-digit struc ture (as
the one in Fig ure E.7) leav ing five cells to spare. How ever, be cause the fixed-point
for mat we have adopted as signs eight cells to the in te ger part of the num ber,
312.250 can not be en coded be cause the in te ger part re quires nine bi nary dig its. In
spite of this lim i ta tion, the fixed-point for mat was the only one used in early com -
put ers.

E.5.2 Floating-Point Rep re sen ta tions
An al ter na tive to fixed-point is not to as sume that the ra dix point has a fixed po si tion
in the en cod ing, but to al low it to float. The idea of sep a rately en cod ing the po si tion of
the ra dix point prob a bly orig i nated in sci en tific no ta tion, where a num ber is writ ten as
a base greater than or equal to 1 and smaller than 10, mul ti plied by a power of 10. For
ex am ple, the value 310.25 in sci en tific no ta tion is writ ten

A num ber in sci en tific no ta tion has a real part and an ex po nent part. Using the
ter mi nol ogy of log a rithms these two parts are some times called the man tissa and
the char ac ter is tic. The fol low ing sim pli fi ca tion of sci en tific no ta tion is of ten used in
com puter work:

 3.1025 E2

In the com puter ver sion of sci en tific no ta tion, the mul ti pli ca tion sym bol and the
base are im plied. The let ter E, which is used to sig nal the start of the ex po nent part
of the rep re sen ta tion, ac counts for the name “ex po nen tial form.” Num bers smaller
than 1 can be rep re sented in sci en tific no ta tion or in ex po nen tial form us ing neg a -
tive pow ers. For ex am ple, the num ber .0004256 can be writ ten as

or as

 4.256 E-4

Floating-point rep re sen ta tions pro vide more ef fi cient use of the ma chine's stor -
age space. For ex am ple, the nu mer i cal range of the fixed point en cod ing shown in
Fig ure E.7 is from 255.99609375 to 0.00390625. To im prove this range we can re as -
sign the 16 bits of stor age so that 4 bits are used for en cod ing the ex po nent and 12
bits for the frac tional part, which is called the significand. In this case, the en coded
num ber ap pears as fol lows:

648 Appendix E

31025 102. ×

4 256 10 4. × −

 0000 000000000000
 +--+ +----------+
 ¦ |__________ 12-bit frac tional part
 ¦ (significand)
 |___________________ 4-bit ex po nent part

If we were to use the first bit of the ex po nent to in di cate the sign of the ex po nent,
then the range of the re main ing three dig its would be 0 to 7. No tice that the sign of
the ex po nent in di cates the di rec tion in which the dec i mal point is to be moved,
which is un re lated to the sign of the num ber. In this ex am ple, the frac tional part (or
significand) could hold val ues in the range 1,048,575 to 1. The com bined range of ex -
po nent and significand al lows rep re sent ing dec i mal num bers in the range 4095 to
0.00000001, which con sid er ably ex ceeds the range in the same stor age space in
fixed-point for mat.

E.5.3 Stan dard ized Floating-Point
Both the significand and the ex po nent of a float ing-point num ber can be stored as an
in te ger, in sign mag ni tude, or in ra dix com ple ment form. The num ber of bits as signed
to each field can vary ac cord ing to the range and the pre ci sion re quired. For ex am ple,
the com put ers of the CDC 6000, 7000, and CYBER se ries used a 96-digit significand
with an 11-digit ex po nent, while the PDP 11 se ries used 55-digit significands and
8-digit ex po nents in their ex tended pre ci sion for mats.

Vari a tions, in com pat i bil i ties, and in con sis ten cies in float ing-point for mats cre -
ated the need to de velop a stan dard for mat. In March and July 1985, the Com puter
So ci ety of the In sti tute of Elec tric and Elec tronic En gi neers (IEEE) and the Amer i -
can Na tional Stan dards In sti tute (ANSI) ap proved a stan dard for bi nary float -
ing-point arith me tic (ANSI/IEEE Stan dard 754-1985). This stan dard es tab lishes four
for mats for en cod ing bi nary float ing-point num bers. Ta ble E.4 sum ma rizes the char -
ac ter is tics of these for mats.

Ta ble E.4

 ANSI/IEEE Floating Point For mats

PARAMETER SINGLE SINGLE DOUBLE DOUBLE
 EXTENDED EXTENDED

to tal bits 32 43 64 79
significand bits 24 32 53 64
max i mum ex po nent +127 1023 1023 16383
min i mum ex po nent –126 1022 –1022 16382
ex po nent width 8 11 11 15
ex po nent bias +127 ... +1023 ...

Fig ure E.8 shows the IEEE float ing-point sin gle for mat.

Fig ure E.8 IEEE float ing-point sin gle for mat.

 Number Sys tems and Data En coding 649

31

30 22 0 bits

mantissa (23 bits)exponent (8 bits)

sign of the number (1 bit)

If a float ing-point en cod ing is to al low the rep re sen ta tion of signed num bers, it
must de vote one bi nary digit to en code the num ber's sign. In the IEEE 754 sin gle
for mat in Fig ure E.8, the high-or der bit rep re sents the sign of the num ber. A value of
1 in di cates a neg a tive num ber. We pre ma turely end the dis cus sion of bi nary float -
ing-point encodings be cause bi nary float ing-point cal cu la tions are out of the scope
of this book.

E.5.4 Bi nary-Coded Dec i mals (BCD)
Bi nary float ing-point encodings, as those de fined in ANSI/IEEE 754, are the most ef fi -
cient for mat for stor ing nu mer i cal data in a dig i tal de vice and pro vide the fast est and
most ef fi cient way of per form ing nu mer i cal cal cu la tions. How ever, other rep re sen ta -
tions are also use ful and much eas ier to im ple ment.

Bi nary-coded dec i mal (BCD) is a way of rep re sent ing dec i mal dig its in bi nary
form. There are two com mon ways of im ple ment ing this en cod ing; one is known as
the packed BCD for mat and the other one as un packed. In the un packed for mat,
each BCD digit is stored in one byte. In the packed scheme, two BCD dig its are en -
coded per byte. The un packed BCD for mat does not use the four high-or der bits of
each byte, which is wasted stor age space. On the other hand, the un packed for mat
fa cil i tates con ver sions and arith me tic op er a tions on some ma chines. Fig ure E.9
shows the mem ory stor age of a packed and un packed BCD num ber.

Fig ure E.9 Packed and un packed BCD.

Floating-Point BCD

Un like the float ing-point bi nary num bers, bi nary-coded dec i mal rep re sen ta tions and
BCD arith me tic have not been ex plic itly de tailed in a for mal stan dard. Al though
ANSI/IEEE 758 cov ers nu mer i cal rep re sen ta tion in de pend ent of ra dix, the stan dard
does not pro vide spe cific for mats like those in ANSI/IEEE 754. There fore, each ma -
chine or soft ware pack age stores and ma nip u lates BCD num bers in a unique and of ten
in com pat i ble way. Some ma chines in clude packed dec i mal for mats, which are
sign-mag ni tude BCD rep re sen ta tions. These in te ger for mats are use ful for con ver -
sions and in put-out put op er a tions. For per form ing arith me tic cal cu la tions, a float -
ing-point BCD en cod ing is re quired. This ap proach pro vides all the ad van tages of
float ing-point as well as the ac cu racy of dec i mal encodings.

Our own BCD float ing-point for mat, which we call BCD12, is shown Fig ure E.10.

650 Appendix E

0 0 0 0 1 0 0 1

0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 1

0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 1

9

7

3 79

2 23

UNPACKED BCD PACKED BCD

Fig ure E.10 Map of the BCD12 for mat.

The struc ture of the BCD12 for mat is de scribed in Ta ble E.5.

Ta ble E.5

Field Struc ture of the BCD12 For mat

 CODE FIELD NAME BITS WIDE BCD DIGITS RANGE

 S sign of num ber 4 1 0 – 1 (BCD)
 S sign of ex po nent 4 1 0 – 1 (BCD)
 E ex po nent 16 4 0 – 9999
 M significand 72 18 0 – 99..99 (18 dig its)
 —
 For mat size 96 (12 bytes)

 Notes:
 1. The significand is scaled (nor mal ized) to a num ber
 in the range 1.00..00 to 9.99..99.
 2. The en cod ing for the value zero (0.00..00) is a
 spe cial case.
 3. The spe cial value FFH in the sign byte in di cates
 an in valid num ber.

 BCD12 re quires 12 bytes of stor age and is de scribed as fol lows:

1 .The sign of the num ber (S) is en coded in the left-most packed BCD digit. There -
fore, the first 4 bits are ei ther 0000B (pos i tive num ber) or 0001B (neg a tive num -
ber).

2. The sign of the ex po nent is rep re sented in the 4 low-or der bits of the first byte.
This means that the sign of the ex po nent is also en coded in one packed BCD digit.
As is the case with the sign of the num ber field, the sign of the ex po nent is ei ther
0000B (pos i tive ex po nent) or 0001B (neg a tive ex po nent).

3. The fol low ing 2 bytes en code the ex po nent in 4 packed BCD dig its. The dec i mal
range of the ex po nent is 0000 to 9999.

4. The re main ing 9 bytes are de voted to the significand field, con sist ing of 18
packed BCD dig its. Pos i tive and neg a tive num bers are rep re sented with a
significand nor mal ized to the range 1.00...00 to 9.00...99. The dec i mal point fol -
low ing the first significand digit is im plied. The spe cial value 0 has an all-zero
significand.

 Number Sys tems and Data En coding 651

S s e e e e m m m m m m m m m m m m m m m m m mS s e e e e m m m m m m m m m m m m m m m m m m

sign of exponent (1 BCD digit)

sign of number (1 BCD digit)

exponent (4 BCD digits)
significand (18 BCD digits)

5. The spe cial value FF hex a dec i mal in the num ber's sign byte in di cates an in valid
num ber.

The BCD12 for mat, as is the case in all BCD encodings, does not make ideal use
of the avail able stor age space. In the first place, each packed BCD digit re quires 4
bits, which in bi nary could serve to en code six ad di tional com bi na tions. At a byte
level the wasted space is of 100 encodings (BCD 0 to 99) out of a pos si ble 256 (0 to
FFH). The sign field in the BCD12 for mat also is waste ful be cause only one bi nary
digit is ac tu ally re quired for stor ing the sign. Re gard ing ef fi cient use of stor age,
BCD for mats can not com pete with float ing-point bi nary encodings. The ad van tages
of BCD rep re sen ta tions are a greater ease of con ver sions into dec i mal forms, and
the pos si bil ity of us ing the pro ces sor's BCD arith me tic in struc tions.

652 Appendix E

Ap pen dix F

Ba sic Elec tron ics

F.1 Atom
Un til the end of the nine teenth cen tury it was as sumed that mat ter was com posed of
small, in di vis i ble par ti cles called at oms. At that time, the work of J.J. Thomp son, Lord
Rutheford, and Neils Bohr proved that at oms were com plex struc tures that con tained
both pos i tive and neg a tive par ti cles. The pos i tive ones were called pro tons and the
neg a tive ones elec trons.

Sev eral mod els of the atom were pro posed: the one by Thomp son as sumed that
there were equal num bers of pro tons and elec trons in side the atom, and that these
el e ments were scat tered at ran dom, as in the leftmost draw ing in Fig ure F.1. Later,
Lord Rutheford's ex per i ments led him to be lieve that at oms con tained a heavy cen -
tral pos i tive nu cleus with the elec trons scat tered ran domly. So he mod i fied Thomp -
son's model as shown in the cen ter draw ing. Finally, Neils Bohr ob served that
elec trons had dif fer ent en ergy lev els, as if they moved around the nu cleus in dif fer -
ent or bits, like plan ets around a sun. The rightmost draw ing rep re sents this or bital
model.

Fig ure F.1 Mod els of the atom.

653

+

+

+

+

+

-

-

-

-

-
+

+

+
+

+

-

-

-

-

-

+
+

+
+

+

-

-

-

-

-

In ves ti ga tions also showed that the nor mal atom is elec tri cally neu tral and that
the pro tons (pos i tively charged par ti cles) are 2,000 times more mas sive than the
elec trons (neg a tively charged par ti cles). Fur ther more, the or bital model of the atom
is not ac tu ally valid be cause or bits have lit tle mean ing at the atomic level. A more
ac cu rate rep re sen ta tion of re al ity is based on up to seven con cen tric spher i cal
shells about the nu cleus, The in ner most shell has a ca pac ity for 2 elec trons and the
out er most for 72.

The num ber of pro tons in an atom de ter mines its atomic num ber; for ex am ple,
the hy dro gen atom has a sin gle pro ton and an atomic num ber of 1, he lium has 2 pro -
tons, carbon has 6, and uranium has 92. But when we com pare the ra tio of mass to
elec tri cal charge in dif fer ent at oms, we find that the nu cleus must be made up of
more than pro tons. For ex am ple, the he lium nu cleus has twice the charge of the hy -
dro gen nu cleus, but four times the mass. The ad di tional mass is ex plained by as sum -
ing that there is an other par ti cle in the nu cleus, called a neu tron, that has the same
mass at the pro ton but no elec tri cal charge. Fig ure F.2 shows a model of the he lium
atom with two pro tons, two elec trons, and two neu trons.

Fig ure F.2 Model of the he lium atom.

F.2 Iso topes and Ions

But na ture is not al ways con sis tent with such neat mod els. Whereas in a neu tral atom,
the num ber of pro tons in the atomic nu cleus ex actly matches the num ber of elec trons,
the num ber of pro tons need not match the num ber of neu trons. For ex am ple, most hy -
dro gen at oms have a sin gle pro ton, but no neu trons, while a small per cent age have
one neu tron, and an even smaller one have two neu trons. In this sense, at oms of an el e -
ment that con tains a dif fer ent num ber of neu trons are iso topes of that el e ment. For in -
stance, wa ter (H2O) con tain ing hy dro gen at oms with one or two neu trons is called
“heavy water.”

An atom that is elec tri cally charged due to an ex cess or de fi ciency of elec trons is
called an ion. When the dis lodged el e ments are one or more elec trons, the atom
takes on a pos i tive charge. In this case, it is called a pos i tive ion. When a stray elec -
tron com bines with a nor mal atom, the re sult is called a neg a tive ion.

654 Ap pen dix F

+
+

-

-

F.3 Static Elec tric ity
Free elec trons can move about, or travel, through mat ter, or re main at rest on a sur -
face. When elec trons are at rest, the sur face is said to have a static elec tri cal charge
which can be pos i tive or neg a tive. When elec trons are mov ing in stream-like man ner,
we call this move ment an elec tri cal current. Elec trons can be re moved from a sur face
by means of fric tion, heat, light, or a chem i cal re ac tion. In this case, the sur face be -
comes pos i tively charged.

Six hun dred years be fore our time, the Greeks dis cov ered that when am ber was
rubbed with wool, the am ber be came elec tri cally charged and would at tract small
pieces of ma te rial. In this case, the charge is a pos i tive one. Fric tion can cause other
ma te ri als, such as hard rub ber or plas tic, to be come elec tri cally charged neg a tively.
Ob serving ob jects that have pos i tive and neg a tive charges we no tice that like
charges re pel and un like charges at tract each other, as shown in Fig ure F.3.

Fig ure F.3 Like and un like charges.

Fric tion causes loosely held elec trons to be trans ferred from one sur face to the
other. This re sults in a net neg a tive charge on the sur face that has gained elec trons,
and a net pos i tive charge on the sur face that has lost elec trons. If there is no path
for the elec trons to take to re store the bal ance of elec tri cal charges, these charges
will re main un til they grad u ally leak off. If the elec tri cal charge con tin ues build ing,
it will even tu ally reach the point where it can no lon ger be con tained. In this case, it
will dis charge it self over any avail able path, as is the case with light ning.

The point about static elec tric ity is that it does not move from one place to an -
other. This means that while some in ter est ing ex per i ments can be per formed with
it, it does not serve the prac ti cal pur pose of pro vid ing en ergy to do sus tained work.

 Static elec tric ity cer tainly ex ists, and un der cer tain cir cum stances we must al -
low for it and ac count for its pos si ble pres ence, but it will not be the main theme of
these pages.

 Ba sic Elec tron ics 655

+ + +- - -

F.4 Elec tri cal Charge
Phys i cists of ten re sort to mod els and the o ries in or der to de scribe and rep re sent some
force that can be mea sured in the real world. But very of ten these mod els and rep re -
sen ta tions are no more than con cepts that fail to rep re sent the ob ject phys i cally. In
this sense, no one knows ex actly what is grav ity, or an elec tri cal charge. We call grav -
ity the force be tween masses, which can be felt and mea sured. By the same to ken, bod -
ies in “cer tain elec tri cal con di tion” also ex ert forces on one an other that can be
mea sured. The term “elec tri cal charge” was in vented to ex plain these ob ser va tions.
Three sim ple pos tu lates or as sump tions serve to ex plain all elec tri cal phe nom ena:

1. Elec tri cal charge ex ists and can be mea sured. Charge is mea sured in Cou lombs, a
unit named for the French sci en tist Charles Agustin Cou lomb.

2. Charge can be pos i tive or neg a tive.

3. Charge can nei ther be cre ated nor de stroyed. If two ob jects with equal amounts
of pos i tive and neg a tive charge are com bined on some ob ject, the re sult ing ob -
ject will be elec tri cally neu tral and will have zero net charge.

F.4.1 Volt age

We have seen that ob jects with op po site charges at tract, that is, they ex ert a force
upon each other that pulls them to gether. In this case, the mag ni tude of the force is
pro por tional to the prod uct of the charge on each mass. Like grav ity, elec tri cal force
de pends in versely on the dis tance squared be tween the two bod ies; the closer the bod -
ies, the greater the force. Con se quently, it takes work and en ergy to pull apart ob jects
that are pos i tively and neg a tively charged — in the same man ner that it takes work to
raise a big mass against the pull of grav ity.

The po ten tial that sep a rate ob jects with op po site charges have for do ing work is
called voltage. Volt age is mea sured in units of volts (V). The unit is named for the
Ital ian sci en tist Alessandro Volta.

The greater the charge and the greater the sep a ra tion, the greater the stored en -
ergy, or volt age. By the same to ken, the greater the volt age, the greater the force
that drives the charges to gether.

Volt age is al ways mea sured be tween two points, which rep re sent the pos i tive and
neg a tive charges. In or der to com pare volt ages of sev eral charged bod ies a com mon
ref er ence point is nec es sary. This point is usu ally called “ground.”

F.4.2 Cur rent

Elec tri cal charge flows freely in cer tain ma te ri als, called con duc tors, but not in oth -
ers, called in su la tors. Metals and a few other el e ments and com pounds are good con -
duc tors, while air, glass, plas tics, and rub ber are in su la tors. In ad di tion, there is a third
cat e gory of ma te ri als called semi con duc tors, which some times seem to be good con -
duc tors but much less so other times. Sil i con and ger ma nium are two such semi con -
duc tors.

656 Ap pen dix F

Fig ure F.4 shows two con nected, op po sitely charged bod ies. The force be tween
them has the po ten tial for work; there fore there is voltage. If the two bod ies are
con nected by a con duc tor, as in the il lus tra tion, the pos i tive charges will move
along the wire to the other sphere. On the other end, the neg a tive charge flows out
on the wire to ward the pos i tive side. In this case, pos i tive and neg a tive charges
com bine to neu tral ize each other un til there are no charge dif fer ences be tween any
points in the sys tem.

Fig ure F.4 Con nected op po site charges.

The flow of an elec tri cal charge is called a current. Cur rent is mea sured in am -
peres (a), also called amps. An dre Ampere was a French math e ma ti cian and phys i -
cist. An am pere is de fined as a flow of one Cou lomb of charge in one sec ond.

Elec tri cal cur rent is di rec tional; there fore a pos i tive cur rent is the flow cur rent
from a pos i tive point A to a neg a tive point B. Ac tu ally, most cur rent re sult from the
flow of neg a tive-to-pos i tive charges.

F.4.3 Power
Cur rent flow ing through a con duc tor pro duces heat. In this case, the heat is the re sult
of the en ergy that co mes from the charge trav el ing across the volt age dif fer ence. The
work in volved in pro duc ing this heat is elec tri cal power. Power is mea sured in units of
watts (W), named af ter the Eng lish man James Watt who in vented the steam en gine.

F.4.4 Ohm's Law
The re la tion ship be tween volt age, cur rent, and power is de scribed by Ohm's Law,
named af ter the Ger man phys i cist Georg Si mon Ohm. Using equip ment of his own cre -
ation, Ohm de ter mined that the cur rent that flows through a wire is pro por tional to its
cross-sec tional area and in versely pro por tional to its length. This al lowed de fin ing the
re la tion ship be tween volt age, cur rent, power, as ex pressed by the equa tion:

where P rep re sents the power in watts, V is the volt age in volts, and I is the cur rent in
am peres. Ohm's law can also be for mu lated in terms of volt age, cur rent, and re sis -
tance as shown in sec tion F.6.2 of this ap pen dix.

 Ba sic Elec tron ics 657

+ +
+ -

-

- -

-
-

-

+ +

+ -

++

current flow

P V I= ×

F.5 Elec tri cal Cir cuits
An elec tri cal net work is an in ter con nec tion of elec tri cal el e ments. An elec tri cal cir -
cuit is a net work in a closed loop, giv ing a re turn path for the cur rent. A net work is a
con nec tion of two or more sim ple el e ments, and may not nec es sar ily be a cir cuit.

Al though there are sev eral types of elec tri cal cir cuits, they all have at least some
of the fol low ing el e ments:

1. A power source, which can be a bat tery, al ter na tor, etc., pro duces an elec tri cal
po ten tial.

2. Con duc tors, in the form of wires or cir cuit boards, pro vide a path for the cur rent.

3. Loads, in the form of de vices such as lamps, mo tors, etc., use the elec tri cal en ergy
to pro duce some form of work.

4. Con trol de vices, such as po ten ti om eters and switches, reg u late the amount of
cur rent flow or turn it on and off.

5. Pro tec tion de vices, such as fuses or cir cuit break ers, to pre vent dam age to the
sys tem in case of over load.

6. A com mon ground.

Fig ure F.5 shows a sim ple cir cuit that con tains all of the above el e ments.

Fig ure F.5 Sim ple cir cuit.

F.5.1 Types of Cir cuits

There are three com mon type of cir cuits: se ries, par al lel, and se ries-par al lel. The cir -
cuit type is de ter mined by how the com po nents are con nected. In other words, by how
the cir cuit el e ments, power source, load, and con trol and pro tec tion de vices are
inter-con nected. The sim plest cir cuit is one in which the com po nents of fer a sin gle
cur rent path. In this case, al though the loads may be dif fer ent, the amount of cur rent
flow ing through each one is the same. Fig ure F.6 shows a se ries cir cuit with two light
bulbs.

658 Ap pen dix F

+

-

Fig ure F.6 Se ries cir cuit.

In the se ries cir cuit in Fig ure F.6, if one of the light bulbs burns out, the cir cuit
flow is in ter rupted and the other one will not light also. Some Christ mas light or na -
ments are wired in this man ner; and if a sin gle bulb fails, the whole string will not
light.

In a par al lel cir cuit, there is more than one path for cur rent flow. Fig ure F.7
shows a cir cuit wired in par al lel.

Fig ure F.7 Par al lel cir cuit.

In the cir cuit of Fig ure F.7, if one of the light bulbs burns out, the other one will
still light. Also, if the load is the same in each cir cuit branch, so will be the cur rent
flow in that branch. By the same to ken, if the load in each branch is dif fer ent, so will
be the cur rent flow in each branch.

The se ries-par al lel cir cuit has some com po nents wired in se ries and oth ers in par -
al lel. There fore, the cir cuit shares the char ac ter is tics of both se ries and par al lel cir -
cuits. Fig ure F.8 shows the same par al lel cir cuit to which a se ries rheo stat (dim mer)
has been added in se ries.

 Ba sic Elec tron ics 659

+

-

+

-

Fig ure F.8 Se ries-par al lel cir cuit.

In the cir cuit of Fig ure F.8 the two light bulbs are wired in par al lel, so if one fails,
the other one will not. How ever, the rheo stat (dim mer) is wired in se ries with the
cir cuit, so its ac tion af fects both light bulbs.

F.6 Cir cuit El e ments
So far we have rep re sented cir cuits us ing a pic to rial style. Cir cuit di a grams are more
of ten used in stead be cause they achieve the same pur pose with much less ar tis tic ef -
fort and are eas ier to read. Fig ure F.9 is a di a gram matic rep re sen ta tion of the cir cuit in
Fig ure F.8.

Fig ure F.9 Di a gram of a se ries-par al lel cir cuit.

Cer tain com po nents are com monly used in elec tri cal cir cuits; these in clude
power sources (such as bat ter ies), re sis tors, ca pac i tors, inductors, and sev eral
forms of semi con duc tor de vices.

660 Ap pen dix F

+

-

VARIABLE RESISTOR
(DIMMER)

+

-

F.6.1 Re sis tors
If the cur rent flows from, say from a bat tery, is not con trolled, a short-cir cuit takes
place and the wires can be melted or even the bat tery may ex plode. Re sis tors pro vide
a way of con trol ling the flow of cur rent from a source. A re sis tor is to cur rent flow in
an elec tri cal cir cuit like a valve is to wa ter flow: both el e ments “re sist” cur rent flow.
Re sis tors are typ i cally made of ma te ri als that are poor con duc tors. The most com mon
ones are made from pow dered car bon and some sort of binder. Such car bon com po si -
tion re sis tors usu ally have a dark-col ored cy lin dri cal body with a wire lead on each
end. Color bands on the body of the re sis tor in di cated its value, mea sured in ohms and
rep re sented by the Greek let ter Ω. The color code for re sis tor bands can be found in
Ap pen dix E.

The po ten ti om e ter and the rheo stat are vari able re sis tors. When the knob of a po -
ten ti om e ter or rheo stat is turned, a slider moves along the re sis tance el e ment and
re duces or in creases the re sis tance. A po ten ti om e ter is used as a dim mer in the cir -
cuits of Fig ure F.8 and Fig ure F.9. The photoresistor or photocell is com posed of a
light-sen si tive ma te rial whose re sis tance de creases when ex posed to light.
Photoresistors can be used as light sen sors.

F.6.2 Re visiting Ohm's Law
We have seen how Ohm's Law de scribes the re la tion ship be tween volt age, cur rent,
and power. The law is re for mu lated in terms of re sis tance so as to ex press the re la tion -
ship be tween volt age , cur rent, and re sis tance as fol lows:

In this case, V rep re sents voltage, I is the current, and R is the re sis tance in the
cir cuit. Ohm's Law equa tion can be ma nip u lated in or der to find current or re sis -
tance in terms of the other vari ables, as fol lows:

No tice that the volt age value in Ohm's Law re fers to the volt age across the re sis -
tor, in other words, the volt age be tween the two ter mi nal wires. In this sense, the
volt age is ac tu ally pro duced by the re sis tor, be cause the re sis tor is re strict ing the
flow of charge much like a valve or noz zle re stricts the flow of wa ter. It is the re -
stric tion cre ated by the re sis tor that forms an ex cess of charge with re spect to the
other side of the cir cuit. The charge dif fer ence re sults in a volt age be tween the two
points. Ohm's Law can be used to cal cu late the volt age if we know the re sis tor value
and the cur rent flow.

 Ba sic Elec tron ics 661

V I R= ×

I
V

R

R
V

I

=

=

A pop u lar trick to help re mem ber Ohm's Law con sists of draw ing a pyr a mid with
the volt age sym bol at the top and cur rent and re sis tance in the lower level. Then, it
is easy to solve for each of the val ues by ob serv ing the po si tion of the other two
sym bols in the pyr a mid, as shown in Fig ure F.10.

Fig ure F.10 Ohm's Law pyr a mid.

Re sis tors are of ten con nected to gether in a cir cuit, so it is nec es sary to know
how to de ter mine the re sis tance of a com bi na tion of two or more re sis tors. There
are two ba sic ways in which re sis tors can be con nected: in se ries and in par al lel. A
sim ple se ries re sis tance cir cuit is shown in Fig ure F.11.

F.6.3 Re sis tors in Se ries and Par al lel
Re sis tors in a cir cuit are of ten con nected in se ries. In this case, the to tal re sis tance for
two or more re sis tors in series is equal to the sum of the in di vid ual resistances. The di -
a gram in Fig ure F.11 shows two re sis tors (R1 and R2) wired in se ries in a sim ple cir -
cuit.

Fig ure F.11 Re sis tors in se ries.

In the case of Fig ure F.11, the to tal re sis tance (RT) is cal cu lated by add ing the re -
sis tance val ues of R1 and R2; thus, RT = R1 + R2. In terms of wa ter flow, a se ries of
par tially closed valves in a pipe add up to slow the flow of wa ter. On the other hand,
re sis tors can also be con nected in par al lel, as shown in Fig ure F.12.

662 Ap pen dix F

V

V

V

V=IR

I=V/R

R=V/I

I

I

I

R

R

R

+

-

R1 R2

Fig ure F.12 Re sis tors in par al lel.

 Fol low ing the wa ter pipe anal ogy, we can de duce that wa ter will flow through
mul ti ple paths eas ier than it would through a sin gle one. Thus, when re sis tors are
placed in par al lel, the com bi na tion will have less re sis tance than any one of the re -
sis tors. If the re sis tors have dif fer ent val ues, then more cur rent will flow through
the path of least re sis tance. The to tal re sis tance in a par al lel cir cuit is ob tained by
di vid ing the prod uct of the in di vid ual re sis tors by their sum, as in the for mula

If more than two re sis tors are con nected in par al lel, then the for mula can be ex -
pressed as fol lows:

Also note that the di a gram rep re sen ta tions of re sis tors in par al lel can have dif fer -
ent ap pear ances. For ex am ple, the cir cuit in Fig ure F.13 is elec tri cally iden ti cal to
the one in Fig ure F.12.

Fig ure F.13 Al ter na tive cir cuit of par al lel re sis tors.

 Ba sic Elec tron ics 663

+

-

R1

R2

RT
R R

R R
= ×

+
1 2

1 2

RT

R R R

=
+ +

1
1
1

1
2

1
3

...

+

-

R1 R2

Fig ure F.14 shows sev eral com mer cial re sis tors. The in te grated cir cuit at the cen -
ter of the im age com bines eight re sis tors of the same value. These de vices are con -
ve nient when the cir cuit de sign calls for sev eral iden ti cal re sis tors. The color-coded
cy lin dri cal re sis tors in the im age are of the car bon com po si tion type.

Fig ure F.14 Re sis tors.

F.6.4 Ca pac i tors
An el e ment of ten used in the con trol of the flow of an elec tri cal charge is a ca pac i tor.
The name orig i nated in the no tion of a “ca pac ity” to store charge. In that sense, a ca -
pac i tor func tions as a small bat tery. Ca pac i tors are made of two con duct ing sur faces
sep a rated by an in su la tor. A wire lead is usu ally con nected to each sur face. Two large
metal plates sep a rated by air would per form as a ca pac i tor. More fre quently, ca pac i -
tors are made of thin metal foils sep a rated by a plas tic film or an other form of solid in -
su la tor. Fig ure F.15 shows a cir cuit that con tains both a ca pac i tor and a re sis tor.

Fig ure F.15 Ca pac i tor cir cuit.

 In Fig ure F.15, charge flows from the bat tery ter mi nals, along the con duc tor
wire, onto the ca pac i tor plates. Pos i tive charges col lect on one plate and neg a tive
charges in the other plate. Upon con nect ing a ca pac i tor, the cur rent is large, as
there is no com plete cir cuit of wire. The ini tial cur rent is only lim ited by the re sis -
tance of the wires and by the re sis tor in the cir cuit, as in Fig ure F.15. As charge
builds up on the plates, charge re pul sion re sists the flow and the cur rent is re duced.
At some point, the re pul sive force from charge on the plate is strong enough to bal -
ance the force from charge on the bat tery, and cur rent stops.

664 Ap pen dix F

+

-

The ex is tence of charges on the plates of the ca pac i tor means there must be a
volt age be tween the plates. When cur rent stops, this volt age must be the same as
the one on the bat tery. This must be the case, be cause the points in the cir cuit are
con nected by con duc tors, which means that they must have the same volt age, even
if there is a re sis tor in the cir cuit. If the cur rent is zero, then there is no volt age
across the re sis tor, ac cord ing to Ohm's Law.

The amount of charge on the plates of the ca pac i tor is a mea sure of the value of
the ca pac i tor. This “ca pac i tance” is mea sured in far ads (f), named in honor of the
Eng lish sci en tist Mi chael Far a day.

The re la tion ship is ex pressed by the equa tion

where C is the ca pac i tance in far ads, Q is the charge in Cou lombs, and V is the voltage.
Ca pac i tors of 1 farad or more are rated. Gen er ally, ca pac i tors are rated in microfarads
(µf), one mil lionth of a farad, or picofarads (pf), one tril lionth of a farad.

Con sider the cir cuit of Fig ure F.15 af ter the cur rent has sta bi lized. If we now re -
move the ca pac i tor from the cir cuit, it will still hold a charge on its plates. That is,
there will be a volt age be tween the ca pac i tor ter mi nals. In one sense, the charged
ca pac i tor ap pears some what like a bat tery. If we were to short-cir cuit its ter mi nals,
a cur rent would flow as the pos i tive and neg a tive charges neu tral ized each other.
But un like a bat tery, the ca pac i tor has no way of re plac ing its charge. So the volt age
drops, the cur rent drops, and fi nally there is no net charge left and no volt age dif fer -
ences any where in the cir cuit.

F.6.5 Ca pac i tors in Se ries and in Par al lel
Like re sis tors, ca pac i tors can be joined to gether in se ries and in par al lel. Con nect ing
two ca pac i tors in par al lel re sults in a big ger ca pac i tance value, be cause there will be a
larger plate area. Thus, the for mula for to tal ca pac i tance (CT) in a par al lel cir cuit con -
tain ing ca pac i tors C1 and C2 is

No tice that the for mula for cal cu lat ing ca pac i tance in par al lel is sim i lar to the
one for cal cu lat ing se ries re sis tance. By the same to ken, where sev eral ca pac i tors
are con nected in se ries the for mula for cal cu lat ing the to tal ca pac i tance is

 Ba sic Elec tron ics 665

C
Q

V
=

CT C C= +1 2

CT

C C C

=
+ +

1
1
1

1
2

1
3

...

This for mula is ex plained by the fact that the to tal ca pac i tance of a se ries con nec -
tion is lower than any ca pac i tor in the se ries, con sid er ing that for a given volt age
across the en tire group, there will be less charge on each plate. Com mer cial ca pac i -
tors are fur nished in sev eral types, in clud ing my lar, ce ramic, disk, and elec tro lytic.
Fig ure F.16 shows sev eral com mer cial ca pac i tors.

Fig ure F.16 As sorted com mer cial ca pac i tors.

F.6.6 In duc tors

The third and fi nal type of ba sic cir cuit com po nents are indictors. An in duc tor is a coil
of wire with many wind ings. The wire wind ings are of ten made around a core of a mag -
netic ma te rial, such as iron. The prop er ties of inductors de rive from mag netic rather
than elec tric forces.

When cur rent flows through a coil it pro duces a mag netic field in the space out -
side the wire. This makes the coil be have just like a nat u ral, per ma nent mag net.
Moving a wire through a mag netic field gen er ates a cur rent the wire, and this cur -
rent will flow through the as so ci ated cir cuit. Be cause it takes me chan i cal en ergy to
move the wire through the field, then it is the me chan i cal en ergy that is trans formed
into elec tri cal en ergy. A gen er a tor is a de vice that con verts me chan i cal to elec tri cal
en ergy by means of in duc tion.

The cur rent in an in duc tor is sim i lar to the volt age across a ca pac i tor. In both
cases, it takes time to change the volt age from an ini tially high cur rent flow. Such in -
duced volt ages can be very high and can dam age other cir cuit com po nents, so it is
com mon to con nect a re sis tor or a ca pac i tor across the in duc tor to pro vide a cur -
rent path to ab sorb the in duced volt age.

In duc tion is mea sured in henrys (h), but more com monly in millihenries, and
microhenries. An elec tric mo tor is the op po site of a gen er a tor. In the mo tor, elec tri -
cal en ergy is con verted to me chan i cal en ergy by means of in duc tion. In com bi na -
tion, in duc tors be have just like re sis tors: in duc tance adds in se ries. By the same
to ken, par al lel con nec tion re duces in duc tion.

666 Ap pen dix F

F.6.7 Trans formers
The trans former is an in duc tion de vice that has the abil ity to change volt age or cur -
rent to lower or higher lev els. The typ i cal trans former has two or more wind ings
wrapped around a core made of lam i nated iron sheets. One of the wind ings, called the
pri mary, re ceives a fluc tu at ing cur rent. The other wind ing, called the sec ond ary, pro -
duces a cur rent in duced by the pri mary. Fig ure F.17 shows the sche mat ics of a trans -
former.

Fig ure F.17 Trans former sche mat ics.

The de vice in Fig ure F.17 is a step-up trans former. This is de ter mined by the num -
ber of wind ings in the pri mary and sec ond ary coils. The ra tio of the num ber of turns
in each wind ing de ter mines the volt age in crease. A trans former with an equal num -
ber of turns in the pri mary and sec ond ary trans fers the cur rent un al tered. This type
of de vice is some times called an iso la tion trans former. A trans former with less
turns in the sec ond ary than in the pri mary wind ing is a step-down trans former and
its ef fect is to re duce the pri mary volt age at the sec ond ary winding.

Trans formers re quire an al ter nat ing or fluc tu at ing cur rent as it is the fluc tu a tions
in the cur rent flow in the pri mary that in duce a cur rent in the sec ond ary winding.
The ig ni tion coil in an au to mo bile is a trans former that con verts the low-level bat -
tery volt age to the high-voltage level nec es sary to pro duce a spark.

F.7 Semi con duc tors

The term semi con duc tor stems from the prop erty of some ma te ri als that can act ei ther
as a con duc tor or as an in su la tor, de pend ing on cer tain con di tions. Sev eral el e ments
are clas si fied as semi con duc tors, in clud ing sil i con, zinc, and ger ma nium. Sil i con is
the most widely used semi con duc tor ma te rial be cause it is eas ily ob tained.

In the ul tra-pure form of sil i con, the ad di tion of min ute amounts of cer tain im pu -
ri ties (called dop ants) al ters the atomic struc ture of the sil i con. This de ter mines
that the sil i con can then be made to act as a con duc tor or a non con duc tor, de pend -
ing upon the po lar ity of an elec tri cal charge ap plied to it.

In the early days of ra dio, re ceiv ers re quired a de vice called a rec ti fier to de tect
sig nals. Ferdinand Braun used the rec ti fy ing prop er ties of the ga lena crys tal, a semi -

 Ba sic Elec tron ics 667

PRIMARY
WIDING

SECONDARY
WINDING

con duc tor ma te rial com posed of lead sul fide, to cre ate a cat's whis ker di ode that
served this pur pose. This was the first semi con duc tor de vice.

F.7.1 In te grated Cir cuits
Up to 1959, elec tronic com po nents per formed a sin gle func tion, there fore, many of
them had to be wired to gether to cre ate a func tional cir cuit. This meant that
transistors were in di vid u ally pack aged in small cans. Pack aging and hand wir ing the
com po nents into cir cuits were ex tremely in ef fi cient.

In 1959, at Fairchild Semi con duc tor, Jean Hoerni and Rob ert Noyce de vel oped a
pro cess that made it pos si ble to dif fuse var i ous lay ers onto the sur face of a sil i con
wa fer, while leav ing a layer of pro tec tive ox ide on the junc tions. By al low ing the
metal in ter con nec tions to be evap o rated onto the flat tran sis tor sur face, the pro -
cess re placed hand wir ing. By 1961, nearly 90% of all the com po nents man u fac tured
were in te grated cir cuits.

F.7.2 Semi con duc tor Elec tron ics
To un der stand the work ings of semi con duc tor de vices we need to re con sider the na -
ture of the elec tri cal charge. We have seen that elec trons are one of the com po nents of
at oms, and at oms are the build ing blocks of all ma ter. Atoms bond with each other to
form mol e cules. Mol e cules of just one type of atom are called el e ments. In this sense,
gold, ox y gen, and plu to nium are el e ments be cause they all con sist of only one type of
atom. When a mol e cule con tains more than one atom, it is known as a com pound. Wa -
ter, which has hy dro gen and ox y gen at oms, is a com pound. Fig ure F.18 rep re sents an
or bital model of an atom with five pro tons and three elec trons.

Fig ure F.18 Or bital model of the bo ron atom.

In Fig ure F.18, pro tons carry pos i tive charge and elec trons carry neg a tive charge.
Neu trons, not rep re sented in the il lus tra tion, are not elec tri cally charged. Atoms
that have the same num ber of pro tons and elec trons have no net elec tri cal charge.

Elec trons that are far from the nu cleus are rel a tively free to move around be -
cause the at trac tion from the pos i tive charge in the nu cleus is weak at large dis -
tances. In fact, it takes lit tle force to com pletely re move an outer elec tron from an
atom, leav ing an ion with a net pos i tive charge. A free elec tron can move at speeds
ap proach ing the speed of light (ap prox i mately 186,282 miles per sec ond).

668 Ap pen dix F

+
+

+
+

+

--

-

Elec tric cur rent takes place in metal con duc tors due to the flow of free elec trons.
Be cause elec trons have neg a tive charge, the flow is in a di rec tion op po site to the
pos i tive cur rent. Free elec trons trav el ing through a con duc tor drift un til they hit
other elec trons at tached to at oms. These elec trons are then dis lodged from their or -
bits and re placed by the for merly free elec trons. The newly freed elec trons then
start the pro cess anew.

F.7.3 P-Type and N-Type Sil i con
Semi con duc tor de vices are made pri mar ily of sil i con. Pure sil i con forms rigid crys tals
be cause of its four out er most elec trons. Be cause it con tains no free elec trons, it is not
a con duc tor. But sil i con can be made con duc tive by com bin ing it with other el e ments
(dop ing) such as bo ron and phos pho rus. The bo ron atom has three outer va lence elec -
trons (Fig ure F.18) and the phos pho rus atom has five. When three sil i con at oms and
one phos pho rus atom bind to gether, cre at ing a struc ture of four at oms, there is an ex -
tra elec tron and a net neg a tive charge.

The com bi na tion of sil i con and phos pho rous, with the ex tra phos pho rus elec -
tron, is called n-type sil i con. In this case the n stands for the ex tra neg a tive elec tron.
The ex tra elec tron do nated by the phos pho rus atom can eas ily move through the
crys tal; there fore, n-type sil i con can carry and elec tri cal cur rent.

When a bo ron atom com bines in a clus ter of sil i con at oms there is a de fi ciency of
one elec tron in the re sult ing crys tal. Sil i con with a de fi cient elec tron is called p-type
sil i con (p stands for pos i tive.) The va cant elec tron po si tion is some times called a
“hole.” An elec tron from an other nearby atom can “fall” into this hole, thereby mov -
ing the hole to a new lo ca tion. In this case, the hole can carry a cur rent in p-type sil i -
con.

F.7.4 Di ode
We have seen that both p-type and n-type sil i con con duct elec tric ity. In ei ther case, the
con duc tiv ity is de ter mined by the pro por tion of holes or the sur plus of elec trons. By
form ing some p-type sil i con in a chip of n-type sil i con, it is pos si ble to con trol elec tron
flow so that it takes place in a sin gle di rec tion. This is the prin ci ple of the di ode, and
the p-n ac tion is called a pn junc tion.

A di ode is said to have a for ward bias if it has a pos i tive volt age across it from the
p- to n-type ma te rial. In this con di tion, the di ode acts rather like a good con duc tor,
and cur rent can flow, as in Fig ure F.19.

Fig ure F.19 A for ward bi ased di ode.

 Ba sic Elec tron ics 669

+

-

e e

e

e e

electron flow

hole flow

If the po lar ity of the volt age ap plied to the sil i con is re versed, then the di ode will
be re verse bi ased and will ap pear nonconducting. This nonsymmetric be hav ior is
due to the prop er ties of the pn-junc tion. The fact that a di ode acts like a one-way
valve for cur rent is a very use ful char ac ter is tic. One ap pli ca tion is to con vert al ter -
nat ing cur rent into di rect cur rent (DC). Di odes are so of ten used for this pur pose
that they are some times called rec ti fi ers.

670 Ap pen dix F

K16291

Microcontrollers: High-Performance Systems and Programming
discusses the practical factors that make the high-performance PIC
series a better choice than their mid-range predecessors for most
systems. However, one consideration in favor of the mid-range
devices is the abundance of published application circuits and code
samples. This book fills that gap:

• Provides downloadable software, including tools, resources,
supplementary materials, and code listings

• Includes sample circuits with their corresponding programs,
as well as tested PCB files

• Focuses on the popular embedded systems with PIC18
series microcontrollers

• Contains an appendix with a C language tutorial, PIC18
instruction set, links to useful tools and software

• Supplies sample circuits that are not copyrighted or patented, so
readers can freely use them in their own applications

• Covers selected topics and examples that provide solutions to
problems that practicing engineers may encounter and are not
readily found in the literature

Designed to be functional and hands-on, this book provides sample
circuits with their corresponding programs. It clearly depicts and
labels the circuits, in a way that is easy to follow and reuse. The
book matches sample programs to the individual circuits and
discusses general programming techniques.

HIGH-PERFORMANCE SYSTEMS
AND PROGRAMMING

Microcontrollers
Electrical Engineering

Julio Sanchez
Maria P. Canton

Microcontrollers
HIGH-PERFORMANCE SYSTEMS
AND PROGRAMMING

Microcontrollers
Sanchez
Canton

	Front Cover
	Table of Contents
	Preface
	Chapter 1 Microcontrollers for Embedded Systems
	Chapter 2 PIC18 Architecture
	Chapter 3 Programming Tools and Software
	Chapter 4 Assembly Language Program
	Chapter 5 PIC18 Programming in C Language
	Chapter 6 C Language in an Embedded Environment
	Chapter 7 Programming Simple Input and Output
	Chapter 8 Interrupts
	Chapter 9 Delays, Counters, and Timers
	Chapter 10 Data EEPROM
	Chapter 11 Liquid Crystal Displays
	Chapter 12 Real-Time Clocks
	Chapter 13 Analog Data and Devices
	Chapter 14 Operating Systems
	Appendix A MPLAB C18 Language Tutorial
	Appendix B Debugging 18F Devices
	Appendix C Building Your Own Circuit Boards
	Appendix D PIC18 Instruction Set
	Appendix E Number Systems and Data Encoding
	Appendix F Basic Electronics
	Back Cover

