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T
his book is intended as an introduction to microprocessors and microcon-
trollers for either the student or hobbyist. The book structure is:

Chapter 1: Review of digital logic concepts.

Chapter 2: Computer architecture fundamentals.

Chapters 3 through 6: Coverage of assembly language programming in a C lan-
guage context using the PIC18Fxx2 family.

Chapter 7: Advanced assembly language programming structured around
computer arithmetic topics.

Chapters 8 through 13: Fundamental microcontroller interfacing topics such
as parallel IO, asynchronous serial IO, synchronous serial IO (I2C and SPI), 
interrupt-driven IO, timers, analog-to-digital conversion, and digital-to-analog
conversion.

Chapter 14: Presents three capstone projects involving topics from Chapters 8
through 13.

Chapter 15: Topics beyond the PIC18Fxx2 family, such as a survey of other mi-
croprocessor families, the CAN bus, and memory technologies.

USING THIS BOOK IN AN ACADEMIC ENVIRONMENT

At Mississippi State University, majors in Electrical Engineering (EE), Computer
Engineering (CPE), Computer Science (CS), and Software Engineering (SE) take
our first course in microprocessors. Previous to spring 2002, this course emphasized
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X86 assembly language programming with the lab experience being 100-percent 
assembly language based and containing no hardware component. We found that
students entering our senior design course who had the expectation of something
“real” being built were unprepared for doing prototyping activities or for incorpo-
rating a microcontroller component into their designs. We did offer a course in mi-
crocontrollers, but it was an elective senior-level course and many students had not
taken that course previous to senior design. In spring 2002, the Computer Engi-
neering Steering committee reexamined our goals for the first course in micro-
processors and the approach for this book was developed. This book is intended for
use as a first course in microprocessors using the PIC18Fxx2 microcontroller with
prerequisites of basic digital design and exposure to either C or C++ program-
ming. The book begins with simple microprocessor architecture concepts, moves to
assembly language programming in a C language context, and then covers funda-
mental hardware interfacing topics such as parallel IO, asynchronous serial IO,
synchronous serial IO (I2C and SPI), interrupt-driven IO, timers, analog-to-digital
conversion, and digital-to-analog conversion. Programming topics are discussed
using both assembly language and C, while hardware interfacing examples uses C
to keep code complexity low and improve clarity. The book’s CD-ROM includes a
120-day demo version of the PICC-18 C compiler for the PIC18F242 from HI-
TECH software. In addition to better preparing students for senior design, another
goal of this book is to enable students to take courses in advanced embedded sys-
tems or computer architecture. As such, a broad coverage of software and hardware
topics is included. The assembly language programming chapters emphasize the
linkage between C language constructs and their assembly language equivalent so
that students clearly understand the impact of C coding choices in terms of execu-
tion time and memory requirements. It is not a goal of this textbook to create stu-
dents who are experts only in assembly language programming, with no
understanding of high-level language programming techniques and limited hard-
ware exposure. Most embedded software is written in C for portability and com-
plexity reasons, which argues favorably for reduced emphasis on assembly language
and increased emphasis on C. Embedded system hardware complexity is steadily
increasing, which means a first course in microprocessors that reduces assembly
language coverage (but does not eliminate it) in favor of hands-on experience with
fundamental interfacing allows students to begin at a higher level in an advanced
course in embedded systems. Hardware interface topics included in this book cover
the fundamentals (parallel IO, serial IO, interrupts, timers, A/D, D/A) using devices
that do not require extensive circuits knowledge because of the lack of a circuits
course prerequisite. The microcontroller interfacing topics presented in this text-
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book are sufficient for providing a skill set that is extremely useful to a student in a
senior design capstone course or in an advanced embedded system course.

Thus, the principle motivation for this book is that microcontroller knowledge
has become essential for successful completion of senior capstone design courses.
These capstone courses are receiving increased emphasis under ABET 2000 guide-
lines. This places increased pressure on Computer Engineering and Electrical En-
gineering programs to include significant exposure to embedded systems topics as
early in the curriculum as possible. A second motivation for this book is that the re-
cently released ACM/IEEE Computer Engineering model curriculum recommends
17 hours of embedded system topics as part of the Computer Engineering curricu-
lum core, which is easily satisfied by a course containing the topics in this book. A
third motivating factor is the increased pressure on colleges and universities to 
reduce hours in engineering curriculums; this book shows how a single course 
can replace separate courses in assembly language programming and basic micro-
processor interfacing.

The course sequence used at Mississippi State University that this book fits
into is:

Basic digital design (Boolean algebra, combinational and sequential logic),
which is required by EE, CPE, CS, and SE majors.
Introduction to microprocessors (this book), which is required for EE, CPE,
CS, and SE majors.
Computer architecture as represented by the topic coverage of the Hennessy
and Patterson textbook “Computer Organization & Design: The Hardware/
Software Interface.” This includes reinforcement of the assembly language pro-
gramming taught in the microprocessor course via a general-purpose instruc-
tion set architecture (e.g., the MIPS) along with coverage of traditional
high-performance computer architecture topics (pipelined CPU design, cache
strategies, parallel bus I/O). Required for CPE, CS, and SE majors.
Advanced embedded systems covering topics such as (a) real-time operating
systems, (b) internet appliances, (c) advanced interfaces such as USB, CAN,
Ethernet, FireWire, and (d) programming in alternate embedded languages
such as Java. Required for CPE majors.

Chapter 1 provides a broad review of digital logic fundamentals. Chapters 2
through 6 and 8 through 13 cover the core topics of assembly language program-
ming and microcontroller interfacing. Chapter 14 contains three capstone projects
that integrate the material of the previous chapters. Chapters 7 and 15 have 
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optional topics on advanced assembly language programming and microprocessor
interfacing, which can be used to supplement the core material. Appendix E, “Sug-
gested Laboratory Exercises,” contains a sequence of 13 laboratory experiments
that comprise an off-the-shelf lab experience: one experiment on fundamental
computer architecture topics, four experiments on PIC18 assembly language, and
eight hardware experiments. The hardware labs cover all major subsystems on the
PIC18: A/D, timers, asynchronous serial interface, and the I2C interface. The hard-
ware experiments are based on a protoboard/parts kit approach where the students
incrementally build a PIC18F242 system that includes a serial EEPROM, an exter-
nal 8-bit D/A, and a RS-232 port. A protoboard/part kits approach is used instead
of a pre-assembled printed circuit board (PCB) for several important reasons:

When handed a pre-assembled PCB, a student tends to view it as a monolithic
element. A protoboard/parts kit approach forces a student to view each part in-
dividually and read datasheets to understand how parts connect to each other. 
Hardware debugging and prototyping skills are developed during the painful
process of bringing the system to life. These hard-won lessons prove useful
later when the student must do the same thing in a senior design context. This
also provides students with the confidence that having done it one time they
can do it again, this time outside of a fixed laboratory environment with guided
instruction.
A protoboard/parts kit approach gives the ultimate flexibility to modify exper-
iments from semester to semester by simply changing a part or two; also when
the inevitable part failures occur they are easily replaced.

In using this approach at Mississippi State University, I have seen a “Culture of
Competence” develop in regard to microcontrollers and prototyping in general. Al-
most all senior design projects now routinely include a microcontroller component
(not necessarily PIC-based). Students concentrate their efforts on design definition,
development, and refinement instead of spending most of their time climbing the
learning curve on prototyping and microcontroller usage.

This book’s C examples on hardware interfacing strive for educational value
first and optimization second. Subsystem configuration code uses named bit fields
and individual bit field assignments in C examples instead of whole-register as-
signments to emphasize bit field roles within those registers. Register values for
controlling baud rate, I2C bus speed, and periodic interrupt rates are hard-coded
for the clock frequency of the reference PIC18F242 system instead of hiding the cal-
culations within C macros or functions that compute a register value for a desired
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rate. This is done intentionally so students can be assigned different values within
the lab and homework exercises, forcing them to use the PIC18F242 datasheet for-
mulas for computing new register values.

FOR THE HOBBYIST

This book assumes very little background, and thus is appropriate for readers with
widely varying experience levels. It is suggested that you begin by examining the ex-
periments in Appendix E and find the ones that interest you. Then, read the chap-
ter that is referenced by the experiment. The suggested revisions for the capstone
chapter projects (Chapter 14) are a good test of your knowledge once you have ex-
hausted the experiments. 

A Final Word

Writing this book has been a rewarding experience, and many people have helped
(see the Acknowledgments section). It has been akin to building a stone wall; each
day a little more is added, each section covering more distance, with the satisfaction
of seeing it grow as time and effort is expended. However, this book’s lifespan will
be a fraction of that of a sturdily built stone wall. But that is the fun of engineer-
ing—it is constantly changing, so you are constantly learning. I hope that you have
fun while learning about microprocessors and the PIC18Fxx2!

Bob Reese
Starkville, Mississippi
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1

Number System and Digital
Logic Review

1

T
his chapter reviews number systems, Boolean algebra, logic gates, combina-
tional logic gates, combinational building blocks, sequential storage ele-
ments, and sequential building blocks. 

1.1 LEARNING OBJECTIVES

After reading this chapter, you will be able to:

Create a binary encoding for object classification.
Convert unsigned decimal numbers to binary and hex representations, and
vice versa.

In This Chapter

Binary Data
Unsigned Number Conversion
Binary and Hex Arithmetic
Combinational Logic Functions
Combinational Building Blocks
Sequential Logic
Sequential Building Blocks
Encoding Character Data



2 Microprocessors

Identify NOT, OR, AND, NOR, NAND, and XOR logic functions and their
symbols.
Evaluate simple Boolean functions.
Describe the operation of CMOS P and N transistors.
Identify the CMOS transistor level implementations of simple logic gates.
Compute clock period, frequency, and duty cycle given appropriate parame-
ters.
Identify common combinational building blocks.
Identify common sequential building blocks.
Translate a character string into ASCII encoded data, and vice versa.

Binary number system representation and arithmetic is fundamental to all
computer system operation. Basic logic gates, CMOS transistor operation, and
combinational/sequential building block knowledge will help your comprehension
of the diagrams found in datasheets that describe microprocessor subsystem func-
tionality. A solid grounding in these subjects ensures better understanding of the
microprocessor topics that follow in later chapters.

1.2 BINARY DATA

Binary logic or digital logic is the basis for all computer systems built today. Binary
means two, and many concepts can be represented by two values: true/false,
hot/cold, on/off, 1/0, to name a few. A single binary datum whose values are “1”
and “0” is referred to as a bit. Groups of bits are used to represent concepts that
have more than two values. For example, to represent the concepts hot/warm/
cool/cold, two or more bits can be used as shown in Table 1.1

To encode n objects, the minimum number of bits required is k = log2 n ,
where is the ceiling function that takes the nearest integer log2 n. For the four

Value Encoding A Encoding B Encoding C

Cold 0 0 0 0 0 0 0 1

Cool 0 1 1 0 0 0 1 0

Warm 1 0 1 1 0 1 0 0

Hot 1 1 0 1 1 0 0 0

TABLE 1.1 Digital Encoding Examples



values in Table 1.1, the minimum number of bits required is log2(4) = 2. Both
encoding A and encoding B use the minimum number of bits, but differ in how
codes are assigned to the values. Encoding B uses a special encoding scheme known
as Gray code, in which adjacent table entries only differ by at most one bit position.
Encoding C uses more than the minimum number of bits; this encoding scheme is
known as one-hot encoding, as each code only has a single bit that is a “1” value.

Encoding A uses binary counting order, which means that the code progresses in
numerical counting order if the code is interpreted as a binary number (base 2). In
an unsigned binary number, each bit is weighted by a power of two. The rightmost
bit, or least significant bit (LSb), has a weight of 20, with each successive bit weight
increasing by a power of two as one moves from right to left. The leftmost bit, the
most significant bit (MSb), has a weight of 2n 1, for n bits in the binary number. A
lowercase “b” is purposefully used in the LSb and MSb acronyms; the use of an up-
percase “B” in LSB and MSB acronyms is discussed later.

The formal term for a number’s base is radix. If r is the radix, then a binary
number has r = 2, a decimal number has r = 10, and a hexadecimal number has
r = 16. In general, each digit of a number of radix r can take on the values 0 through
r 1. The least significant digit (LSD) has a weight of r0, with each successive digit in-
creasing by a power of r as one moves from right to left. The leftmost digit, the most
significant digit (MSD), has weight of rn 1, where n is the number of digits in the
number. For hexadecimal (hex) numbers, letters A through F represent the digits
10 through 15, respectively. Decimal, binary, and hexadecimal numbers are used
exclusively in this book. If the base of the number cannot be determined by context,
a “0x” is used as the radix identifier for hex numbers (i.e., 0x3A), and “0b” for bi-
nary numbers (i.e., 0b01101000). No radix identifier is used for decimal numbers.
Table 1.2 lists the binary and hex values for the decimal values 0 through 15. Note
that 4 bits are required to encode these 16 values since 24 = 16. The binary and hex
values in Table 1.2 are given without radix identifiers. 
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TABLE 1.2 Binary Encoding for Decimal Numbers 0-15

Decimal Binary Binary to Decimal Hex Hex to Decimal

0 0000 0*23 + 0*22 + 0*21 + 0*20 0 0*160

1 0001 0*23 + 0*22 + 0*21 + 1*20 1 1*160

2 0010 0*23 + 0*22 + 1*21 + 0*20 2 2*160

3 0011 0*23 + 0*22 + 1*21 + 1*20 3 3*160

4 0100 0*23 + 1*22 + 0*21 + 0*20 4 4*160

5 0101 0*23 + 1*22 + 0*21 + 1*20 5 5*160

6 0110 0*23 + 1*22 + 1*21 + 0*20 6 6*160



A binary number of N bits can represent the unsigned decimal values of 0 to
2N 1. A common size for binary data is a group of 8 bits, referred to as a byte. A byte
can represent the unsigned decimal range of 0 to 255 (0x00 to 0xFF in hex). Groups
of bytes are often used to represent larger numbers; this topic is explored in Chap-
ter 5, “Extended Precision and Signed Operations.” Common powers of two are
given in Table 1.3. Powers of two that are evenly divisible by 210 can be referred to
by the suffixes K (Kilo, 210), M (Mega, 220), and G (Giga, 230). Thus, the value of
4096 can be written in the abbreviated form of 4 K (4 x 1 K = 22 x 210 = 212).

4 Microprocessors

7 0111 0*23 + 1*22 + 1*21 + 1*20 7 7*160

8 1000 1*23 + 0*22 + 0*21 + 0*20 8 8*160

9 1001 1*23 + 0*22 + 0*21 + 1*20 9 9*160

10 1010 1*23 + 0*22 + 1*21 + 0*20 A 10*160

11 1011 1*23 + 0*22 + 1*21 + 1*20 B 11*160

12 1100 1*23 + 1*22 + 0*21 + 0*20 C 12*160

13 1101 1*23 + 1*22 + 0*21 + 1*20 D 13*160

14 1110 1*23 + 1*22 + 1*21 + 0*20 E 14*160

15 1111 1*23 + 1*22 + 1*21 + 1*20 F 15*160

Power Decimal Hex Power Decimal Hex

20 1 0x1 (K)...210 1024 0x400

21 2 0x2 211 2048 0x800

22 4 0x4 212 4096 0x1000

23 8 0x8 213 8192 0x2000

24 16 0x10 214 16384 0x4000

25 32 0x20 215 32768 0x8000

26 64 0x40 216 65536 0x10000

27 128 0x80 (M)..220 1,048,576 0x100000

28 256 0x100 (G)..230 1,073,741,824 0x40000000

29 512 0x200 232 4,294,967,296 0x100000000

TABLE 1.3 Common Powers of 2



Sample Question: What is the largest unsigned decimal number that can be represented
using a binary number with 16 bits?

Answer: From Table 1.3, we see that 216 = 65536, so 216 1 = 65535. 

1.3 UNSIGNED NUMBER CONVERSION

To convert a number of any radix to decimal, simply multiply each digit by its cor-
responding weight and sum the result. The example that follows shows binary-to-
decimal, and hex-to-decimal conversion:

(binary to decimal) 0b0101 0010 = 0*27 + 1*26 + 0*25+ 1*24+ 0*23+
0*22+1*21+0*20

= 0 + 64 + 0 + 16 + 0 + 0 + 2 + 0 = 82
(hex to decimal) 0x52 = 5*161 + 2*160 = 80 + 2 = 82.

To convert a decimal number to a different radix, perform successive division
of the decimal number by the radix; at each step the remainder is a digit in the con-
verted number, and the quotient is the starting value for the next step. The succes-
sive division ends when the quotient becomes less than the radix. The digits of the
converted number are determined rightmost to leftmost; with the last quotient
being the leftmost digit of the converted number. The following sample problem il-
lustrates the successive division algorithm.

Sample Question: Convert 435 to hex

Answer:
Step 1: 435/16 = 27, remainder = 3 (rightmost digit).
Step 2: 27/16 = 1, remainder = 11 = 0xB (next digit).
Step 3: 1 < 16, so leftmost digit = 1. 
Final answer: 435 = 0x1B3. 

To check your work, perform the reverse conversion:
0x1B3 = 1 * 162 + 11 * 161 + 3 * 160 = 1 * 256 + 11 * 16 + 3 * 1 = 256 + 176 + 3 =

435.

Hex to Binary, Binary to Hex

Hex can be viewed as a shorthand notation for binary. A quick method for per-
forming binary-to-hex conversion is to convert each group of four binary digits
(starting with the rightmost digit) to one hex digit. If the last (leftmost) group of bi-
nary digits does not contain 4 bits, then pad with leading zeros to reach four digits.
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Converting hex to binary is the reverse procedure of replacing each hex digit with
four binary digits. The easiest way to perform decimal-to-binary conversion is to
first convert to hex, and then convert the hex number to binary. This involves less
division operations, and hence less chance for careless error. Similarly, binary-to-
decimal conversion is best done by converting the binary number to a hex value,
and then converting the hex number to decimal. The following examples illustrate
binary-to-hex, hex-to-binary, and decimal-to-binary conversion.

Sample Question: Convert 0b010110 to hex. 

Answer: Starting with the rightmost digit, form groups of four: 01 0110. The
leftmost group has only two digits, so pad this group with zeros as: 0001 0110.
Now convert each group of four digits to hex digits (see Table 1.3):
0b 0001 0110 = 0x 16. 

Sample Question: Convert 0xF3C to binary.

Answer: Replace each hex digit with its binary equivalent:
0x F3C = 0b 1111 0011 1100 

Sample Question: Convert 243 to binary.

Answer: First, convert 243 to hex:
Step 1: 243/16 = 15, remainder 3 (rightmost digit)
Step 2: 15 < 16, so leftmost digit is 0xF (15). Hex result is 0xF3
243 = 0xF3 = 0b 1111 0011 (final answer, in binary)
Check: 0xF3 = 15 * 16 + 3 = 240 + 3 = 243.

1.4 BINARY AND HEX ARITHMETIC

Addition, subtraction, and shift operations are implemented in some form in most
digital systems. The fundamentals of these operations are reviewed in this section,
and revisited in Chapters 3 and 4  when discussing basic computer operations.

Binary and Hex Addition

Addition of two numbers, i + j, in any base is accomplished by starting with the
rightmost digit and adding each digit of i to each digit of j, moving right to left. If
the digit sum is less than the radix, the result digit is the sum and a carry of 0 is used
in the next digit addition. If the sum of the digits is greater than or equal to the
radix, a carry of 1 is added to the next digit sum, and the result digit is computed
by subtracting r from the digit sum. For binary addition, these rules can be stated as:



0+0 = 0, carry = 0
0+1 = 1, carry = 0
1+0 = 1, carry = 0
1+1 = 0, carry = 1

Figure 1.1 shows a digit-by-digit addition for the numbers 0b110 + 0b011.
Note that the result is 0b001 with a carry out of the most significant digit of “1”. A
carry out of the most significant digit indicates that the sum produced unsigned
overflow; the result could not fit in the number of available digits. A carry out of the
most significant digit is an unsigned error indicator if the numbers represent un-
signed integers. In this case, the sum 0b110 + 0b011 is 6 + 3 with the correct answer
being 9. However, the largest unsigned integer that can be specified in 3 bits is 23 1,
or 7. The value of 9 is too large to be represented in 3 bits, and thus the result is in-
correct from an arithmetic perspective, but is correct by the rules of binary addi-
tion. This is known as the limited precision problem; only increasing the number
of bits used for binary encoding can increase the number range. We study this
problem and the consequences of using more or less bits for number representation
in more detail in Chapter 5.

Sample Question: Compute 0x1A3 + 0x36F.

Answer: A digit-by-digit addition for the operation 0x1A3 + 0x36F is as fol-
lows. The rightmost result digit is formed by adding 0x3 (3) + 0xF (15) =
18. Note the digit sum is than 16, so a carry of 1 is produced and the right-
most result digit is computed by subtracting the radix, or 18 16 = 2 =
0x2. The middle digit sum is then 0xA (10) + 0x6 (6) + 1 (carry) = 17.
This digit sum is than 16, so this produces a carry of 1 with the middle digit
computed as 17 16 = 1 = 0x1. The leftmost digit sum is 0x1 + 0x3 +
0x1 (carry) = 0x5. The result is then 0x1A3 + 0x36F = 0x512. Converting
each number to decimal before summing, or 419 + 879 = 1298, checks this
result. Verifying that 0x36F 0x512 = 0x1A3 also checks this result, but this
requires reading the next section on subtraction!
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1     1     0
0     1     1

01

0     0     1

1

Carry+

FIGURE 1.1 Binary addition example.
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Binary and Hex Subtraction

Subtraction of two numbers, i j, in any base is accomplished by starting with the
rightmost digit, and subtracting each digit of j from each digit of i, moving right to
left. If the i digit is greater or equal to the j digit, then the result digit is the subtrac-
tion i j, with a borrow of 0 used in the next digit subtraction. If the i digit is less
than the j digit, then a borrow of 1 is used in the next digit subtraction, and the re-
sult digit is formed by i + r – j (the current i digit is increased by a weight of r).
For binary subtraction, these rules can be stated as:

0 – 0 = 0, borrow = 0
0 – 1 = 1, borrow = 1
1 – 0 = 1, borrow = 0
1 – 1 = 0, borrow = 0

Figure 1.2 shows a digit-by-digit subtraction for the value 0b010 – 0b101.
This operation produces a result of 0b101, and a borrow out of the most significant
digit of 1. If interpreted as unsigned numbers, the operation is 2 – 5 = 5, which
is incorrect. A borrow out of the most significant digit of 1 indicates an unsigned
underflow; the correct result is a number less than zero. But in unsigned numbers,
there is no number less than zero, so the result is incorrect in an arithmetic sense
(the operation is perfectly valid, however). A binary representation for signed integers
is needed to interpret the binary result correctly; this topic is saved for Chapter 5. 

The subtraction A B can also be performed by the operation A + ~B + 1,
where the operation ~B is called the one’s complement of B and is formed by taking
the complement of each bit of B. As an example, consider the previous operation of
0b010 – 0b101. The one’s complement of 0b101 is 0b010. The subtraction can be
rewritten as:

A + ~B + 1 = 0b010 + (0b010 + 0b001) = 0b010 + 0b011 = 0b101 

0     1     0
1     0     1_

-1

1     0     1

Borrow

+2+2-1

FIGURE 1.2 Binary subtraction example.



This is the same result obtained when binary subtraction rules were used. The
value ~B + 1 is called the two’s complement of B, and this is discussed in more de-
tail in Chapter 5, “Extended Precision and Signed Operations,” when signed inte-
ger representation is covered.

Sample Question: Compute 0xA02 – 0x5C4. 

Answer: A digit-by-digit hex subtraction for the operation 0xA02 – 0x5C4 is
as follows. The rightmost subtraction of 0x2 0x4 requires a borrow from
the next digit, so the rightmost digit calculation becomes 2 + 16 4 = 14
= 0xE. The middle digit calculation becomes 0x0 0xC 0x1 (borrow).
This requires a borrow from the next (leftmost) digit, so this calculation be-
comes:

16 + 0 – 12 – 1 = 3 = 0x3

The leftmost digit calculation is:

0xA – 0x5 – 0x1 (borrow) = 10 – 5 – 1 = 4 = 0x4

Thus, the final result is 0xA02 0x5C4 = 0x43E. As always, this result can
be checked by verifying that 0x5C4 + 0x43E = 0xA02 (and yes, it is cor-
rect!).

Shift Operations

A right shift of a binary value moves all of the bits to the right by one position, and
shifts a new bit value into the MSb. If the new shift value is a “0”, this is equivalent
to dividing the binary value by two. For example, using a “0” value for the bit
shifted into the MSb, the binary value 0b1100 (12) shifted to the right by one posi-
tion is 0b0110 (6). If this value is shifted to the right once more, the new value is
0b0011 (3). In this book, operators from the C language are used for expressing nu-
merical operations. The C language operator for a right shift is >>, where A >> 1
reads “A shifted to the right by one bit.”

A left shift of an unsigned binary value moves all of the bits to the left by one
position, and shifts a new bit value into the LSb. If the new bit shifted in is a “0”, this
is equivalent to multiplying the binary value by two. For example, using a “0” value
for the bit shifted into the LSb, the binary value 0b0101 (5) shifted to the left by one
position is 0b1010 (10). If this value is shifted to the left once more, the new value
is 0b0100 (4). The value 4 is not 10*2; the correct result should be 20. However, the
value 20 cannot fit in 4 bits; the largest unsigned value represented in 4 bits is 
24 1 = 15. In this case, the bit shifted out of the MSb is a “1”; when this happens,
unsigned overflow occurs for the shift operation and the new value is incorrect in
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an arithmetic sense. The C language operator for a left shift is <<, where A<<1
reads “A shifted to the left by one bit”. Figure 1.3 gives additional examples of left
and right shift operations.

If an n-bit value is shifted to the left or right n times, with “0” used as the shift-
in value, the result is zero, as all bits become “0”. When shifting a hex value, it is
best to convert the hex number to binary, perform the shift, and then convert the
binary number back to hex.

Sample Question: What is the new value of 0xA7 >> 2 assuming the MSb is filled 
with a “0”?

Answer: The value 0xA7 = 0b1010 0111, so 0xA7 >> 1 = 0b01010011.
Shifting this value to the right by one more gives 0b01010011 >> 1 =
0b00101001 = 0x29. Therefore, 0xA7 >> 2 = 0x29.

1.5 COMBINATIONAL LOGIC FUNCTIONS

Boolean algebra defines properties and laws between variables that are binary-
valued. The basic operations of Boolean algebra are NOT, OR, and AND whose 
definitions are:

NOT(A): Is “1” if A = 0; NOT(A) is “0” if A = 1 (the output is said to be the
complement or inverse of the input).

AND(A1, A2,...An): Is “1” only if all inputs A1 through An have value = 1.

OR (A1, A2, ...An): Is “1” if any input A1 through An has value “1”.

1  1  0  1  0  1  1  1  = 0xD7 0

0  1  1  0  1  0  1  1  = 0x6B 

Shift in

Right Shift  0x6B = 0xD7 >> 1

0x75  = 0  1  1  1  0  1  0  1

0xEA = 1  1  1  0  1  0  1  0  

0

Shift in

Left Shift  0xEA = 0x75 << 1

FIGURE 1.3 Shift operation examples.



The C language operators for bitwise complement (“~”), AND (“&”), OR (“|”)
are used in this book for logic operations. Thus, NOT(A) = ~A, AND(A,B) = A
& B, and OR(A,B) = A | B where the Boolean variables have values of either “0”
or “1”. Logic operations are also defined by truth tables and shape distinctive sym-
bols. A truth table has all input combinations listed in binary counting order on the
left side, with the output value given on the right side of the table. Figure 1.4 lists the
two-input truth tables and shape distinctive symbols for the NOT, AND, OR,
NAND, NOR, and XOR (exclusive-OR) logic functions. 

A NAND function is an AND function whose output is complemented; simi-
larly, a NOR function is an OR function whose output is complemented. An XOR
function is defined by the truth table shown in Figure 1.4, or can be expressed
using NOT, AND, OR operators as shown in Equation 1.1. The C language opera-
tor for XOR is ^, thus XOR(A,B) = A ^ B. Logically stated, XOR(A,B) is “1” if A
is not equal to B, and “0” otherwise.

Y = (A & (~B)) | ((~A) & B) (Exclusive OR function) (1.1)

The shape distinctive symbol for a Boolean logic function is also referred to as
the logic gate for the Boolean operation. A network of logic gates is an alternative
representation of a Boolean equation. Figure 1.5 shows the Boolean equation of the
XOR function drawn as a logic network using two-input gates. 

Figure 1.6 gives the AND/OR network, Boolean equation, and truth table for a
three-input majority function; so named because the output is a “1” only when a
majority of the inputs are a “1”.
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A   B   Y
0   0    0
0   1    0
1   0    0
1   1    1

A

A Y

B
Y

Y
A
B

AND

A   B   Y
0   0    1
0   1    1
1   0    1
1   1    0

A

B

NAND
A

B

A   B   Y
0   0    0
0   1    1
1   0    1
1   1    1

A   B   Y
0   0    1
0   1    0
1   0    0
1   1    0

NOR

OR

A

B

XOR

Y

Y

Y

A   B   Y
0   0    0
0   1    1
1   0    1
1   1    0

A   Y
0   1
1   0

FIGURE 1.4 Truth table, logic symbols for basic two-input logic gates.
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An important law relating AND/OR/NOT relationships is known as DeMor-
gan’s Law, with its forms shown in Figure 1.7. A “circle” or “bubble” on a gate input
means that input is complemented. Note that a NAND function can be replaced by
an OR function with complemented inputs (Form 1); while a NOR function can be
replaced by an AND function with complemented inputs (Form 2). Forms 1 and 2
of DeMorgan’s Law can be validated by comparing the truth tables of the left and
right hand sides, while forms 3 and 4 follow from substitution of forms 1 and 2.

DeMorgan’s law can be used to replace all of the AND/OR gates of Figure 1.6 with
NAND gates as shown as in Figure 1.8. This is important as the physical implementa-
tion of a NAND gate using Complementary Metal Oxide Semiconductor (CMOS)
transistors is faster and has fewer transistors than either an AND gate or an OR gate. 

A
Y = (A & (~B))  |  ((~A) & B)

B

Y A

B

XOR

Y

FIGURE 1.5 AND/OR logic network for XOR function.

A

Y = (A & B)  |  (B & C)  |  (A & C)

B Y

Majority

C A    B    C     Y
0     0     0      0
0     0     1      0
0     1     0      0
0     1     1      1
1     0     0      0
1     0     1      1
1     1     0      1
1     1     1      1

FIGURE 1.6 AND/OR logic network for the three-input majority function.



Logic Gate CMOS Implementations

CMOS transistors are the most common implementation method used today for
logic gates, which form the building blocks for all digital computation methods. We
review the basics of CMOS transistor operation here and revisit the topic in Chap-
ter 8 when discussing computer input/output. The “C” in CMOS stands for com-
plementary, which refers to the fact that there are two types of MOS transistors, N
and P, whose operation is complementary to each other. Each MOS transistor type
has three terminals: Gate (g), Source (s), and Drain (d). For our purposes, we will
view a MOS transistor as an ideal switch whose operation is controlled by the gate
terminal. The switch is either closed (connection exists between source and drain,
so current flows between source and drain) or open (no connection between source
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YYA

B B

A
A & B = ~((~A) | (~B))

Y

B

A YA

B
A | B = ~((~A) & (~B))

YYA

B B

A
~(A & B) = (~A) | (~B)

Y

B

A YA

B
~(A | B) = (~A) & (~B)

(1)

(2)

(3)

(4)

=

=

=

=

FIGURE 1.7 DeMorgan’s Law.

A

Y = ~(~(A & B)  &  ~(B & C)  &  ~(A & C))
    =  (~(~(A & B)) | (~(~(B & C))) | (~(~(A & C)))
    =  (A & B) | (B & C) | (A & C) 

B Y

Majority

C

FIGURE 1.8 NAND/NAND logic network for a three-input 
majority function.
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and drain, no current flow between source and drain). An N-type transistor is open
when the gate has a logic “0”, and closed when the gate has a logic “1”. A P-type
transistor has complementary operation; a “1” on the gate opens the switch, a “0”
closes the switch. A logic “1” is physically represented by the power supply voltage
of the logic gate, or Vdd. The power supply voltage used for a CMOS logic gate can
vary widely, from 5 V (Volts) down to approximately 1.2 V. A logic “0” is physi-
cally represented by the system ground, or Gnd, which has a voltage value of 0 V.
Figure 1.9  illustrates P and N transistor operation.

Multiple CMOS transistors can be connected to form logic gates. Figure 1.10
shows the simplest CMOS logic gate, which is the NOT function, or inverter. When
the input value is “0”, the upper switch (the P transistor) is closed, while the lower
switch (the N transistor) is open. This connects the output to Vdd, forcing the out-
put to a “1”. When the input value is “1”, the upper switch is open, while the lower
switch is closed. This connects the output to Gnd, forcing the output to a “0”.
Thus, for an input of “0” the output is “1”; for an input of “1” the output is a “0”,
which implements the NOT function. 

Note that a buffer function Y = A is formed if two inverters are tied back to
back as shown in Figure 1.11. It would seem that a better way to build a buffer is to
switch the positions of the N and P transistors of the inverter; thus implementing
the buffer with only two transistors instead of four. However, for physical reasons
best left to an electronics book, a P transistor is always used to pass a “1” value,
while an N transistor is always used to pass a “0” value. Thus, in digital logic, a P
transistor is never tied to ground, and an N transistor is never tied to Vdd, so the

S

G

D

NMOS Transistor

0

S

G

D

PMOS Transistor

0

1

1

open

closed

closed

open

FIGURE 1.9 CMOS transistor operation.
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two-transistor buffer shown in Figure 1.11 is illegal. A noninverting CMOS logic
function always takes two stages of inverting logic.

Figure 1.12 shows the transistor configuration and operation of a two-input
CMOS NAND gate. Note that the output is connected to ground (both bottom
transistors are closed) only when both inputs are a “1” value. Also observe that no
combination of inputs provides a direct path between Vdd and Gnd; this would
cause a short (low resistance path) between Vdd and Gnd resulting in excessive 

A

Vdd (logic 1)

Y = ~A
Y = 0

Gnd (logic 0)

A = 1 Y = 1A = 0

A Y

FIGURE 1.10 CMOS inverter operation.

A

A Y = A A Y = A

Y = A A Y = A

not allowed

FIGURE 1.11 CMOS buffer.



current flow. The four-transistor configuration for a CMOS NOR gate is left as an
exercise for the review problems.

Figure 1.13 shows that a CMOS AND gate is actually built from a NAND gate
followed by an inverter. Similarly, a CMOS OR gate is built from a NOR gate fol-
lowed by an inverter. This clearly shows why replacing AND/OR logic with NAND
gates via DeMorgan’s Law is a good idea. The resulting circuit requires less transis-
tors, meaning it is faster, consumes less power, and is cheaper to manufacture!
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B

A = 0
B = 0
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B = 1

Y=1

A = 1
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Y=1 Y=0

FIGURE 1.12 A CMOS NAND gate.
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A

B

Y= A & B

Y= A & BY= A & B

FIGURE 1.13 A CMOS AND gate.



1.6 COMBINATIONAL BUILDING BLOCKS

Building logic circuits on a gate-by-gate basis is an exercise that can be quite fun,
once. After that, one should look for shortcuts that reduce design time for complex
circuits. One method for building complex combinational circuits quickly is to use
combinational building blocks. The following sections describe some commonly
used combinational building blocks; this list is by no means exhaustive. It should
not be surprising that some of these building blocks (the adder and shifter) imple-
ment the arithmetic operations discussed earlier.

The Multiplexer

A K-to-1 Multiplexer (or mux) steers one of K inputs to the output. The most
common mux type is a 2-to-1 mux (two inputs, one output). A select control input
S chooses the input that is passed to the output. The operation of 2-to-1 mux is
written in C code as:

if (S) Y = A; else Y = B;

This C code description of a mux reads as “if S is non-zero, output Y is equal
to A, else output Y is equal to B”. The Boolean equation for 2-to-1 1-bit mux is
given in Equation 1.2.

Y = (S & I1) | (~S & I0) (1.2)

Figure 1.14 shows the gate equivalent for a 1-bit 2-to-1 mux and how a 4-bit 2-
to-1 mux is built from four of these 1-bit building blocks. The 4-bit mux symbol in
Figure 1.15 uses a bus labeling notation for the A and B inputs. In this context, a bus
is simply a collection of parallel wires; a bus named A with N wires is designated as
A[N-1:0]. The LSb and MSb of bus A are A[0] and A[N-1], respectively. If N = 8,
the entire bus A is labeled as A[7:0], the LSb is A[0], and the MSb is A[7].

The Adder

The adder takes two N-bit inputs (A, B) and computes the N-bit sum (A + B).
Most adders have a carry-in bit input for the LSb addition, and a carry-out bit out-
put from the MSb addition. A full adder logic circuit that adds A + B + Ci (carry-
in) and produces sum (S) and carry-out (Co) is a 1-bit building block of most
adder circuits. Figure 1.15 shows the truth table, Boolean equations, and logic net-
work for a full adder. The same figure shows how to build a 4-bit ripple-carry adder
from four 1-bit full adders; the term ripple-carry is used because the carry ripples
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from the rightmost bit to the leftmost bit. There are many other ways to build an
adder; this is the simplest form of a binary adder.

The Incrementer

The operation of an incrementer is described by the following C code:

if (INC) Y = A+1; else Y = A;

The INC (increment) input is a single bit input that determines if the N-bit
output is A + 1 or just A. An incrementer can be built from an adder by connect-
ing all bits of one N-bit input to zero, and using the carry-in input as the INC input.
This computes the sum Y = A + 0 + 1 when INC = 1 or the value Y = A + 0
+ 0 when INC = 0. There are more efficient methods in terms of logic gate count
to implement an incrementer, but this illustrates the flexibility of combinational
building blocks in implementing different functions. 
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FIGURE 1.14 One-bit 2-to-1 mux, 4-bit 2-to-1 mux.



The Shifter

There are many varieties of shifter combinational building blocks. The simplest
type shifts by only one position, and in a fixed direction (either left or right). More
complex types can shift multiple positions, and in either direction. Figure 1.16
shows the logic symbol for an N-bit right shifter, and the internal details of a 4-bit
right shifter. When EN = 1, then Y = A >> 1 with the SI input providing the
input bit for the MSb. When EN = 0, then Y = A, and the SI input has no effect.
This is another example of simple combinational building blocks (2-to-1 muxes)
being used to build a more complex combinational building block.

Memory

A KxN memory device has K locations, with each location containing N bits. Thus,
a 16x1 memory has 16 locations, with each location containing 1 bit. The address
inputs specify the location whose contents appear on the data output. The number
of bits required for the address is log2K , a relationship seen previously as the
address bits are used to uniquely specify 1 of K locations. The output databus has

N bits as it is used to output the contents of a memory location. Following these
rules, a 16x1 memory has log2 16 = 4 address inputs, and one data output. The
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idealistic view of memory presented here assumes a memory type with only these
inputs and outputs, with memory contents loaded by some external means not
discussed here. The most common usage of memory is to store data, but it can also
be used to implement logic functions. Figure 1.17 shows an 8x2 memory used to
implement the sum and carry-out equations of the full adder. The full adder inputs
are connected to the 3-bit address bus as A = ADDR2, B = ADDR1, and Ci =
ADDR0. The 2-bit data output bus provides the outputs as Co = Q0 and S = Q1. 

Sample Question: How many address and data lines does a 4Kx16 memory have?

Answer: The number of address inputs is log2 4K = log2 22*210 = log2

212 = 12. The number of data outputs is 16.
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Location      Data Out
      A[2:0]     Q[1:0]
0     0 0 0       0  0
1     0 0 1       1  0
2     0 1 0       1  0
3     0 1 1       0  1
4     1 0 0       1  0
5     1 0 1       0  1
6     1 1 0       0  1
7     1 1 1       1  1
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Truth table for
8 x 2 Memory Contents
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FIGURE 1.17 Full adder implemented by an 8x2 memory.
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1.7 SEQUENTIAL LOGIC

The output of a combinational logic block is always uniquely defined by its current
inputs. In contrast, the output of a sequential logic element is defined by its current
inputs and also its current state, a value that is internal to the sequential logic ele-
ment. A sequential logic element is a form of a memory device in that it retains in-
ternal state information between operations. In discussing sequential logic, the
terms asserted, negated, high-true, and low-true are used in reference to inputs.
When an input is asserted, it is said to contain a TRUE value; a negated input con-
tains a FALSE value. A high-true input has a high voltage level for TRUE, and a low
voltage level for FALSE. A low-true input has a low voltage level for TRUE, and a
high voltage level for FALSE. The symbol for a sequential logic element uses a bub-
ble on an input to indicate low-true. 

The Clock Signal

An important signal in a sequential logic circuit is the clock signal, whose waveform
and associated definitions are shown in Figure 1.18. The following definitions are
used in reference to clock waveforms:

A rising edge is a transition from low to high; a falling edge is a transition from
high to low.
The period of a clock is the time in seconds (s) between two edges of the same
type. A clock waveform typically has a fixed period; in other words, the period
does not vary over time.
The frequency of a clock is defined as 1/(period) measured in Hertz (Hz), where
1 Hz = 1/(1 s) (a 1 Hz clock has a period of 1 second).
The high pulse width (PWH) is the amount of time the clock is high between a
rising and falling edge, the low pulse width (PWL) is the amount of time the
clock remains low between a falling and rising edge. The duty cycle is the per-
centage of time that the clock remains high.

Clock signal equations are summarized in Equations 1.3 through 1.7 as:

(1.3)

(1.4)

(1.5)

(1.6)

Duty_cycle = 
PW

Period
100%

H
× ( )

Period = 
1

Frequency

Frequency = 
1

Period
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(1.7)

Figure 1.18, the clock waveform, is an example of a timing diagram, which is a
method for describing time-dependent behavior of digital systems. In a timing 
diagram, one or more waveforms can be displayed, and time is assumed to increase
from left to right. A waveform event is a change in waveform value. If waveform
event A occurs to the right of waveform event B, then A occurs after B in time. The
clock waveform shown in Figure 1.18  is an idealized view of a clock signal; an 
oscilloscope trace of an actual clock signal would reveal visible rise and fall times for clock
edges, and perhaps ringing (small oscillations) on the end of rising and falling edges.

Table 1.4 lists commonly used units for time and frequency. A 1 kHz clock has
a period of 1 ms, a 1 MHz clock has a period of 1 μs, and so forth. Observe that
kHz has a lowercase “k”, where k = 1000; an uppercase K is reserved for the value
1024 (K = 210 = 1024). The suffixes M and G have values of 106 and 109, respec-
tively, when applied to time, frequency, and data transfer rate specifications (the
values of M = 220 and G = 230 are used when referring to memory capacity).
Timing and frequency specifications of digital circuits are contained in datasheets
provided by the manufacturer. Time and frequency values are always specified
using one of these units; in other words, a time is never specified as 1.05e 4; in-
stead, it is specified as 105 μs.

PWL = 
(100-Duty_cycle)  Period

100

×( )

Time Frequency 

milliseconds = ms = 1e10 3 s kilohertz = kHz = 1e103 Hz

microseconds = μs = 1e10 6 s megahertz = MHz = 1e106 Hz

nanoseconds = ns = 1e10 9 s gigahertz = GHz = 1e109 Hz

TABLE 1.4 Common Units for Time and Frequency

falling edge

rising edge
Period

PWH PWL

FIGURE 1.18 Clock signal definitions.



Sample Question: A clock has a duty cycle of 40%, and a frequency of 19.2 kHz. What is
the period and low pulse width, in microseconds?

Answer: The period is 1/(19.2 kHz) = 1/(19.2e103) = 5.21e10 5 s. To convert this
value to microseconds, do a unit conversion via: 5.21e10 5 s * 1 μs/
1e106 s = 52.1 μs. PWL = ((100 Duty_cycle) * Period)/100 = ((100
40) * 52.1 μs) /100 = 31.3 μs.

The D Flip-Flop

There are many varieties of sequential logic elements. In this section, we review
only the dominant type used in digital logic design, the D Flip-Flop (DFF). A DFF,
as seen in Figure 1.19, can have the following input signals:

CK (input): The clock input; the arrival of the clock active edge sets the inter-
nal state of the DFF equal to the data input if the asynchronous inputs R, S are
negated. The rising clock edge is the active clock edge for the DFF in Figure
1.19; it is said to be rising-edge triggered. A falling-edge triggered DFF has a bub-
ble on its clock input. 

D (input): The data input; the internal state of the DFF is set to this value on
the arrival of an active clock edge if the asynchronous inputs R, S are negated.
The D input is said to be a synchronous input as it can only affect the DFF on ar-
rival of an active clock edge.

S (input): The set input; the internal state of the DFF becomes a “1” when this
input is asserted. In Figure 1.19 this is a low-true input, so a low voltage on this
input asserts set. This input is said to be asynchronous as its operation is inde-
pendent of the clock input.

R (input): The reset input; the internal state of the DFF becomes a “0” when
this input is asserted. In Figure 1.19  this is a low-true input, so a low voltage on
this input asserts reset. This input is also an asynchronous input.

Q (output): The Q output is the value of the internal state bit.

Not all DFFs have S and R inputs; all DFFs have at least CK, D, and Q. The tim-
ing diagram in Figure 1.19 contains the following sequence of events:

1. The initial value of the DFF state bit is “0” as reflected by the Q output.
2. The D input becomes a “1”, but this has no effect on the Q output as a ris-

ing clock edge has not occurred.
3. A rising clock edge arrives.
4. The Q output changes to a “1” as the D value of “1” is clocked into the DFF

by the rising clock edge. The time delay between the rising clock edge and
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the Q output becoming a “1” is known as a propagation delay; changes can-
not occur instantaneously in physical logic circuits. Propagation delay val-
ues are dependent upon the transistor topology of a logic gate, and have
different values for different inputs and gate types. Timing diagrams in
this book show propagation delay where appropriate.

5. The R input becomes a “0”, asserting this input.
6. The Q output becomes a “0” after a propagation delay; note that this oc-

curs independent of the clock edge, as the R input is an asynchronous
input.

7. The S input becomes a “0”, asserting this input.
8. The Q output becomes a “1” after a propagation delay; again, this occurs

independent of the clock edge as the S input is an asynchronous input.
9. A rising clock edge arrives. The D input is a “0”, but this value is not

clocked into the DFF as the S input is still asserted, which keeps the inter-
nal state at a “1”.

The DFF is the most commonly used edge-triggered sequential logic element in
digital logic as it takes the fewest transistors to build. Other types of sequential
logic elements that you may be familiar with are the JK Flip-Flop (JKFF) and T Flip-
Flop (TFF); both of these can be built by placing logic gates around a DFF.
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1.8 SEQUENTIAL BUILDING BLOCKS

Sequential building blocks are built using combinational building blocks and se-
quential logic elements. The following sections review some common sequential
building blocks.

The Register

A register is used to store an N-bit value over successive clock periods. One may
think that paralleling N DFFs would suffice, but the problem with a DFF is that it
samples its D input every active clock edge, potentially changing its value every ac-
tive clock edge. Figure 1.20 shows an N-bit register built from an N-bit DFF and an
N-bit 2-to-1 mux. When the load input (LD) is “1”, the DFF D input receives the
value of the external D input by way of the mux, and thus the register is loaded with
a new value on the next active clock edge. When LD is “0”, the DFF D input is con-
nected to the DFF Q output; thus each active clock edge reloads the DFFs with their
current output values. In this way, the register retains its current value over multi-
ple clock cycles when the load input is negated (LD = 0). Registers are key com-
ponents of all computers, and Figure 1.20 should be the physical element
envisioned when the term register is used in future chapters on microprocessor 
operation.
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The Counter

A counter is a register that has the additional capability of being able to increment
(count up) or decrement (count down), or both. Figure 1.21 shows an N-bit
counter that can count up. An N-bit incrementer has been added to the register de-
sign of Figure 1.21 to provide the counter functionality. The counter counts up by
one when INC = 1 and LD = 0 on a rising clock edge as the DFF D input sees the
value Q + 1. When INC = 0 and LD = 1, the counter loads the external D input
value on the active clock edge. This allows the counter to be initialized to a value
other than zero. When INC = 0 and LD = 0, the counter holds its current value.
Counters are useful for producing addresses used to access memories, as sequential
access of memory contents is a commonly needed operation in computer systems.

The Shift Register

A shift register is a register that has the additional capability of being able to shift
left, right, or both directions. Figure 1.22 shows a shift register that can shift right
by 1 when SHIFT = 1 and LD = 0. It uses the same design as the counter, except
that a shift-right block has replaced the incrementer block. Shift registers are use-
ful in computer input/output where an N-bit value must be communicated serially,
in other words, bit by bit, to another device. The concept of serial input/output is
covered in much detail in Chapters 9 and 11.

At this point, the usefulness of the concept of combinational and sequential
building blocks should be apparent. One can easily envision other useful combina-
tional building blocks such as a subtractor, decrementer, adder/subtractor, and
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other sequential building blocks such as up/down counters, or combined
counter/shift registers. These components form the basis for the logic circuits used
within modern computers.

1.9 ENCODING CHARACTER DATA

Up to this point, the data encodings discussed have been for numerical representa-
tion of unsigned integers. Another common data type manipulated by computer
systems is text, such as that printed on this page. The American Standard Code for
Information Interchange (ASCII) is a 7-bit code used for encoding the Latin al-
phabet (the written form of the English language). The ASCII code contains up-
percase letters, lowercase letters, punctuation marks, numerals, printer control
codes, and special symbols. Table 1.5 shows the ASCII code; the top row specifies
the most significant hex digit and the leftmost row the least significant hex digit of
the 7-bit hex code. Thus, an “A” has the code 0x41, a “4” is 0x34, a “z” is 0x7A, and
so on. The codes that are less than 0x20 are nonprintable characters that have var-
ious uses; some are printer control codes such as 0x0D (carriage return) and 0x0A
(line feed). Eight bits are normally used to encode an ASCII character, with the
eighth bit cleared to zero.

With the advent of the World Wide Web and the necessity to exchange binary-
encoded text in other languages, the universal character-encoding standard, Uni-
code, was created (see www.unicode.org for more information). The Unicode goal is
to provide a unique encoding for every character, numeral, punctuation mark, and
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so forth, contained within every known language. The Unicode standard allows 8-
bit (1 byte), 16-bit (2 byte), and 32-bit (4 byte) encodings. The 8-bit and 16-bit en-
codings are subsets of the 32-bit encodings; the first 128 codes (0x00 to 0x7F) are
the same as the ASCII code for compatibility. Using 32 bits for each character al-
lows for 4,294,967,296 unique characters, which is sufficient for the known char-
acter sets of the world. Individual character sets (Latin, Greek, Chinese, etc.) are
assigned ranges within Unicode. Portions of the code are also reserved for use by
private applications, so these codes are not assigned to any language. This book uses
ASCII exclusively for character data encoding, but be aware that more sophisticated
methods for text encoding exist.
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Most Significant Digit

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7

0x0 NUL DLE SPC 0 @ P ` p

0x1 SOH DC1 ! 1 A Q a q

0x2 STX DC2 “ 2 B R b r

0x3 ETX DC3 # 3 C S c s

0x4 EOT DC4 $ 4 D T d t

0x5 ENQ NAK % 5 E U e u

0x6 ACK SYN & 6 F V f v

0x7 BEL ETB ‘ 7 G W g w

0x8 BS CAN ( 8 H X h x

0x9 TAB EM ) 9 I Y i y

0xA LF SUB * : J Z j z

0xB VT ESC + ; K [ k {

0xC FF FS , < L \ l |

0xD CR GS - = M ] m }

0xE SO RS . > N ^ n ~

0xF SI US / ? O _ o DEL

TABLE 1.5 ASCII Table



Sample Question: What character string is represented by “0x48 0x65 0x6c 0x6c 0x6F
0x20 0x57 0x6F 0x72 0x6c 0x64 0x21”?

Answer: Translating character by character yields the popular test message:
“Hello World!”. Note that the string contains a space character (0x20) and an
exclamation mark “!” (0x21).

SUMMARY

In this chapter, we hopefully have refreshed some topics you have encountered
previously concerning number systems, binary encoding, Boolean algebra, logic
gates, combinational building blocks, and sequential building blocks. In the next
chapter, we use these building blocks to introduce the concept of a stored program
machine as a means of implementing a digital system.

REVIEW PROBLEMS

1. How many bits does it take to represent 40 items?
2. What is the largest unsigned integer that can be represented in 7 bits?
3. Convert the value 120 to binary using 8 bits.
4. Convert 89 to hex using 8 bits.
5. Convert 0xF4 to binary.
6. Convert 0xF4 to decimal.
7. Convert the value 0b10110111 to decimal.
8. Compute 0xB2 + 0x9F, give the result in hex.
9. Compute 0xB2 – 0x9F and give the result in hex. Check your work by ver-

ifying that 0xB2 + ~(0x9F) + 0x1 produces the same result. To compute
~(0x9F), complement each bit.

10. Draw the logic network and derive the truth table for the logic function 
F = (A&B) | C.

11. Derive the CMOS transistor network that implements the NOR function.
12. Compute 0xC3 >> 2, give the value in hex (this is a right shift by two).
13. Compute 0x2A << 1, give the value in hex (this is a left shift by one).
14. What is the period of a 400 kHz clock in microseconds?
15. Given a 30% duty cycle clock, with a high pulse width of 20 μs, what is the

clock frequency in kHz?
16. Design an N-bit subtractor using an adder with a carry-in input and the

fact that A - B = A + ~B + 1.
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17. Design an N-bit adder/subtractor that has an external input called SUB
that when “1”, performs a subtraction, when “0”, performs an addition
(Hint: use an adder with a carry-in input, and a mux).

18. Design a left-shift by one combinational building block.
19. Design a counter that can count either up or down. Assume that you have

incrementer and decrementer building blocks available.
20. Write your first name as 8-bit hex values using ASCII encoding.
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The Stored Program
Machine

2

T
his chapter introduces the fundamental concepts of computer operation by 
implementing a controller both as a finite state machine and as a stored pro-
gram machine.

2.1 LEARNING OBJECTIVES

After reading this chapter, you will be able to:

Compare and contrast controller designs using finite state machine and stored
program machine approaches.
Describe the operation of a finite state machine via an algorithmic state ma-
chine chart.

In This Chapter

Problem Solving the Digital Way
Finite State Machine Design
A Stored Program Machine
Modern Computers



Implement a finite state machine using a one-hot state encoding method.
Discuss the basic elements of a stored program machine.
Describe the meaning of the terms opcode, machine word, instruction mnemonic,
address bus, data bus, instruction pointer, assembly, and disassembly.
Describe the fetch and execute sequence of a stored program machine.
Convert a simple assembly language program to machine code, and vice versa.
Follow the execution of a simple assembly language program.
Write a simple assembly language program to solve a specified problem.

The preceding tasks introduce you to the concept of stored program machines,
of which the PIC18F242 microcontroller is a prime example, and is the principle
focus of the rest of this book. The PIC18F242 microcontroller is simply a more
complex version of the stored program machine discussed in the following sections.
This chapter provides you with the first chance to dip your toes into the vast ocean
of microprocessor operation, programming, and application.

2.2 PROBLEM SOLVING THE DIGITAL WAY

Digital systems provide solutions for problems in which real-world inputs can be
converted to a digital representation, which is then processed by a clever use of
combinational and sequential building blocks to produce a digital output that is
converted back to a useful quantity in the real world. As an example, consider a dig-
ital voice recorder:

Pushbutton inputs on the recorder determine if the recorder is in record mode
or playback mode. A microphone input converts voice that varies in amplitude
over time to a continuously varying voltage between 0 V and the power supply
voltage, where the voltage fluctuations are the sound wave variations of human
speech.
A building block called an analog-to-digital converter (ADC) produces a digital
representation of the microphone output voltage at regular time intervals. Each
converted digital value is called a voice sample.
A digital building block called a controller monitors the button inputs on the
recorder.
In record mode, the controller reads the voice samples from the ADC and
stores them in a memory device. 
In playback mode, the controller reads the memory contents sequentially, and
sends each voice sample to a building block called a digital-to-analog converter
(DAC) that converts a digital input value to a voltage value between 0 V and a
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reference voltage VREF (which can be the power supply voltage). This voltage
signal drives a speaker, allowing the recorded voice to be heard.

Analog-to-digital converters and digital-to-analog converters are essential parts
of digital systems and are covered in Chapter 12, “Data Conversion.” In this chap-
ter, we are concerned with the design of the controller that sequences the events
within a digital system. 

Two basic choices exist for building a controller: a finite state machine (FSM) or
a stored program machine (also known as a Von Neumann machine after the scien-
tist who first proposed this approach [1], [2]). In a FSM, dedicated logic imple-
ments the event sequence required for a task. In a stored program machine, data
stored in a memory specifies the event sequence for a particular task. An advantage
of a FSM is that it usually takes fewer clock cycles than a stored program machine
to perform a particular task. The principle advantage of a stored program machine
is flexibility; a different task can be implemented by simply changing memory con-
tents. A FSM requires redesign of its internal logic to implement a different task,
which is a much more difficult problem than memory modification.

To illustrate the differences between these approaches, consider a digital system
that continuously outputs the digits of a phone number, Y1Y2Y3-Z1Z2Z3Z4. In local
mode, only Z1Z2Z3Z4 are output, while in nonlocal mode all digits are output. In
our controller designs for this problem, a common set of inputs and outputs is used
for comparison purposes:

LOC (input): When “1” the system is in local mode; when “0”, in nonlocal
mode.

CLK (input): This is obviously a sequential system, as the output cannot be
solely determined by the LOC input, so the system requires DFFs, which im-
plies that a clock input is needed.

RESET# (input): All sequential digital systems need an input signal that ini-
tializes the internal DFFs to a known state after power is applied, as the inter-
nal state of DFFs are indeterminate on power up. This signal is usually called
reset; the “#” in the name indicates that this input is low true.

DOUT[3:0] (output): This 4-bit output bus is used to sequentially output the
digits of the phone number. A digit has a value between 0 and 9; so 4 bits are
sufficient for encoding purposes. Binary encoding is used for encoding these
digits.

The following sections detail controller designs using both FSM and stored
program machine approaches. Contrasting the two controller designs emphasizes
the strengths and weaknesses of each approach.
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2.3 FINITE STATE MACHINE DESIGN

An FSM can be thought of as a sequential building block that is custom designed to
solve a particular problem. The problem solved by an FSM is described as a series
of transitions between states, where a transition from the present state to the next
state is determined by the present state and the current inputs. The outputs of the
FSM are also determined either by only the present state or a combination of the
present state and current inputs. In this example, we use an Algorithmic State Ma-
chine (ASM) chart to describe the state sequencing of an FSM. An ASM chart is
similar to a software flow chart for those familiar with that notation. Symbols used
in an ASM chart are:

Rectangle: This indicates a state. Outputs asserted during this state are written
within the rectangle; these outputs are called unconditional outputs, as the asser-
tion is only dependent upon the state, and not an external output. Any outputs
that do not appear in a state are assumed negated.

Diamond: A decision point, with the input that the decision is based upon
written within the diamond.

Oval: This can only appear after a decision point and is used for conditional
outputs, which is an output dependent upon both a state and some set of in-
puts.

Circle: This appears next to each state and contains the state name.

The ASM chart in  Figure 2.1 shows an FSM that outputs the number 324-8561
according to our problem specification. The ASM contains seven states with the S*

state being the state entered upon reset (the reset state is designated by the * sym-
bol). The state following S* is dependent upon the LOC input; if LOC = 1, then
the next state is Z2, else the next state is Y2. The state progression for LOC = 0 is
S*, Y2, Y3, Z1, Z2, Z3, Z4, which then loops back to S*. Each state requires one clock
cycle, so this state progression requires seven clock cycles. If LOC = 1, the state
progression is S*, Z2, Z3, Z4, again looping back to state S*. The LOC input is only
checked in the S* state, so the sequence cannot be altered once state S* has been ex-
ited. The DOUT output of the S* state is conditional upon the LOC input; DOUT
= 8 if LOC = 1, else DOUT = 3. The DOUT output in all other states is uncon-
ditional.

Finite State Machine Implementation

A generic block diagram of an FSM implementation is shown in Figure 2.2. The
state DFFs contain the present state of the FSM. The CLOGIC block is the combi-
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national logic that produces the next state inputs to the state DFFs based upon the
present state and external inputs. State changes occur on the active clock edge.
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The first task in implementing this FSM is state assignment, which means as-
signing binary encodings for each state. The state assignment affects the number of
state DFFs required and the combinational logic within the CLOGIC block. Table
2.1 lists two choices for state encoding; there are many others. Using binary encod-
ing requires only three DFFs but more complex combinational logic; one-hot en-
coding requires six DFFs but simplifies the task of determining the required
combinational logic equations. This is meant as an illustrative exercise, and not an
exhaustive treatise on FSM design, so we will use one-hot encoding.

Two sets of Boolean equations are required for the CLOGIC block: the set that
controls the state sequencing, and the set that produces the required output values.

The set of Boolean equations that controls the state sequencing consists of
seven equations, one for each D input of a DFF. An advantage of one-hot encoding
is that these equations can be easily determined by inspection of the ASM chart. As
an example, consider the equation for the D input of state S*, designated by D_S*.
This state is entered on the next clock cycle from state Z4, and we know that the Q
output of the state Z4 DFF, denoted by Q_Z4, will only be a “1” when the FSM is in
state Z4. Thus, the D_S* Boolean equation has only one term as shown in Equation
2.1.

D_S* = Q_Z4; (2.1)

The equation for the D input of the Y2 state is a bit more interesting, as this
state is entered only if the current state is S* and LOC is “0” as stated in Equation
2.2.
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State Binary Encoding One-Hot Encoding

S* 000 0000001

Y2 001 0000010

Y3 010 0000100

Z1 011 0001000

Z2 100 0010000

Z3 101 0100000

Z4 110 1000000

TABLE 2.1 Two Possibilities for State Assignment



D_Y2 =  (Q_S*) & (~LOC); (2.2)

The Boolean equations for the remaining DFF inputs are derived through sim-
ilar reasoning as shown in Equations 2.3 through 2.7.

D_Y3 =  Q_Y2; (2.3)

D_Z1 =  Q_Y3; (2.4)

D_Z2 =  ((Q_S*) & (LOC)) | (Q_Z1); (2.5)

D_Z3 =  Q_Z2; (2.6)

D_Z4 =  Q_Z3; (2.7)

The previous Boolean equations for state sequencing do not include the reset
behavior. The reset signal input is tied to the set (S) input of the DFF for state S*,
and to the reset (R) input of the remaining state DFFs. In this way, reset assertion
forces the FSM to enter state S* while reset negation allows normal state sequencing.

The Boolean equations for the DOUT outputs depend upon the current state
and LOC input values. Table 2.2 lists the binary output values for DOUT given the
current state and LOC values.
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State One-Hot Encoding DOUT (LOC = 0) DOUT (LOC = 1)

S* 0000001 0011 (3) 1000 (8)

Y2 0000010 0010 (2) 0010 (2)

Y3 0000100 0100 (4) 0100 (4)

Z1 0001000 1000 (8) 1000 (8)

Z2 0010000 0101 (5) 0101 (5)

Z3 0100000 0110 (6) 0110 (6)

Z4 1000000 0001 (1) 0001 (1)

TABLE 2.2 Output Values for DOUT Referenced to States
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A Boolean logic equation is needed for each of the 4 bits of DOUT. We will
write these equations by inspection and make no attempt at minimizing the
amount of logic required for implementation. From Table 2.2, we see that the
DOUT[0] output is a “1” for the following conditions: in state S* and LOC = 0, or
in states Z2 or Z4. This is expressed as a Boolean equation for the DOUT[0] output
as shown in Equation 2.8.

DOUT[0] = ((Q_S*) & (~LOC)) | (Q_Z2) | (Q_Z4); (2.8)

The equations for the other DOUT bits are derived similarly as shown in Equa-
tions 2.9 through 2.11.

DOUT[1] = ((Q_S*) & (~LOC)) | (Q_Y2) | (Q_Z3); (2.9)

DOUT[2] = (Q_Y3) | (Q_Z2) | (Q_Z3); (2.10)

DOUT[3] = ((Q_S*) & (LOC)) | (Q_Z1); (2.11)

These Boolean equations can be mapped to logic gates for implementation; a
simulation of the resulting gate level system is shown in Figure 2.3. Note that in
clock cycle #1, the system is in state S* with DOUT = 3, but when state S* is reen-
tered in clock cycle #8 the output is DOUT = 8, because now LOC = 1 (the chang-
ing of the LOC input value is arbitrary as it is an external input; it is changed in clock
cycle #5 to illustrate that the LOC input only affects the FSM behavior in state S*).

1 2 3 4 5 6 7 8 9 10 11

Reset#

Loc

Dout

Clk

State S*

3 2 4 8 5 6 1 8 5 6 1

Y2 Y3 Z1 Z2 Z3 Z3 S* Z2 Z3 Z4

FIGURE 2.3 Simulation of the FSM implementation.



Note that if the phone number is changed, only the Boolean equations for
DOUT must be changed; the Boolean equations for the state sequencing remain the
same. However, if the number of phone digits is changed, say to X1X2X3-Y1Y2Y3-
Z1Z2Z3Z4, this requires a new state sequence and hence different logic for state se-
quencing.

2.4 A STORED PROGRAM MACHINE

A stored program machine is the formal term for a computer. Three components of
every stored program machine are:

Input/Output (IO) signals that are used for interfacing with the external world.
Memory that stores the instructions that determine the sequence of events per-
formed by the computer. An instruction is a binary datum that is usually a fixed
width. Memory also stores data that instructions manipulate.
Control logic that decodes the instructions and executes the actions specified by
an instruction.

The common elements between a finite state machine and stored program ma-
chine are IO and control; the memory component is the differentiating factor.
Memory provides flexibility for a stored program machine; a stored program ma-
chine can be programmed to perform a different task by changing the instructions
stored in memory. A program is a sequence of instructions that implement a par-
ticular task. A stored program machine continuously performs a fetch/execute ac-
tion, in which an instruction is fetched from memory, and then executed.
Instruction fetches typically progress through memory in a sequential manner. In-
structions are divided into different classes of instructions; some instructions per-
form arithmetic operations, some perform input/output, and some perform
control. An example of arithmetic instruction execution is binary addition. An ex-
ample of an input/output instruction execution is placing a data value on an out-
put bus. An example of a control instruction execution is a goto X (jump) that
fetches the next instruction from location X instead of the next sequential memory
location.

Instruction Set Design and Assembly Language

The design of our stored program machine begins with determining what type of
instructions it should execute, and the format or binary encoding of these instruc-
tions. To determine this, we will describe the task as a sequence of statements in the
C programming language, as seen in Listing 2.1.
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LISTING 2.1 C language program of the number sequencing task.

START:

If (loc) goto LOCAL;

dout = 3;

dout = 2;

dout = 4;

LOCAL:

dout = 8;

dout = 5;

dout = 6;

dout = 1;

goto START;

These statements represent three distinct operations:

An output operation as specified by the statement dout = 2, which places the
value 0b0010 on the DOUT data bus.
An unconditional transfer of control, also known as a goto or jump, as specified
by the statement goto START, which says to fetch the next instruction from the
memory location represented by the label START.
A conditional transfer of control, also known as a branch or jump conditionally,
as specified by the statement if(loc)goto LOCAL. If loc is nonzero (i.e., true),
the next instruction fetched is the one at label LOCAL. If loc is zero (i.e., false), the
next sequential instruction in memory is fetched, which is dout = 3.

These instruction types must be assigned a binary encoding so that they can be
stored in memory. The encoding of an instruction must specify the type of in-
struction, and the data required by the instruction (if the instruction requires data).
The instruction bits that specify the instruction type form a bit field that is called
the opcode. The data required by the instruction is more formally known as the
operand.  Figure 2.4 illustrates how instruction encoding is divided into opcode and
operand fields. 

Two bits are needed for the opcode to encode the three types of instructions in
our computer. Table 2.3 lists the instruction set for our number sequencer com-
puter (NSC). The leftmost column contains the instruction mnemonic, which is the
human-readable form of an instruction. The middle column gives the opcode en-
coding, and the rightmost column the instruction operand.

Opcode encoding is usually chosen so that classes of instructions can be easily
distinguished. In this case, the two control instructions JC and JMP, are distin-
guished from the IO instruction OUT by the most significant bit of the opcode. The
OUT instruction operand is the 4-bit digit that appears on the DOUT data bus after
the instruction is executed. The JMP and JC instructions have the same type of
operand, which is the memory address of the target instruction of the jump. 
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The number of bits required for this memory address depends on the maximum
number of memory locations allowed in our number sequencer computer. For now,
a total of 4 bits is used, which limits the total number of memory locations to 24 =
16. Each memory location contains one instruction, so the maximum number of

instructions in any program written for our computer is 16 instructions. Each of
our instructions is 6 bits wide (2 bits opcode, 4 bits data), so a 16x6 memory device
is required for storing the instructions of our program.

Listing 2.2 gives the C program of the number sequencing task translated into
the instructions used by our computer. The translation of a high-level language to
the native instructions of a computer is called compilation. A program specified
using the instruction mnemonics of an instruction set is called an assembly language
program. A computer program called a compiler is normally used to translate a
high-level language program to assembly language, but in this book the process is
done manually in many cases to illustrate the linkage between C statements and as-
sembly language statements. 

LISTING 2.2 Assembly language program for the number sequencing task.

START:

JC LOCAL

OUT 3

opcode

N bits

instruction formattingoperand

r bits s bits

FIGURE 2.4 Instruction encoding split into opcode and 
operand fields.

Mnemonic Opcode Operand

JMP 00 instruction address

JC 01 instruction address

OUT 10 4-bit data

TABLE 2.3 Instruction Encodings for the Number Sequencer Computer



OUT 2

OUT 4

LOCAL:

OUT 8

OUT 5

OUT 6

OUT 1

JMP START

The next step is to translate our program into binary so that it can be stored in
memory. This process is called assembly, and the resulting binary codes are called
the machine code of the assembly language program. The reverse process of con-
verting machine code to assembly language mnemonics is called disassembly. The
assembly process is done in two passes; the first pass assembly does not assemble
any jmp/jc instructions whose jump destination is ahead of the current instruction
as the memory location of the jump destination is unknown.  After the first pass as-
sembly, the locations of all instructions are known so the second pass completes the
assembly of any jmp/jc instructions that were not completed in the first pass. Table
2.4 gives the first-pass result of this assembly process. The leftmost column contains
the memory location where the machine code for the instruction is placed. We will
place our instructions starting at location 0x0 in memory for reasons that are ex-
plained later. Each assembly language statement is translated individually to its
machine code representation. Observe that the operand field of the first instruction
is left as “????” because the location of the instruction represented by the label LOCAL
is unknown when this instruction is assembled during the first pass. The last in-
struction, JMP START, can be completely translated because the label START stands for
the first instruction, which has already been translated and is located at location 0x0.
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Memory Location Machine Code Instruction

0x0 01 ???? START: JC LOCAL

0x1 10 0011 OUT 3

0x2 10 0010 OUT 2

0x3 10 0100 OUT 4

0x4 10 1000 LOCAL: OUT 8

0x5 10 0101 OUT 5

0x6 10 0110 OUT 6

0x7 10 0001 OUT 1

0x8 00 0000 JMP START

TABLE 2.4 First-Pass Assembly of the Number Sequencing Program



Once the first pass assembly is complete, we see that the value for label START is
the memory address 0x4. Table 2.5 gives the second-pass assembly of the number
sequencing program; the values of all labels are now known so the machine code
translation is complete. 

Our program consists of nine assembly language instructions; the remaining
seven locations of our 16x6 memory are not needed for this program.

Hardware Design

We must now design hardware that executes the machine code program of our
number sequencing task. We will use the sequential blocks covered in the first
chapter to make our job easier. Figure 2.5 shows what is currently known about the
hardware components of our computer; it has a 16x6 memory, a 1-bit input called
LOC, and a 4-bit output called DOUT. 

In looking at Figure 2.5, we see several busses (DOUT, Memory address bus,
Memory Data bus) that connect to nothing, so this provides a logical place to begin
adding components. Recall that a register is a sequential building block used to hold
a value over one or more clock cycles. A 4-bit register is needed to drive the DOUT
data bus; the register contents are modified by execution of the OUT instruction.
Recall that a counter is a register that has the capability of counting up or down, or
both. Instructions are usually fetched sequentially from memory, which means that
the addresses provided to memory generally proceed in binary counting order.
Thus, a 4-bit counter is the natural choice for providing the address to memory.
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Memory Location Machine Code Instruction

0x0 01 0100 START: JC LOCAL

0x1 10 0011 OUT 3

0x2 10 0010 OUT 2

0x3 10 0100 OUT 4

0x4 10 1000 LOCAL: OUT 8

0x5 10 0101 OUT 5

0x6 10 0110 OUT 6

0x7 10 0001 OUT 1

0x8 00 0000 JMP START

TABLE 2.5 Second-Pass Assembly of the Number Sequencing Program



This counter is an integral part of any computer, and is known as the Program
Counter (PC), or Instruction Pointer (IP). The PC register contains the address of
the instruction currently being fetched from memory. Figure 2.6 shows the number
sequencing computer hardware modified to contain the PC and output registers.

The reset inputs of the PC and output register are tied to the external reset
input. When reset is asserted, the PC register is cleared, which means the first in-
struction fetched from memory is at location 0, requiring the instructions in Table
2.5 to begin at location 0. Observe that the LD and INC control inputs of the PC,
and the LD input of the output register now connect to a general block called 
control. Modification of the PC and output registers is controlled by the current 
instruction. Table 2.6 lists the PC and output register control input values for each
instruction. The output register is loaded when the OUT instruction is executed. The
PC register is incremented if an OUT instruction is executed, or when a JC instruc-
tion is executed and LOC = 0. The PC register is loaded when a JMP instruction is
executed, or when a JC instruction is executed and LOC = 1.
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FIGURE 2.5 Number sequencer computer initial components.
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FIGURE 2.6 Number sequencing computer with program 
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The Boolean equations for the PC and output register control lines are shown
in Equations 2.12 through 2.14 as determined from Table 2.6.

PC_LD = (~MQ5 & ~MQ4) | (~MQ5 & MQ4 & LOC) (2.12)

PC_INC = ~ PC_LD (2.13)

OUT_LD = MQ5 (2.14)

The values MQ5 and MQ4 are the two most significant bits of the instruction
word fetched from memory; these are the opcode bits of the instruction. The
Boolean equation for the PC_INC signal is simply the complement of PC_LD, as
the PC is incremented if it not being loaded. The logic gates that implement the
Boolean equations for PC_LD, PC_INC, and OUT_LD are placed in the control
logic block as shown in Figure 2.7, which completes our design.

Figure 2.8 shows a simulation of the number sequencing computer. The PC
waveform is the program counter value, which can be considered the current state
of this sequential system.

Table 2.7 compares the number of clock cycles required for each number se-
quence in the finite state machine and stored program machine implementations.
The stored program machine requires two more clock cycles for each sequence be-
cause of the JC instruction at the beginning of the sequence, and the JMP at the end
of the sequence. In general, a stored program machine will take more clock cycles
to accomplish a task than a finite state machine, which is the penalty for increased
flexibility and is the typical tradeoff when evaluating whether to use a general-
purpose computer versus dedicated logic as a problem solution.
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Instruction PC Register Output Register

JC LD = LOC, INC = ~LOC LD = 0

JMP LD = 1, INC = 0 LD = 0

OUT LD = 0, INC = 1 LD = 1

TABLE 2.6 PC, Output Register Inputs for Instruction Execution
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FIGURE 2.8 Simulation of the number sequencing computer.

FSM Clock Cycles SPM Clock Cycles

LOC = 0 7 9

LOC = 1 4 6

TABLE 2.7 FSM versus SPM Clock Cycles
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FIGURE 2.7 Complete hardware design for the number sequencing 
computer.



2.5 MODERN COMPUTERS

How does our number sequencing computer (NSC) compare against modern com-
puters?

Programs for the NSC reside in memory that has a maximum of 16 locations;
modern computers have memory that contains billions of locations.
The data register in the NSC is 4 bits wide; modern computers have data regis-
ters that are typically 32 or 64 bits wide, and are larger in some cases.
The NSC has three different instructions; modern computers have tens to hun-
dreds of different instructions.
The NSC can be implemented in less than 100 gates; modern computers can re-
quire millions of logic gates.

Despite these differences, the NSC and modern computers share the basic com-
ponents of all computers: input/output, memory, and control. These three com-
ponents work together to fetch and execute instructions that are stored in memory.

SUMMARY

In this chapter, we introduced the basic concepts of stored program machines.
Stored program machines offer more flexibility than finite state machines, at the
cost of lower performance. The next chapter introduces the stored program ma-
chine that is the main topic of this book, the PIC18F242 microcontroller. 

REVIEW PROBLEMS

1. Write an assembly language program for the number sequencing computer
that outputs the four digit sequence 0, 2, 5, 7 if LOC = 0, else output the 
sequence 1, 3, 6, 8. After a sequence is finished, loop back to program start.
Convert your assembly language program to machine code starting at lo-
cation 0.

2. Write the assembly language for the NSC machine code program seen in
Table 2.8.

3. For the NSC, assume that the LOC input is tied to the least significant bit
of the DOUT bus. For the program in Table 2.9, give the location executed
and the DOUT value for the first 10 clock cycles.

4. Repeat problem #3, except change the instruction at location #1 to OUT 4.
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5. Assume the number definition is changed to 1-X1X2X3-Y1Y2Y3-Z1Z2Z3Z4,
with the local number as Y1Y2Y3-Z1Z2Z3Z4. How many instructions are re-
quired for the NSC to implement this program?
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TABLE 2.8 NSC Machine Code Program

Memory Location Machine Code

0 100000

1 010000

2 100001

3 010000

4 100010

5 010000

6 101001

7 000000

Memory Location Machine Code

0 OUT 2

1 OUT 5

2 JC 5

3 OUT 4

4 JC 0

5 OUT 9

6 JC 2

7 JC 5

8 OUT 4

9 JC 0

TABLE 2.9 NSC Assembly Language Program



6. Modify the schematic of the NSC (Figure 2.7) to add support for a new in-
struction called INC that increments the current contents of the output reg-
ister. Assign this new instruction the binary opcode “11”; the data field is
unused. Hint: Try replacing the output register with an up counter.

7. Modify the schematic of the NSC (Figure 2.7) so that it can access a mem-
ory with 32 instructions (Hint: Begin by extending the memory to 32 loca-
tions, then trace all of the changes required in the various
components—you may be surprised at the number of modifications
caused by this seemingly minor extension).

8. Assume the NSC has a new instruction called INC (opcode = “11”) that in-
crements the contents of the OUT register; the INC instruction data field
is unused. Also assume that the LOC input is tied to the complement of the
DOUT[3] bit (LOC = ~DOUT3). For the program in Table 2.10, how
many clock cycles does it take to reach location 3?

9. What changes have to be made to the NSC (Figure 2.7) to accommodate a
maximum of eight instructions instead of four?

10. Assume the number definition is changed to 1-X1X2X3-Y1Y2Y3-Z1Z2Z3Z4,
with the local number as Y1Y2Y3-Z1Z2Z3Z4. Draw the new ASM chart re-
quired to implement this number sequence. How many states are required?
If binary encoding is used for the states, how many DFFs are required?
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Memory Location Machine Code

0 OUT 0

1 INC

2 JC 1

3 JMP 3

TABLE 2.10 NSC Assembly Language Program
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Introduction to the
PIC18Fxx2

3

T
his chapter introduces the PIC18Fxx2 instruction set architecture by explor-
ing the PIC18’s banked data memory structure and data transfer instruc-
tions. The use of MPLAB® for assembly and simulation of PIC18 programs

is also discussed.

3.1 LEARNING OBJECTIVES

After reading this chapter, you will be able to:

Describe the basic data and program memory architecture of the PIC18.
Convert PIC18 instruction mnemonics to machine code, and vice versa.

In This Chapter

Introduction to Microprocessors and Microcontrollers
The PIC18Fxx2 Microcontroller
Data Memory Organization and Data Transfer
Basic Arithmetic and Control Instructions
A PIC18 Assembly Language Program
The Clock and Instruction Execution



Describe the operation of the movwf, movlb, addwf, subwf, incf, decf, and goto
instructions.
Write PIC18 instructions to perform data transfer between memory locations
in the same bank, or in different banks.
Translate (manually compile) a simple C program into PIC18 assembly lan-
guage.
Compute the number of clock cycles and the amount of time required to exe-
cute simple instruction sequences for the PIC18.

3.2 INTRODUCTION TO MICROPROCESSORS AND
MICROCONTROLLERS

In the previous chapter, a computer was defined as a digital system composed of
control, input/output, and memory components whose operation is controlled by
instructions stored in memory. The first computers were designed in the early
1940s and filled entire rooms, with total processing capability that was less than a
modern digital watch. Early computers used vacuum tubes (grossly, a current am-
plifier within a glass tube) to implement logic, and a logic gate could take up an en-
tire board. Transistors were invented by Bell Labs in 1947 [1], allowing an order of
magnitude size reduction in logic implementation. However, transistors were pack-
aged individually, and computers still required a large number of circuit boards to
implement. In 1958, Jack Kilby, a researcher at Texas Instruments™, created the first
integrated circuit [1], which is a silicon substrate upon which circuits with multiple
transistors can be fabricated (the slang term chip is now commonly applied to in-
tegrated circuits). As integrated circuit fabrication techniques evolved, the size of
integrated circuit transistors steadily decreased, allowing increasing numbers of
transistors to be placed on the same silicon substrate. In 1971, Intel® developed a
set of four integrated circuits that implemented a 4-bit computer [1] (the data
paths were 4 bits, much like the number sequencing computer of Chapter 2, “The
Stored Program”). One chip, the 4004, implemented the instruction decode and
execution (the central processing unit, or CPU), while the other chips implemented
the memory and input/output. The term microprocessor (μP) was applied to this
chipset, as it was a very small (micro) processing engine. The 4004 chip is generally
regarded as the world’s first microprocessor. Integrated circuit technology has con-
tinually improved since the 4004, producing two distinct paths of microprocessor
evolution. One evolution path has stressed high performance, using the increasing
number of transistors to build larger internal data paths (up to 64 bits) and regis-
ters, advanced numerical processing, and support for very large memory spaces.
These microprocessors are referred to as general purpose microprocessors, and expect
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programs and data to be stored in memory external to the microprocessor. Gen-
eral-purpose microprocessors require external support chips, known as a chipset,
that allow them to interface with memory and input/output devices. Examples of
general-purpose microprocessors are the Intel Itanium®, Advanced Micro Devices
Athlon®, and IBM PowerPC® families. The other microprocessor evolution path
has stressed higher integration and lower cost, with the goal of producing a single
chip solution to problems requiring a stored program machine approach. The term
microcontroller (μC) is generally applied to these devices. A microcontroller typi-
cally expects its program and data to be stored on-chip, with any logic required for
external input/output devices also integrated into the same device. Thus, a micro-
controller implements all of the components of a computer—control, memory,
and input/output—in one chip. Microcontroller solutions are usually very cost
sensitive, so applying exactly the right amount of processing power to a problem to
minimize cost is important. As such, a large number of microcontroller families are
available from 8-bit to 32-bit, with widely varying amounts of on-chip memory and
different laundry lists of input/output interface options (whose number and vari-
ety grows each year). Microcontroller versions of general-purpose microprocessors
have also been introduced over the years, so the distinction between a microcon-
troller and a microprocessor has become somewhat blurred, and in some cases, is
an arbitrary labeling. In this book, the term microcontroller is applied to the
PIC18Fxx2 device, but the term microprocessor is used any time a more general la-
beling is desired.

3.3 THE PIC18FXX2 MICROCONTROLLER

The PIC18Fxx2 microcontroller is the device used in this book to discuss micro-
processor programming, architecture, and interfacing topics. Microchip Technology®

makes the PIC18, an architecture variant within the PICmicro® microcontrollers
family. There are several versions of the PIC18Fxx2 (hence, the “xx2” in the name);
while they differ in the amount of on-chip memory and external I/O pins, the In-
struction Set Architecture (ISA) is the same for all of them. A good place to begin dis-
cussing the PIC18Fxx2 is with a simplified block diagram of the processor core, shown
in Figure 3.1 (a more complete architectural diagram is found in Appendix A).

The size of the internal data paths of the PIC18Fxx2 is 8 bits, so it is referred to
as an 8-bit microcontroller. This means that the natural size for computations is 8
bits; arithmetic operations such as additions and subtractions operate on 8-bit data
and can be specified with one instruction. Operations on data larger than 8 bits can
be performed but require multiple instructions to accomplish them. The PIC18 in-
struction set defines 75 instructions, of which the majority require 16 bits (2 bytes)
to encode. The term instruction word is used to refer to a 16-bit machine code. Four



instruction types require two instruction words (4 bytes) to encode. The instruc-
tion register in Figure 3.1 contains the instruction word that is currently being ex-
ecuted. The arithmetic/logic unit (ALU) in Figure 3.1 is the combinational logic that
performs operations such as addition, subtraction, shift, bitwise AND/OR/XOR,
and so forth. The left-hand ALU input is from a 2-to-1 mux that selects either the
Working (W) register or data that is encoded in the current instruction word
within the instruction register. The right-hand ALU input receives a value either
from the W register or from a location in data memory. The result of the ALU op-
eration is written either to the W register or a location in data memory.

Figure 3.1 shows that the PIC18Fxx2 has separate memories for program in-
structions and data. This type of arrangement is known as a Harvard architecture,
as early electromechanical calculators such as the Harvard Mark I [1] read instruc-
tions from punched tape, with memory used only for storing data. Most micro-
processors store programs and data in the same memory, which means that
instructions can access memory that contains instructions as easily as locations that
contain data. The majority of PIC18 instructions can only access data memory; a
few special instructions are provided for accessing instruction memory. Program
memory can be up to 2M bytes, or 1M instruction words (1 word = 2 bytes).
Program memory is nonvolatile, meaning the memory contents are retained when
power is removed. Some form of nonvolatile memory is required for any practical
computer system, as this provides the instructions that are executed when power is
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FIGURE 3.1 PIC18Fxx2 simplified architectural diagram.
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applied. The PIC18Fxx2 program memory is flash programmable (“F” for flash),
meaning that it can be electrically erased and programmed. Other types of non-
volatile memory are one-time-programmable (OTP), meaning they cannot be
erased once programmed, and mask-programmed read-only-memory (ROM),
which means the memory contents are determined at memory manufacture time
and cannot be changed. Read operations on flash memory are fast, in the tens of
nanoseconds, but write operations require much more time, a few milliseconds.
Data memory can be up to 4K bytes, and is volatile, meaning memory contents are
lost when power is removed. The term random access memory (RAM) is used for
this data memory because reads and writes to this memory are fast (tens of
nanoseconds), and write operations require the same amount of time as read oper-
ations. A small amount, 256 bytes, of nonvolatile data memory called EEPROM
(electrically erasable programmable ROM) is included, which is in a separate mem-
ory from RAM data memory. Read and write times to EEPROM are similar to that
of program memory. The sizes of program, data, and data EEPROM memories for
the PIC18Fxx2 variants are listed in Table 3.1. 

The 18F242/18F252 devices are available in 28-pin packages, while the
18F442/18F452 contain additional input/output ports and are available in 40- and
44-pin devices. Other members of the PIC18 family such as the PIC18F4550 have
larger program and data memories.

3.4 DATA MEMORY ORGANIZATION AND DATA TRANSFER

The 4K-byte data memory of the PIC18xx2 is organized into 16 banks of 256 loca-
tions per bank as shown in Figure 3.2. Bank 0 contains locations 0x000 to 0x0FF,
Bank 1 contains locations 0x100 to 0x1FF, and so forth.

Memory 18F242/18F442 18F252/18F452

Program (bytes) 16 K 32 K

Program (instructions) 8192 16384

Data 768 (three banks of 1536 (six banks of 
256 locations each) 256 locations each)

Data EEPROM 256 256

TABLE 3.1 18Fxx2 Memory Sizes
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A 12-bit address is required to specify a location in data memory. Most PIC in-
structions are encoded as one instruction word of 16 bits, of which only 8 bits spec-
ify a data memory location; the remaining 8 bits specify the instruction type. The 8
bits of the instruction word used for data addressing is the lower byte of the re-
quired 12-bit address, and specify the location within a bank. The remaining 4 bits
of the 12-bit address determine the register bank, and are read from the Bank Se-
lect Register (BSR) as shown in Figure 3.3. The BSR value is 0 after processor reset.
The BSR is an example of a special function register (SFR), of which there are many.
SFRs are used as control and data registers for the on-chip peripherals such as the
timers, asynchronous serial interface, analog-to-digital converter, and so forth.
SFRs are contained in locations 0xF80 to 0xFFF within Bank 15. A general-purpose
register (GPR) is any data memory location that is not a special function register.
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0x80
0xFF

Access RAM (GPR)
GPR

0x000
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0x080
0x0FF
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GPR

GPR
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0x7F
0x80
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0x7F
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Data Memory (File Registers) GPR: General Purpose Register
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Figure redrawn by author from PIC18Fxx2

 datasheet (DS39564B),  Microchip Technology Inc.

FIGURE 3.2 Data memory organization.1
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4 bits 8 bits
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12

Data Memory
(File Registers)

12-bit address

FIGURE 3.3 The Bank Select Register (BSR).

1 Figure 3.2 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.



The movf Instruction

One basic instruction class found within any microprocessor is the data transfer
class. Data transfer instructions copy data between registers and locations in data
memory, or write a value stored in the instruction word into data memory or reg-
isters. In most microprocessors, registers are a separate memory from data mem-
ory, and instructions contain addresses for both registers and memory. However,
special function registers on the PIC18 are simply data memory locations with ad-
dresses of 0xF80-0xFFF, making the terms register and data memory location inter-
changeable. Data memory locations are referred to as file registers in the Microchip
PIC18 documentation, and this term is also used in this book. 

The execution of data transfer between data memory locations is described as:

dst (src) “copy the contents of source location src to destination location dst”

The symbol is a transfer symbol, and dst (src) is called register transfer 
notation, which is used to symbolically describe instruction execution. This is a
common notation used to describe microprocessor instruction actions, and both
register transfer notation and word descriptions are used in this book for discussing
instruction execution.

Instructions that copy data between data memory locations are called move
instructions in the PIC18. This is somewhat unfortunate, as the word move implies
removing data from one location and placing it in another location, but move
instructions do not affect the contents of the source memory location. Figure 3.4
shows the instruction mnemonic and machine code format for a commonly used
data transfer instruction, movf, which copies the contents of a target data memory
location to either the W register or back onto itself. The latter version is indeed use-
ful, despite the fact that the target location contents are unchanged after execution,
and its usage is discussed in the next chapter. The machine code format for all
PIC18xx2 instructions can be found in Appendix A; many instruction types share
common formats that differ only by the instruction opcode. Instruction word for-
mats are discussed in detail if that particular format type is being covered for the
first time.

In the movf instruction word, the ffffffff bits specify the lower 8 bits of the source
location, which is the floc operand of the instruction. The d bit specifies one of two
destinations; “0” for the W register or “1” for floc. For improved code clarity, w or
f is typically used for the destination register instead of “0” or “1”. The a bit is called
the data RAM access bit. If the a bit is “1”, the 4 bits in the BSR are combined with
the 8 bits of floc to provide the full 12-bit data memory address. If the a bit is “0”,
the BSR is ignored, and the 8-bit floc value is an address in the access bank, a phan-
tom bank composed of the first 128 locations of Bank 0 (0x000 to 0x07F) and the
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last 128 locations of Bank 15(0xF80-0FFF), which are the special function registers.
The a bit’s purpose is to provide fast access to the SFRs without having to modify
the contents of the BSR. PIC18 programs access SFRs very frequently, so conve-
nient access to SFRs is important. If the a bit did not exist, programs would need to
frequently change the BSR value, increasing the number of instructions in PIC18
programs and slowing program execution. In the instruction operand, the symbols
ACCESS or BANKED can be used instead of “0” or “1” to improve code clarity.

In this book, the access bit value is not written in instruction mnemonics. In-
stead, the access bit value is assumed using the following rules:

If floc is in the range 0x00-0x7F or 0xF80-0xFFF (the special function registers),
then a=0 (ACCESS) is assumed.
If floc in the range 0x080-0xF7F, then a=1 (BANKED) is assumed.

These are the same assumptions used by the MPLAB assembler, a program
that converts PIC assembly language programs to machine code. Listing 3.1 shows
four movf instructions and the machine code produced using these assumptions. 

LISTING 3.1 Machine code for movf instructions using access bit assumptions.

machine code      mnemonic            comment

0x5070            movf  0x070,w       ;w (0x070), ACCESS (a=0)

0x5170            movf  0x170,w       ;w (0x70), BANKED (a=1)

0x5170            movf  0x270,w       ;w (0x70), BANKED (a=1)

0x5090            movf  0xF90,w       ;w (0xF90), ACCESS (a=0)
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movf floc, [,d[, a]
d ← floc)

BBBB BBBB BBBB BBBB
1111 1100 0000 0000
5432 1098 7654 3210

0101 00da ffff ffff

ffffffff : lower 8-bits of floc address;  
d : 0 = w, 1 = floc
a : 0 = ignore BSR (ACCESS),   1 = use BSR (BANKED)

movwf  floc [,a]
floc ← (w)

0110 111a ffff ffff

FIGURE 3.4 movf, movwf instructions, machine code format.
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The movlb Instruction

Note that in Listing 3.1 the instructions movf 0x170,w and movf 0x270,f have the
same machine code, despite the fact that the operands for the instruction mnemon-
ics are different. This is because only the lower bytes of values 0x170 and 0x270 are
used in the machine code, which have the same value of 0x70. For the movf 0x170,w

instruction to operate as intended, the BSR value must be 0x1, selecting bank 1.
Correspondingly, the BSR value must be 0x2 if the movf 0x270,f instruction is to
read location 0x270. The movlb instruction is used to modify the contents of the
BSR. Figure 3.5 shows the instruction mnemonic and machine code format for the
movlb instruction.

The 4-bit k value in the movlb instruction word is called a literal, which is a con-
stant whose value is transferred to the BSR when the instruction is executed. A 4-
bit literal allows the values 0 to 15 to be specified as BSR values. The instruction
sequence in Listing 3.2 sets the BSR to 2, and then copies the contents of location
0x270 to the W register.

LISTING 3.2 Using the BSR register.

machine code    mnemonic             comment

0x0102          movlb  2             ;BSR 2

0x5170          movf   0x270,w       ;w (0x270), BANKED

If the movlb instruction is not included, the current value of the BSR has to be
known to determine what file register location is modified.

movlb k
BSR[3:0] ← k

BBBB BBBB BBBB BBBB
1111 1100 0000 0000
5432 1098 7654 3210

0000 0001 0000 kkkk
k : 4-bit literal

FIGURE 3.5 movlb instruction machine code format.



Addressing Modes

The method by which the location of an instruction operand is specified is called
the addressing mode. The movf instruction uses the direct addressing mode, so
named because the address of the instruction operand is specified directly within
the instruction machine code. Direct addressing implies a memory access to the lo-
cation specified by the direct address, in order to obtain the operand for the in-
struction. The movlb instruction uses the immediate addressing mode, as the
operand value is encoded immediately within the instruction word. Immediate ad-
dressing requires no further memory accesses for the operand value after the in-
struction word has been fetched.

The movwf, movff Instructions

The movwf instruction copies the W register contents to a file register destination.
The instruction mnemonic and machine code is given in Figure 3.4. The code frag-
ment is Listing 3.3 copies the contents of location 0x1A0 to location 0x23F.

LISTING 3.3 Copy location 0x1A0 to location 0x23F.

machine code        mnemonic                comment

0x0101              movlb  1                ;BSR 1

0x51A0              movf   0x1A0,w          ;w (0x1A0)

0x0102              movlb  2                ;BSR 1

0x6F3F              movwf  0x23F            ;0x23F (w)

The same functionality is accomplished by the single instruction in Listing 3.4,
which uses the movff instruction.

LISTING 3.4 Using the movff instruction.

machine code       mnemonic                 comment

0xC1A0             movff  0x1A0,0x23f       ;0x23f (0x1A0)

0xF23F

The movff instruction requires two instruction words; the first word encodes
the 12-bit address of the source, and the second word the 12-bit address of the des-
tination. The BSR is not used by the movff instruction, as the complete addresses of
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both operands are specified in the instruction words. Figure 3.6 gives the machine
code format of the movff instruction.

Sample Question: Using the assumptions for the access bit, how do the following three
code segments differ in terms of the memory location that is accessed?

(a)    movlb 3

movf  0x345,w

(b)    movlb 3

movf  0x245,w

(c)    movlb 3

movf  0x045,w

Answer: In all three code segments, the BSR is set to 3. In code segment (a),
the address 0x345 is not in the access bank, so we assume BANKED (a = 1)
and location 0x345 is accessed as the BSR contains 0x3 and the instruction
word contains 0x45. In code segment (b), the address 0x245 is not in the ac-
cess bank, so we assume BANKED (a = 1) and location 0x345 is accessed, as
the BSR contains 0x3 and the instruction word contains 0x45. Location 0x245
is not accessed, as the “2” in the address contained within the instruction is
only a hint to the assembler (and to us!) as to the access bit setting. The BSR
register must have a value of 0x2 to access location 0x245. In code segment
(c), the address 0x045 is in the access bank, so we assume ACCESS (a = 0),
causing the BSR to be ignored and location 0x045 to be accessed.

3.5 BASIC ARITHMETIC AND CONTROL INSTRUCTIONS

Two other classes of microprocessor instructions are arithmetic and control. All
microprocessors have addition and subtraction instructions, and increment (+1)

movff  fsrc, fdst
fdst  ← (fsrc)

BBBB BBBB BBBB BBBB
1111 1100 0000 0000
5432 1098 7654 3210

1100 ffff ffff ffff (fsrc)
1111 ffff ffff ffff (fdst)

FIGURE 3.6 movff instruction machine code format.
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and decrement ( 1) instructions. Some microprocessors also have instructions for
multiplication and division; these can be implemented using addition, subtraction,
and shifts if dedicated multiplication and division instructions are not present. The
general form of all two-operand arithmetic operations for the PIC18 is:

destination floc or w (w) op (floc) (op is the operation performed)

Like the movf instruction, the destination is either W or floc. Observe that one
of the source operands must be overwritten, but the user can choose which source
operand to overwrite. Figure 3.7 gives the machine code format for the addwf (add
W to file register) and subwf (subtract W from file register) instructions. 

Increment (incf) and decrement (decf) instructions are one-operand arith-
metic instructions, whose general form is:

destination floc or w op (floc) (op is operation performed)

In this case, the user has a choice of overwriting the source operand if the des-
tination is floc, or preserving it if the destination is W. The machine code and
operand format of the incf/decf instructions are the same as the movf instruction,
and only differ by the opcode value. To accomplish the operation +2, or +3, or +k,
where k is an 8-bit value, examine the code sequence in Listing 3.5, which adds the
value 5 to file register 0x040.

addwf floc, [,d[, a]
d ← (floc) + (w)

BBBB BBBB BBBB BBBB
1111 1100 0000 0000
5432 1098 7654 3210

0010 01da ffff ffff

ffffffff : lower 8-bits of floc address;
d : 0 = w, 1 = floc
a : 0 = ignore BSR (ACCESS),   1 = use BSR (BANKED)

subwf floc [,d[,a]
d ← (floc) - (w)

0101 11da ffff ffff

FIGURE 3.7 addwf,subwf instructions, machine code format.



LISTING 3.5 Using the movlw instruction.

machine code mnemonic comment

0x0E05 movlw  5 ;w 5

0x2640 addwf  0x040,f ;0x040 (w) + (0x040)

The instruction movlw k (move literal to W) is used to load a value of 5 into W;
the addwf instruction then adds W to the file register 0x040. The machine code for-
mat of movlw differs from the previously discussed movlb instruction in the literal
size, 8 bits versus 4 bits, and opcode value. The instruction addlw k (add literal to
W) adds an 8-bit literal to the W register, which is useful in a succession of opera-
tions where the W register is being used to accumulate a value. The instruction
sublw k (subtract W from literal) subtracts the W register from a literal value (use-
ful for an unsigned comparison of a variable to a literal, discussed in Chapter 4,
“Unsigned 8-Bit Arithmetic, Logical, Conditional Operations”). To subtract a lit-
eral from W, specify a negative value for k in the addlw k instruction; the binary rep-
resentation of negative numbers is discussed in Chapter 5, “Extended Precision
and Signed Operations.”

Control instructions affect the program counter contents, with the simplest
form being a goto, an unconditional transfer of control. Figure 3.8 shows the ma-
chine code format for the goto instruction.

The program memory location that control is transferred to is known as the
target address, which is a 20-bit value as it specifies one of 1M possible instruction
word locations. This 20-bit value specifies a word address, not a byte address, and
is loaded into the upper 20 bits of the Program Counter, which contains a 21-bit
byte address. The goto instruction requires two instruction words, with the second
instruction word containing bits 19 through 8 of the target address, and the first in-
struction word containing bits 7 through 0 of the target address. Instruction words
are located in program memory on even byte boundaries, beginning at location
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goto k
PC[20:1] ← k

BBBB BBBB   BBBB  BBBB
1111 1100   0000  0000
5432 1098   7654  3210

1110 1111 k7kkk kkkk0
1111 k19kkk kkkk  kkkk

FIGURE 3.8 goto instruction machine code format.
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0x0000. It is illegal to place an instruction word starting at an odd byte location,
such as 0x0003. To determine the value of the 20-bit literal encoded in a goto in-
struction, take the program memory byte address and shift to the right by one po-
sition (divide by 2) to get the program memory word address.

Sample Question: What is the machine code for the instruction goto 0x0010A?

Answer: The target address specifies a byte location in program memory, so
the word address is 0x0010A shifted to the right by 1 (divided by 2), or:

0x0010A >> 1 = 0x00085 = 0b 0000 0000 0000 1000 0101 (target word address)

The first instruction word format is: 0b 1110 1111 k7kkk kkkk0, where the k
bits are the lower 8 bits of the target word address. Hence, the first instruction
word of goto 0x0010A is:

0b 1110 1111 1000 0101 = 0xEF85 (first instruction word)

The second instruction word format is: 0b 1111 k19kkk kkkk kkkk8, where the
k bits are the upper 12 bits of the target word address. Hence, the second in-
struction word is:

0b 1111 0000 0000 0000 = 0xF000 (second instruction word)

3.6 A PIC18 ASSEMBLY LANGUAGE PROGRAM

At this point, we have enough instructions to write a simple PIC18 assembly lan-
guage program. In this book, programs are first written in C, and then translated
(compiled) to assembly language. This is done to improve the clarity of the pro-
gram’s functionality, as assembly language can be obtuse, especially for readers new
to assembly language programming. If you are new to the C language, do not
worry, as C language statements are introduced gradually and fully explained. A
previous exposure to any modern programming language is all that is necessary to
understand the C program examples used in this book. Example C programs only
use those C language statements necessary to demonstrate PIC18Fxx2 capabilities,
and do not attempt to cover the entire C language. A C program that uses the data
transfer and arithmetic operations discussed so far is shown in Listing 3.6. Line
numbers have been added for clarity, but would not be part of the actual C program
source code.



Introduction to the PIC18Fxx2 65

LISTING 3.6 A “simple” C program.

(1)       #define avalue 100

(2)       unsigned char i,j,k;

(3)       main(void) {

(4)         i = avalue;  // avalue = 100 

(5)         i = i + 1;   // i++, i = 101 

(6)         j = i;       // j is 101

(7)         j = j - 1;   // j--, j is 100 

(8)         k = j + i;   // k = 201

(9)        }

The C language is case sensitive, with all reserved key words, such as main or
unsigned, being lowercase. Comments begin with two // characters, and can start
anywhere on a line. Simple C statements are terminated by a semicolon (“;”). Com-
pound statements, which are composed of multiple simple C statements, are brack-
eted by {}. Line 1 contains a define statement, which is a method for assigning a
symbolic name to a value. Use of defines for constant values usually improves code
clarity. Line 2 defines three variables of type unsigned char, which means each vari-
able is 8 bits, or 1 byte, and represents unsigned data. The unsigned modifier tag
combined with the 8-bit data size gives a value range of 0 to 255 for each variable.
Chapter 5 discusses the difference between unsigned and signed data types, and the
effect this has on arithmetic operations. The type name char chosen by the original
inventors of the C language is somewhat unfortunate, as this implies these variables
contain character (ASCII) data, when in fact, they are simply 8-bit values. Line 3
defines the entry point for the C program, which must be named main. The (void)
after the main label indicates that main receives no parameters, which will always be
the case for C programs in this book. This can also be written as simply main(). The
body of the main() code is a compound C statement, enclosed by {}. Line 4 assigns
the constant value 100 to the variable i. Line 5 increments i by 1; i contains the
value 101 after execution of this statement. The C statement i++, where ++ is the C
increment operator, could be used instead of i=i+1. Line 6 copies the value of i to
j. Line 7 decrements j, so j contains the value 100 after execution of this statement.
The statement j-- could be used instead of j=j–1.

The first step in compiling the program in Listing 3.6 to PIC18 assembly lan-
guage is to choose locations for the variables i, j, and k. This can be any general-
purpose register (a file register location not previously assigned to a special function
register). For simplicity, we will use location 0x000 for i, 0x001 for j, and 0x002 for
k. Figure 3.9 shows the program of Listing 3.6 translated to PIC18 assembly language. 



The compilation is straightforward when only one line is considered at a time.
Optimizing C compilers (and expert assembly language programmers) consider
multiple C language statements at a time during compilation in an effort to reduce
the total number of instructions, and it may be difficult to correlate the final as-
sembly code with the original C language statements. This book does not expect
you to become an expert assembly language programmer; this only occurs after a
considerable amount of time is spent crafting assembly language programs. In-
stead, this book strives for clarity and understanding, and will always perform C-to-
PIC18 assembly language translation in the most straightforward manner possible.
Of the C language statements in Figure 3.9, the statement k = j + i is the most dif-
ficult, and requires three PIC18 instructions to implement. In the resulting three
instruction sequence, observe that the destination of addwf 0x001,w is W so that the
value of 0x001 (j) is left undisturbed. The movwf 0x002 instruction copies the result
of the addition into the k variable location (0x002). This three-instruction sequence
could be replaced by the instructions in Listing 3.7.

LISTING 3.7 Alternate implementation of k = i + j.

movf   0x001,w    ;w (j)

addwf  0x000,w    ;w (i) + (w)

movwf  0x002      ;k (w)

This works because addition is a commutative operation, and i + j or j + i

gives the same result. However, the C language statement k = j – i could only be
implemented as shown in Listing 3.8 because j – i is not equal to i – j.
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i = 100;

i = i + 1;

j = i;

j = j - 1;

k = j + i;

movlw 0x64       ; w = 0x64 = 100
movwf 0x000      ; i = w

incf  0x000,f    ; i = i + 1

decf  0x001,f    ; j = j - 1

movf  0x000,w    ; w = i
movwf 0x001      ; j = w

movf  0x000,w    ; w = i
addwf 0x001,w    ; w = j + w
movwf 0x002      ; k = w

i is location 0x000
j is location 0x001
k is location 0x002

FIGURE 3.9 The “simple” C program compiled to PIC18 assembly language.



LISTING 3.8 Implementation of k = j – i.

movf   0x000,w      ;w (i)

subwf  0x001,w      ;w (j) -(w)

movwf  0x002        ;k (w)

The PIC18 assembly language of Figure 3.9 is somewhat obtuse because mem-
ory location values (0x000, 0x001, 0x002) are used instead of the variable names i,
j, k. Also, there is still the problem of translating the PIC instruction mnemonics to
machine code, a process that is interesting the first time, boring the second time,
and painful thereafter. A program called an assembler automatically converts in-
struction mnemonics to machine code. Microchip Technology provides an Inte-
grated Design Environment (IDE) called MPLAB®, which contains an assembler
and simulator for most Microchip microprocessors. Listing 3.9 gives the assembly
language of Figure 3.9 written in a more readable form, and in a format compati-
ble with the MPLAB assembler, MPASM™ (the line numbers are not part of the
source file).

LISTING 3.9 MPLAB-compatible assembly source code for “simple” C example.

(1)    INCLUDE “p18f242.inc”

(2)        CBLOCK 0x000

(3)         i,j,k

(4)        ENDC

(5)     avalue equ  D’100’

(6)        org    0

(7)        goto main      ; reserve 0x0-0x1FF for interrupts

(8)        org 0x0200

(9)     main

(10)       ; i=avalue;

(11)       movlw  avalue  ; w 100

(12)       movwf  i       ; i (w);

(13)       ; i = i + 1;

(14)       incf   i,f     ; i (i) + 1
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(15)       ; j = i

(16)       movf   i,w     ; w (i)

(17)       movwf  j       ; j (w)

(18)       ; j = j - 1;

(19)       decf   j,f     ; j (j) - 1

(20)       ; k = j + i

(21)       movf   i,w     ; w (i)

(22)       addwf  j,w     ; w (w) + (j)

(23)       movwf  k       ; k (w)

(24)    here

(25)       goto   here    ; loop forever

(26)       end

The INCLUDE statement in line 1 is called an assembler directive, which is an in-
struction to the assembler and not a PIC18 assembly language statement. Lines 1,
2–4, 5, 6, 8, and 26 are all assembler directives. The INCLUDE statement causes the
source file p18f242.inc to be included during assembly. When assembling a PIC18
program, the assembler must be told the target device, in this case the 18F242, and
an appropriate definitions file, p18f242.inc. The target device is set from within the
MPLAB program. The p18f242.inc file defines symbolic names for all SFRs and
named bits within SFRs. For example, instead of using 0xFE0, the symbol BSR can
be used in a PIC18 instruction to refer to the bank select register.

The constant block (CBLOCK) assembler directive assigns constant values to a
group of labels. Each label is assigned in order, counting up, so i is assigned the
value 0x000, j the value 0x001, and k the value 0x002. This allows the i, j, k vari-
ables to be referenced by name within PIC18 instructions instead of using absolute
memory locations. This improves code clarity and makes it easy to change data
memory assignments. To change the location of the i, j, k variables, simply change
the CBLOCK statement; no editing of the instruction operands within the source code
is required. A CBLOCK is terminated with an ENDC assembler directive.

The equ assembler directive assigns the value 100 to the label avalue. The de-
fault radix of numbers in MPLAB is base 16, so D'100' is the method for specifying
100 in decimal. The org (origin) assembler directive specifies the starting location
in program memory for code that follows this statement. At power up, the program
counter is reset to 0x0. Thus, the first PIC18 instruction is fetched from location
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0x0, which is called the reset vector. Typically, a goto statement that jumps to the
program entry point is placed at the reset vector instead of locating the main() code
itself at location 0x0. This is because there are interrupt vectors (discussed in Chap-
ter 10) at locations 0x0008 and 0x0018. As with the reset vector, goto statements are
typically placed at the interrupt vectors, so the main() code is then placed some-
where below these locations. Line 8 uses the org 0x0200 directive, with line 9 con-
taining the label main, which is the target of the goto main instruction at location
0x0. Thus, goto main is assembled as goto 0x0200. Placing the main() code at loca-
tion 0x200 is somewhat arbitrary, as any location from 0x001C onward would do
equally well (locations 0x0018, 0x001A will be used by the goto instruction placed
at interrupt vector 0x0018). Labels such as main must start in column 1 and are case
sensitive. Instruction mnemonics and assembler directives must begin after column
1 and are case insensitive. Note that the instructions in lines 10–23 are the same in-
structions from Figure 3.9, except that label names for i, j, and k are used. Lines 24
and 25 contain the infinite loop goto here, where the target address here is the lo-
cation of the goto statement. A microcontroller program never really ends; it must
always be doing something, as there is no place for the program to go when it fin-
ishes! When a program exits on a personal computer, control is returned to the op-
erating system, which is in an infinite loop waiting for input from the keyboard,
mouse, or some other input device. A microcontroller program is also typically an
infinite loop that is waiting on input from some external device such as a car en-
gine, sensor array, and so forth. In this simple example, the program execution is
trapped when it falls into the goto here infinite loop. Another method to halt pro-
gram execution is to stop the processor clock; this is discussed in Chapter 8.

Listing 3.10 gives the machine code listing produced by the MPLAB assembler
for the assembly language program of Listing 3.9. The address column gives the
program memory location in hex, and the machine code column the assembled
code for the mnemonic to the right. The ACCESS label indicates the access bit value
is a “0”, causing the BSR to be ignored. The assembler sets the access bit to a “0” be-
cause the memory locations for i, j, k are in the access bank range, and the access
bit value is not explicitly specified for any instruction operands.

LISTING 3.10 Machine code listing for simple C program.

address    machine code      mnemonic

0000       EF00              GOTO 0x0x200

0002       F001              NOP

0200       0E64              MOVLW 0x64

0202       6E00              MOVWF 0, ACCESS

0204       2A00              INCF 0, F, ACCESS
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0206       5000              MOVF 0, W, ACCESS

0208       6E01              MOVWF 0x1, ACCESS

020A       0601              DECF 0x1, F, ACCESS

020C       5000              MOVF 0, W, ACCESS

020E       2401              ADDWF 0x1, W, ACCESS

0210       6E02              MOVWF 0x2, ACCESS

0212       EF09              GOTO 0x212

0214       F001              NOP

0216       FFFF              NOP

Assume the CBLOCK of Listing 3.9 is changed as shown in Listing 3.11.

LISTING 3.11 Alternate CBLOCK location.

(2)      CBLOCK 0x100

(3)       i,j,k 

(4)      ENDC

This assigns the labels i, j, k to values 0x100, 0x101, 0x102, respectively. For
these locations to actually be used, the BSR must be set to the value 0x1 by modify-
ing the main() code as seen in Listing 3.12.

LISTING 3.12 Setting the BSR.

(8)       org 0x0200

(9)    main

(10) movlb 0x1   ; set BSR = 1

(11)    ; i=avalue;

(12)      movlw avalue

etc..other program lines unchanged.

The movlb 0x1 instruction is inserted at the beginning of the main() code. The
access bits of any instructions that refer to locations 0x0100-0x102 must also be set
to “1”, but this is done automatically by the MPLAB assembler because these 
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locations are not in the access bank. The machine code listing for this modified code
as produced by MPLAB is given in Listing 3.13.

LISTING 3.13 Machine code listing for simple C program, variables in bank 1.

address    machine code     mnemonic

0000       EF00             GOTO 0x0x200

0002       F001

0200       0101             MOVLB 0x1

0202       0E64             MOVLW 0x64

0204       6F00             MOVWF 0, BANKED

0206       2B00             INCF 0, F, BANKED

0208       5100             MOVF 0, W, BANKED

020A       6F01             MOVWF 0x1, BANKED

020C       0701             DECF 0x1, F, BANKED

020E       5100             MOVF 0, W, BANKED

0210       2501             ADDWF 0x1, W, BANKED

0212       6F02             MOVWF 0x2, BANKED

0214       EF0A             GOTO 0x214

0216       F001             NOP

0218       FFFF             NOP

Notice that the access bits of instructions that reference locations 0x0100 –
0x0102 now have the word BANKED by their operands, indicating the access bit is set
to “1”, which is the desired result.

Using WREG in an Instruction

In the MPLAB assembler, the W register is specified as WREG when used as a file reg-
ister in an instruction. For example, the instruction incf WREG,w increments the
contents of the W register by 1, while the instruction addwf WREG,w adds the con-
tents of the W register to itself. 

The nop Instruction

The second word of the goto instructions in Listings 3.10 and 3.13 displays as a nop
instruction, which stands for “NO oPeration”. A nop simply causes the instruction
word to be fetched, and the PC to be incremented to the next instruction word.
One machine code encoding of a nop sets bits 16 to 12 (upper 4 bits) as “1”, and the
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remaining bits as don’t cares. All second instruction words are encoded such that
bits 16 to 12 are “1”. The instruction in location 218 of Listing 3.13 with machine
code 0xFFFF is also a nop. The value 0xFFFF is the blank or erased state of program
memory. An alternate coding for a nop is 0x0000 (all bits 0). The machine codes
0xFFFF and 0x0000 were chosen for the nop instruction because any erased location
contains 0xFFFF, and also because any memory location in the 2M address range
that is not physically implemented returns a 0x0000 when read (the PIC18F242
physical memory is 0x000000-0x003FFF, or 16 KBytes). In this way, if a program
error causes a jump to the portion of memory that is erased, continuous nop in-
structions (0xFFFF) are fetched until the program counter exceeds physical mem-
ory. Then, 0x0000 values (nop instructions) are read until the PC wraps back to the
reset location of 0x0, simulating a device reset. An internal register of the PIC can
be checked by the startup code to determine if a physical reset actually occurred; if
not, an error indicator could be displayed indicating that an anomalous reset con-
dition occurred.

Sample Question: Write a PIC18 assembly language fragment that implements the C
statement “k = i + j + 20;” where k, i, j are all char variables.

Answer: One solution is:

movf   i,w     ; w = i

addwf  j,w     ; w = w + j;

addlw  20      ; w = w + 20

movwf  k       ; k = w

Observe that a single C statement may require several PIC18 assembly lan-
guage statements, as several operations can be written in one C statement. Trans-
lating the C statement to PIC18 statements requires that you decompose the C
statement into steps that the PIC18 can accomplish. 

Sample Question: A neophyte assembly language programmer translated the C
statement: k = j + 1 to the two statements incf j,f ; movff j, k. What is wrong
with this?

Answer: The statement incf j,f modifies the variable j. The C statement k =

j + 1 only modifies k; the variable j is not modified. A correct solution is incf
j,w ; movwf k. The statement incf j,w places j+1 in the W register and leaves
the memory location j unmodified.
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3.7 THE CLOCK AND INSTRUCTION EXECUTION

The clock signal that controls instruction execution on the PIC18Fxx2 can have a
maximum frequency of 40 MHz for the devices available during the writing of this
book. Methods for generating this clock signal and setting its frequency are dis-
cussed in Chapter 8. The symbol FOSC refers to the clock signal’s frequency, and
TOSC refers to its period. A finite state machine within the PIC18Fxx2 controls the
fetching, decoding, and execution of instructions. The Program Counter (PC) reg-
ister contains the address of the instruction that is fetched from program memory.
The PC is 21 bits, and thus can access 2 Mbytes or 1M instruction words. Most in-
structions require one instruction cycle to execute, with one instruction cycle equal
to four clock cycles (four Tosc periods). These four clock cycles are used in differ-
ent ways depending on the instruction. For the addwf instruction, clock cycle 1 de-
codes the instruction, clock cycle 2 reads the register file, clock cycle 3 performs the
addition, and clock cycle 4 writes the result to the destination. A 40 MHz clock has
a 25 ns period, so one instruction cycle takes four clocks, a time of 4 * 25 ns =
100 ns. This means that a PIC18Fxx2 with a 40 MHz clock can execute instruc-
tions at a rate of approximately 10 million instructions per second (MIPs). The ac-
tual instruction execution rate will be somewhat lower than this, as any instruction
that causes the program counter to change value, such as a goto instruction, re-
quires two instruction cycles (eight clocks) to execute. The instruction table con-
tained in Appendix A, “PIC18Fxx2 Architecture, Instruction Set, Register
Summary,” gives the number of instruction cycles required for each instruction.
Another instruction that takes two instruction cycles is movff, as it requires two in-
struction words and thus one instruction cycle is needed for each instruction word.

Sample Question: How many clock cycles are required to execute through location
0x0210 of Listing 3.10? Assuming FOSC = 40 MHz, how long do these instructions take
to execute?

Answer: There are 10 instructions total. Only the goto instruction requires two
instruction cycles, so total clock cycles = 9 * 4 + 1 * 8 = 36 + 8 = 44.
Total execution time = 1/(40 MHz) * 44 = 1/(40e6) * 44 = 1.1e-6 s = 1.1 μs

SUMMARY

In this chapter, we introduced the basic program and memory architecture of the
PIC18xx2 microcontroller, and discussed a few PIC18 instructions from the data
transfer, arithmetic, and control classes. A simple C program that operates on 8-bit
unsigned data was converted to PIC18 assembly language. This prepares you for the
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next chapter, in which additional arithmetic, shift, and logical operations on 8-bit
data are covered, as well as conditional execution and loop structures. 

REVIEW PROBLEMS

For the following problems, if the access bit is not specified on an instruction
operand, use the assumptions specified in this chapter.

1. Convert the instruction addwf 0x030,f to machine code.
2. Convert the instruction addwf 0x230,f to machine code.
3. Convert the instruction goto 0x043E to machine code.
4. Convert the machine code 0x010A to a PIC18 instruction.
5. Convert the machine code 0xC2A5 0xF100 to a PIC18 instruction.
6. Convert the instruction word 0x0E09 to a PIC18 instruction.
7. What memory location is modified by the instruction addwf

0x230,f,BANKED (warning: this is a trick question)?
8. Write PIC18 assembly that will accomplish k = i–j where i is location

0x100, j is location 0x240, and k is location 0x030. The variables i, j, k are
all byte variables.

9. Given a 16 MHz clock, how long do the three instructions starting from lo-
cation 0x0210 (addwf, movwf, goto) of Listing 3.13 take to execute? Give the
answer in microseconds. 

10. Write a PIC18 instruction sequence that accomplishes k = i + j + 5,
where i, j, and k are in the same locations as Listing 3.9.

11. Write a PIC18 instruction sequence that copies file register locations 0x100
through 0x103 to locations 0x200 through 0x203.

12. How many NOP instructions are executed in one second assuming a 25
MHz FOSC?

13. What is the value of W after the instruction subwf WREG,w is executed?

For the remaining problems, give the affected registers after execution of each
instruction, and assume the following file register contents at the beginning of
EACH problem:

W = 0x3D, BSR = 0x0  (see Table 3.2 for other memory contents)

74 Microprocessors



14. Instruction:   subwf  0x5C,f
15. Instruction:   movlw  0x5C
16. Instruction:   addwf  0x5C,f
17. Instruction:   addwf  0x5A,f
18. Instruction:   incf   0x5B,w
19. Write an instruction sequence that adds the contents of location 0x250 to

location 0x251, and stores the result in 0x05A.
20. Instruction:   decf  0x5C,f
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Location Contents

0x05A 0x3B

0x05B 0xA2

0x05C 0xF4

0x05D 0x7D

0x250 0xF9

0x251 0xB2

TABLE 3.2 Memory Contents
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Unsigned 8-Bit Arithmetic,
Logical, Conditional
Operations

4

T
his chapter examines additional features of the PIC18Fxx2 instruction set ar-
chitecture in the context of unsigned 8-bit arithmetic, bitwise logical, and
shift operations. These operations are used to implement equality, inequal-

ity, and comparison tests for conditional code execution and loop control.

4.1 LEARNING OBJECTIVES

After reading this chapter, you will be able to:

Describe the operation of the bit manipulation instructions of the PIC18 
instruction set.

In This Chapter

Bitwise Logical Operations, Bit Operations
The STATUS Register
Unsigned Conditional Tests
Looping
Shifts and Rotates



Translate C language statements that perform 8-bit addition, subtraction, bit-
wise logical, and shift operations into PIC18 instruction sequences.
Translate C language statements that perform 8-bit zero, nonzero, equality, 
inequality, and unsigned comparison operations into PIC18 instruction 
sequences.
Translate C conditional statements and loop structures such as do-while,
while-do, and for{} into PIC18 instruction sequences.

4.2 BITWISE LOGICAL OPERATIONS, BIT OPERATIONS

Table 4.1 lists the C language arithmetic and logical operators discussed in this
book. As seen in the previous chapter, the arithmetic/logic unit (ALU) implements
these operations in the processor data path. The previous chapter covered some of
the arithmetic capabilities of the ALU such as addition, subtraction, increment, and
decrement. The bitwise logical operators & (AND), | (OR), ^ (XOR), and ~ (com-
plement) comprise the logical operations performed by the ALU.

Figure 4.1 shows the instruction format and machine code formats for the bit-
wise logical operations implemented by the PIC18. The andwf (AND), iorwf (OR),
and xorwf (XOR) have the standard PIC18 two-operand instruction format where
the source operands are W and floc, and the destination is either W or floc. The lit-
eral forms of these instructions are andlw (AND), iorlw (OR), and xorlw (XOR)
where the source operands are W and an 8-bit literal encoded in the instruction
word, and the destination is W. The comf (complement) operation complements
each bit of its source operand, floc, with the result written to either W or floc.
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Operator Description

+, - (+) addition, (-) subtraction

++, -- (++) increment, (--) decrement

*, / (*) multiplication, (/) division

>>, << right shift (>>), left shift (<<)

&, |, ^ bitwise AND (&), OR (|), XOR (^)

~ bitwise complement

TABLE 4.1 C Language Arithmetic and Logical Operators



The term bitwise is applied to the & (AND), | (OR), ^ (XOR), and ~ (comple-
ment) operators because the logical operation is performed on a bit-by-bit basis on
the operand(s). Bitwise logical operations are useful for clearing (AND), setting
(OR), or complementing (XOR) groups of bits. Figure 4.2 shows a bitwise AND
operation implementation of the C statement i = i & 0x0F where i is a char (byte)
variable. The constant 0x0F is called a bit-mask (or simply mask). Any bit in the
mask that is a “0” clears the result bit, while a “1” in the mask leaves the result bit
unchanged. Thus, the operation i = i & 0x0F leaves the lower 4 bits of i un-
changed, and clears the upper 4 bits. An easy way to remember this is the rule that
“0 ANDed with anything is 0; 1 ANDed with anything is anything”.

The OR bitwise logical operator is used to set groups of bits, as “1 ORed with
anything is 1; 0 ORed with anything is anything.” Thus, the operation j = j | 0x0F

sets the lower 4 bits of j to “1”s, but leaves the upper 4 bits unchanged as shown in
Figure 4.2. The XOR bitwise operation is used to complement groups of bits, as “1
XORed with anything is NOT(anything); 0 XORed with anything is anything.”
Thus, the operation k = k ^ 0x0F complements the lower 4 bits of k, but leaves the
upper 4 bits unchanged. 

Why are bitwise operations useful? One simple example is ASCII uppercase to
lowercase conversion (or vice versa). The ASCII code for the uppercase character
“A” is 0x41; the ASCII code for the lowercase character “a” is 0x61. Any ASCII up-
percase character code OR’ed with the value 0x20 converts that ASCII code to the
lowercase equivalent by setting bit 5 to a “1”. An ASCII lowercase character code
AND’ed with the value 0xDF converts that ASCII code to the uppercase equivalent
by clearing bit 5 to a “0”. Using the bitwise logical operations to set or clear a 
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andwf floc, [,d[, a]        d ← (floc) & (w)

BBBB BBBB BBBB BBBB
1111 1100 0000 0000
5432 1098 7654 3210

0001 01da ffff ffff

ffffffff : lower 8-bits of floc address; kkkkkkkk : 8-bit literal
d : 0 = w, 1 = floc
a : 0 = ignore BSR (ACCESS),   1 = use BSR (BANKED)

0001 00da ffff ffffiorwf floc, [,d[, a]        d ← (floc) | (w)

xorwf floc, [,d[, a]        d ← (floc) ^ (w) 0001 10da ffff ffff

andlw k                          w ← (w) & k 0000 1011 kkkk kkkk

iorlw k                           w ← (w) | k 0000 1001 kkkk kkkk

xorlw k                          w ← (w) ^ k 0000 1010 kkkk kkkk

comf floc, [,d[, a]         d ←  ~(floc) 0001 11da ffff ffff

FIGURE 4.1 Instruction and machine code formats for bitwise 
logical operations.



particular bit takes two instructions, as seen in  Listing 4.1, which clears bit 5 of data
memory location 0x004.

LISTING 4.1 Clearing one bit using ANDWF.

machine code mnemonic comment
0x0EDF movlw   0xDF ;w has mask value of 0xDF

0x1604 andwf   0x004,f ;0x004 (0x004)&0xDF, clears 

bit 5

Clearing, setting, or complementing a single bit in a memory location is a com-
monly performed operation. To improve the efficiency of these operations, the in-
structions bsf (bit set f), bcf (bit clear f), and btg (bit toggle f) are included in the
instruction set. The instruction formats and machine codes of these instructions are
shown in Figure 4.3. 

The f bits in the machine code specify the lower 8 bits of the operand source
data memory location as with other PIC instructions. However, there is no d bit in
the instruction word, so the source operand is always affected by these instructions.
The target bit that is cleared, set, or complemented is specified by the second
operand, a value between 7 and 0, and is encoded by the 3-bit field bbb within the
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i = i & 0x0F; movf 0x020,w
andlw 0x0F
movwf 0x20

i    = 0x2C  = 0010 1100
               &&&& &&&&
mask = 0x0F  = 0000 1111
               ---------
      result = 0000 1100 = 0x0C 

In C In Assembly Execution

Location 0x020 is the variable i, which contains the value 0x2C

i = i | 0x0F; movf 0x020,w
iorlw 0x0F
movwf 0x20

i    = 0x2C  = 0010 1100
               |||| ||||
mask = 0x0F  = 0000 1111
               ---------
      result = 0010 1111 = 0x2F 

i = i ^ 0x0F; movf 0x020,w
xorlw 0x0F
movwf 0x20

i    = 0x2C  = 0010 1100
               ^^^^ ^^^^
mask = 0x0F  = 0000 1111
               ---------
      result = 0010 0011 = 0x23 

i = ~i; comf 0x020,f i    = 0x2C  = 0010 1100
               ~~~~ ~~~~
      result = 1101 0011 = 0xD3 

bitwise-AND

bitwise-OR

bitwise-XOR

bitwise
complement

FIGURE 4.2 Bitwise AND, OR, XOR, complement operation examples.



instruction word. The bit numbering is as expected, where bit 0 is the least signifi-
cant (rightmost) bit, while bit 7 is the most significant (leftmost) bit. The code frag-
ment in Listing 4.2 clears bit 5 of data memory location 0x004. 

LISTING 4.2 Clearing 1 bit using BCF.

machine code     mnemonic         comment

0x9A04           bcf  0x004,5     ;clear bit 5 of location 0x004

Figure 4.4 gives examples of bcf, bsf, and btg execution. When affecting only 1
bit in a target memory location is required, the bcf/bsf/btg instructions are more
efficient than the bitwise logical instructions (andwf/iorwf/xorwf).

The bsf, bcf, and btg instructions are called bit-oriented file register opera-
tions. Two other instructions fall into this classification; the btfsc (bit test f, skip if
clear) and btfss (bit test f, skip if set) instructions. These two instructions are used
to implement conditional code execution, as the instruction following the
btfsc/btfss instruction is skipped if the indicated bit test is true. Recall the program
that was written for the number sequencer computer in Chapter 2, “The Stored
Program Machine.” This program contained a conditional jump instruction (jc)
that jumped to a target address if the LOC input was a “1”. The jc instruction was
used in a program that output the digit sequence “8,5,6,1” to the DOUT databus if
LOC was “1”; else the digit sequence “3,2,4,8,5,6,1” was output.  Listing 4.3 shows
a PIC18 program that implements the number sequencing program of Chapter 2 in
PIC18 assembly language.
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bcf floc, b [,a] bit clear  (floc)[b]

BBBB BBBB BBBB BBBB
1111 1100 0000 0000
5432 1098 7654 3210

1001 bbba ffff ffff

ffffffff : lower 8-bits of floc address; bbb: bit #
a : 0 = ignore BSR (ACCESS),   1 = use BSR (BANKED)

bsf floc, b [,a] bit set      (floc)[b] 1000 bbba ffff ffff

btg floc, b [,a] bit toggle (floc)[b] 0111 bbba ffff ffff

btfsc floc, b [,a] bit test f, skip if clear 1011 bbba ffff ffff

btfss floc, b [,a] bit test f, skip if set 1010 bbba ffff ffff

FIGURE 4.3 Instruction formats and machine codes for bit-oriented 
operations.



LISTING 4.3 PIC18 assembly program for number sequencing task.

(1)       CBLOCK 0x0

(2)        loc,out        ;byte variables

(3)       ENDC

(4)       org      0

(5)       goto     main

(6)       org      0x0200

(7)    main

(8)       ;movlw   0      ;uncomment for loc=0

(9)       movlw    1      ;uncomment for loc=1

(10)      movwf    loc    ;initialize loc

(11)   Ltop

(12)      btfsc    loc,0  ; skip next if loc(0) is '0'

(13)      goto     loc_lsb_is_1

(14)      ;LSb of loc = 0 if reach here

(15)      movlw    3      ; W 3

(16)      movwf    out    ; out (W)

(17)      movlw    2      ; W 2

(18)      movwf    out    ; out (W)

(19)      movlw    4      ; W 4

(20)      movwf    out    ; out (W)

(21)   loc_lsb_is_1

(22)      movlw    8      ; W 8

(23)      movwf    out    ; out (W)

(24)      movlw    5      ; W 5

(25)      movwf    out    ; out (W)

(26)      movlw    6      ; W 6

(27)      movwf    out    ; out (W)

(28)      movlw    1      ; W 1

(29)      movwf    out    ; out (w)

(30)      goto     Ltop   ; loop forever

(31)      end
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k = k & 0x7F; bcf 0x062,7 k     = 0x8A  = 1000 1010
bcf k,7
new k = 0x0A  = 0000 1010 

In C In Assembly Execution

Location 0x060 is the variable i, which contains the value 0x2C

j = j | 0x04; bsf 0x061,2 j     = 0xB2  = 1011 0010
bsf j,2
new j = 0xB6  = 1011 0110 

i = i ^ 0x20;

Location 0x061 is the variable j, which contains the value 0xB2

Location 0x062 is the variable k, which contains the value 0x8A

(bit clear)

(bit set)

btg 0x060,5

(bit toggle)

i     = 0x2C  = 0010 1100
btg i,5
new i = 0x0C  = 0000 1100 

FIGURE 4.4 Code examples for bsf, bcf, btg instructions.

ON THE CD
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The single bit input LOC and output bus DOUT of the number sequencing
computer are emulated in this program by the memory locations loc (0x000) and
out (0x001) using the CBLOCK of lines 1 to 3. While this may seem like a poor re-
placement for external input/output pins, you will discover later that external pins
on the PIC are actually accessed via data memory locations. Lines 8 through 10 ini-
tialize loc to either “0” (line 8 uncommented) or “1” (line 9 uncommented). The
btsfc loc,0 instruction in line 12 tests the least significant bit (i.e., bit 0) of loc; if
this bit is “0”, the goto loc_lsb_is_1 instruction at line 13 is skipped and the next
instruction executed is at line 15. The out memory location is then written in suc-
cession with the values “3,2,4,8,5,6,1”. The goto Ltop instruction at line 30 causes a
jump back to the btfsc instruction at line 12. If loc is given an initial value of “1”,
the btsfc loc,0 instruction of line 12 will not skip the goto loc_lsb_is_1 instruc-
tion at line 13. This causes the program to jump to label loc_lsb_is_1 (the label for
the instruction of line 22), skipping the instructions between lines 14 to 20. Thus,
for loc = 1, the number sequence “8,5,6,1” is written in succession into the out
memory location. Observe that any odd number written to the loc memory loca-
tion works equally well to select the sequence “8,5,6,1”, as the LSb of an odd num-
ber is “1”. Conversely, any even number written to the loc memory location selects
the sequence “3,2,4,8,5,6,1”.

Sample Question: Write a C statement that clears the LSb of a char variable j.
Implement this in PIC18 assembly language.

Answer: The C statement j = j & 0xFE clears the LSb of j, as 0xFE =
0b11111110. Thus, bits 7 through 1 are unaffected, while bit 0 is cleared. This
is implemented in PIC18 assembly as shown in Listing 4.4.

LISTING 4.4 Sample question solution.

movf   j,w    ; w = j

andlw  0xFE   ; w = w & 0xFE

movwf  j      ; j = w

This can also be implemented using the single instruction bcf j,0 .

4.3 THE STATUS REGISTER 

The STATUS register is a very important special function register that we have
been ignoring up to this point. The STATUS, W, and BSR registers are the three
most important 8-bit special function registers in the PIC18, as they are involved in
the execution of most instructions. The lower 5 bits of the STATUS register contain



84 Microprocessors

1-bit flags, which are set or cleared as a side effect of instruction execution. Figure 4.5
gives the names and positions of each of the flag bits within the STATUS register.

The zero (Z) flag is set if the result of an instruction is zero, else it is cleared. The
Carry (C) flag is set equal to the carry out of the most significant bit. The Decimal
Carry (DC), Overflow (OV), and Negative (N) flags are discussed in Chapter 5 (OV,
N) and Chapter 7 (DC). Different instructions affect different flags. The instruction
summary for each PIC18 instruction given in Appendix A, “PIC18Fxx2 Architec-
ture, Instruction Set, Register Summary,” lists the flags affected by each instruction.
For example, the addwf instruction affects all five flags, the movf affects only the Z
and N flags, and the movff instruction affects no flags. If a flag is unaffected by an
instruction, it retains its current value. Figure 4.6 shows how the Z, C flags are af-
fected by different addition and subtraction operations. 

u     u      u     N    OV   Z     DC    C  

N  - negative
OV  - overflow
Z  - zero
DC - decimal carry
C - carry 
(u) - unimplemented

7     6      5     4       3      2      1      0
STATUS Register

FIGURE 4.5 The STATUS register.

Addition

  0xF0
+ 0x20
  0x10 C=1
       Z=0

  0x00
+ 0x00
  0x00 C=0
       Z=1

  0x01
+ 0xFF
  0x00 C=1
       Z=1

  0x80
+ 0x7F
  0xFF C=0
       Z=0

  0xF0
- 0x20
  0xD0 C=1
       Z=0

Subtraction

  0x00
- 0x00
  0x00 C=1
       Z=1

  0x01
- 0xFF
  0x02 C=0
       Z=0

FIGURE 4.6 C, Z flags for add/subtract operations.



An addition operation sets the C flag for a carry out of the MSb, while a sub-
traction operation clears the C flag if a borrow occurs out of the MSb. Note that the
flag combination of Z = 1 and C = 0 cannot occur after a subtraction, as zero is
produced only if the numbers are equal, which cannot produce a borrow out of the
MSb. The reason behind the Carry flag condition after a subtraction is explained in
Figure 4.7. The subtraction operation A – B is actually performed in hardware as
A + (~B) + 1, where the value ~B + 1 is called the two’s complement of B. Two’s
complement representation and its uses are explored in the next chapter when dis-
cussing signed number encoding. Note that the Carry flag produced by the addition
operation A + (~B) + 1 in Figure 4.7 matches the behavior of Carry = ~Bor-
row; in other words, C = 0 if a borrow occurs, else C = 1.

Sample Question: What are the C, Z flag settings after the instruction subwf WREG,w is
executed? After movff i,j? Use the instruction set table in Appendix A to determine
the flags that are affected by an instruction execution.

Answer: The instruction subwf WREG,w affects all flags; the result is 0 since the
operation is W = W W. This produces no borrow, so the flag settings
after execution are Z = 1, C = 1. The movff instruction affects no flags, so
the C, Z flag settings after movff execution are left in the same state as before
the instruction is executed.

4.4 UNSIGNED CONDITIONAL TESTS

Our first use of the Zero and Carry flags is to implement conditional code execu-
tion. This requires an overview of conditional tests in C, which are used principally
in if{} statements and loop structures.

Conditional Tests in C

Table 4.2 lists the conditional test operators for the C programming language. A
conditional operator returns “1” if the test is true and “0” if the test is false. 
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A - B

  0xF0
- 0x20
  0xD0 C=1
       Z=0

  0xF0
+ 0xDF
+ 0x01
  0xD0 C=1
       Z=0

  0x20 = 0010 0000
~(0x20)= 1101 1111
       = 0xDF

A + ~B + 1

FIGURE 4.7 Subtraction of A – B performed as A + (~B) + 1.



Listing 4.5 shows examples of the conditional operators; after execution, a_lt_b
is “1” (true), a_eq_b is “0” (false), a_gt_b is “0” (false), and a_ne_b is “1” (true). 

LISTING 4.5 Examples of C equality and inequality tests.

unsigned char a,b,a_lt_b, a_eq_b, a_gt_b, a_ne_b;

a = 5; b = 10;

a_lt_b = (a < b);     // result is 1

a_eq_b = (a == b);    // result is 0

a_gt_b = (a > b);     // result is 0

a_ne_b = (a != b);    // result is 1

The logical AND (&&), OR (||), and negation (!) operators differ from the bit-
wise logical operators of AND (&), OR (|), and complement (~) in the fact that the
logical operators treat their operand(s) as either zero or nonzero, and always re-
turns a value of “0” or “1”. Care must be taken to remember this important differ-
ence; else your C code may behave in an unexpected manner. Listing 4.6 compares
results produced by logical versus bitwise operators. Observe that the logical oper-
ator && in line 3 gives the opposite result of the bitwise & operator. In line 2, a more
verbose way to write the statement (a && b) is ((a != 0) && (b != 0)), which re-
turns a “1” only if both a and b are nonzero. The second form clearly illustrates how
the operands a, b are treated by the logical && operator. The statement (!b) in line
7 may be somewhat confusing at first, as it returns a “1” if b is zero. An alternate
way to write (!b) is (b == 0). Thus, a statement such as (a && !b) is equivalent to
((a != 0) && (b == 0)), which returns a “1” only if a is nonzero, and b is zero.

LISTING 4.6 Examples of C logical operators.

(1)  unsigned char a,b,a_land_b, a_band_b;

unsigned char a_lor_b, a_bor_b, a_lneg_b, a_bcom_b;

(2)  a = 0xF0; b = 0x0F;

(3)  a_land_b = (a && b);    //logical and, result is 1
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Operator Description

= =, != equal, not equal

>, >= greater than, greater than or equal

<, <= less than, less than or equal

&&, || logical AND, logical OR

! logical negation

TABLE 4.2 Conditional Tests in C
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(4)  a_band_b = (a & b);     //bitwise and, result is 0

(5)  a_lor_b = (a || b);     //logical or, result is 1

(6)  a_bor_b = (a | b);      //bitwise or, result is 0xFF

(7)  a_lneg_b = (!b);        //logical negation, result is 0

(8)  a_bcom_b = (~b);        //bitwise negation, result is 0xF0

Zero, Nonzero Conditional Tests

The use of the conditional operators in Listings 4.5 and 4.6 is atypical, as they are
most often used in conditional tests for if-else statements or loop structures. The
C if-else statement structure is shown in Figure 4.8. Observe that the if_body is
executed if the conditional test is true (returns 1), while the else_body is executed
if the conditional test is false (returns 0). Use of an else_body in an if{} statement
is optional.

Figure 4.9 shows a nonzero test used as the conditional for an if{} statement.
The test if(i) is equivalent to if(i != 0); there is no advantage to either form. The
nonzero test is accomplished by the movf i,f instruction, which copies the value of
i back onto itself. While this leaves i unchanged, it does affect the Z, N flags. The
flag of interest in this case is the Z flag, which is “0” if i is nonzero. The btfsc STA-

TUS,Z (bit test, skip if clear) skips the following instruction if Z = 0, causing the
if_body to be executed. If Z = 1, the goto end_if instruction following the btfsc
instruction is executed, causing the if_body to be skipped.

An alternate method for accomplishing the same nonzero test is shown in Fig-
ure 4.10, where the btfsc/goto combination is replaced by the single instruction bz
(branch if zero; e.g., branch if Z=1). The bz instruction branches (jumps) around
the if_body if Z = 1, which is true if i is zero. The bz instruction is one of several
branch instructions that perform a conditional jump based on the setting of a STA-
TUS flag. The branch instructions are:

bnz: (branch if not zero, Z = 0)

bz: (branch if zero, Z = 1)

if (condition_test) {
 if_body

} else {
else_body

}

Executed when condition_test is non-zero (true)

Executed when condition_test is zero (false)

FIGURE 4.8 The if-else statement in C.



bnc: (branch if not carry, C = 0)

bc: (branch if carry, C = 1)

bnn: (branch if not negative, N = 0)

bn: (branch if negative, N = 1)

bnov: (branch if no overflow, V = 0)

bov: (branch if overflow, V = 1)

bra: (branch always, this is an unconditional branch)

Using branch instructions typically improves code clarity, and generally results
in fewer instruction words. The examples in this book use branch instructions
wherever possible. The machine code format of branches is discussed in the next
chapter, after signed number representation is covered.

A zero test is written as either if (!i) or as if (i == 0) and is implemented in
the same manner as Figure 4.10, except a bnz instruction replaces the bz instruction.
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unsigned char i, j;

if (i) {
 // do this if i is non-zero
 j = i + j;
}
// ...rest of code...

  movf  i,f        ; i = i
  btfsc STATUS,Z   ; skip if Z=0
  goto  end_if     ; Z=1, i is 0
  movf  i,w        ; w = i 
  addwf j,f        ; j = j + i
end_if
  ..rest of code..

In C In Assembly 

FIGURE 4.9 Nonzero test using movf/btfsc/goto.

unsigned char i, j;

if (i) {
 // do this if i is non-zero
 j = i + j;
}
// ...rest of code...

  movf  i,f   ; i = i
  bz end_if   ; skip if Z=1, i is 0
  movf  i,w   ; w = i
  addwf j,f   ; j =  j + i
end_if
  ..rest of code..

In C In Assembly 

FIGURE 4.10 Nonzero test using movf/bz.



Equality, Inequality Conditional Tests

Figure 4.11 shows the implementation in PIC18 assembly code of an if{} statement
that has the  equality test i == j as its condition. The equality test is performed by
the subtraction i - j, followed by a bnz that branches to the end of the if{} state-
ment if Z = 0, indicating that i is not equal to j. The use of the subtraction oper-
ation to affect status flags for conditional test purposes is a common theme that is
useful for all types of comparison operations. It does not matter if i - j or j - i is
performed, as both affect the Z flag in the same way. An inequality test i != j is per-
formed in a similar manner, with a bz replacing the bnz instruction.

Sample Question: Implement the C statement if (i && j){ k++; } in PIC18
assembly language.

Answer: The conditional test i && j is the same as i != 0 && j != 0, the incf
k,f statement in Listing 4.7 is only executed if both i and j are nonzero.

LISTING 4.7 Sample question solution.

movf    i,f          ; test i

bz      end_if       ; skip if i is zero

movf    j,f          ; test j

bz      end_if       ; skip if j is zero

incf    k, f         ; do k++

end_if

.....rest of code.....

The switch Statement

A common structure in C code is a chained if-then-else structure that compares a
variable against several constant values to implement a choice selection. In fact, it
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unsigned char i, j;

if (i == j) {
  // do this if i equal to j
   j = i + j; 
}
// ...rest of code...

  movf  j,w   ; w = j
  subwf i,w   ; w =  i - j
  bnz end_if  ; skip if Z=0, i != j
  movf  i,w   ; w = i 
  addwf j,f   ; j =  j + i
end_if
  ..rest of code..

In C In Assembly 

FIGURE 4.11 Equality test using subwf/bnz.



is so common that C has a shorthand method called a switch statement to imple-
ment this structure as shown in Figure 4.12. 

Each case block of the switch statement in Figure 4.12b corresponds to one of
the if(){} blocks in Figure 4.12a. The literal values 1, 2, 3 used for comparison in
the switch statement do not have to be sequential; they can be any values. The
break statement that ends each case block is very important; if a break statement is
not included, the next case code is executed regardless of the value of the switch
variable. The reason for this behavior is clear in Figure 4.13, which shows the as-
sembly language implementation of the switch statement of Figure 4.12b.

The break statement translates to a bra statement that jumps to the end of the
switch block; if the break statement is not included, execution falls through to the
next case block.

Greater-than (>), Greater-than-or-equal (>=) Conditional Tests

Figure 4.14 illustrates how the test i > j is performed. If i > j is true, then the sub-
traction j - i produces a borrow as a larger number is subtracted from a smaller
number. A borrow clears the Carry flag (C = 0), so the bc (branch if carry) skips
the if_body if C = 1, indicating the condition i > j is false.

A common mistake for a i > j comparison is to perform the subtraction i - j

instead of j - i, and to branch around the if_body on the condition C = 0, caused
by a borrow because j > i. However, this means the if_body is executed for the case
of C = 1 (no borrow). The case C = 1 is true for two conditions: i > j and i ==

j, and is thus the comparison i >= j. If the subtraction i - j is performed for the
comparison i > j, the branch code must be structured such that the if_body is only
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unsigned char i, j, k;

switch (i) {
 case 1: k++;
         break;

 case 2: j--;
         break;

 case 3: j = j + k;
         break;

 default: k = k - j;
 }

(a) Chained if-else structure

unsigned char i, j, k;

if (i == 1) {
   k++;
}
 else if (i == 2) {
   j--;
}
 else if (i == 3) {
  j = j + k;
}
 else {
  k = k - j;
}

(b) switch structure

break is required to keep
from executing the next
case block.

FIGURE 4.12 switch statement structure.



executed for the case C = 1 (no borrow, i > j) and Z = 0 (i != j). Figure 4.15 il-
lustrates this; obviously, requiring two flag tests increases code complexity, so the
subtraction i - j should be avoided for the i > j comparison.

Figure 4.16 shows a i >= j conditional test used within an if-else statement.
The subtraction i - j is performed, and a branch to the else_body is taken if C =
0 (a borrow), which is true if j > i. Observe that a bra end_if (branch always) is
used as the last statement in the if_body to jump to the end of the if-else state-
ment, skipping around the else_body. As you may have deduced, if the subtraction
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unsigned char i, j;

if (i > j) {
 // done if i greater than j
   j = i + j;
}
// ...rest of code...

  movf  i,w   ; w = i
  subwf j,w   ; w =  j - i
  bc end_if   ; skip if C=1, i <= j
  movf  i,w   ; w = i
  addwf j,f   ; j =  j + i
end_if
  ..rest of code..

In C In Assembly 

FIGURE 4.14 Unsigned greater-than (>) test using subwf/bc.

unsigned char i, j, k;
switch (i) {

   case 1: k++;
         break;

  case 2: j--;
         break;

  case 3: j = j + k;
         break;

   default: k = k - j;

 }// end switch

In C In Assembly 
movlw 1            ; w = 1

  subwf i,w          ; i == 1?
  bnz   case_2
  incf  k            ; k++
  bra  end_switch    ; break statement
case_2
  movlw 2            ; w = 2
  subwf i,w          ; i == 2?
  bnz   case_3 
  decf  j            ; j--
  bra  end_switch    ; break statement
case_3
  movlw 3            ; w = 3
  subwf i,w          ; i == 3?
  bnz   default
  movf  k,w
  addwf j,f          ; j = j + k
  bra  end_switch    ; break statement
default
  movf  j,w
  subwf k,f          ; k = k - j
end_switch

..rest of code..

FIGURE 4.13 Assembly language implementation of a switch statement.
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j - i is used for the comparison i >= j, two flag tests are required; the code must
be structured such that the if_body is executed for the case Z = 1 (i == j) or 
C = 0 (a borrow, i > j).

Table 4.3 summarizes the preferred operations and flag tests for unsigned
comparison operations. Notice that the inequality i < j can be reversed as j > i,
and i <= j as j >= i.

Unsigned Comparisons using cpfseq, cpfsgt, cpfslt
The instructions cpfseq (compare f with W, skip if equal), cpfsgt (compare f with
W, skip if greater than), and cpfslt (compare f with W, skip if less than) directly
support 8-bit unsigned comparisons. The code in Listing 4.8 implements the i > j

comparison of Figure 4.14 using the cpfsgt instruction. Observe that this takes the
same number of instruction words as the subwf/bc code in Figure 4.14.

unsigned char i, j;

if (i >= j) {
 // done if i greater than j
 // done if i equal to j
   j = i + j;
} else {
  // done if i less than j
  j++;
}
// ...rest of code...

  movf  j,w      ; w = j
  subwf i,w      ; w =  i - j
  bnc else_body  ; skip if C=0, i < j
  movf  i,w      ; w = i
  addwf j,f      ; j =  j + i
  bra   end_if
else_body
  incf  j,f      ; j++
end_if
  ..rest of code..

In C In Assembly 

FIGURE 4.16 Unsigned greater-than-or-equal (>= ) test using subwf/bnc.

unsigned char i, j;

if (i > j) {
 // done if i greater than j
   j = i + j;
}
// ...rest of code...

  movf  j,w   ; w = j
  subwf i,w   ; w =  i - j
  bz  end_if  ; skip if Z=1, i == j
  bnc end_if  ; skip if C=0, i < j
  movf  i,w   ; w = i
  addwf j,f   ; j =  j + i
end_if
  ..rest of code..

In C In Assembly 

FIGURE 4.15 Unsigned greater-than (>) test variations.



LISTING 4.8 Unsigned i > j comparison using cpfsgt.

movf    j,w      ;w (j)

cpfsgt  i        ;i > j?

bra     end_if   ;if branch taken, i <= j

movf    i,w      ;w (i)

addwf   j,f      ;j = j + i

end_if

;;rest of code

The advantage of these instructions is that they perform the subtraction and
needed flag test with one instruction, thereby improving code clarity and some-
times reducing the number of instruction words. The disadvantage is that these in-
structions cannot be used for comparisons of extended precision numbers (16-bit,
32-bit, etc.), and the cpfsgt/cpfslt instructions cannot be used for signed number
comparisons (the reasons for both of these problems becomes clear in the next
chapter). The subtraction/branch approach is a general method that is useful for
comparing numbers of arbitrary precision, and for both unsigned and signed com-
parisons. Extended precision comparisons and signed number comparisons are
covered in the next chapter, using the subtraction/branch approach. 

Unsigned Literal Comparisons

Figure 4.17 shows two different methods for comparing an unsigned char variable
to a literal, using the comparison i > 0x40 as the example. One version uses the cpf-
sgt instruction by loading 0x40 into W, then executing cpfsgt i, which does the
comparison i > 0x40. If the comparison is true, the bra end_if instruction is
skipped, causing the if_body to be executed. The second version uses the sublw in-
struction, which subtracts W from a literal. To perform the i > 0x40 comparison,
the operation 0x40 - i is performed by loading i into W, and then executing sublw
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Comparison Operation If True, Then

if (i) {} i = i    i.e., movf i,f Z = 0

if (!i) {} i = i    i.e., movf i,f Z = 1

if (i = = j){} i – j    OR    j – i; Z = 1

if (i != j) {} i – j    OR    j – i Z = 0

if (i > j) {} j – i C = 0 (borrow)

if (i >= j) {} i – j C = 1 (no borrow)

TABLE 4.3 Comparison Summary



0x40. If the Carry flag is set, then no borrow occurred, indicating 0x40 >= i, and the
bc end_if instruction causes the if_body to be skipped.

Sample Question: Implement the C statement if (i >= 0x20 && i =< 0x41) {j++} in PIC18
assembly language.

Answer: In Listing 4.9, the comparison i =< 0x41 is reversed as 0x41 >= i and
is tested using the subtraction 0x41 - i.

LISTING 4.9 Sample question solution.

movlw     0x20      ; w = 0x20

subwf     i,w       ; i – 0x20 for i >= 0x20 test

bnc       end_if    ; if C = 0, test is false, go to end

movf      i,w       ; w = i

sublw     0x41      ; 0x41 – i for 0x41 >= i test

bnc       end_if    ; if C = 0, test is false, go to end

incf      j,f       ; only do this if both tests are true

end_if

....rest of code.....

4.5 LOOPING

A while{} loop structure has the same form as an if{} structure, except the body is
executed as long as the condition test is true. Figure 4.18 shows a while{} code ex-
ample implemented in PIC18 assembly language. The condition test for the while{}
loop is implemented in the same manner as for an if{} statement; if the condition
test is false, a jump is made to the end of the loop body. In this case, the subwf/bc
instructions implement the condition test i > j, which is the same test used in Fig-
ure 4.14. The only difference between the assembly code in Figure 4.14 (if{} state-
ment) and that in Figure 4.18 is the bra loop_top instruction at the end of the loop
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unsigned char i,j;

if (i >  0x40) {
  i = i + j;
}
// ...rest of code...

  movlw  0x40 ; w = 0x40
  cpfsgt i    ; i > 0x40?
  bra end_if  ; no,skip
  movf  j,w   ; w = j
  addwf i,f   ; i =  i + j
end_if
  ..rest of code..

In C In Assembly
Using cpfsgt

  movf   i,w  ; w = i
  sublw  0x40 ; w = 0x040 - i
  bc  end_if  ; skip if 0x40>=i
  movf  j,w   ; w = j
  addwf i,f   ; i =  i + j
end_if
  ..rest of code..

In Assembly
Using sublw

FIGURE 4.17 Unsigned literal comparisons.



body that causes an unconditional jump back to the condition test at the beginning
of the loop.

A do-while{} loop structure and example usage is given in Figure 4.19. Observe
that the loop body is guaranteed to execute at least once. The condition test for i >

j is implemented by the subwf/bnc instruction combination. Even though the same
condition test i > j is used for both Figure 4.18 (while{}) and Figure 4.19 (do-
while{}), the branches are different because the bc instruction of Figure 4.18 causes
the loop body to be skipped, while the bnc instruction of Figure 4.19 causes the loop
body to be re-executed by jumping back to the top of the loop.

A commonly used loop structure in the C language is the for{} loop. Figure
4.20 shows that a for{} loop is simply a shorthand notation for a while{} loop. As
such, the use of a for{} loop structure is optional, as it can always be written as a
while{} loop.
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unsigned char i, j;

while (i > j) {
 // done while i greater than j
   j = i + j;
}
// ...rest of code...

loop_top
  movf  i,w      ; w = i
  subwf j,w      ; w =  j - i
  bc end_while   ; skip if C=1, i <= j
  movf  i,w      ; w = i
  addwf j,f      ; j =  j + i
  bra loop_top
end_while
  ..rest of code..

In C In Assembly 

FIGURE 4.18 Loop structure while{} example.

unsigned char i, j;

do {
 // done while i greater than j
   j = i + j;
} while (i > j);
// ...rest of code...

loop_top
  movf  i,w      ; w =  i
  addwf j,f      ; j =  j + i
  movf  i,w      ; w =  i
  subwf j,w      ; w =  j - i
  bnc loop_top   ; loop if C=0, i > j
..rest of code..

In C In Assembly 

FIGURE 4.19 Loop structure do-while{} example.



Many loops are counting loops, where a loop is executed a fixed number of
times by incrementing or decrementing a counter within the loop body to track the
number of times the loop body is executed. The variable that is incremented or
decremented is called the loop counter. The PIC18 has four instructions that are
useful for loop counters:

decfsz f, d, a: Decrement f, skip if zero 

dcfsnz f, d, a: Decrement f, skip if not zero

incfsz f, d, a: Increment f, skip if zero 

infsnz f, d, a: Increment f, skip if not zero

These instructions combine an increment/decrement operation with a
zero/nonzero test of the operand. Figure 4.21 shows a counting loop that executes
the statement k = k + j 10 times. The loop counter is i, and the decfsz i instruc-
tion is used to decrement the counter and exit the loop when i reaches zero. Note
that the decfsz/bra combination could be replaced by a decf/bnz combination that
is equally effective (and probably clearer in its intent!). While in some cases, the
decfsz, dcfsnz, incfsz, and infsnz instructions can reduce code size and/or de-
crease loop execution time, this book attempts to use instruction sequences that
maximize understanding, and assembly code optimization is not emphasized in ex-
amples. There are other uses for these instructions aside from loop counters, as seen
in the next chapter.
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unsigned char i, j, k;

i = 0;

while ( i != 10 ) {

   k = k + j;

   i++;
}

for structure

unsigned char i, j, k;

for( i = 0 ; i != 10 ; i++ ) {

   k = k + j ;

}

initialization

condition test

loop close

while structure

FIGURE 4.20 Loop structure for{}.



Sample Question: In the code in Figure 4.19, replace the i > j test with i != j and
modify the assembly code appropriately.

Answer: The bnc loop_top instruction is replaced with a bnz loop_top instruc-
tion, as Z = 0 from the subtraction indicates that i is not equal to j so the
loop execution should continue.

4.6 SHIFTS AND ROTATES

Shift operations are useful for either multiplication by two (shift left), division by
two (shift right), or moving bits to new positions within a register. Figure 4.22
shows the four rotate instructions available in the PIC18 instruction set for imple-
menting shifts (see Appendix A for the machine code format). The term rotate is
applied to these instructions because instruction execution rotates the affected bits
through a fixed set of positions; no bit is “lost” by the rotate operation.
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unsigned char i, j, k;

i = 10;
do {
   k =  k + j;
   i--;
} while (i != 0);
// ...rest of code...

  movlw  0x0A    ; w = 10
  movwf  i       ; i = 10
loop_top
  movf  j,w      ; w = j
  addwf k,f      ; k =  k + j
  decfsz i,f     ; i--, skip if zero
  bra loop_top   ; loop if i non-zero
..rest of code..

In C In Assembly 

FIGURE 4.21 Counting loop example.

b7     b6     b5    b4      b3     b2    b1      b0rrcf  floc[, d[, a] C

rlcf  floc[, d[, a] C

rrncf  floc[, d[, a]

rlncf  floc[, d[, a]

b7     b6     b5    b4      b3     b2    b1      b0

b7     b6     b5    b4      b3     b2    b1      b0

b7     b6     b5    b4      b3     b2    b1      b0

FIGURE 4.22 Rotate instructions.



The rlncf (rotate left f, no carry) instruction rotates the bits one position to the
left, with the most significant bit rotating to the least significant bit position. The
rrncf (rotate right f, no carry) instruction rotates the bits one position to the right,
with the least significant bit rotating to the most significant bit position. The rlcf
(rotate left f through carry) and rrcf (rotate right f through carry) includes the
Carry flag in this rotation. Each rotate instruction only shifts the bits by one posi-
tion; shifting bits n positions requires n rotate instructions. Figure 4.23 illustrates
how the right shift (>>) and left shift (<<) operations of C are implemented using
rrcf and rlcf instructions. Observe that before each rrcf or rlcf instruction, the
Carry flag is cleared to ensure that a “0” is shifted into the most significant bit for
right shift, or into the least significant bit for left shift. Observe that a multiple bit
shift such as i = i >> 2 is simply a 1-bit shift repeated two times. The first instruc-
tion for the operation k = j << 3 copies the value of j to k (movff j,k), and then
successive bcf/rlcf instruction pairs are used to shift k. A common mistake for new
assembly language programmers is to use the instruction rlcf j,f in implement-
ing k = j << 3. This changes the value of j, an incorrect side effect. More powerful
microprocessors have shift instructions that can shift multiple bit positions with
one instruction. 

Listing 4.10 shows how using shift/subtract instructions can perform a constant
multiplication. In this example, the computation i = i * 7 is performed by com-
puting i = (i*8) - i or i = (i<<3) – i. This raises the question of how the opera-
tion k = i * j is accomplished, which is a variable multiplication. Variable
multiplication and division are covered in Chapter 7, “Advanced Assembly Lan-
guage: Higher Math.”
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unsigned char i, j, k;

i = i >> 2;

k = j << 3;

// rest of code ... 

  bcf STATUS,C   ; clear carry
  rrcf  i,f      ; i = i >> 1;
  bcf STATUS,C
  rrcf  i,f      ; i = i >> 1;

  movff j, k     ; k = j;
  bcf STATUS,C
  rlcf  k, f     ; k = k << 1;
  bcf STATUS,C
  rlcf  k, f     ; k = k << 1;
  bcf STATUS,C
  rlcf  k, f     ; k = k << 1;
..rest of code..

In C In Assembly 

FIGURE 4.23 C Shift operations using rlcf/rrcf instructions.



LISTING 4.10 Multiplication I*7 by I = (I<<3) – I.

;i = i * 7 = i * (8 – 1) = i*8 – i = i << 3 – i

;Could also be done as:

;i = i * 7 = i * (4 + 2 + 1) = i*4+i*2+i = i<<2 + i<<1 + 1

;In PIC18 assembly (temp is a temporary location):

movff   i,temp     ;save original i

bcf     STATUS,C   ;clear CARRY

rlcf    i,f        ;i = i << 1

bcf     STATUS,C   ;clear CARRY

rlcf    i,f        ;i = i << 1

bcf     STATUS,C   ;clear CARRY

rlcf    i,f        ;i = i << 1

movf    temp,w     ;w = original i

subwf   i,f        ;i = i<<3 – i = i*7

Sample Question: What is wrong with the following implementation of the statement 
i = i << 2?

rlcf    i,f        ; i = i << 1

rlcf    i,f        ; i = i << 1

Answer: The error in this code is that the Carry flag state is unknown before
each rlcf instruction, so the bit shifted into the LSb of i can be either 0 or 1.
The Carry flag must be cleared before each rlcf instruction. It is not sufficient
to only clear the Carry flag before the first rlcf instruction, as the Carry be-
comes equal to the old MSb of i after the first rlcf instruction is executed. A
correct solution is shown in Listing  4.11.

LISTING 4.11 Sample question solution.

bcf     STATUS,C   ; clear carry flag so 0 is shifted into LSb

rlcf    i,f        ; i = i << 1

bcf     STATUS,C   ; clear carry flag so 0 is shifted into LSb

rlcf    i,f        ; i = i << 1

Sample Question: Implement the C statement k = (i << 1) + (j >> 1) in PIC18 assembly
language.

Answer: When faced with a multipart computation, it is a good practice to
break the computation into smaller steps that are easier to translate to assem-
bly language. The computation can be rewritten as shown in Listing  4.12. Ob-
serve that these computations only modify k, and that W is used as a
temporary register for holding the shifted value of j.
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LISTING  4.12 Breaking a computation into several steps.

// k = (i << 1) + (j >> 1)

k = i;            // copy i to k

k = k << 1        // first two statements implement k = i << 1

W = j >> 1;       // compute j shift

k = k + W;        // compute final value of k

These individual steps are now translated to PIC18 assembly language as shown
in Listing  4.13.

LISTING  4.13 Sample question solution.

movff   i,k         ; k = i

bcf     STATUS,C    ; clear carry before shift

rlcf    k,f         ; k = k << 1

bcf     STATUS,C    ; clear carry before shift

rrcf    j,w         ; W = j >> 1

addwf   k,f         ; k = k + W

SUMMARY

In this chapter, we explored 8-bit arithmetic, logical, shift, and unsigned compari-
son operations. The limitations of 8-bit unsigned integer data are quite apparent,
and will be removed in the next chapter when we discuss extended precision oper-
ations on signed integer data.

REVIEW PROBLEMS

For the following problems, assume that all variables i, j, k are unsigned char data
types, with i, j, k assigned to locations 0x000, 0x001, and 0x1A0, respectively. 

For problems 1 through 11, give the Z, C flags and affected registers after exe-
cution of each instruction and assume the following register contents at the begin-
ning of EACH problem:

W = 0xD7, BSR = 0x0, STATUS = 0x00 (see Table  4.4 for remaining initial
memory contents)
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1. Instruction:    subwf  j,f
2. Instruction:   addwf i,f
3. Instruction:   andwf i,w
4. Instruction:   iorwf  j,w
5. Instruction:   movff 0x04E, 0x04F
6. Instruction:   bsf  i,3
7. Instruction:    bcf  j,4
8. Instruction:    btg   j,7
9. Instruction:    rlcf  j, w

10. Instruction:    rrcf  i, w
11. Instruction:    xorlw 0x4E

Write PIC18 assembly language equivalents for the following C code fragments.
Be aware that k is in a different bank from j and i! To check your work, compile and
execute the C code using your favorite C compiler on your personal computer, and
check against the results obtained by your code using MPLAB.

12. Code fragment:
k = i + (j << 1);

13. Code fragment:
i =  (i >> 1)  | k;

14. Code fragment:
if (i > k){

k = i << 2; 

} else {

j =  k ^  j; 

}
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Location Contents

0x000 (i) 0xA0

0x001 (j) 0x7A

0x04E 0x00

0x04F 0xFF

0x1A0 (k) 0xFE

TABLE  4.4 Initial Memory Contents for Review Problems



15. Code fragment:
i = 0;

while (i != k) {

k++; i = i << 1;

}

16. Code fragment:
do {

i = i – j;

k--;

}

while (i && j);

17. Code fragment:
if (!i || j) {

k = i + 2;

} else {

k = k << 1;

}

18. The following C code counts the number of “1” bits in j and returns the an-
swer in k. Convert this to PIC18 assembly code. The operation j & 0x01

tests the value of the LSb of jwhile{} loop structure.
k = 0;  // init bit count

for (i = 0; i != 8; i++ ) { // do for 8 bits

if (j & 0x01) {

k++;    // LSb = 1, increment count

}

j = j >> 1;  // look at next bit

}

19. Write a PIC18 assembly language program that performs the multiplica-
tion k = i * 12. 

20. Convert the instruction btfsc 0x56,3,BANKED to machine code. 
21. What instruction is represented by the machine code 0x9A04?
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Extended Precision and
Signed Operations

5

T
his chapter applies the arithmetic, logical, and shift operations discussed in
the previous chapter to extended precision operands; that is, operands that
are larger than 8 bits. Furthermore, signed number representation and its ef-

fect on shift and comparison operations are covered. 

5.1 LEARNING OBJECTIVES

After reading this chapter, you will be able to:

Translate C language statements that perform extended-precision addition,
subtraction, bitwise logical, and shift operations into PIC18 instruction se-
quences.

In This Chapter

Extended Precision Integers
Extended Precision Operations
Signed Number Representation
Two’s Complement Overflow
Operations on Signed Data
Branch Instruction Encoding
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Compare and contrast signed magnitude, one’s complement, and two’s com-
plement representations of signed integers.
Translate C language statements that perform shift and comparison operations
using signed operands into PIC18 instruction sequences.
Translate PIC18 instructions, such as branches, that use PC-relative addressing
into machine code.

5.2 EXTENDED PRECISION INTEGERS

Previous chapters have used only the unsigned char data type in C programs, which
limits these variables to a 0 to 255 integer range. Obviously, there is a need to ac-
commodate larger number ranges both in C and in PIC18 assembly language pro-
grams. The short, int, and long data types in C are used for extended precision
integers.

Table 5.1 shows the sizes and ranges of the char, short, int, and long data types
for the HI-TECH C compiler used in this book (other C compilers for the PIC18
may use different data sizes). While a char data type is always a byte, the short, int,
and long sizes are compiler and target-processor dependent. Other common
choices for int and long are 32 bits, with a short being 16 bits. The long data size
for 64-bit processors such as the Intel Itanium and AMD Athlon64 is 64 bits, with
an int being 32 bits and short using 16 bits. The data types char, int, and long are
used in this book’s C examples.

For variables that are more than 1 byte in size, Figure 5.1 shows the two choices
for storing these bytes in memory. Little-endian byte ordering arranges the bytes
least significant to most significant, while big-endian stores the bytes most signifi-
cant to least significant. The acronyms MSB (most significant byte) and LSB (least
significant byte) are used for the rightmost and leftmost bytes, respectively, of a

C Data Type Size (PICC-18 Compiler) Unsigned Range

char 1 byte (8 bits) 0 to 255 (28 – 1)

short 2 bytes (16 bits) 0 to 65535 (216 – 1)

int 2 bytes (16 bits) 0 to 65535 (216 – 1)

long 4 bytes (32 bits) 0 to 4,294,967,295 (232 – 1)

TABLE 5.1 Unsigned Ranges for C Data Types of char, int, short, long



multibyte number. In this book, an uppercase “B” in MSB (LSB) refers to a byte,
while a lowercase “b” in MSb (LSb) refers to a bit. 

There is no inherent advantage to little-endian or big-endian byte order. The
architects of the microprocessor determine the choice during the design phase. The
Intel x86 processors use little-endian, while Motorola (68xxx family) and IBM
processors (PowerPC) use big-endian. For the PIC18, there are some multibyte
special function registers that have not been discussed yet that are arranged in 
little-endian order (LSB to MSB order). This means that any multibyte values
copied to these registers are arranged in little-endian order, and thus this byte or-
dering is used in this book’s assembly language examples concerning extended pre-
cision operations. Furthermore, the C compiler on the book’s CD-ROM uses
little-endian byte ordering for the same reason. 

5.3 EXTENDED PRECISION OPERATIONS

The PIC18 is referred to as an 8-bit microcontroller because its registers, data paths,
and ALU operands are 8-bits wide. As such, an operation such as value assign-
ment, addition, subtraction, bitwise logical, or shift using extended precision
(multibyte) operands is performed 1 byte at a time. This implies that an operation
on an int variable will take approximately twice the number of instructions as for
a char variable, while a long variable requires four times the number of instructions.
As such, int and long variables should only be used in PIC18 applications if the ex-
tended range provided by those data types is actually needed by the application.
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int i;        i = 0xA457;
long k;    k = 0x38B83DF2;

  Location (hex): 20 21 22 23 24 25
  Contents (hex): 57 A4 F2 3D B8 38

Little Endian

Assume i is location 0x20, k is location 0x22

 20 21 22 23 24 25
 A4 57 38 B8 3D F2

Big Endian

i k i k

FIGURE 5.1 Little-endian versus big-endian byte ordering.

ON THE CD
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Assignment of Extended Precision Variables

Figure 5.2 shows how a variable assignment is done for int and long operands. In
the CBLOCK, the statement i:2 reserves two consecutive locations for the label i,
while k:4 assigns four consecutive locations to k. The least significant byte of vari-
able i is at location 0x20, while the most significant byte of i is at location 0x21. The
instruction pair movlw 0x28; movwf i initializes the least significant byte of i; while
movlw 0xC4; movwf i+1 initializes the most significant byte. Note that the label i + 1

refers to location 0x21, the most significant byte of i. The C statement k =

0xAF459BC0 requires four pairs of movlw/movwf statements, one pair for each byte of
k. Location 0x22 (k) is the least significant byte of k, while 0x25 (k + 3) is the most
significant byte. The order in which the movlw/movwf instruction pairs are written is
not important, as long as the memory locations for i, k are initialized to the speci-
fied values in little-endian (least significant byte to most significant byte) order. 

Bitwise Logical

Figure 5.3 shows a bitwise AND operation applied to int operands. Note that the
andwf instruction is applied to each byte of the operands. It is immaterial as to the
order in which a bitwise logical operation is applied to the bytes of an extended pre-
cision operand, as each byte operation is independent of each other, the same as
was seen for the assignment operation.

int i;
long k;

i = 0xC428;
k = 0xAF459BC0;

  CBLOCK 0x020
   i:2, k:4
  ENDC

  movlw 0x28
  movwf i      ; i LSByte = 0x28
  movlw 0xC4   ;
  movwf i+1    ; i MSByte = 0xC4

  movlw 0xC0
  movwf k      ; k LSByte = 0xC0
  movlw 0x9B
  movwf k+1    ; k 2nd Byte = 0x9B
  movlw 0x45
  movwf k+2    ; k 3rd Byte = 0x45
  movlw 0xAF
  movwf k+3    ; k MSByte = 0xAF

In C In Assembly 

i is in locations 0x020, 0x021
k is in locations 0x022 to 0x025

initialize i

initialize k

FIGURE 5.2 Multibyte values in MPLAB.



Addition/Subtraction

Figure 5.4 shows addition and subtraction using two 16-bit operands. For the ad-
dition operation, the two least significant bytes are added first, followed by the ad-
dition of the two most significant bytes, which includes the carry produced by the
least significant byte addition. The subtraction is done similarly, except the sub-
traction of the most significant bytes includes the borrow produced by the least sig-
nificant byte subtraction. To accommodate the needs of extended precision
addition and subtraction, the PIC18 instruction set includes the instructions addwfc
(add W to f with carry) and subwfb (subtract W from f with borrow).

Figure 5.5 illustrates how the addwfc/subwfb instructions are used to implement
addition/subtraction on int variables. For addition, the least significant bytes are
added first using the addwf instruction, and then the addwfc instruction is used for
the most significant byte addition. For subtraction, the least significant bytes are
subtracted first using the subwf instruction, and then the subwfb instruction is used
for the most significant byte subtraction. For long operands, four addition/sub-
tractions are required, using addwf/subwf for the least significant byte and 
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int i, j;

i = i & j;

  CBLOCK 0x020
   i:2, j:2
  ENDC

  movf  j,w
  andwf i,f      ; i = i & j (LSByte)

  movf  j+1,w
  andwf i+1,f    ; i = i & j (MSByte)

In C In Assembly 

FIGURE 5.3 Bitwise AND on int operands.

0x 34 F0
0x 22 40

 1

0x 57 30

C flag

+

addition

0x 34 10
0x 22 40

 -1

0x 11 D0

~C flag = Borrow

-

subtraction

FIGURE 5.4 Addition/subtraction on 16-bit operands.
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addwfc/subwfb for the remaining 3 bytes. Unlike assignment and bitwise logical op-
erations, the order of the byte operations is critical, with addition/subtraction per-
formed least significant byte to most significant byte.

Figure 5.6 shows three different methods for implementing increment/decre-
ment on 16-bit operands (two for increment, one for decrement). Methods (a)
and (b) initialize W to zero, and then use an incf/decf on the least significant byte
followed by an addwfc/subwfb on the most significant byte. The W register is ini-
tialized to zero to ensure that only the Carry flag as produced by the first incf/decf
instruction affects the result of the addwfc/subwfb operation. Methods (a) and (b)
are general, and can be extended to any size operand. Method (c) is an optimization
for 16-bit increment that uses the infsnz (increment f, skip if not zero) instruction
on the first byte. Observe that the second byte only has to be incremented if a carry
is produced by the increment operation, which only occurs if the result of the first
increment is a zero. Method (c) takes one less instruction word (and hence, one less
instruction cycle) to implement than method (a), but cannot be used for operands
larger than two bytes. 

Zero, Nonzero Conditional Tests

A 16-bit nonzero test is shown in Figure 5.7. This is the same example used in
Chapter 4 with the exception that the data type has been changed from unsigned
char to unsigned int. A zero/nonzero test is performed on an extended precision
operand by bitwise-OR’ing of the bytes in the operand to each other. After the last

int i, j;
int p,q;

i = i  +  j;
p = p - q;

  CBLOCK 0x020
   i:2, j:2, p:2, q:2
  ENDC

  movf   j,w
  addwf  i,f      ; i = i + j (LSByte)

  movf   j+1,w
  addwfc i+1,f    ; i = i + j (MSByte)

  movf   q,w
  addwf  p,f      ; p = p - q (LSByte)

  movf   q+1,w
  subwfb p+1,f    ; p = p - q (MSByte)

In C In Assembly 

addwfc used for
MSBbyte addition

subwfb used for
MSBbyte subtraction

FIGURE 5.5 Assembly language for 16-bit addition/subtraction.



byte is bitwise-ORed, a Z = 1 condition indicates an operand value of zero, as the
final 8-bit result can only be zero if all bits in all bytes are zero. If the unsigned int

operand of Figure 5.7 is changed to an unsigned long, the instructions iorwf i+2,w

and iorwf i+3,w are required after the iorwf i+1,w instruction to perform the 
bitwise-OR of all 4 bytes of the long data type. If the C code of Figure 5.7 is changed
to the zero test if(!i){}, the bz instruction is replaced with a bnz instruction to skip
the loop body if the operand is nonzero.

A more complex zero/non-zero test is shown in Figure 5.8, in which the if{}
body is executed if i is nonzero or j is zero ( i || !j). Both the i and j variables are
tested by bitwise-ORing of their most significant and least significant bytes to-
gether. The if{} body is skipped if i is zero and j is nonzero. Observe that the log-
ical OR condition || in the C code is unrelated to the bitwise-OR used for testing
each variable for zero/nonzero. If the condition in the C code is changed to i && !j
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int i;
i++;

movlw  0x0
incf   i,f
addwfc i+1,f

(a) Increment

Clear W so it is zero
for addwfc to MSByte.

infsnz i,f;
incf  i+1,f; 

int i;
i++;

Increment LSByte, skip
MSBbyte++ if LSByte is
nonzero.

(b) Decrement

int i;
i--;

movlw  0x0
decf   i,f
subwfb i+1,f

(c) Increment

Clear W so it is zero
for subwfb from MSByte

FIGURE 5.6 Assembly language for 16-bit increment/decrement.

unsigned int i, j;

if (i) {
 // do this if i is non-zero
 j = j + i;
}
// ...rest of code...

  movf    i,w     ; w = i LSB
  iorwf   i+1,w   ; w = i LSB | i MSB
  bz      end_if  ; skip if Z=1, i is 0
  movf    i,w
  addwf   j,f
  movf    i+1,w
  addwfc  j+1,f 
end_if
  ...rest of code

In C In Assembly 

 // if body
 j = j + i;

Test i for zero/non-zero by
bitwise OR’ing of MSB/LSB

FIGURE 5.7 Assembly language for 16-bit nonzero test.



(execute the if{} body if i is nonzero and j is zero), a bitwise-OR operation is still
used to test the i, j variables for zero/nonzero.

A common mistake is to test a 16-bit value for zero/nonzero as shown in List-
ing 5.1. Here, the zero/nonzero test is patterned after the method used for 8-bit
operands in which the operand is copied to itself to affect the Z flag. However, this
is an incorrect test, as the Z flag setting is only based on the value of the MSB, and
not the combined MSB:LSB values.

LISTING 5.1 A common mistake for zero/nonzero test.

movf  i,f           ; test i LSB

movf  i+1,f         ; test i MSB

bz    i_is_zero     ; branch if i is zero

Equality, Inequality

Figure 5.9 shows assembly code for a 16-bit equality test. The if_body is executed if
the test i == j is true. The test is performed by subtracting each byte of the two 16-
bit operands, and executing the if_body if the Z flag is set for both subtractions, in-
dicating that both the least significant and most significant bytes of the two
operands are equal. This requires two bnz instructions, one for each subtraction op-
eration. A common error is to perform the 16-bit subtraction, and only include the
last bnz instruction. This is incorrect, as this only determines if the most significant
bytes are equal, and not if the entire 16-bit operands are equal. 
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unsigned int i, j;

if (i || !j) {
 // do this if i is non-zero
 // or if j is zero
 j = j + i;
}
// ...rest of code...

  movf    i,w       ; w = i LSB
  iorwf   i+1,w     ; w = i LSB | i MSB
  bnz     if_body   ; do if_body if i is non-zero
  movf    j,w       ; w = j LSB
  iorwf   j+1,w     ; w = j LSB | j MSB
  bnz     end_if    ; skip if i==0 and j!=0
if_body             ; do if_body if i!=0 or j==0 
  movf    i,w
  addwf   j,f
  movf    i+1,w
  addwfc  j+1,f 
end_if
  ...rest of code

In C In Assembly 

 // if body
 j = j + i;

Test i for zero/non-zero by
bitwise OR’ing of MSB/LSB

Test j for zero/non-zero by
bitwise OR’ing of MSB/LSB

FIGURE 5.8 Assembly language for 16-bit zero/nonzero test with two operands.



An inequality test is shown in Figure 5.10, and the if_body is executed if either
of the two subtractions yields a nonzero result. The first bnz instruction after the
least significant byte subtraction branches to the if_body, while the second bz in-
struction branches around the if_body, causing the if_body to be skipped only for
the case where both subtractions produce a zero result. 

Greater-than, Greater-than-or-equal

Figure 5.11 shows assembly code for a i > j comparison used in an if{} statement,
where i, j are unsigned 16-bit operands. The only difference between this code and
the 8-bit comparison code given in the previous chapter is that a 16-bit subtraction
for j - i is performed for the comparison, and the if_body uses a 16-bit addition.
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int i, j;

if (i != j) {
 // if body
 i = i + j;
}
// ... rest of code

  movf   j,w
  subwf  i,w      ; i - j, LSByte
  bnz    if_body  ; if not equal, do body
  movf   j+1,w
  subwf  i+1,w    ; i - j, MSByte
  bz    end_if
if_body
  movwf  j,w
  addwf  i,f
  movwf  j+1,w
  addwfc i+1,f
end_if
   ...rest of code

In C In Assembly 

 // if body
 i = i + j;

if both subtractions
are zero, then skip

FIGURE 5.10 Assembly language for 16-bit inequality test.

int i, j;

if (i == j) {
 // if body
 i = i + j;
}
// ... rest of code

  movf   j,w
  subwf  i,w    ; i - j, LSByte
  bnz    end_if ; if not equal, skip
  movf   j+1,w
  subwf  i+1,w  ; i - j, MSByte
  bnz    end_if 
  movwf  j,w
  addwf  i,f
  movwf  j+1,w
  addwfc i+1,f
end_if
   ...rest of code

In C In Assembly 

 // if body
 i = i + j;

FIGURE 5.9 Assembly language for 16-bit equality test.



The Carry flag test is the same as was used for the 8-bit comparison. Similarly, if the
variables are declared as unsigned long i,j, a 32-bit subtraction is needed for the 
j - i operation, while the flag test remains the same. This illustrates how the sub-
traction/flag test approach for comparison operations scales easily with operand
size. The use of cpfsgt for extended precision compare can be performed by con-
voluted code that begins by performing a greater-than test on the most significant
bytes, followed by an equality test of the most significant bytes, finally followed by
a greater-than test on the least significant bytes. This approach requires more in-
structions, is slower, and is difficult to understand. This underscores the point that
the cpfsgt instruction should be reserved only for comparisons of 8-bit, unsigned
data.

Shifts

Figure 5.12 illustrates how extended precision shift operations are accomplished. A
left shift performs byte shift operations from least significant to most significant
byte, while a right shift does the reverse, from the most significant byte to the least
significant byte. In both left and right shift cases, the Carry flag is cleared for the
first shift operation, but then is used as an intermediate storage bit for the shift op-
erations on the remaining bytes. 

Figure 5.13 shows examples of C left and right shift operations on int variables
implemented in PIC18 assembly language. Extending these operations to long vari-
ables is an easy matter of including two additional shifts for the second and third
bytes of the 4-byte operands. The use of an unsigned int data type for the right shift
is intentional, as the right shift for signed operands is different as will be discussed
in Section 5.6.
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unsigned int i, j;

if (i > j) {
 // done if i greater than j
   j = i + j;
}
// ...rest of code...

  movf   i,w    ; 
  subwf  j,w    ; j - i LSByte
  movf   i+1,w  ;
  subwfb j+1,w  ; j - i MSByte
  bc end_if     ; skip if C=1, i <= j
  movf  i,w     ; 
  addwf j,f     ; j + i LSByte
  movf  i+1,w
  addwf j+1,f   ; j + i MSByte
end_if
  ..rest of code..

In C In Assembly 

FIGURE 5.11 Assembly language for 16-bit greater-than test using subtraction.



Sample Question: Implement the C code fragment shown here in PIC18 assembly.

unsigned int j, k;

do{

j = j << 1;

}while(k >= j);

Answer: The comparison k >= j is done by a 16-bit subtraction k – j. In List-
ing 5.2, the Carry flag is cleared before the shift of the LSByte of j, as we want
a 0 shifted into the least significant bit of j. The Carry flag is set to the bit value
that is shifted out of the most significant bit of j’s LSByte. The Carry flag is not
cleared before the shift of j’s MSByte because we want the Carry flag to prop-
agate this value into the least significant bit of j’s MSByte. 

LISTING 5.2 Sample question solution.

loop_top:

bcf    STATUS,C

rlcf   j,f            ; left shift LSB of j

rlcf   j+1,f          ; left shift MSB of j

movf   j,w

subwf  k,w            ; w = k LSB – j LSB

movf   j+1,w
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LSByteright shift (>>) CMSByte0

LSByteleft shift (<<) CMSByte 0

FIGURE 5.12 Extended precision shift operations.

int i;

i  = i << 1;

  bcf  STATUS,C  ; clear carry
  rlcf i,f       ; i << 1, LSByte
  rlcf i+1,f     ; i << 1, MSByte

In C In Assembly 

unsigned int i;

i = i >> 1;

  bcf  STATUS,C  ; clear carry
  rrcf i+1,f     ; i >> 1, MSByte
  rrcf i,f       ; i >> 1, LSByte

FIGURE 5.13 Assembly language implementation of 16-bit shifts.



subwfb k+1,w          ; w = k MSB – j MSB

bc     loop_top       ; loop if C=1, no borrow, so k >= j

....rest of code....

Sample Question: Implement the C code fragment shown here in PIC18 assembly.
Remember that a long data type is 32 bits (4 bytes).

long i, k; 

i = i + k;

Answer: Because a long data type is 4 bytes, this requires four add operations.
The LSByte add operation of Listing 5.3 uses an addwf instruction, while the
last three add operations use an addwfc instruction to include the carry flag in
the sum.

LISTING 5.3 Sample question solution.

movf     i,w

addwf    k,f        ; first byte add (LSByte)

movf     i+1,w

addwfc   k+1,f      ; second byte add

movf     i+2,w

addwfc   k+2,f      ; third byte add

movf     i+3,w

addwfc   k+3,f      ; fourth byte add (MSByte)

5.4 SIGNED NUMBER REPRESENTATION 

All examples up to this point have used unsigned data types. Obviously, we are also
interested in performing operations on signed integers such as –100 or +27, but to
do this, we must have a binary encoding method that includes the sign (+/ ) of a
number and its magnitude. Three binary encoding methods for signed integers are
signed magnitude, one’s complement, and two’s complement. These encodings share
two common features, one of which is that a positive number in any of these en-
codings is the same, and is simply the binary representation of the number. The sec-
ond common feature is that the most significant bit of a negative number is “1”. 

Signed Magnitude

Signed magnitude encoding is so named because the encoding is split into sign and
magnitude, with the most significant bit used for the sign, and the remaining bits
for the magnitude. Figure 5.14 shows examples of signed magnitude encoding.
With n bits, the number range is –2(n 1) –1 to +2(n 1) – 1, or –127 to +127 for n = 8.
Two encodings exist for zero, a positive zero and a negative zero. The advantage of
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signed magnitude is that the sign and magnitude are immediately accessible for ma-
nipulation by hardware, and it is cheap from a logic gate viewpoint to produce the
negative of a number (simply complement the sign bit). However, the disadvantage
is that the same binary adder logic used for unsigned numbers cannot be used for
signed magnitude numbers; signed magnitude arithmetic requires custom logic
targeted for that encoding method. In a microprocessor, this would require special
addition/subtraction instructions for use with signed magnitude integers, and in-
structions for converting between unsigned and signed integer representations.
Fortunately, as will be seen shortly, two’s complement encoding allows the same bi-
nary adder logic to be used for both unsigned and signed representations, and thus
no separate instructions are needed for signed and unsigned addition/subtraction.
However, there is one class of numbers, floating point numbers (i.e., 10.235),
which do require their own dedicated arithmetic/logic units and instructions. In-
terestingly, a form of signed magnitude representation is used for floating point
number encoding, which is discussed further in Chapter 7, “Advanced Assembly
Language: Higher Math.”

One’s Complement

One’s complement is so named because a k is found by complementing each bit
in the +k representation (i.e., –k = ~(+k )). With n bits, the number range is
–2(n 1) – 1 to +2(n 1) – 1, or –127 to +127 for n = 8, the same as signed magnitude.
Two encodings exist for zero, positive zero (all “0”s) and negative zero (all “1”s).
The binary adder logic used for unsigned numbers can be used for one’s comple-
ment numbers as long as an error of +1 is acceptable in the result, which occurs if

MSB is sign bit
‘1’ negative, ‘0’ positive S       magnitude

+5 =  0 0000101  = 0x05 

-5 =  1 0000101  = 0x85 

+0 =  0 0000000  = 0x00 

-0 =  1 0000000  = 0x80 

Number Line
 8 bits, range is

-127 to +127

For n bits:
 -2n -1 -1  to  +2n -1 - 1

+127

+1

+0

-0

-1

-127

0x7F

0x01

0x00

0x80

0x81

0xFF

FIGURE 5.14 Signed magnitude encoding.
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adding two negative numbers or a positive and a negative number. For example,
the correct result for the sum +5 + ( 2) is +3. Written as 8-bit numbers in one’s
complement, the sum is 0x05 + 0xFD = 0x02 (+2), which is in error by +1. The
advantage of one’s complement is that the negative value of a number is cheap in
terms of logic gates and fast in terms of delay; all that is needed is an inverter for
each bit, producing one gate delay for the negation operation. One’s complement
is used within some graphics hardware accelerators for color operations on pixels,
where speed is all-important and an error of 1 LSb is acceptable. 

Two’s Complement

The +1 error in one’s complement addition using binary adder logic is corrected by
encoding a k as ~(+k) + 1, the one’s complement plus one. This is called two’s
complement representation, and is the standard method for encoding signed inte-
gers in microprocessors. With n bits, the number range is –2(n 1) to +2(n 1) – 1, or
–128 to +127 for n = 8. There is only one representation for zero (digits are all 0s),
with the negative zero (digits are all 1s) of one’s complement now representing a
negative one (–1). The negative number range contains one more member than the
positive range. Figure 5.16 gives examples of two’s complement encodings.

As stated earlier, conversion of a positive decimal number +k to two’s comple-
ment is easy, as it is simply the binary (hex) representation. The conversion of a
negative decimal number to two’s complement using the formula k = ~(+k) + 1
is error prone, as it requires the number to be converted to binary, and then each
bit complemented. An easier method is to use the fact that k = 0 (+k), which
computes k by converting +k to hex, and then subtracting that number from zero.
Figure 5.17 summarizes the rules for signed decimal to two’s complement conver-
sion and contains two sample conversions.

One’s Complement
- N = ~(+N) 

+5 =  0b00000101  = 0x05 
Number Line
 8 bits, range is

-127 to +127

 For n bits:
-2n -1 -1  to  +2n -1 - 1

+127

+1

+0

-0

-1

-127

0x7F

0x01

0x00

0xFF

0xFE

0x80

-5 =  0b11111010  = 0xFA 

+0 =  0b00000000  = 0x00 

-0 =  0b11111111  = 0xFF 

FIGURE 5.15 One’s complement encoding.



Converting a hexadecimal two’s complement number to signed decimal re-
quires first determination of the sign, and then the magnitude. If the most signifi-
cant bit is one (hex digit is 8 or greater), the number is negative. To find the
magnitude of this negative number, subtract the number from zero, as +k = 0
( k). If the most significant bit is zero (hex digit is 7 or less), the number is positive,
and converting it to decimal provides +k. Figure 5.18 summarizes these rules and
shows two examples of two’s complement hex to signed decimal conversion.
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Two’s Complement
- N = ~(+N)  + 1
      =  0 - (N)

+5 =  0b00000101  = 0x05 
Number Line
 8 bits, range is

-128 to +127

For n bits:
 -2n -1   to  +2n -1 - 1

+127

+1

  0

-1

-2

-128

0x7F

0x01

0x00

0xFF

0xFE

0x80

-5 =  0x00 - 0x05 = 0xFB

 0 =  0b00000000  = 0x00 

-128 = 0 - 128
     = 0x00 - 0x80 = 0x80 

FIGURE 5.16 Two’s complement encoding.

If n is positive Convert n to hex +60 = 0x3C

If n is negative Ignore sign, convert
n to hex. 

Then subtract
from zero.

-60 = ??
60  = 0x3C

-60 = 0x00 - 0x3C
      = 0xC4

FIGURE 5.17 Signed decimal to two’s complement conversion.
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Sign Extension

To convert an 8-bit unsigned number to a 16-bit unsigned value, one simply adds
extra zeros to the leftmost digits. As an example, the unsigned decimal number 128
in 8 bits is 0b10000000, or 0x80. In 16 bits, the same number is
0b0000000010000000, or 0x0080. For two’s complement numbers, extra precision
is gained by sign-extension, which means the sign bit is replicated to produce the ad-
ditional bits. Using the same example, the signed decimal number of 128 in 8 bits,
two’s complement is 0b10000000, or 0x80. In 16 bits, the same number is
0b1111111110000000, or 0xFF80. Note that if zeros are used for padding instead of
the sign bit, a negative number is changed to a positive number, an obviously in-
correct result. For hex representation, extending the sign bit means padding with
“F” digits for negative numbers, and “0” digits for positive numbers.

Sample Question: Give the value of –3 as a 16-bit two’s complement number.

Answer: The easiest way to accomplish this is to first write 3 as an 8-bit two’s
complement number, and then sign extend. You know that +3 = 0x03, so 3
= 0 (+3) = 0x00 0x03 = 0xFD. Sign extending (adding “1”s in binary
or 0xF digits in hex to the left) the 8-bit value 0xFD to a 16-bit value produces
0xFFFD. You can verify that this is correct by computing 0 ( 3) = +3, so
0x0000 0xFFFD = 0x0003 = +3.

Sample Question: The value 0xA0 is a two’s complement number; give its decimal value.

Answer: The MSb of 0A0 is a “1”, so this number is negative. We know that 0
( N) = +N, so 0x00 0xA0 = 0x60 = +96. Thus, the magnitude of the

number is 96, the sign is negative, so 0xA0 = 96.

If MSb is 0
(hex digit < 8)

Number is positive,
convert to decimal

0x4D = +77

If MSb is 1
(hex digit > 7)

Number is negative,
subtract from zero,
convert to decimal to
find magnitude.

Combine sign and magnitude

0xB3= ??
0x00 - 0xB3 = 0x4D
0x4D = 77

0xB3 = -77

FIGURE 5.18 Two’s complement hex to signed decimal conversion.



5.5 TWO’S COMPLEMENT OVERFLOW

In Chapter 1, “Number System and Digital Logic Review,” it was discussed that a
carry out of the most significant bit is an indication of overflow for unsigned num-
bers. How is overflow detected for addition/subtraction of two’s complement num-
bers? The sum –1 + (+1) written as 8-bit, two’s complement numbers is 0xFF +
0x01. The addition produces a carry out of the most significant bit and an 8-bit re-
sult of 0x00 (0), the correct result for the sum –1 + (+1). This means that the
Carry flag is not useful as an overflow indicator for signed arithmetic. Instead, the
two’s complement overflow flag (OV), bit 3 of the STATUS register, is the error in-
dicator for two’s complement arithmetic. In this book, the OV flag is shortened to
the V flag and is referred to as the overflow flag, with two’s complement under-
stood. The negative (N) flag in the status register is set equal to the MSb of the op-
eration result; thus, a value of “1” indicates a negative result if the result is
interpreted as a two’s complement number.

For addition, a two’s complement overflow occurs when the sum of two nega-
tive numbers yields a positive number, or when the sum of two positive numbers
yields a negative number. The sum of a positive and a negative number cannot pro-
duce overflow. Similar rules can be derived for subtraction. These rules are sum-
marized in Equations 5.1 through 5.4. Observe that the subtraction rules 5.3, 5.4 are
simply the addition rules 5.1, 5.2 stated in a different form:

if +p + (+q) =  –r then V = 1 (5.1)

if (–p) + (–q) = +r then V = 1 (5.2)

if (+p) – (–q) = –r then V = 1 (5.3)

if (–p) – (+q) = +r then V = 1 (5.4)

The preceding rules aid the determination of the V flag when performing ad-
dition or subtraction manually. A method more suitable for logic gate implemen-
tation is shown by the Boolean test of Equation 5.5, where CMSb is the carry out of
the most significant bit, CMSb 1 is the carry out of the preceding bit as produced dur-
ing binary addition, and ^ is the XOR operation.

V = CMSb ^ CMSb 1 (5.5)

Figure 5.19 illustrates the four possible cases of C, V flag settings for addition.
The operands and results are shown interpreted as both unsigned numbers and
signed numbers. Observe that C = 0 if the unsigned result is correct. Similarly, 
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V = 0 if the signed result is correct. A natural question is “How do I know if the
hex numbers in Figure 5.19 are supposed to represent signed or unsigned values?”
The answer is, of course, that you do not know. There is nothing inherent in the 8-
bit code 0xFF that says it represents 255 or –1; the application that uses the num-
bers determines if an unsigned or signed quantity is required. The binary logic
performing the addition does not know if the numbers represent signed or unsigned
quantities; the adder logic works equally well assuming either representation.

Sample Question: Give the V, N flag settings after the operation 0x60 + 0x40.

Answer: 0x60 + 0x40 = 0xA0. The MSb of 0xA0 is 1, so N = 1 (result is neg-
ative). Two positive numbers added together produce a negative number, so
V = 1.

5.6 OPERATIONS ON SIGNED DATA

In Chapter 4, “Unsigned 8-bit Arithmetic, Logical, Conditional Operations,” you
learned in the Carry flag discussion that the subtraction A B is actually per-
formed as A + (~B) + 1, for which the reasoning is now clear as –B = ~B + 1
by the definition of two’s complement. Figure 5.20 illustrates how a combinational
building block capable of both addition and subtraction is built from an adder and
a 2-to-1 mux. The SUB input connected to the mux select and the carry-in input of
the adder determines if the operation A + B or A – B is performed. When SUB =
0, the output is Y = A + B + 0; when SUB = 1, the output is A + (~B) + 1,
which is actually A – B. An adder/subtractor building block is a key component of
the arithmetic logic unit of any microprocessor. Figure 5.20 clearly shows the 

unsigned

  0x01
+ 0xFF
  0x00 

C=1, Z=1,
V=0, N=0

    1
+ 255
    0

   +1
+  -1
    0

signed unsigned

  0xFF
+ 0x80
  0x7F 

C=1, Z=0,
V=1, N=0

  255
+ 128
  127

    -1
+ -128
  +127

signed

unsigned

  0x7F
+ 0x01
  0x80 

C=0, Z=0,
V=1, N=1

  127
+   1
  128

  +127
+   +1
  -128

signed unsigned

  0x80
+ 0x20
  0xA0 

C=0, Z=0,
V=0, N=1

  128
+  32
  160

  -128
+  +32
   -96

signed

adder logic adder logic

adder logic adder logic

FIGURE 5.19 Four cases of C, V flag settings.
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advantage of two’s complement representation for signed numbers; the same bi-
nary adder logic used for addition/subtraction of unsigned numbers is used for
signed numbers.

Unfortunately, some operations on signed numbers require different hard-
ware, and thus, different assembly language instruction sequences. Table 5.2 lists
the arithmetic operations discussed in this book, and whether different hardware is
required for unsigned and signed operations.

Shift and comparison operations on signed data are discussed in this chapter,
while multiplication and division are postponed until Chapter 7. In C code, the
signed qualifier is used in front of data types; for example, signed int or signed

char, to declare signed variables. If a signed or unsigned qualifier is not given for a
data type, the normal assumption made by a compiler is that it is a signed data type.

B

S

Ci

+

Co

0

1

B

SUB

N

AA
N

Co
When SUB=0,  S = A + B
When SUB=1,  S = A + ~B + 1
                             = A- B 

N
~B

FIGURE 5.20 Adder/subtractor building block.

Operation Same Operation for Unsigned/Signed Data?

+, – yes

= =, != yes

<<  (left shift) yes

>, >=, <, <= no

>> (right shift) no

*, / no

TABLE 5.2 Unsigned versus Signed Arithmetic Operations
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Shift Operations on Signed Data

In previous shift operation examples, a zero value has always been used as the shift-
in value for the LSb (left shift) or MSb (right shift). Assume a right shift of the value
–128 is desired, which should yield –64 as a right shift is a divide-by-two operation.
The value –128 is 0x80 as an 8-bit two’s complement number, and Figure 5.21a
shows that this becomes a 0x40, or a +64, when a zero is used as the MSb input
value. In Figure 5.21b, the sign bit is retained during the shift, keeping the MSb as
one, which produces the correct value of –64 or 0xC0. For two’s complement val-
ues, the sign bit must be retained during a right shift to obtain the correct arith-
metic result of division-by-two. This is sometimes called an arithmetic shift right,
while a right shift that always shifts in a zero is called a logical shift right.

Figure 5.22 shows assembly code that implements an arithmetic shift right on
a 16-bit operand. Note that the Carry flag is set equal to the sign bit of the most sig-
nificant byte before the shift of the most significant byte is performed, causing the
sign bit to remain the same. The arithmetic shift right operation must be used in
this case because the variable i is declared in the C code as a signed int, indicating
that a signed shift right should be used.

It would seem logical that the same reasoning would apply to a left shift oper-
ation; that the sign bit has to be retained for a left shift of a two’s complement
operand. Figure 5.23 illustrates what happens when the value 0x20 (+32) is shifted
to the left two times. After the first shift, the new value is 0x40 (+64), the correct
value in an arithmetic sense as +64 = 2 * (+32). After the second shift, the new
value is 0x80 (–128), which is obviously incorrect from an arithmetic sense as the
sign changed. However, if the sign bit is kept during the shift, the result is 0x00,

1  0  0  0  0  0  0  0  = 0x80 = -1280

0  1  0  0  0  0  0  0  = 0x40 = +64 

Shift in

(a) Logical Shift Right  0x40 = 0x80 >> 1

1  0  0  0  0  0  0  0  = 0x80 = -128

1  1  0  0  0  0  0  0  = 0xC0 = -64 

Shift in

(b) Arithmetic Shift Right  0xC0 = 0x80 >> 1

b7   b6   b5  b4  b3   b2  b1   b00

b7   b6   b5  b4  b3   b2  b1   b0

FIGURE 5.21 Right shift, logical versus arithmetic.



again an incorrect result in an arithmetic sense. This is because +64 * 2 = +128,
and +128 cannot be represented in 8 bits! If the sign bit changes after a left shift of
a two’s complement value, overflow has occurred. Keeping the sign bit does not
help, as it is not possible to represent the correct arithmetic value using the avail-
able bits. As such, there is no need to distinguish left shift operations based on un-
signed versus signed data. 

Greater-than, Greater-than-or-equal on Signed Data

Recall that the unsigned comparison tests of > and >= use the subtraction operation
on the two operands being compared, followed by a test of the Carry flag. Figure
5.24 illustrates what happens if two signed 8-bit operands are treated as unsigned
operands for comparison purposes. Only if the signs of the operands are the same,
does the unsigned comparison operation yield the correct result. One could envi-
sion writing code to check the signs of the operands before doing the comparison,
setting a temporary flag to indicate sign equality or inequality, and then perform-
ing the appropriate comparison based on the flag setting. However, this is overly
complex and not required, as there is an easier way involving subtraction and flags.

Table 5.3 lists the operation and flag tests for > and >= comparisons for signed
data. The subtraction operation used is the same as for unsigned data; the differ-
ence is that the V (overflow) and N (negative) flags are used instead of the C (carry)
flag. The flag tests look complicated, but reasoning about them makes the condi-
tions easier to remember. For the greater-than (>) test, if i is indeed greater than j,
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signed int i;

 i  = i >>1;

  bcf   STATUS,C  ; clear carry
  btfsc i+1, 7    ; sign bit=0?
  bsf   STATUS,C  ; set carry
  rrcf i+1,f      ; i >> 1, MSByte
  rrcf i,f        ; i >> 1, LSByte

In C In Assembly 

FIGURE 5.22 Assembly code for arithmetic shift right operation.

0  0  1  0  0  0  0  0

0  1  0  0  0  0  0  0

0 Shift in

Left Shift  0x80 = 0x20 << 2

0x20 = +32

0x40 = +64

1  0  0  0  0  0  0  00x80 = -128

0

Overflow

FIGURE 5.23 Left shift operation on signed data.
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the subtraction j – i should be a negative number (N = 1), with V = 0 indicat-
ing the correctness of the result. However, if overflow occurs (V = 1), a positive
number (N = 0) is obtained, which is an obviously incorrect result caused by the
overflow. The astute reader will recognize this flag test as V ^ N (the exclusive-OR
of the V and N flags), which is how this test is implemented in logic gates for mi-
croprocessors that have signed comparison instructions.

For the greater-than-or-equal (>=) test, if i >= j is true, the subtraction i – j

should be a positive number (N = 0), with V = 0 indicating the correctness of the
result. However, if overflow occurs (V = 1), a negative number (N = 1) is ob-
tained, which is an obviously incorrect result caused by the overflow. This flag test
is implemented in digital logic as ~(V ^ N) for microprocessors that have signed
comparison operations.

i = 0x7F,
j = 0x01

True

Numbers As Unsigned i > j? As Signed i > j?

i = 127,
j = 1

i = +127,
j = +1

True

i = 0x80,
j = 0xFF

Falsei = 128,
j = 255

i = -128,
j = -1

False

i = 0x80,
j = 0x7F

Truei = 128,
j = 127

i = -128,
j = +127

False

i = 0x01,
j = 0xFF

Falsei = 1,
j = 255

i = +1,
j = -1

True

FIGURE 5.24 Unsigned versus signed comparisons.

Comparison Operation If True, Then

if (i > j) {} j – i V = 0 and N = 1

OR

V = 1 and N = 0

if (i >= j) {} i – j V = 0 and N = 0

OR

V = 1 and N = 1

TABLE 5.3 Greater-than, Greater-than-or-equal Comparisons Using V, N Flags



Figure 5.25 shows the assembly code for a 16-bit comparison operation i > j

used as a conditional test within an if{} statement. A 16-bit subtraction of j – i is
performed first, followed by branch code that implements the test of  (~V & N) |
(V & ~N). The multiple branch paths are unavoidable given the flag conditions
that must be checked. Instructions that directly test the condition V ^ N, and
similar conditions for other types of signed comparisons, are often included in mi-
croprocessor instruction sets and are typically called signed branches. The assembly
code for a greater-than-or-equal comparison is left as an exercise in the review
problems.

Sign Extension

Even for operations like addition and subtraction that work the same for both un-
signed and signed operands, care must be taken when dealing with operands of dif-
ferent precisions. The precision of the smaller operand must be extended to match
the precision of the larger operand. This means padding with zeros for unsigned
operands, and extending the sign bit for signed operands as discussed in Section
5.4. Figure 5.26 shows an example of an addition with 16-bit (i) and 8-bit (j)
operands, for both unsigned and signed cases. In the unsigned case, the most sig-
nificant byte of the 8-bit operand is set to zero by the movlw 0 instruction. In the
signed case, the btfsc j,7 instruction is used to test the sign bit of the 8-bit
operand. If the 8-bit operand is positive, the most significant byte is set to zero; else
the most significant byte is set to 0xFF to sign extend the negative 8-bit operand. 
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signed int i,j;

 if (i > j) {
  // if_body
   i = i + j;
}
  // rest of code

  movf   i,w       ; 
  subwf  j,w       ; j-i  LSByte
  movf   i+1,w
  subwfb j+w,w     ; j-i  MSByte
  bov    v_1
  bnn    end_if    ; skip if V=0,N=0
  bra    if_body   ; V=0, N=1
v_1
  bn     end_if    ; skip if V=1,N=1
if_body
  movf   j,w
  addwf  i,f       ; i=i+j, LSByte
  movf   j+1,w
  addwfc i+1,w     ; i=i+j, MSByte
end_if
  ...rest of code...

In C In Assembly 

FIGURE 5.25 Assembly for 16-bit greater-than comparison.



Sample Question: Implement the C code fragment shown here in PIC18 assembly.

signed int j, k;

do{

j = j << 1;

}while(k >= j);

Answer: This is the same as a sample question from Section 5.3, except the
data type has been changed from unsigned int to signed int. This does not
change the code used for the << shift operation, but it does change the code
for the >= comparison. In Listing 5.4, the subtraction k j is still performed,
but the branch is done based on the V, N flags. If k >= j is true, k j pro-
duces a positive number (N = 0, V = 0) unless overflow occurs, in which
case a negative result is produced (N = 1, V = 1).

LISTING 5.4 Sample problem solution.

loop_top:

bcf    STATUS,C

rlcf   j,f            ; left shift LSB of j

rlcf   j+1,f          ; left shift MSB of j

movf   j,w

subwf  k,w            ; w = k LSB – j LSB

movf   j+1,w

subwfb k+1,w          ; w = k MSB – j MSB

bov    L1

bnn    loop_top  ;true loop top

bra    loop_exit ;exit

L1
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unsigned int i;
unsigned char j;

 i  = i + j;

  movf   j,w       ; clear carry
  addwf  i,f       ; i=i+j, LSByte
  movlw  0         ; MSB of j = 0
  addwfc i+1,f     ; i=i+j, MSByte

In C In Assembly 

signed int i;
signed char j;

 i  = i + j;

  movf   j,w       ; clear carry
  addwf  i,f       ; i=i+j, LSByte
  movlw  0         ; MSB of j = 0
  btsfc  j,7       ; check sign of j
  movlw  0xFF      ; MSB of j= 0xFF
  addwfc i+1,f     ; i=i+j, MSByte

j is negative, so sign extend MSB with 0xFF

FIGURE 5.26 Addition operation for operands of unequal precisions.
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bn     loop_top  ;true loop top

loop_exit

....rest of code....

Sample Question: In the following code, what is the value of i when the loop is exited?

signed char i;

i = 0x80;

while (i < -32) {

i = i >> 1;

}

Answer: The variable i is declared as a signed char, so the assignment i = 0x80

initializes i to –128. Each time through the loop, i is divided by 2 by the right
shift. Therefore, i is –128, then 64, then –32, at which point the comparison
is no longer true and the loop is exited, with i = 32 (0xE0).

5.7 BRANCH INSTRUCTION ENCODING

The machine code format of branch instructions uses an addressing mode known
as Program Counter Relative, in which a two’s complement offset is added to the
program counter to determine the target branch address. The target address, Taddr,
is computed by Equation 5.6.

(5.6)

The PC value in Equation 5.6 is the branch instruction location, and n is the
displacement encoded in the branch instruction word. The +2 is added to the PC
value because the PC is already incremented to the next instruction word when the
branch target address is computed. See Figure 5.27.

Taddr  PC  2  2 * n= + +

bz, bnz, bnc, bc, etc...
except for bra

111? ????                 nnnn nnnn

8-bit displacement
-128 to +127 instruction words

bra

8-bit opcode

11010                 nnn nnnn nnnn

11-bit displacement
-1024 to +1023 instruction words

5-bit opcode

FIGURE 5.27 Machine code format of branch instructions.



The displacement n is multiplied by 2 because the displacement is the number
of instruction words, and each instruction word is 2 bytes. When determining the
machine word of a branch, the locations of the target address and the branch are
known, and the displacement is calculated using Equation 5.7.

(5.7)

Figure 5.28 shows how to calculate the displacement of a branch instruction.
The loop_top label (0x0100) is the target address, while the branch location is
0x0108. The branch displacement is calculated as a –5, or 0xFB in 8-bit, two’s com-
plement format. This example shows why the displacement is a signed number;
backward branch targets require a negative displacement, while forward branches
use a positive displacement. It is also evident that a branch target must be within the
range of the displacement that can be encoded in the branch instruction word. A
bra has an 11-bit displacement ( 1024 to +1023 instructions words), while all other
branches have an 8-bit displacement ( 128 to +127 instruction words). The ad-
vantage of branch instructions over a goto instruction is that a branch instruction
takes only one instruction word, while a goto takes two instruction words. The dis-
advantage of a branch instruction is its limited range; a goto instruction can jump
anywhere in program memory. Fortunately, a branch’s limited range is typically
not a problem, as most loops tend to be short. Program counter relative addressing
is found in almost all microprocessor instruction sets.
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n
(Taddr - (PC  2))

=
+

2

branch_target = PC +2 +2*n
n = [branch_target - (PC+2)]/2
   = 0x0100 - (0x0108+2)]/2
   = 0xFFF6/2 = 0xFFF6 >> 1
   =  0xFFFB = 0xFB (8 bits) = -5 (displacement)

0100       5000        loop  movf   i,w
0102       2601              addwf  j,f     ; j = j+1
0104       5000              movf   i,w
0106       5C01              subwf  j,w     ; j-i
0108       E3FB              bnc    loop    ; branch to top

location          machine code                instruction 
  (hex)                (hex) 

0x0100 (branch_target)
- 0x010A (PC+2)

0xFFF6

bnc loop bnc -5 1110 0011 1111 1011

opcode displacement
0xE3FB

FIGURE 5.28 Branch displacement calculation example.



SUMMARY

Extended precision operations allow manipulation of arbitrarily sized data, 1 byte
at a time. It is clear that variables of type int and long should not be used unless the
extra precision offered by these data types is needed, as calculations on these data
types require more instructions and longer execution time. The standard method
of signed integer representation for microprocessors is two’s complement format,
which uses the same binary adder logic for addition and subtraction as used for un-
signed numbers. Some operations, like right shift, greater-than, and greater-than-
or-equal, require different instruction sequences for signed integers than what is
used for unsigned integers. The V (overflow) and N (negative) flags are used for
greater-than and greater-than-or-equal comparisons of two’s complement inte-
gers. Branch instructions use program counter relative addressing, which means
that a displacement value is added to the current PC value to determine the target
location of a branch.

REVIEW PROBLEMS

Convert the following C code segments to PIC18 instruction sequences. Assume
that i, j, k are all unsigned int data types and assigned somewhere in locations
0x000 to 0x07F (the lower half of the access bank, so you do not need to be con-
cerned with the BSR value). If you need to use other temporary memory locations
in your solution, also place these in locations 0x000 to 0x07F. 

1. Code fragment:

do {

i = i - k;

}

while (i < (j + k));

2. Code fragment: 

if (i && j) {

k = k & 0xFF00;

}

3. Code fragment:

k = j | i;
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4. Code fragment:

while (i != j) {

k = k >> 1;

j--;

}

Perform the indicated conversions:

5. The value –42 to 8-bit two’s complement.
6. The 8-bit two’s complement value 0xDC to decimal.
7. The 12-bit two’s complement value 0xBA3 to decimal.
8. The value –390 to 16-bit two’s complement.
9. Sign extend the 8-bit value 0x85 to 16 bits.

Do the following calculations:

10. Give the value of the operation 0x73 + 0x65, and the Z, N, V, C flag set-
tings.

11. Give the value of the operation 0x90 - 0x8A, and the Z, N, V, C flag settings.
12. Give the value of the operation 0xF0 + 0xCA, and the Z, N, V, C flag set-

tings.
13. Give the value of the operation 0x2A - 0x81, and the Z, N, V, C flag settings.
14. In the following code segment, what is the value of i when the loop is exited?

signed char i, j;

i = 0x01; j = 0x80;

while (i > j) i++;

15. In the following code segment, what is the final value of k?

signed char i, j;

i = 0xA0; j = 0x70;

k = (i > j); 

16. In the following code segment, what is the final value of k?

unsigned char i, j;

i = 0xA0; j = 0x70;

k = (i > j); 
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17. In the following code segment, what is the final value of i?

signed char i;

i = 0xA0 >> 2;

For the following problems, assume that i, j, k are all signed char data types
and assigned somewhere in locations 0x000 to 0x07F. Convert the following C code
segments to PIC18 instruction sequences.

18. Code fragment:

do {

i = i - k;

}

while (i < (j + k));

19. Code fragment:

if (k >= j) {

i = i >> 2;

}

Answer the following questions:

20. What is the machine code for the instruction bnc 0x0300 if the PC of the
bnc instruction is 0x340?

21. Assume you want to do a bc there, but the location of there causes the
branch displacement to exceed the range of the bc instruction. What
equivalent instruction sequence can be used that works regardless of the lo-
cation of there?
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Subroutines and Pointers6

T
his chapter examines the architectural features of the PIC18 that support
subroutines and pointers, which are important capabilities of high-level pro-
gramming languages.

6.1 LEARNING OBJECTIVES

After reading this chapter, you will be able to:

Implement subroutines in the C programming language and discuss features
such as parameter lists, local variables, and return values.
Discuss the operation of a stack data structure and its role in implementing
subroutine call and return.

In This Chapter

Subroutines
The Stack and Call/Return
Implementing Subroutines in Assembly Language
Arrays and Pointers in C
Arrays and Pointers in Assembly Language
Accessing Table Data from Program Memory
Subroutines and Stack Frames: Dynamic Allocation
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Translate C subroutines with parameter lists, local variables, and return values
into PIC18 instruction sequences. 
Compare and contrast static allocation versus dynamic allocation for subrou-
tine memory requirements and implement PIC18 subroutines using either ap-
proach.
Discuss the implementation of pointers in the C programming language.
Use the FSRn/INDFn special function registers of the PIC18 to implement C
pointers.
Translate C code with array indexing into PIC18 instruction sequences.
Use PIC18 table read instructions to transfer data from program memory to
data memory.

6.2 SUBROUTINES

A subroutine is a block of code that is called from different locations within the main
program or other subroutines. Instead of duplicating a commonly used instruction
sequence in multiple locations, the instruction sequence can be encapsulated as a
subroutine and then called from the main program. Using subroutines reduces
code size, as the subroutine resides in only one place in program memory instead
of multiple locations. This also improves code clarity, and produces code that is
easier to maintain, as any code modifications are only performed in the subroutine
body instead of in each of the duplicated code sections.  Figure 6.1 illustrates this
concept. The main program or other subroutine that calls a subroutine is known as
the caller, while the subroutine being called is known as the callee.

  instr_1
  instr_2
  instr_a1
  instr_a2
  ...
  instr_an
  instr_3
  instr_4
  instr_5
  instr_a1
  instr_a2
  ...
  instr_an
  instr_6
  instr_7
  ......

 Without Subroutines

 Replicated instruction
sequence

 With Subroutines

  instr_1
  instr_2
  call sub
  instr_3
  instr_4
  instr_5
  call sub
  instr_a2
  ......

  instr_a1
  instr_a2
  ...
  instr_an
  return

Replicated instruction
sequence as a 
subroutine

 Caller  Callee

FIGURE 6.1 Use of subroutines saves code space.



The basic form of a C subroutine and a specific example is seen in Figure 6.2.
In C, the preferred name for a subroutine is function, and these two terms are used
interchangeably in this book. The example subroutine name is vlshift(), and it
computes a variable left shift operation described as v << amt. It is legal in C to
write this as a single statement instead of as a subroutine, but a subroutine is used
here for illustrative purposes. Subroutines have distinct components that are de-
fined as follows (it is not necessary for a subroutine to have all of these compo-
nents):

Parameter list: Some subroutines are a fixed set of instructions that performs
the exact same operation each time they are called. However, a subroutine can
also have parameters that alter the subroutine behavior based on their values.
The vlshift() subroutine in Figure 6.2 has two parameters named v and amt,
both of type unsigned char.

Local variables: A subroutine may need additional variables that are used in-
ternally to perform its function. In C, these variables are declared within the
subroutine, and are only visible to the subroutine itself. The vlshift() sub-
routine in Figure 6.2 does not have local variables.

Return value: In C, a subroutine may return a single value to the caller, by
means of the return statement. The vlshift() subroutine returns a value of
type unsigned char to the caller. It is not required that C subroutines contain
an explicit return statement; an implicit return is done when the end of the
subroutine body is reached. 

Subroutines and Pointers 135

 // variable left shift 
unsigned char vlshift(unsigned char v,
unsigned char amt)
{
  while (amt) {
    v = v << 1;
    amt--;
  }
  return(v);
}

main(void){
 unsigned char i,j,k;

 i=0x24; j = 2;
 k = vlshift(i,j);
 printf(
  "i=0x%x, shift amount: %d,result: 0x%x\n", 
  i,j,k);
}

vlshift Subroutine

 General form of a C
subroutine is:

(return_type) subname (parm list)
{
 local_variable_decl;
subroutine_body;

   return(return_value);
 }

 parameter list: gives
 types and names

 subroutine body

 subroutine return

 main program

 subroutine call

FIGURE 6.2 C subroutine example.ON THE CD



The vlshift() subroutine uses a counting loop that is executed amt number of
times, where v is shifted to the left by one (v = v << 1) each time through the loop.
The new value of v is returned to the caller by the statement return(v). The main()
code in Figure 6.2 uses the local variables i, j as the parameter values for v, amt in
the statement k = vlshift(i,j) that calls the vlshift() subroutine. The assign-
ment operator of the subroutine call copies the return value of vlshift() to the
local variable k. The C language semantics define that parameters declared in this
manner are not modified by the subroutine; the variables i and j in main() are un-
affected by the subroutine call. The printf() statement in main() is a formatted
print statement included for example purposes so that you can compile this pro-
gram with a C compiler on a personal computer, and observe the input parameters
and return value. The printf() statement is not implemented when we translate
this to PIC18 assembly code; see Appendix D, “Notes on the C Language,” for more
details on printf() syntax.

6.3 THE STACK AND CALL/RETURN

A subroutine call is a jump to the first instruction of the subroutine, while a sub-
routine return is a jump back to the instruction in the caller following the subrou-
tine call. The location returned to by a subroutine return is known as the return
address. Figure 6.3 shows the problem with implementing subroutine call and re-
turn by use of goto instructions. Subroutine A is called twice from within the call-
ing program, once from label C1 and once from label C2. Labels R1 and R2 mark the
return addresses. The first call (1) and return (2) to subroutine A work as intended.
However, while the second call (3) also works correctly, the return (4) is incorrect,
as location R1 is the return address instead of R2. Clearly, a mechanism other than
a goto instruction is needed to implement call and return, as the return address de-
pends on the call location. On the PIC18, the call and rcall instructions imple-
ment subroutine call, while the return and retlw instructions implement
subroutine return.

What is needed is a method for saving the return address for later use by the
subroutine return statement. A stack data structure is a commonly used mechanism
in microprocessors for saving return addresses of subroutine calls. One way to vi-
sualize stack operation is by a stack of boxes, in which boxes are placed (stacked) se-
quentially on top of each other. Figure 6.4 illustrates a three-box stack, in which
box A is placed first, then box B, and finally box C. Observe that at each step, only
the box at the top of the stack (TOS) is accessible. Removing boxes from the stack is
done in reverse order; first box C, then box B, and finally box A. Placing an item on
the stack is referred to as a push operation, while removing an item is known as a
pop operation. A stack is empty if it contains no items; a stack is full if another item
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cannot be pushed onto the stack. Another common name for a stack is a last-in, first-
out (LIFO) data structure, as the name describes the order in which data is accessed.

A stack data structure needs a set of memory locations for storing the items of
the stack, and a stack pointer (SP) that contains the address of the memory location
that is the current top of the stack. Most microprocessors have a special register
dedicated for the stack pointer; the PIC18 uses a special function register named
STKPTR. Many microprocessors use data memory for stack storage. While this
can be done on the PIC18 for creating custom stacks (see Section 6.8), the locations
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  instr1
  instr2
C1
  goto subA
R1
  instr3
  instr4
C2
  goto subA
R2
  instr5
  instr6
  ..rest of program..

 Calling Program  Subroutine A

  instr1
  instr2
  ......
  instrN-1
  instrN
  goto R1    ;;return

 1

 2

 3

 The second return is to 
the wrong place! Should
return to R2, not R1.

 4 ,

FIGURE 6.3 Implementing call/return with goto.

 Stack Empty

 A

  After
Push A

After
Push B

 A  A

After
Push C

 B  B

 C

After
Pop C

 A

After
Pop B

After
Pop A

 A A

 B B

 C

TOS

TOS

TOS

TOS

TOS

TOS

FIGURE 6.4 Stack example.
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accessed by STKPTR are in a special memory known as the return address stack. The
return address stack has 31 locations, with each location containing 21 bits (the re-
turn address stack is a 31 x 21 memory). The STKPTR register is an 8-bit register,
with the lower 5 bits (the stack pointer) used to reference the 31 locations of the re-
turn address stack. The upper 2 bits of the STKPTR register are status bits, named
STKOVF (stack overflow, bit 7) and STKUNF (stack underflow, bit 6). The two sta-
tus bits are discussed later in this section. Figure 6.5 shows the STKPTR register.

As the name indicates, the return address stack is used by a subroutine call to
save the return address. Each data location in the stack is 21 bits wide because the
PC register is 21 bits, and the PC contains the return address when a call to a sub-
routine is made. A call to a subroutine pushes the return address on the stack, and
then loads the PC with the starting address of the subroutine. A subroutine return
pops the return address from the stack and places it in the PC. Figure 6.6 shows the
PIC18 return address stack, and the mechanics of stack push and pop operations.
On processor reset, the stack pointer bits (SP) of the STKPTR register are set to
zero. A stack push first increments SP, and then stores the data at the stack location
referenced by SP (the top-of-the-stack). This means that location 0 of the stack is
never actually used for storing data. A stack pop first accesses the data in the stack
location referenced by SP, and then decrements SP. The register transfer language
PC ((SP)) for pop uses two levels of parentheses around SP because the contents
of the SP bits (STKPTR[4:0]) are not transferred to the PC, but rather the contents
of the return address stack location pointed to by the SP bits are transferred to the
PC. This is a form of indirect addressing and SP is known as a pointer because it is
used to point to a memory location. Indirect addressing and pointers are discussed
in more detail later in this chapter.

 STOVF -- u -- STKUNF Stack Pointer

7 6 5 4 3 2 1 0

 STKPTR Register

 STOVF :    stack overflow (set to 1 on overflow)
 STKUNF:  stack underflow (set to 1 on underflow)
 -- u -- : unimplemented
 Stack Pointer (SP):  5-bit stack pointer, cleared to 0 on reset

STOVF, STKUNF can only be cleared by user or by a power on reset

FIGURE 6.5 STKPTR register.
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Figure 6.7 shows how the return address stack is modified during subroutine
call and return. The call sub_a instruction pushes the return address 0x000044 (PC
+ 4, or 0x000040 + 4) on the stack. The return address for a call instruction is PC
+ 4 because the call instruction requires two instruction words to encode the full
21-bit target address and the opcode in the same manner as the goto instruction.
The subsequent call sub_b instruction pushes the return address 0x00006E on the
stack; this is an example of a nested subroutine call in which one subroutine calls
another. The final subroutine call implemented by the rcall sub_c instruction

push:
SP++,  (SP) ←  nPC
(nPC is PC of instruction following
call or rcall instruction)

 0: 

 21 Bits

 1: 0x?????? 

 2: 0x?????? 

 30: 0x?????? 

 31: 0x?????? 

 SP 

Return Address
Stack

Location 0
not writeable

pop:
PC ← ((SP)) , SP--

SP points to top-of-stack

 3: 0x?????? 

 SP = STKPTR[4:0]

FIGURE 6.6 The PIC18 return address stack.

 0: 

 21 Bits

 1: 0x000044 

 2: 0x00006E 

 30: 0x?????? 

 31: 0x?????? 

 SP 

                 main
                  instr?
0x000040 EC35     call sub_a
0x000042 F000
0x000044 ????     instr?
                  instr? 
                 sub_a
                  instr?
0x00006A EC9E     call sub_b
0x00006C F000
0x00006E ????     instr?
                  return
                 sub_b
                  instr?
0x00013C D8E1     rcall sub_c
0x00013E ????     instr?
                  return
0x000300         sub_c
                  instr?
                  instr?
                  return

 1

 3: 0x00013E 

 4: 0x??????  2

 3

 4

 5

 6

 1

 2

 3  4

 5

 6

For call,   nPC = PC + 4
For rcall, nPC = PC + 2

 Location   Contents 

FIGURE 6.7 Example of return address stack usage during subroutine 
call/return.



pushes the return address 0x00013E on the stack, or PC+2. The rcall instruction
uses PC relative addressing, the same addressing mode used by branch instruc-
tions, and requires only one instruction word. The first return instruction executed
is the one in subroutine C, which pops the value 0x00013E from the stack, return-
ing to subroutine B. Subsequent return instructions in subroutine B, then subrou-
tine A are executed, finally returning to location 0x000044 in the main() code. At
this point, the SP value is at its original value of zero, and the stack is in the empty
condition. Observe that a stack pop does not actually remove or modify the con-
tents of the return address stack; the stack locations 1 through 3 still contain the val-
ues 0x000044, 0x00006E, and 0x00013E. A stack pop only modifies the SP and PC
values. However, future subroutine calls in the main() code after the initial call
sub_a instruction will overwrite the stack contents with the new return addresses
pushed by the call/rcall instructions.

After 31 call/rcall instructions without a return instruction, the SP value is
31, and the stack is full as there are no locations remaining to store new return ad-
dresses. If another subroutine call is made, stack overflow occurs, setting the
STKOVF bit. Depending on the processor configuration, either the processor resets
itself, clearing the lower 5 bits of STKPTR but leaving STKOVF set, or the processor
continues operation but does not allow further pushes onto the stack. Configura-
tion bits stored in program memory control processor configuration; this is cov-
ered in more detail in Chapter 8, “The PIC18Fxx2: System Startup and Parallel Port
IO.” Stack underflow occurs if an attempt is made to pop a value from the stack via
a subroutine return when the SP value is zero. Stack underflow sets the STKUNF
bit, and clears the PC to zero, causing the reset code to be executed. The STKOVF
and STKUNF status bits can be checked by the reset code to determine if reset was
caused by one of these error conditions. Once a STKOVF or STKUNF status bit is
set, it can only be cleared by either a user instruction, such as a bcf, or by a power-
on reset.

There are instructions named push and pop in the PIC18 instruction set that
allow modification of the return address stack outside of the normal subroutine call
and return instructions. This is advanced usage of the return address stack, and is
not covered in this book. However, creating user-defined data stacks in the file 
registers can be useful, and is covered in Section 6.8. 
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Sample Question: What value is pushed on the stack by the call 0x0200 in this code
fragment?

Location:     Contents    Instruction

0x03A4        EC80 F001   call  0x200

0x03A8        2A40        incf  0x040,f

Answer: The return address is the address of the instruction following the
call instruction, so the value 0x03A8 is pushed on the return address stack.

6.4 IMPLEMENTING SUBROUTINES IN ASSEMBLY LANGUAGE

The call, return, rcall, and retlw instruction formats are shown in Figure 6.8. As
noted earlier, the call instruction requires two instruction words to encode the op-
code and 21-bit target address. Both the call and return instructions contain a spe-
cial bit named s that is known as the fast call/return mode select bit. An s bit value
of “1” causes the W, BSR, and STATUS registers to be stored in shadow registers
when the call is made (a fast call). The shadow registers are also known as the fast
register stack, and are useful for preserving the values of these registers during the
subroutine call. A fast return is normally paired with a fast call to return the W,
BSR, and STATUS to their original states on subroutine return. However, there is
only one set of shadow registers, so the subroutine being called cannot make a
nested fast call. Furthermore, an interrupt (discussed in Chapter 10, “Interrupts
and a First Look at Timers”) cannot occur during the execution of the subroutine
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call k,[,s] SP++; (SP) ← (PC)+4; PC[20:1] ← k
 if s=1, push W,BSR,STATUS into shadow regs 

BBBB BBBB  BBBB BBBB
1111 1100  0000 0000
5432 1098  7654 3210

1101 110s  kkkk kkkk0

1111 k19kkk kkkk kkkk 

rcall k SP++; (SP) ← (PC) + 2;
PC ←  (PC) + 2 + 2n

1101 1nnn  nnnn nnnn 

return [s] PC ←  ((SP)); SP--
 if s=1, restore W,BSR,STATUS from shadow regs  

0000 0000  0001 001s

retlw k W ← k, PC ←  ((SP)); SP-- 0000 1100  kkkk kkkk

 SP = STKPTR[4:0]

FIGURE 6.8 Machine code formats for call, return, rcall, and retlw instructions.



that was invoked by the fast call, as interrupts automatically use the shadow regis-
ters. In practice, the fast register stack is primarily useful for interrupt service rou-
tines, which are discussed in detail in Chapter 10. Our use of subroutine call and
return always assumes an s bit value of “0”, which is the default setting. The rcall
(relative call) instruction uses program counter relative addressing with an 11-bit
displacement, the same as the bra instruction. The retlw (return with literal in W)
instruction encodes an 8-bit literal in the machine word, with the literal loaded into
the W register upon return. This is useful for subroutines that return a 1-byte sta-
tus code as their return value. 

In translating a C function to a subroutine in PIC18 assembly language, the
first decision is how to allocate the data locations needed for parameters, local vari-
ables, and the return value. One method is static memory allocation, in which the
same data locations are used each time the subroutine is called. The advantage of
static memory allocation is that it has low instruction overhead, thus reducing code
size and improving execution time. The disadvantage of static allocation is that sub-
routine recursion is not allowed; that is, the subroutine cannot call itself (or call an-
other subroutine that eventually calls the original subroutine). Subroutine
recursion cannot be used with a static allocation strategy because the data locations
for parameters and local variables are still in use when the subroutine is re-entered
by the nested call to itself. The recursive call overwrites the subroutine data mem-
ory area with new values, losing the values still in use by the first call to the sub-
routine. Please note that any variables declared outside of a C function (global
variables) are always statically allocated.

Dynamic memory allocation uses a new set of memory locations for each sub-
routine call, so clashes between data memory locations in recursive subroutine calls
are avoided. One method to implement dynamic allocation is with a stack located
in data memory, which is discussed in Section 6.8. 

Figure 6.9 illustrates the problem with using static allocation for recursive sub-
routines. In this example, the C function sub_a uses a local variable named i and re-
cursively calls itself if its input parameter n has value 1. Figure 6.9a has the i internal
variable of sub_a declared locally to sub_a, causing a new memory location to be al-
located for i each time sub_a is called assuming dynamic allocation. The first invo-
cation of sub_a executes the if_body because n == 1, causing sub_a to be called a
second time, this time with n = 0. In the second invocation of sub_a, the if_body is
skipped as n is zero. The assignment i = 5 in the second invocation of sub_a has no
effect on the i value in the first invocation, as each version of i has a different
memory location. Thus, the i value in the first invocation of sub_a remains at 10, is
incremented to 11, and then is returned to main().
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Figure 6.9b moves the declaration int i out of the function, making it a stati-
cally allocated variable, causing each call to sub_a to use the same memory location
for i. This time, the assignment i = 5 in the second invocation of sub_a overwrites
the previous value 10 assigned to i in the first invocation of sub_a. When a return
is made to the first invocation of sub_a, i has the value of 5, which is incremented
to 6 and returned to main(). If static allocation is used for subroutine parameters
and local variables, subroutine recursion is not allowed. Whether subroutine re-
cursion is needed is heavily dependent upon the particular application. The com-
piler used for translating a C program to assembly language is responsible for the
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int sub_a (int n)
{
 // dynamic allocation of i
 int i;
 i = 5;
 if (n == 1) {
  i = 10;
  // call sub_a recursively
  sub_a(0); 
  i++;
 }
 return(i);
}

First call , n=1
main(){

 int k;

 k = sub_a(1);
 printf("K is 
   %d\n",k);

}

int sub_a (int n)
{
  int i;
 i = 5;
 if (n == 1) {
  i = 10;
  sub_a(0); 
  i++;
 }
 return(i);
}

n is 1,
so execute
if body

Second call , n=0

new memory
location allocated for i,

so assignment i=5 has
no affect on i in first 
invocation
of subroutine sub_a.

This i has value of 11.

a. Dynamic Allocation

Return value
of sub_a is 11.

main(){

 int k;

 k = sub_a(1);
 printf("K is 
   %d\n",k);

}

b. Static Allocation
// static 
// allocation
int i; 
int sub_a (int n)
{
 i = 5;
 if (n == 1) {
  i = 10;
  // call sub_a recursively
  sub_a(0); 
  i++;
 }
 return(i);
}

// static 
// allocation
int i; 
int sub_a (int n)
{
 i = 5;
 if (n == 1) {
  i = 10;
  sub_a(0); 
  i++;
 }
 return(i);
}

Same memory
location

First call , n=1 Second call , n=0

same memory location used for i,

so assignment i=5 in second invocation of 
subroutine sub_a changes the i in first 
invocation.

This i has value of 6.

Return value
of sub_a is 6.

FIGURE 6.9 Dynamic versus static allocation with recursive function calls.
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allocation strategy. Most C compilers use dynamic allocation, except for those tar-
geting low-end microcontrollers where code and memory space is limited and the
overhead of dynamic allocation is too costly. Outside of the section detailing dy-
namic allocation, the example subroutines in this chapter use static allocation for
any required data memory.

Figure 6.10 shows the vlshift() C function implemented as a subroutine in
PIC18 assembly language. The implementation is a straightforward implementa-
tion of the while{} loop of the C function. Note that a return statement is used to
exit the subroutine; every assembly language subroutine must use a return or retlw
instruction to return to the caller. The CBLOCK statement assigns the unsigned char
parameters v and amt to locations 0x040 and 0x041, respectively (these locations
were arbitrarily selected for this example). A separate location is not assigned for
the return value, as the v parameter contains the subroutine return value after exe-
cution. In this case, the W register could have been used to pass the return value of
the subroutine back to the caller, as the return value is an 8-bit value. Similarly, the
W register could be used to pass one of the two parameters, either v or amt, into the
subroutine. This approach would save one memory data location and is an exam-
ple of a code optimization. Code optimizations are done to reduce code size, reduce
data memory requirements, and speed execution. Compilers and expert assembly
language programmers routinely perform code optimizations such as this. On mi-
croprocessors that have separate register memories and data memories, use of reg-
isters for parameter passing is important, as access to registers typically costs fewer
clock cycles than data memory accesses. However, on the PIC18, data memory lo-
cations are the file registers (or vice versa, however one wishes to view it), so there
are few optimizations available for parameter passing. Using the W register for 
parameter passing will save a data memory location, but can only be done if the 

;Parameter space for vlshift
CBLOCK 0x040
  v, amt
ENDC
;; return value in w
vlshift
  movf   amt,f
vlshift_loop
  bz     vl_return       ;amt=0?
  bcf    STATUS,C
  rlcf   v,f             ; v = v << 1
  decf   amt,f           ; amt--
  bra    vlshift_loop
vl_return
  return

 // variable left shift 
unsigned char vlshift(
unsigned char v,
unsigned char amt)
{
  while (amt) {
    v = v << 1;
    amt--;
  }
  return(v);
}

In C In Assembly 

Static allocation for
parameters

FIGURE 6.10 The vlshift() C function in assembly language. ON THE CD



parameter is a byte variable. In the next section, we will discover a set of special
function registers that are useful for passing parameters that are pointers; that is,
they contain addresses of file registers. 

Figure 6.11 shows the main() code that calls vlshift() implemented in assem-
bly language. Observe that the i and j values are copied into the vlshift() para-
meter locations v and amt, respectively, before the call vlshift instruction. One
may be tempted in this example to simply write the vlshift() subroutine to access
the i and j variable locations directly, and to dispense with parameters altogether.
However, this simply turns i and j into the de-facto parameters of the vlshift()
subroutine, as any other calls to vlshift() must modify the values of i, j before in-
voking vlshift(). Having separate locations for parameters v and amt, and copying
the values of i, j to these locations before the subroutine call preserves the seman-
tics of the original C program, which does not modify the values of either i or j via
the subroutine call. The movff v,k instruction after the subroutine call copies the
return value of the subroutine into k, as required by the C statement k = vl-

shift(i,j).

In general, the responsibilities of the caller in a subroutine call are: (1) initial-
ize parameter values, (2) call the subroutine, and (3) copy any return value to a
variable within the caller. A caller should not expect the STATUS, BSR, or W reg-
isters to remain unchanged by the callee; if these register values are to be preserved
during the subroutine call, either a fast call/return should be used or these register
values should be copied to temporary memory locations.
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CBLOCK 0x0
 i,j,k
ENDC
  org    0
  goto main

  org 0x200
main
; initialize main program variables
   movlw  0x24
   movwf  i     ; i = 0x24
   movlw  0x2
   movwf  j     ; j = 2
   ;; setup subroutine parms
   movff  i,v
   movff  j,amt
   call   vlshift 
   movff  v,k      ; k = vlshift(v,amt);

here
   goto here

main(void){
 unsigned char i, j, k;

 i=0x24;

 j = 2;

 k = vlshift(i, j);

}

In C In Assembly 

Static allocation for
main variables

FIGURE 6.11 Calling the vlshift() subroutine from main().



6.5 ARRAYS AND POINTERS IN C

Until now, we have been using variables to store data of varying precisions—char

(1 byte), int (2 bytes), long (4 bytes)—each of which can either be unsigned or
signed. However, another important class of variables is that of pointers, variables
that contain memory addresses of other variables. We have already used two special
function registers that are actually pointers, namely the program counter and stack
pointer. The program counter contains the address of a location in program mem-
ory, while the stack pointer contains the address of a location in the return address
memory. The sizes of these two pointer registers vary widely, as the size is depen-
dent upon the maximum number of locations in the referenced memory, and not the
size of the data stored in the memory location. The PC requires 21 bits as it ad-
dresses 2M bytes of program memory; the SP only requires 5 bits to access the 31
locations of return address memory.

How wide does a pointer register need to be to specify a location in the PIC18
file registers? The answer is 12 bits, because the maximum number of file registers
in the PIC18 is 4K bytes, or 212 bytes. The PIC18 has three 12-bit registers named
FSR0, FSR1, and FSR2 that are used to implement pointer variables in assembly
language. The functionality of these registers is discussed in the next section; first,
we explore how pointer variables are implemented in C.

A C pointer variable contains the address of another variable. Pointer variables
are typically used to pass blocks of data, or arrays of data, to functions. An array is
a contiguous block of memory that contains multiple data items of the same type.
Listing 6.1 gives examples of arrays and pointers in C.

LISTING 6.1 Arrays and pointers in C.

(1)  char sa[10], sb[] = “Hello”;

(2)  char *ptra, *ptrb;

(3)  ptra = sa;          // ptra is assigned starting address of sa

(4)  ptra = &sa[0];      // same as previous line

(5)  sa[0] = 0x20;       // assign the value 0x20 to element 0

(6)  *ptra = 0x20;       // same as previous line

(7)  sa[2] = 0x45;       // assign the value 0x20 to element 2

(8)  *(ptra+2) = 0x45    // same as previous line

(9)  sb[0] = sa[0];      // copy sa[0] to element sb[0]

(10) sb[0] = *ptra;      // same as previous line

(11) ptra++; ptra++;     // ptra now points to sa[2]

(12) sb[0] = *ptra;      // sa[2] copied into sb[0]

(13) ptrb = sb;          // ptrb is assigned starting address of sb

(14) sa[2] = sb[1]       // copy element 1 of sb to element 2 of sa

(15) *(ptra) = *(ptrb+1) // same as previous line

(16) ptra = ptrb+1;      // ptra now points to element sb[1]

(17) do_mysub(sb);       // pass address of sb to subroutine

(18) do_mysub(ptrb);     // same as previous line
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The statement char sa[10] in line 1 declares an array of 10 char elements (or
10 bytes); this occupies 10 consecutive byte memory locations. The array contents
are initially cleared to zero if the array is a global variable; that is, if it is declared out-
side of main() or a subroutine. In general, the memory location corresponding to a
global variable that is not given an initial value is guaranteed by C language se-
mantics to be cleared to zero before the first instruction in main() is executed. The
char sb array is given the initial contents of “Hello”; that is, the array elements con-
tain the ASCII codes for each character of the string “Hello”. The char sb array is
actually six elements in size instead of five, as any char array initialized in this man-
ner is given a null byte (a 0x00 value) as the last element in the array. This is done
so that the end of the char array can be determined by searching for a null byte. Line
2 declares two pointer variables. The * (asterisk) in the declaration char *ptra is
what distinguishes ptra as a pointer variable from a normal variable. The declara-
tion char *ptra is read as “ptra is a pointer to data of type char.” Line 3 shows how
to initialize ptra so that it contains the address of the first member of array sa. If an
array name, such as sa, is used without brackets to identify a particular array mem-
ber, it is assumed to be the address of the first member of the array. Thus, the value
sa returns the address of the first member of the array, while sa[0] returns the value
of the first member of the array (in this case, a value of zero). The compiler deter-
mines the placement of arrays in memory; when manually converting these state-
ments to PIC18 assembly language you have the choice of placing them wherever
there is available data memory. Line 4 shows the use of the “&” (address of opera-
tor) applied to an array member. The statement &sa[0] is read as “the address of
array element sa[0].” Thus, lines 3 and 4 accomplish the same action; namely, ptra
is assigned the address of the first element of array sa. In C, if the array contains n
elements, elements are referenced from 0 to n–1. Line 5 copies the constant value
0x20 to array element sa[0]. Line 6 shows the use of the “*” (pointer dereference)
operator applied to a pointer. Line 6 accomplishes the same result as line 5; because
when *ptra is used on the left-hand side of an assignment, the assignment value is
copied into the memory location referenced by ptra (the memory location referred
to by ptra is modified as a result of the assignment). The symbol ptra refers to the
memory location containing the pointer value; the operation *ptra refers to the
memory location referenced by the pointer value. The operation *ptra is a replace-
ment for sa[0] because of the assignment in line 4 that assigned ptra to the address
of the first element of sa.

Line 7 assigns the value 0x45 to array element sa[2]. Line 8 accomplishes the
same result as line 7 since *(ptra+2) is a direct replacement for sa[2] because ptra

contains the starting address of the sa array. The computation ptra+2 is an exam-
ple of pointer arithmetic; the computation returns the address of element ptra[2]
when ptra is viewed as an array. The actual value added to the ptra pointer depends
on the type of data that ptra is referencing. Because ptra is a pointer to data of type
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char, which is 1 byte in size, the value 2*1 is added to ptra to form the address of
ptra[2]. If ptra was changed to a pointer of type int, where each int element oc-
cupies 2 bytes of memory, the value 2*2, or 4 is added to ptra to form the address
of ptra[2]. Similarly, if ptra was a pointer to type long, the value added to ptra for
the pointer computation ptra+2 is 2*4, as each element that ptra references is 4
bytes in size. In general, the offset added to a pointer for the computation ptr + i

is computed as i*sizeof(datatype), where sizeof(datatype) is the number of bytes
required by the data type that ptr references. For example, sizeof(int) is the value
2, as 2 bytes are required for an int data type. The type of data referenced by a
pointer affects how pointer arithmetic is done; it does not affect the size of the
pointer itself. Pointers to data types char, int, or long are all the same size, as the
size of the pointer (number of bytes required to hold the pointer) is dependent
upon the maximum number of memory locations that can be referenced by the
pointer. Thus, a pointer to data memory in the PIC18 is always 12 bits wide because
of the 4K byte limit on file registers, regardless of the data type referenced by the
pointer.

Line 9 copies array element sa[0] into array element sb[0]. Line 10 accom-
plishes the same result as line 9, as *ptra is a replacement for sa[0] as noted previ-
ously. When *ptra is used on the right-hand side of an assignment operator, this
means to read the contents of the memory location referenced by ptra. Each ptra++
operation of line 11 increments ptra to the location of the next char that ptra is ref-
erencing, after which ptra points at sa[2]. Line 12 could then be replaced by the
statement sb[0] = sa[2], as *ptra is now equivalent to sa[2]. Line 13 assigns ptrb
to the address of element sb[0]. Line 14 copies element sb[1] to element sa[2].
Line 15 accomplishes the same result as Line 14, as ptra now references element
sa[2] (because of the previous two ptra++ operations), and ptrb+1 references ele-
ment sb[1] because ptrb contains the address of element sb[0]. Line 16 removes
the * operator from the pointers, causing ptra to be assigned the value ptrb+1, or
the address of element sb[1]. Line 17 calls a function named do_mysub(), and passes
the starting address of array sb as the parameter value. Line 18 accomplishes the
same result as Line 17, as ptrb contains the starting address of array sb.

Figure 6.12 uses memory assignments for the locations of the arrays and point-
ers of Listing 6.1 and illustrates how each C statement affects memory contents.
Sometimes, seeing numerical values for pointer values can aid in understanding
pointer functionality. Array sa begins at location 0x150 and occupies 10 bytes of
memory (locations 0x150 through 0x159). Array sb requires 6 bytes of memory, lo-
cations 0x15A through 0x15F. Each pointer variable requires 2 bytes of memory in
order to contain the 12-bit addresses that reference data memory. The starting lo-
cation of 0x150 for these variables is arbitrary; any other free locations in the file
registers could have been chosen. After the execution of the statement ptra = sa,
the value of ptra is now 0x150, the starting address of array sa. The address of ptra
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is 0x0160 (&ptra), while the value that ptra is referencing (*ptra) is the contents of
location 0x150, or 0. The use of numerical values for pointers in Figure 6.12 should
make clear the difference between such statements as *ptra = *(ptrb+1) and ptra =

ptrb+1. When *ptra = *(ptrb+1)is executed, ptrb contains the value 0x015A, the
starting address of sb. The value of ptra is 0x0152, the location of sa[2]. Thus,
ptrb+1 is 0x015B, and *(ptrb+1) is the contents of location 0x15B, which is copied
to location 0x0152. The statement ptra = ptrb+1 changes the ptra value to 0x15B.
Because ptra resides at location 0x0160, this statement modifies the memory loca-
tions 0x0160 and 0x161.

Figure 6.13 shows examples of arrays and pointers using type int instead of
char. The difference in data types means that each element of arrays sa, sb now oc-
cupy 2 bytes of memory instead of only 1 byte. Thus, array sa occupies 10*2 = 20
bytes of memory from location 0x150 through location 0x163. The starting address
of array sb is 0x164, and occupies 4 int * 2 bytes = 8 bytes of memory. Even
though ptra and ptrb are now pointers to elements that are double the size of the
char elements of Listing 6.1 , the pointers themselves have not changed size, they
still each occupy 2 bytes of memory. The first two lines of code initialize ptra and
ptrb to the starting locations of arrays sa and sb, respectively. Observe that the op-

char sa[10];
char sb[]=”Hello”
char *ptra,*ptrb;

 C Code  Location      Contents  (values in Hex)

  0150  00 00 00 00 00 00 00 00 00 00
  015A  48 65 6C 6C 6F 00
  0160  00 00
  0162  00 00

sa
sb

ptra
ptrb

ptra = sa;
ptra = &sa[0];   0160  50 01

ptra = 0x150, value of ptra is stored at
0x160 in little endian order 

sa[0] = 0x20;
*ptra = 0x20;   0150  20 ptra points at location 0x150, *ptra

modifies contents of 0x150
sa[2] = 0x45;
*(ptra+2)= 0x45;   0150  20 00 45 ptra+2 is location 0x152,

new value is 0x45
sb[0] = sa[0];
sb[0]= *ptra;   015A  20 

contents of location 0x150 (0x20) 
copied to location 0x15A (sb[0])

ptra++;   0160  51 01 ptra is now 0x151

sb[0] = *ptra;   015A  45 

ptra++;   0160  52 01 ptra is now 0x152

contents of location 0x152 (0x45)
copied to location 0x15A (sb[0])

ptrb = sb;   0162  5A 01 ptrb is now 0x15A

sa[2] = sb[1];
*(ptra)=*(ptrb+1);   0150  20 00 65

contents of location 0x15B (0x65)
copied to location 0x152

ptra = ptrb+1;   0160  5B 01 ptra is now 0x15B

do_mysub(sb);
do_mysub(ptrb);

The value of ptrb, 0x15A, is passed to 
do_mysub subroutine.

FIGURE 6.12 C pointer/array code with memory assignments.



eration ptrb++ increases the value of the pointer by 2, from 0x164 to 0x166. As
noted earlier, ptrb++ is a pointer to type int, and by the rules of pointer arithmetic,
ptrb is increased by 1 * sizeof(int), or 1*2 = 2. The operation *(ptra+3) =

*(ptrb+2) copies the int at the location referenced by ptrb+2 to the location refer-
enced by ptra+3. Because ptrb was first initialized to the starting location of sb, then
incremented, the value ptrb+2 now references sb[3] or location 0x16A. The variable
ptra references sa[0], or location 0x150, so the address ptra+3 references sa[3], or
location 0x150 + 2*3 = 0x156.

Sample question: For the following C code fragment, assume the variables are stored in
memory starting at location 0x0100. What is the starting address of each variable
assuming this code is compiled for the PIC18? What is the final value of ptr? What
array element in s is modified?

char s[8],*ptr, a; 

a = 5;

ptr = s;

150 Microprocessors

signed int sa[10];
signed int sb[]= {
  -20,1000,-546,
  23444}
signed int *ptra;
signed int *ptrb;

 C Code  Location      Contents  (values in Hex)

  0150  00 00 00 00 00 00 00 00
  0158  00 00 00 00 00 00 00 00
  0160  00 00 00 00
  0164  EC FF E8 03 DE FD 94 5B
  016C  00 00
  016E  00 00

sa

sb
ptra
ptrb

ptra = sa;   016C  50 01 ptra is now 0x150

ptrb = sb;   016E  64 01 ptrb is now 0x164

ptrb++;   016E  66 01 ptrb is now 0x166, note that it 
increased by 2 because each element
size is 2 bytes; ptrb points at sb[1]

*ptra = *ptrb;   0150  E8 03 copy integer at location 0x166 (ptrb)
to location 0x150 (*ptra). This is the
same as sa[0] = sb[1]

*(ptra+3) = *(ptrb+2);   0150  E8 03 00 00 00 00 94 5B

ptra+3 refers to location sa[3](0x156) as ptra is sa (0x150)
ptrb+2 refers to location sb[3](0x16A) as ptrb is &sb[1] (0x166)

sa[0] sa[1] sa[2] sa[3]

FIGURE 6.13 C pointer/array of type int with memory assignments.
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ptr = ptr + 3;

*ptr = a;

Answer: The starting memory location for s is 0x100. The starting memory lo-
cation for ptr is 0x100 + 8 = 0x108 because s occupies 8 bytes of memory.
The starting memory location for a is 0x108 + 2 = 0x10A because ptr oc-
cupies 2 bytes of memory (a pointer variable always occupies 2 bytes of mem-
ory irregardless of the data type it references). The ptr variable is first
initialized to the starting address of s (0x100). The pointer arithmetic ptr =
ptr + 3 is calculated as 0x100 + 3*1 = 0x103 since ptr is a char * pointer,
so each element is 1 byte in size. Thus, the final value of ptr is 0x103. The state-
ment *ptr = a modifies array element s[3] because ptr is pointing to s[3].

Sample Question: For the previous question, change the data type from char to int

and answer the same questions; change char to long and answer the same questions.

Answer: When the data type is changed from char to int, the starting memory
location for s is still 0x100. The starting memory location for ptr is 0x100 +
0x10 = 0x110 because s occupies 8*2 = 16 = 0x10 bytes of memory. The
starting memory location for a is 0x110 + 2 = 0x112 because ptr occupies
2 bytes of memory (a pointer variable always occupies 2 bytes of memory ir-
regardless of the data type it references). The ptr variable is first initialized to
the starting address of s (0x100). The pointer arithmetic ptr = ptr + 3 is
calculated as 0x100 + 3*2 = 0x106 since ptr is an int * pointer, so each el-
ement is 2 bytes in size. Thus, the final value of ptr is 0x106. The statement
*ptr = a modifies array element s[3] because ptr is pointing to s[3].

When the data type is changed from char to long, the starting memory 
location for s is still 0x100. The starting memory location for ptr is 0x100 +
0x20 = 0x120 because s occupies 8*4 = 32 = 0x20 bytes of memory. The
starting memory location for a is 0x120 + 2 = 0x122 because ptr occupies
2 bytes of memory (a pointer variable always occupies 2 bytes of memory 
irregardless of the data type it references). The ptr variable is first initialized
to the starting address of s (0x100). The pointer arithmetic ptr = ptr + 3 is
calculated as 0x100 + 3*4 = 0x10C since ptr is a long * pointer, so each 
element is 4 bytes in size. Thus, the final value of ptr is 0x10C. The statement
*ptr = a modifies array element s[3] because ptr is pointing to s[3].



6.6 ARRAYS AND POINTERS IN ASSEMBLY LANGUAGE

The PIC18 has three registers named FSR0, FSR1, and FSR2 for implementing
pointers. These are collectively referred to as FSRn, and all operations affecting an
FSRn register work identically regardless of the particular register being used. The
FSRn registers are 12 bits wide, and are used to contain addresses of file register lo-
cations. The individual bytes of an FSRn register are named FSRLn (FSRn low byte)
and FSRHn ( FSRn high byte). To initialize an FSRn register, each individual byte
of an FSRn register can be loaded separately to form a 12-bit address. Alternately,
the lfsr FSRn,k instruction can be used, where k specifies a 12-bit literal that is
loaded into the FSRn register. The FSRn registers contain pointer values, which are
addresses of data memory locations. To affect the memory location that the pointer
references, the special register INDFn is used as the file register for an instruction.
Each INDFn register is paired with its associated FSRn register; FSR0 with INDF0,
FSR1 with INDF1, and FSR2 with INDF2.

Figure 6.14 shows an example of FSRn/INDFn usage to implement C pointer
referencing. The statement ptra = sa initializes ptra to point to the starting mem-
ory location of sa. The variable ptra is implemented using FSR0, with each byte of
FSR0 initialized separately. The construct low sa instructs the assembler to form a
literal using the low byte of symbol sa. The symbol sa represents location 0x0100 as
per the CBLOCK statement, so movlw low sa is equivalent to movlw 0x00. Similarly,
high sa refers to the high byte of symbol sa, so movlw high sa is equivalent to movlw
0x01. The instruction pair movlw 0x30; movwf INDF0 implements the C statement
*ptra = 0x30. The instruction movwf INDF0 accomplishes the operation movwf
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char sa[5];
char sb[10];
char *ptra, *ptrb;

ptra = sa;

*ptra = 0x30;

ptrb = sb;

*ptrb = *ptra;

  CBLOCK 0x100
   sa:5, sb:10  ;sa is 0x100, sb is 0x105
  ENDC
  ; FSR0 used for ptra, FSR1 for ptrb
  movlw  low sa
  movwf  FSR0L          ;init FSR0L
  movlw  high sa
  movwf  FSR0H          ;FSR0 = 0x0100

  movlw  0x30
  movwf  INDF0          ;(FSR0)   0x30

  lfsr   FSR1, sb       ;FSR1 = 0x105

  movff  INDF0, INDF1   ;(FSR1)   ((FSR0))

In C In Assembly 

FIGURE 6.14 FSRn/INDFn usage.



0x0100, as FSR0 contains the value 0x0100. When INDF0 is used in an instruction,
it indirectly specifies the actual file register location being referenced through the
FSR0 register. This type of addressing is called indirect addressing, where a register
contains the address of a memory location being referenced. As mentioned in
Chapter 3,  the instruction movwf 0x100 uses direct addressing, because the address
0x100 is encoded directly in the machine code of the instruction. The instruction
movwf 0x100 always refers to location 0x100, and cannot be changed without phys-
ically changing the instruction word. The instruction movwf INDF0 refers to what-
ever memory location is contained in FSR0, and is thus more flexible than movwf
0x100. Indirect addressing allows subroutines that operate on arrays to be written
generically; the starting address of an array used by the subroutine is passed as a pa-
rameter value. The register transfer language description of movwf INDF0 is
(FSR0) W, with the parentheses used to indicate the indirection (W is copied to the
memory location referenced by FSR0). If FSR0 contains 0x100, then (FSR0) is
replaced by 0x100, and the equivalent action becomes 0x100 W (W is copied to
memory location 0x100). 

In Figure 6.14, FSR1 is used to point to array sb, and is initialized with the sin-
gle statement lfsr FSR1,sb, which copies the 12-bit literal represented by the sym-
bol sb into FSR1. The lfsr instruction is explicitly provided for loading a 12-bit
literal into an FSRn register, and is more efficient than using two pairs of
movlw/movwf instructions. The assignment *ptrb = *ptra is accomplished by the sin-
gle instruction movff INDF0,INDF1. Because ptra contains the starting address of sa
(0x100), and ptrb the starting address of sb (0x105), the statement *ptrb = *ptra

copies the contents of location 0x100 to location 0x105. The FSR0, FSR1 registers
contain the values 0x0100, 0x0105, respectively, so the action of instruction movff
INDF0,INDF1 is equivalent to movff 0x100,0x105.

It is somewhat of a misnomer to refer to the INDFn file registers as registers, as
they do not physically implement file registers even though they are assigned loca-
tions in the special function register range of 0xF80 to 0xFFF. Instead, these are es-
sentially a form of opcode that specifies the addressing mode that is used with the
corresponding FSRn register, which does represent a physical register. There are
four addressing modes other than INDFn available for use with the FSRn registers,
and they are defined as follows:

POSTINCn: Use the address in FSRn, and then increment FSRn. In C, this is
equivalent to *ptr, ptr++, if ptr is a pointer to type char.

POSTDECn: Use the address in FSRn, and then decrement FSRn. In C, this is
equivalent to *ptr, ptr--, if ptr is a pointer to type char.

PREINCn: Increment FSRn, and then use the address in FSRn. In C, this is
equivalent to ptr++, *ptr, if ptr is a pointer to type char.
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PLUWn: Uses the value of W as an offset added to FSRn to form the address.
In C, this is equivalent to *(ptr+k), where k is the offset in the W register, and
ptr is a pointer to type char. If ptr references a type other than char, the W reg-
ister value has to be set equal to k*sizeof(datatype), where datatype is the type
referenced by ptr.

Observe that FSRn is incremented by both the POSTINCn and PREINCn ad-
dressing modes. However, in the POSTINCn mode, FSRn is incremented after
(post) it is used to reference memory. In the PREINCn mode, FSRn is incremented
before (pre) it is used to reference memory. Figure 6.15 shows how POSTINCn is
used within a for{} loop that copies the first five values of array sb (sb[0] to sb[4])
into array sa. Notice that four C language statements are replaced by the single in-
struction movff POSTINC1,POSTINC0. This code reduction occurs because POSTINCn
combines both a memory reference and pointer increment in one operation. It
would be an error to use the instruction movff PREINC1,PREINC0, as this would copy
values sb[1] through sb[5] into sa[1] through sa[5], because the increment of
FSR1/FSR0 happens before the memory reference. The instruction sequence infsnz
FSR0L,f ;incf FSR0H can be used to increment the FSR0 register if use of
POSTINCn/PREINCn modes is not possible. The movlb 1 instruction is used to set
the BSR to bank 1 because of the instructions that access the i variable; the BSR reg-
ister is not used with operations involving indirect addressing, as an FSRn register
specifies the full 12-bit address required for a data memory location. 

char sa[5];
char sb[10];
char *ptra,*ptrb;
unsigned char i;

ptra = sa;
ptrb = sb;
for (i=0; i < 5; i++) {
  *ptra = *ptrb;
   ptra++;
   ptrb++;
}

  CBLOCK 0x100
   sa:5,sb:0xa,i  ;sa is 0x100, sb is 0x105
  ENDC

  movlb  1           ;select bank 1
  lfsr   FSR0, sa    ;init FSR0
  lfsr   FSR1, sb;   ;init FSR1
  clrf   i,f         ;i = 0
loop_top
  movlw  5
  cpfslt i           ;i < 5?
  bra    loop_end    ;exit loop
  movff  POSTINC1, POSTINC0
  incf   i,f         ;i++
  bra    loop_top
loop_end
  ...rest of code...
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FIGURE 6.15 POSTINCn usage.ON THE CD



Figure 6.16 shows the C code of Figure 6.15 rewritten in a more natural man-
ner to use array references instead of pointer references. Note that FSR0/FSR1 are
still used to access the elements of arrays sa and sb. The PLUSWn addressing mode
is used in this example to implement the statement sa[i] = sb[i]. Observe that be-
fore the statement movff PLUSW1, PLUSW0 is executed, the value of i is loaded into
the W register by movf i,w. The use of the PLUSWn addressing mode is limited by
the size of offsets that can be stored in the W register, namely 0 through 255. If
more than 256 elements were being copied, this code would have to be rewritten,
as W is not large enough to contain the required offsets.

Figure 6.17 shows the C code of Figure 6.16 changed to use int data instead of
char data. The i value loaded into the W register for use by PLUSWn has to be mul-
tiplied by 2 because each array element is 2 bytes in size. The first movff
PLUSW1,PLUSW0 instruction copies the least significant byte of sb[i] to sa[i]. Then,
W is incremented by 1 so that the subsequent movff PLUSW1,PLUSW0 instruction
copies the most significant byte sb[i] to sa[i].
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char sa[5];
char sb[10];
unsigned char i;

for (i=0; i < 5; i++) {

  sa[i] = sb[i];

}

  CBLOCK 0x100
   sa:5,sb:0x10,i    ;sa is 0x100,sb is 0x105
  ENDC

  movlb  1           ;select bank 1
  lfsr   FSR0, sa    ;init FSR0
  lfsr   FSR1, sb    ;init FSR1
  clrf   i,f         ;i = 0
loop_top
  movlw  5
  cpfslt i           ;i < 5?
  bra    loop_end    ;exit loop
  movf   i,w         ;get i
  movff  PLUSW1, PLUSW0
  incf   i,f         ;i++
  bra    loop_top
loop_end
  ...rest of code...

In C In Assembly 

FIGURE 6.16 PLUSWn usage with char arrays.ON THE CD



A Subroutine with Pointers

Figure 6.18 shows a function named lcase() that converts any uppercase characters
in a string to lowercase. The amount of ASCII data manipulation performed by a
microcontroller depends on the application; string data is used in this example, as
it easy to see the effects of the ASCII data manipulation within the MPLAB simula-
tion environment. The function loops through the characters in the string, and tests
for an uppercase character by checking if the character is greater than 0x40 or less
than 0x5B. If an uppercase character is found, the character is converted to lower-
case by OR’ing  it with 0x20, which sets bit 5 of the character. If the character is
zero, the end of the string has been reached, and the function is exited. The start-
ing address of the string is passed in the ptr parameter, which requires 2 bytes to
hold the 12-bit address. The assembly code moves the contents of ptr into FSR0,
and uses this register to access the string contents. The assembly code is a straight-
forward conversion of the C code. The instruction movf POSTINC0,f is used to ac-
complish ptr++; the PREINC0 addressing mode works equally well in this case. 
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int sa[5];
int sb[10];
unsigned char i;

for (i=0; i < 5; i++) {

  sa[i] = sb[i];

}

  CBLOCK 0x100
   ;sa is 0x100, sb is 0x10A
   sa:5*2, sb:0x0a*2,i 
  ENDC

  movlb  1               ;select bank 1
  lfsr   FSR0, sa        ;init FSR0
  lfsr   FSR1, sb;       ;init FSR1
  clrf   i,f             ;i = 0
loop_top
  movlw  5
  cpfslt i               ;i < 5?
  bra    loop_end        ;exit loop
  bcf    STATUS,C
  rlcf   i,w             ;w = i * 2
  movff  PLUSW1, PLUSW0  ;LSByte copy
  addlw  1               ;w = w+1
  movff  PLUSW1, PLUSW0  ;MSBbyte copy
  incf   i,f             ;i++
  bra    loop_top
loop_end
  ...rest of code...
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The main() code that calls the lcase() function is shown in Figure 6.19. The s1
string is declared as a global variable and is given the initial value
“Upper/LOWER0123”. The main() code consists of one statement, lcase(s1), that
calls the lcase() function with the starting address of the s1 string. After lcase()
execution, the s1 string is modified to contain “upper/lower0123”. The assembly
code reserves 16 bytes of space for s1 in the file registers at location 0x280 via the
CBLOCK statement. The call init_s1 instruction executes a subroutine that copies
the initial contents of the s1 string from program memory to data memory; details
of this subroutine are discussed in the next section. The starting location of s1 is
copied into the ptr parameter for lcase(), and then call lcase executes the
lcase() subroutine. A code optimization would be to drop the use of the ptr mem-
ory locations and pass the starting address of s1 directly in the FSR0 register. 
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unsigned char lcase (
unsigned char *ptr){

   unsigned char c;

   while (*ptr != 0) {

    c = *ptr;

    if (c > 0x40 && 
        c < 0x5B) {

      // lowercase the char
       *ptr = *ptr | 0x20;
        } 
     ptr++;
    }

CBLOCK 0x100
   ptr:2, c  ;ptr contains address of string 
  endc

lcase
  movlb  1            ;select bank 1
  movff  ptr,FSR0L    ;set FSR low byte
  movff  ptr+1,FSR0H  ;set FSR high byte

lcase_loop
  movf   INDF0,w      ;get current character
  bz     lcase_exit   ;exit if zero 
  movwf  c            ;save character
  movlw  0x40
  cpfsgt c            ;c > 0x40?
  bra    lcase1       ;no, goto ptr++
  movlw  0x5B
  cpfslt c            ;c < 0x5B?
  bra    lcase1       ;no, goto ptr++
  movlw  0x20
  iorwf  INDF0,f      ;do lower case
lcase1
  movf   POSTINC0,f   ;ptr++
  bra    lcase_loop   ;loop back to top
lcase_exit
 return
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Sample Question: Implement the following C function in PIC18 assembly language.
mysub (char *s){

(*s)++;

}

char a_val;

main() {

mysub(&a_val);

}

Answer: This function performs an increment operation on the value pointed
to by s. Recall that the operation &a_val returns the address of variable a_val.
In Listing 6.2, separate CBLOCKs are used for the memory space required by
mysub() and by main(). An optimization could be to just use the FSR0 register
to pass in the parameter required by mysub().

LISTING 6.2 Sample question solution.

CBLOCK 0x100      ;space for mysub

s:2

ENDC
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char s1[]= 
   "Upper/LOWER0123";

main(void) {

 lcase (s1);

}

CBLOCK 0x280
   s1:0x10   ;reserve 16 bytes of space 
  endc

org    0
  goto main

org 0x0200
main
 ;copy string in program mem 
 ;to s1 data memory
 call init_s1

 ;set up call for strcnt
 movlb  1          ;select bank1
 movlw  low s1
 movwf  ptr
 movlw  high s1
 movwf  ptr+1      ;set ptr = s1 value
 call   lcase      ;do lower case

here      ;end program with infinite loop
 goto here

In C In Assembly 

FIGURE 6.19 main() code that calls lcase() subroutine.



mysub

movff  s,FSR0L    ; 

movff  s+1,FSR0H  ;FSR0 holds s pointer

incf   INDF0,f    ;(*s)++

return

CBLOCK 0x000      ;space for main

a_val

ENDC

main

movlw  low a_val  ; 

movwf  s          ;initialize s LSByte to LSByte address of a_val

movlw  high a_val ;initialize s MSByte to MSByte address of a_val

movwf   s+1

call    mysub     ;mysub(&a_val)

here

goto    here      ;stop

Sample Question: Implement the following C function in PIC18 assembly language.
mysub (int *s){

(*s)++;

}

int a_val;

main() {

mysub(&a_val);

}

Answer: This is the same as the previous sample question, except the data
types have been changed from char to int. In this solution (Listing 6.3), a
CBLOCK is not used for mysub(). Instead, the main() code uses the FSR0 reg-
ister to pass the s value to the mysub() function. This reduces the number of
instructions required in both mysub() and main(). Note that the (*s)++ oper-
ation in mysub() is performed on an int value, so a 16-bit increment is per-
formed. The use of POSTINC0 in the LSByte increment operation incf
POSTINC0,f increments FSR0 to point to the MSByte of *s after the incf oper-
ation is performed. This means that the addwfc INDF0,f instruction affects
the MSByte of *s.

LISTING 6.3 Sample question solution.

mysub                  ;on entry, assume FSR0 contains s value

movlw   0            ;W = 0, needed when W is added to MSByte

incf    POSTINC0,f   ;(*s)++ of LSByte, point FSR0 at MSByte

addwfc  INDF0,f      ;(*s)++ of MSByte, must include Carry flag

return
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CBLOCK 0x000         ;space for main

a_val

ENDC

main

lfsr    FSR0,a_val   ;load FSR0 with address of a_val

call    mysub        ;mysub(&a_val)

here

goto    here         ;stop

6.7 ACCESSING TABLE DATA FROM PROGRAM MEMORY

Initial values for C global variables present an interesting challenge in microcon-
trollers. The C language semantics guarantee that before main() is executed, a global
variable is cleared to zero if no specific initial value is given, or is loaded with the
initial value specified in the variable declaration. A C compiler generates initializa-
tion code that is executed on microprocessor reset, and before main() is called, that
accomplishes global variable initialization. The s1 string in Figure 6.19 is given an
initial value of “Upper/LOWER0123”, which is later modified by the subroutine
call to lcase(). The s1 string must be stored in the file registers since its value is
modified during code execution. However, the initial value “Upper/LOWER0123”
must be stored in nonvolatile memory, as it must be available after power-on so it
can be copied by initialization code to file registers. The nonvolatile memory used
to store initial values for character strings, and global variables in general, is pro-
gram memory. A special set of PIC18 instructions named table reads is used to read
the contents of program memory, while table writes are used to write new values
into program memory. This section discusses table read operations; table writes are
discussed in Chapter 14, “Capstone: Audio Sampling, Monitoring System, and Au-
tonomous Robot.” 

A pointer register named TBLPTR is used to hold the address of the program
memory location accessed by a table read instruction. The TBLPTR register is 21
bits wide, the same width as the program counter, as both registers access locations
in program memory. A table read transfers the contents of the program memory lo-
cation referenced by TBLPTR into an 8-bit register named TABLAT. There are
four table read instructions, their names and operation are as follows:

tblrd*: TABLAT (Program memory(TBLPTR)). Transfers the contents of
the program memory location specified by TBLPTR to the TABLAT register.

tblrd*+: TABLAT (Program memory(TBLPTR)); TBLPTR++. Transfers
the contents of the program memory location specified by TBLPTR to the

160 Microprocessors



TABLAT register, and then increments TBLPTR (table read with post-
increment).

tblrd*-: TABLAT (Program memory(TBLPTR)); TBLPTR––. Transfers the
contents of the program memory location specified by TBLPTR to the TAB-
LAT register, and then decrements TBLPTR (table read with post-decrement).

tblrd+*: TBLPTR++;TABLAT (Program memory(TBLPTR)). Increment
TBLPTR, and then transfer the contents of the program memory location spec-
ified by TBLPTR to the TABLAT register (table read with pre-increment).

Note the similarities of these address modes for table reads with the addressing
modes available for FSRn, and the use of * in the instruction mnemonic to suggest
pointer referencing in C.

Listing 6.4 shows the init_s1 subroutine used in Figure 6.19 that copies the
initial value for s1 from program memory. 

LISTING 6.4 init_s1 code that performs table reads.

(1)    s1const 

(2)      da “Upper/LOWER0123”,0   ;”da” packs two bytes to a word

(3)    init_s1

(4)      movlw  upper s1const  ; ‘upper’ is upper byte of 21-bit

address

(5)      movwf  TBLPTRU

(6)      movlw  high s1const

(7)      movwf  TBLPTRH

(8)      movlw  low s1const

(9)      movwf  TBLPTRL

(10)     lfsr   FSR0,s1        ; point FSR at s1

(11)     call   init_str

(12)     return

;; FSR must be pointing to where string is to be stored

(13)   init_str

(14)     tblrd*+              ; use table read to get byte

(15)     movf   TABLAT, w     ; transfer TABLAT to W 

(16)     movwf  POSTINC0      ; save to string location, FSR0++

(17)     bnz init_str         ; loop if byte not zero

(18)     return

The initial value of the s1 string is stored in program memory under the
s1const label, using the da (store string in program memory) assembler directive.
The da directive packs two ASCII characters into each 16-bit word of program
memory. A null byte (0x0) is included in the declaration of the s1const string so
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that the end of the string can be detected during copying from program memory to
data memory. The s1_init subroutine initializes TBLPTR to the starting address of
s1const, and FSR0 to the starting address of s1, and then calls the init_str sub-
routine that performs the actual copying. The 21 bits of the TBLPTR register are
initialized by writing to three separate registers: TBLPTRL (lower byte), TBLPTRH
(middle byte), and TBLPTRU (upper byte). The upper s1const directive returns a
5-bit literal that is the upper 5 bits of the program memory address represented by
s1const. The init_str subroutine is a loop that uses a table read with post-
increment (tblrd*+) to copy the contents of the program memory location refer-
enced by TBLPTR to the TABLAT register. The TABLAT register is transferred to
W, and then the movwf POSTINC0 instructions copies W to data memory. The loop
continues until the null byte of the string is copied, at which point the init_str
subroutine exits. You may be tempted to replace the instruction pair movf TAB-
LAT,w; movwf POSTINC0 with the single instruction movff TABLAT,POSTINC0. How-
ever, the movff instruction does not affect the Z flag, so the following bnz
instruction will not detect when the null byte is copied. 

6.8 SUBROUTINES AND STACK FRAMES: DYNAMIC ALLOCATION

Now that pointers have been discussed, we need to revisit the topic of memory al-
location for subroutine parameter lists and local variables. Recall that static alloca-
tion uses a fixed set of memory locations for subroutine parameters and local
variables. The problem with static allocation is that subroutine recursion is not
supported, as a recursive call to a subroutine destroys the static variables in use by
the current subroutine call. Dynamic allocation uses a potentially new set of mem-
ory locations for parameters and local variables each time a subroutine is called.
One common method for implementing dynamic allocation is to reserve a section
of memory for a data stack, which dynamically grows in size to accommodate sub-
routine memory requirements as subroutine calls are made. The caller pushes pa-
rameters onto the data stack before calling the subroutine, while the subroutine
allocates space on the stack for local variables. To implement a data stack, a pointer
register is reserved to keep track of the top of the stack. This register is referred to
as the stack pointer (SP), and FSR1 is used in these examples. We will define a push
operation as incrementing the stack pointer, and then storing the data value at the
location referenced by the stack pointer. Thus, a push of the W register onto the
stack is accomplished by the instruction movwf PREINC1, which increments FSR1
and then stores W at the location referenced by FSR1. By this definition, the stack
pointer points at the last item pushed on the stack, and the memory location that
the stack pointer initially references will not contain data. Conversely, a pop oper-
ation reads the value referenced by the stack pointer, and then decrements the stack
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pointer. The instruction movf POSTDEC0,w thus pops a value off the stack into the W
register. By these definitions, the stack grows toward increasing memory addresses,
and shrinks toward decreasing addresses. These definitions of push, pop, and the
use of FSR1 as the stack pointer are somewhat arbitrary choices; other definitions
could be used. For example, many microprocessors have their stacks grow down in
memory; that is, toward decreasing memory addresses. These push and pop defin-
itions are the same as used for the return address stack and thus should be familiar.
Figure 6.20 shows sample push and pop operations of literal values onto a data
stack located at 0x27F. Observe that while the stack pointer (FSR1) is initialized to
0x27F, the first push operation actually writes data to location 0x280. While a data
stack can be placed anywhere in memory, a typical strategy is to allocate space for
static variables (global variables) in low memory, and stack space in high memory.
Our data stack will have no automatic means of checking stack overflow or under-
flow. If this stack was implemented on the PIC18F242, which only has three banks
physically implemented, the last data location is 0x2FF. A push to memory location
0x300 would be a stack overflow, but there is no hardware detection of this over-
flow. Extra code could be inserted in our push and pop implementations to check
for stack overflow and underflow, but this costs program memory space and exe-
cution time. Our examples will not check for data stack underflow/overflow. In
some compilers, data stack underflow/overflow checking is enabled or disabled via
compiler options.

The space allocated on the stack for subroutine parameters and local variables
is called a stack frame. Because a subroutine can call other subroutines, which
changes the value of the stack pointer, a second pointer register called a frame
pointer (FP) is used as a stable reference to the parameters and local variables of a
subroutine. In our examples, we use FSR2 as the frame pointer. Figure 6.21 shows
the format of the stack frame used in these code examples. The caller pushes the pa-
rameters onto the stack before calling the subroutine; the number of bytes required
for parameters depends on the number of parameters and their types. The first ac-
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 lfsr FSR1, 0x27F
 movlw 0x6
 movwf PREINC 
 movlw 0xA0
 movwf PREINC
 movlw 0x38
 movwf PREINC 

 0x281: 0xA0 

 0x282: 0x38 

FSR1 initial stack
pointer value

 0x280: 0x06 

 0x27F: 0x??  push 0x6 
 push 0xA0 

 push 0x38 

 pop

 pop

 pop

  movf POSTDEC,w

  movf POSTDEC,w

  movf POSTDEC,w 

 Data Stack  growth 

 1

 2

 3

 1

 2

 3
 4

 5

 6

FIGURE 6.20 Examples of push/pop operations to a data stack.
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tion of the subroutine is to push the current frame pointer on the stack to preserve
its value, as this subroutine changes the value of the frame pointer to reference its
parameters and local variables. Local variable space is allocated by incrementing the
stack pointer by the number of required bytes. The frame pointer is left pointing to
the first local variable. Subsequent subroutine calls allocate new space above this
stack frame. Parameters are accessed from the frame pointer using negative offsets,
while local variables are accessed from the frame pointer using positive offsets. The
subroutine return value can be passed back in registers, or written to the space
used by the parameters. The subroutine must restore the frame pointer to its value
on entry before executing a return from subroutine. The parameters passed by the
caller are also cleaned up before return, by either popping the parameters off the
stack or simply subtracting n from the stack pointer, where n is the number of bytes
required for the parameters. 

Table 6.1 summarizes how return values should be passed back to the caller. If
the subroutine return value is an 8-bit value, it is passed back in the W register. If
the return value is a 16-bit value, it is passed back in the PRODH:PRODL special
function register pair (these registers are used by the multiply instructions but can
also be used as general-purpose registers; these registers are discussed in Chapter 7,
“Advanced Assembly Language: Higher Math”). A 32-bit or greater return value
should be pushed on the data stack by the subroutine before returning to the caller;
it is the responsibility of the caller to pop this return value off the stack.

The detailed steps in constructing a stack frame are given in Figure 6.22. The
majority of the work is done by the subroutine; the caller only has to push the 
parameters on the stack before the call, and save the return value. In the subroutine,

 old FP(low byte)

 old FP(high byte)

 local variables
(k bytes)

 parameters
(n bytes)

pushed by
caller

{established
by subroutine new FP

new SP
other stack
frames

One Stack Frame

increasing
memory
addresses

FIGURE 6.21 A stack frame.



after the old frame pointer is pushed on the stack, the actions FP SP; FP++
establish the new frame pointer and leave it pointing at the first location used for
local variables. Local space is allocated by incrementing the stack pointer by k, the
number of bytes required for local variables. After the subroutine body is executed,
the stack is cleaned by first pointing the stack pointer at the location of the old
frame pointer by the actions FP––; SP FP. Popping FP off the stack restores the
old frame pointer, then the subroutine parameter space is reclaimed by increment-
ing the stack pointer by n, which is the number of bytes required for the parame-
ters. At this point, if the subroutine has a 32-bit or greater return value, it is pushed
on the stack before returning to the caller. Having the subroutine clean the stack of
passed parameters means that this code does not have to be repeated in the caller
each time the subroutine is called. 
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push p1
 push p2
 ......
 push pn

call

move/pop

 Caller

 push FP

 FP  ← SP 
 FP++

 SP = SP+k 

 do_subroutine_body

 FP--
 SP  ← FP

  pop FP 

 SP =SP -n 

return

1. Push Parameters

2. Call Subroutine

10. Save return
value

3. Save old frame pointer

4. Create new frame pointer,
point at first local variable

5. Allocate local variable space

6. Deallocate local variable space

7. Restore old frame pointer 

9. Return from subroutine 

 Subroutine

8. Clean stack of passed parameters 
(push return value to stack if necessary) 

FIGURE 6.22 Steps in constructing a stack frame.

Return Value Size Passed Back In

8-bit W register

16-bit PRODH:PRODL register pair

32-bit or greater Pushed on stack by subroutine, popped by caller

TABLE 6.1 Subroutine Return Values



A subroutine that computes the Fibonacci number given an input integer is
used to illustrate stack frames and recursion. The Fibonacci computation is most
naturally performed by recursion, and thus is a classic example of how subroutine
recursion operates. Figure 6.23 shows a C function implementation of the 
Fibonacci computation, and the detailed stack frame for the subroutine. A recursive
subroutine must have a terminal condition where the subroutine does not call it-
self. If a terminal condition did not exist, the subroutine would become trapped in
an infinite loop of repeatedly calling itself. For the fib subroutine, the terminal con-
ditions are n = 0 (returns 0) or n = 1 (returns 1). For other values of n, the sub-
routine returns the value fib(n-1) + fib(n-2). A local variable named f1 is used to
store the value returned by fib(n-1) before the fib(n-2) call is made.

Before converting the fib function to a PIC18 assembly language subroutine, a
detailed stack frame is needed to determine the offsets required for accessing para-
meters and local variables from the frame pointer. From the stack frame in Figure
6.23, it is seen that n is accessed using a –3 offset and f1 by a 0 offset. This means
that the instruction pair movlw D’-3’;movf PLUSW2 loads the value of parameter n
into the W register assuming FSR2 contains the frame pointer. Table 6.2 gives the
Fibonacci numbers from 0 to 17; it is seen that the use of unsigned char data types
limits the maximum value of n for fib to a value of 13 in order to remain in the
range 0 to 255.

Figure 6.24 shows the assembly code for main() of Figure 6.23. The stack
pointer (FSR1) is initialized to location 0x27F; the frame pointer (FSR2) value is
initialized within the first subroutine call. The global variable j is initialized to the
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unsigned char fib (unsigned char n)
{
 unsigned char f1;
 if (n == 0) return(0);
 if (n == 1) return(1);
 f1 = fib(n-1);
 f1 = fib(n-2) + f1;
 return(f1);
}

unsigned char k,j;

main () {

 j = 13;
 k = fib(j);
 printf("fib(%d) is : %d\n",j,k);
}

 old FP(low byte)

 old FP(high byte)
f1 (local variable)

n  (parameter)

Detailed Stack Frame for fib

new FP

- 1

- 2

- 3

new SP

Recursion end cases

Input value increasing memory
addresses

FIGURE 6.23 C Subroutine for Fibonacci computation and detailed stack frame.ON THE CD



value 13, and then j is pushed on the stack before the subroutine call (call fib).
The fib return value is returned in W and saved to the global variable k. The num-
bering of the actions taken by main() corresponds to the actions found in Figure 6.22.
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n fib(n) n fib(n)

0 0 9 34
1 1 10 55
2 1 11 89
3 2 12 144
4 3 13 233
5 5 14 377
6 8 15 610
7 13 16 987
8 21 17 1597

TABLE 6.2 Fibonacci Numbers 0 to 17

unsigned char k,j;

main () {

 j = 13;

k = fib(j);

}

1.  Push Parameters

;; make stack last 128 locations
STKBASE EQU 0x27F
  CBLOCK 0x00
   k,j
  endc

  org    0
  goto main

  org 0x0100
main
  lfsr FSR1, STKBASE  ; init stackpointer
  ;; set up subroutine call
  ;; reserve space for return value 
  movlw D'13'
  movwf j
  movff j,PREINC1  ; push j on stack
  call  fib
  movwf k          ; save return value 
;; stack is now back to normal
here
  goto   here   ; loop forever

In C In Assembly 

2. Call 
 Subroutine

10. Save return
value

FIGURE 6.24 Assembly implementation for main() Fibonacci C code.



The assembly code for the fib() subroutine is seen in Figure 6.25. The num-
bered actions within the subroutine code correspond to those of Figure 6.22. Some
observations are:

In step 3, the bytes of the frame pointer are pushed as lower byte first, then
upper byte. This orders the bytes in little-endian order on the stack because the
stack grows toward increasing memory locations. In step 7, the bytes are
popped off the stack in reverse order—upper byte first, then the lower byte.
The space for the local variable f1 is allocated on the stack in step 5 by incre-
menting the stack pointer by 1, since f1 is a char variable and thus requires only
1 byte. This space is reclaimed in step 6 by transferring the frame pointer to the
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unsigned char fib(n)
unsigned char n;
{
 unsigned char f1;

 if (n == 0) return(0);

 if (n == 1) return(1);

 f1 =  fib(n-1);

 f1 = f1 + fib(n-2);

 return(f1);
}

;; computes fibonacci numbers, return value in w
fib
  ;; save old frameptr
  movff FSR2L, PREINC1
  movff FSR2H, PREINC1
  ;; get new frame ptr
  movff FSR1L, FSR2L
  movff FSR1H, FSR2H ;fp=sp
  movf  PREINC2,f    ;fp++
  ;;allocate local space
  movf  PREINC1,f    ;sp++
  ;; begin code
  movlw -D'3'
  movf  PLUSW2,w     ;get N
  bz    fib_exit     ; if zero, return 0
  sublw 0x1          ;1-w
  bz    return_1
  ;; do fib(n-1)
  movlw -D'3'
  decf  PLUSW2,w     ; get N-1
  movwf PREINC1      ; push on stack
  call  fib
  movwf INDF2        ;save in F1 local variable
  movlw -D'3'
  decf  PLUSW2,w     ; get N-1
  decf  WREG,w       ; W = N-2
  movwf PREINC1
  call  fib
  addwf INDF2,f      ;f1 = f1+fib(n-2)
  movf  INDF2,w      ;get return value into w
  bra   fib_exit
return_1
  movlw 1
fib_exit
  ;; restore stack
  movf  POSTDEC2,f    ;fp--
  movff FSR2L, FSR1L
  movff FSR2H, FSR1H  ;sp=fp
  movff POSTDEC1,FSR2H
  movff POSTDEC1,FSR2L ; pop old frame ptr
  movf  POSTDEC1,f    ;sp--,remove passed parameter
  return

In C In Assembly 

3. Save old frame pointer

4. Create new frame pointer,
    point at first local variable

5. Allocate local variable 
    space

6. Deallocate local 
  variable  space

7. Restore old frame pointer 
8. Clean stack of passed 
parameters

9. Return from subroutine 

FIGURE 6.25 Assembly implementation for fib() Fibonacci C code.
ON THE CD



stack pointer, as the frame pointer references the beginning of local variable
space.
The value n-1 is pushed on the stack before the fib(n-1) subroutine call; the re-
turn value is saved to local variable f1 by the instruction movwf INDF2 because
f1 is at offset 0 from the frame pointer (FSR2).
The instruction movf POSTDEC1,f before the subroutine return frees the space
on the stack used by the input parameter n; this increments the stack pointer
(FSR1) by 1, freeing 1 byte of space.

It is obvious that dynamic memory allocation for parameters and local vari-
ables requires more complex code than static allocation. Some microprocessor in-
struction sets have specialized instructions for efficient creation of stack frames.
Despite the complexity, use of stack frames for parameters and local variables is the
best option if subroutine recursion must be supported. 

Sample Question: If the data type of parameter n to fib was changed to int, what is the
parameter offset for n from the frame pointer?

Answer: The change from char to int increases the parameter space from 1
byte to 2 bytes. The frame pointer will still point to the beginning of the local
space, and the saved frame pointer will still occupy 2 bytes. Thus, the offset
only changes by 1, from –3 to –4. The instruction pair movlw D’-4’; movf

PLUSW2 will copy the value of n from the stack into the W register.

SUMMARY

Subroutines improve code efficiency and clarity by encapsulating often-used code
sequences as a single unit that can be called from multiple locations within a pro-
gram. A stack is needed to save the return address so a subroutine can determine
the return location within the calling function. Static allocation uses a fixed set of
memory locations for subroutine parameter lists and local variables. While static al-
location is easy to implement and requires few CPU resources, subroutine recur-
sion is not supported, as subroutine data is overwritten during the recursive call.
Dynamic allocation for parameters and local variables is required if subroutines are
to support recursion. A data stack using FSR0, FSR1 as a stack pointer and frame
pointer is one method to implement dynamic allocation for subroutines. A pointer
register contains the address of a data memory location that is used by an instruc-
tion. Pointers allow references to data arrays to be passed to subroutines instead of
the entire array, improving code execution speed. Data that needs to be stored be-
tween processor resets can be saved in program memory, which is nonvolatile, and
retrieved when needed using table read instructions. 
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REVIEW PROBLEMS

Problems that refer to initial memory contents use Table 6.3.

1. If the call 0x0480 instruction is at program memory location 0x0100,
what return address is pushed on the stack?

2. If the rcall 0x0480 instruction is at program memory location 0x0100,
what return address is pushed on the stack?

3. When would you have to use a call instruction instead of an rcall in-
struction?

4. Give the contents of any changed memory locations and/or registers after
execution of the following instructions, assuming the initial memory con-
tents of Table 6.3.

lfsr  FSR0, 0x024

incf  POSTDEC0, f

5. Give the contents of any changed memory locations and/or registers after
execution of the following instructions, assuming the initial memory con-
tents of Table 6.3.

lfsr  FSR0, 0x024

decf  INDF0, f

6. Give the contents of any changed memory locations and/or registers after
execution of the following instructions, assuming the initial memory con-
tents of Table 6.3.

lfsr  FSR0, 0x024

incf  PREINC0, f
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Location Contents

W 0x02

0x023 0x38

0x024 0xC7

0x025 0x9B

0x026 0xD0

0x027 0xFE

TABLE 6.3 Memory Contents
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7. Give the contents of any changed memory locations and/or registers after
execution of the following instructions, assuming the initial memory con-
tents of Table 6.3.

lfsr  FSR0, 0x024

incf  POSTINC0, f

8. Give the contents of any changed memory locations and/or registers after
execution of the following instructions, assuming the initial memory con-
tents of Table 6.3.

lfsr  FSR0, 0x024

incf  PLUSW0, f

9. For the following C code sequence, assume the variables begin at location
0x100. Give the contents of any changed memory locations after the code
has been executed.

char a[]= {0x34,0x24,0x11,0xFE};

char *ptr;

ptr = a;

*(ptr+1) = *(ptr+2);

10. Write a PIC18 assembly language sequence that implements the code of
problem 9. Use pointer operations, and use FSR0 for the pointer register.

11. For the following C code sequence, assume the variables begin at location
0x100. Give the contents of any changed memory locations after the code
has been executed.

int a[]= {-234,120,30000,-20000};

int *ptr;

ptr = a;

*(ptr+1) = *(ptr+2);

12. Write a PIC18 assembly language sequence that implements the code of
problem 11. Use pointer operations, and use FSR0 for the pointer register.

13. Implement the following subroutine in PIC18 assembly language.

// this subroutine implements a string swap.

str_swap (char *s1, char *s2){

char c;

while (*s1 != 0) {

c =*s1;

*s1 = *s2;

*s2 = c;



s1++;s2++;

}

}

14. Implement the following subroutine in PIC18 assembly language.

// this subroutine implements an integer swap.

int_swap (int *ptr, unsigned char i, unsigned char j){

int k;

k = *(ptr+i);

*(ptr+i) = *(ptr+j);

*(ptr+j) = k;

}

15. Implement the following subroutine in PIC18 assembly language.

// this subroutine implements a long swap.

long_swap (long *ptr, unsigned char i, unsigned char j){

long k;

k = *(ptr+i);

*(ptr+i) = *(ptr+j);

*(ptr+j) = k;

}

16. Implement the following subroutine in PIC18 assembly language.

// this subroutine implements a max function.

int find_max (int *ia, unsigned char cnt){

int k;

k = 0;

while (cnt != 0) {

if (*ia > k) k = *ia;

ia++; cnt--;

}

return(k);

}

17. Implement the following subroutine in PIC18 assembly language.

// this subroutine adds the contents of two integer arrays

// the number of elements to add is given by cnt

ivec_add (int *ia, int *ib, unsigned char cnt){

while (cnt != 0) {

*ia = *ia + *ib;

ia++; ib++;

cnt--;
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}

}

18. Implement the putstr() function of the following C code as PIC18 assem-
bly language. Assume the putch() function expects its input parameter to
be passed in the W register.

putch (unsigned char c){

putstr (unsigned char *s){

}

//  print string 

putstr (unsigned char *s){

while (*s != 0) {

putch(*s);

s++;

}

}

19. Implement the getstr() function of the following C code as PIC18 assem-
bly language. Assume the return value of the getch function is passed back
via the W register.

unsigned char getch()

{ // not shown 

}

//  get string

getstr (unsigned char *s){

unsigned char c;

do{

c = getch();

*s = c;

s++;

}

while (c != 0) 

}

20. Write a PIC18 subroutine that will initialize the contents of an integer array
stored in data memory with the contents of an integer array stored in pro-
gram memory. Assume FSR0 points to the integer array in data memory,
TBLPTR to the integer array in program memory, and the W register con-
tains the number of integers to be copied. You will probably need to use
another temporary memory location to track the number of integers that
have been copied from program memory to data memory.

21. For the fib assembly language implementation, what is the maximum
value of n that can be computed before stack overflow occurs (exceeds
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0x2FF) given the stack pointer is initialized to 0x27F? Or will the return ad-
dress stack overflow before the data stack overflows?

22. Modify the fib() C code of Figure 6.23 to use a long data type instead of a
char data type. Implement this in PIC18 assembly language in the same
way as was done in Figures 6.24 and 6.25.

23. Give the detailed stack frame required for the following subroutine:

// this subroutine adds the contents of two integer arrays

// the number of elements to add is given by cnt

ivec_add (int *ia, int *ib, unsigned char cnt){

while (cnt != 0) {

*ia = *ia + *ib;

ia++; ib++;

cnt--;

}

}

24. Implement problem #13 using dynamic parameter allocation as was done
for the fib example.

25. Define the push and pop operations needed for a stack that grows toward
decreasing memory locations.
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Advanced Assembly
Language: Higher Math 

7

T
his chapter examines various higher math topics such as multiplication and
division operations for unsigned and signed integers, floating-point number
representation, saturating arithmetic, BCD arithmetic, and ASCII/binary

conversions.

7.1 LEARNING OBJECTIVES

After reading this chapter, you will be able to:

Implement signed and unsigned integer multiplication in PIC18 assembly 
language.
Implement signed and unsigned integer division in PIC18 assembly language.

In This Chapter

Multiplication
Division
Fixed-Point and Saturating Arithmetic
Floating-Point Number Representation
BCD Arithmetic
ASCII Data Conversion



Discuss the formatting and storage requirements of single and double precision
floating-point numbers.
Implement saturating addition and subtraction operations in PIC18 assembly
language.
Implement BCD addition and subtraction operations in PIC18 assembly 
language.
Implement ASCII-to-binary and binary-to-ASCII for both hex and decimal
number formats in PIC18 assembly language. 

7.2 MULTIPLICATION

In C, the multiplication operation is written as product = multiplicand * multi-
plier. For integer multiply, the number of bits required for the product to prevent
overflow is the sum of the bits in the multiplicand and multiplier. Typically, the two
operands are the same size; so two n-bit operands produce a 2n-bit result. Figure
7.1 shows a paper and pen multiply of two 3-bit operands that produces a 6-bit
product. Starting with the rightmost bit of the multiplier, a partial product is
formed by multiplying the multiplier bit with the multiplicand, with the rightmost
bit of the partial product aligned under the multiplier bit that produced it. Since
this is binary multiplication, a “1” in the multiplier produces a partial product that
is equal to the multiplier, while a “0” produces a partial product of all zero bits. The
product is formed from the sum of all of the partial products.

The multiplication operation can be implemented in numerous ways. The
cheapest method in terms of logic gates is to not add any support for multiplication
to the ALU, and to simply rely on the pre-existing microprocessor add and shift op-
erations to perform a multiply. An algorithm for an unsigned integer multiply
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+

multiplicand

multiplier

partial product

x
r2    r1    r0

s2    s1    s0

s0*r2 s0*r1 s0*r0

 s1*r2 s1*r1 s1*r0

  s2*r2 s2*r1 s2*r0+

 p5    p4    p3    p2   p1    p0 product

1  0  1

1  1  0
x

0  0  0

1   1  0
0    1   1  1  1  0   =   30

1  1  0
Binary

6

5x
30

Decimal

FIGURE 7.1 3x3 Unsigned multiply.



using add/shifts is seen in Figure 7.2. The two n-bit operands are named mc (mul-
tiplicand) and mp (multiplier). The ph variable holds the accumulated sum of the
partial products, and at algorithm termination, ph contains the upper n bits of the
product. The algorithm loops n times, one for each bit of the multiplier (mp). Each
time through the loop, the LSb of mp is tested; if “1”, the multiplicand is added to
the ph variable. If the LSb of mp is “0”, then addition is not performed as the par-
tial product is zero in this case, making the addition superfluous. The shift right of
the Cflag, ph, and mp values accomplishes two things: 

The LSb of the ph variable is a final bit of the product; shifting ph right moves
this bit into the MSb of mp, saving this bit for the result.
The right shift moves the next bit of the multiplier (mp) into the LSb for test-
ing at the top of the loop. As the loop iteration proceeds, each bit of the multi-
plier is examined from LSb to MSb.

After n iterations, the multiplication is finished and the loop is exited. The ph
variable contains the upper n bits of the product, and mp the lower n bits. The ph
variable is copied to the mc variable so that the final 2n-bit product returns in the
original operands as mc:mp.

Table 7.1 shows the progress of the k, Cflag, ph, mp, mc values for the add/shift
algorithm using the multiplication of Figure 7.1.
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Unsigned Multiplication: Shift/Add Algorithm
mc (multiplicand) n-bits,   mp (multiplier) n-bits,  ph (product high, n-bits), k (counter)

2n-bit product returns in  mc:mp

C
flag

 = 0;  k = n
 ph = 0

mp (LSB?) C
flag

 ,ph ←  ph + mc

Shift right  (C
flag

→  ph →  mp)
               k = k - 1

k?

        mc ←  ph
 (product is mc:mp)

1
add multiplicand

0

nonzero

0

FIGURE 7.2 Unsigned add/shift integer multiply algorithm.



An assembly language implementation of the add/shift algorithm for 8-bit
operands is seen in Figure 7.3; the mult8x8 subroutine performs the operation
mc*mp, with the 16-bit product returning in mc:mp. Static memory allocation is used
for the parameters and local variables of mult8x8.
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k Cflag ph mp mc Comment

3 0 000 101 110 Initial values

3 0 110 101 110 mp(LSb)=1, so Cflag,ph = ph+mc

2 0 011 010 110 shift right Cflag ph mp; k--

2 0 011 010 110 mp(LSb)=0, so no add

1 0 001 101 110 shift right Cflag ph mp; k--

1 0 111 101 110 mp(LSb)=1, so Cflag,ph = ph+mc

0 0 011 110 110 shift right Cflag ph mp; k--

Algorithm exit, product is ph:mp

TABLE 7.1 Numerical Example for Shift/Add Multiplication Algorithm

  org    0
  goto main

  org 0x0100
main
  movlw 0x2C
  movwf mc
  movlw 0xA5
  movwf mp
  call  mult8x8
;;infinite loop
here
  goto   here

CBLOCK 0x00
   mp,mc,ph,k
ENDC

;; does mc * mp
;; answer returns in mc:mp
mult8x8
  movlw 8
  movwf k
  clrf  ph
mult_loop
  bcf  STATUS,C   ; clear C flag, add affects
  btfss mp,0      ; test LSb of mp
  bra mult_1      ; LSb = 0, do shift
  movf mc,w
  addwf ph,f      ; LSb = 1, add mc+ph
mult_1
  rrcf ph,f       ; right shift Cflag,ph,mp
  rrcf mp,f
  decfsz k,f      ; k--
  bra mult_loop   ; loop if k non-zero
  movff ph,mc
  return

Initialize parameters for
call to mult8x8

k is zero, exit

Execute loop 8 times, once for
each bit of multiplier

mp LSb
is 1

FIGURE 7.3 Assembly language implementation of add/shift multiply. 
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The disadvantage of the shift/add technique for multiplication is obvious—it is
slow! Each bit of the multiplier requires iteration through the loop of Figure 7.3 be-
tween the mult_loop label and the bra mult_loop instruction. This takes 9 to 10 in-
struction cycles (36 to 40 clock cycles) depending on the LSb test, requiring 72 to
80 instruction cycles (288 to 320 clock cycles) for the 8x8 unsigned multiply, not
counting the overhead for subroutine call/return and loop entry/exit. If hardware
support for the shift/add iteration is added to the ALU in the form of a double-
length shift register for the product and specialized control, this can be reduced to
one clock cycle per loop iteration (eight clock cycles). While this would be an im-
provement, a faster method is to augment the ALU with a specially designed mul-
tiplier unit such as array multiplier that produces the result in one clock cycle.
Figure 7.4 shows a naive implementation of a 3x3 array multiplier that performs the
operation of Figure 7.1. There are more efficient methods for constructing array
multipliers, but this conveys the key point of an array multiplier: the product is
available a combinational delay after the inputs are applied. This means the multi-
plication is completed in one clock cycle (if the clock cycle is long enough). The ori-
gin of the term array multiplier is obvious from Figure 7.4, as it is built from an
array of full-adders and half-adders that implements the addition of the partial
products. Observe that binary multiplication for each partial product bit is simply
an AND gate, as the Boolean multiply a*b is a “1” only if both inputs are “1”.

The PIC18 has an 8x8 array multiplier, whose 16-bit result is placed in the
PRODH, PRODL register pair. Two instructions make use of the array multiplier:
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r0r1r2

HAFAHA

r0r1r2

r0r1r2

HAFAHA

s0

s1

s2

p0p1p2p3p4p5

FA
a b

cisco

full adder

FA
a b

sco

half adder

FIGURE 7.4 Naive 3x3 array multiplier.
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mulwf f [,a]: Multiply W with f, the 16-bit product returns in PRODH:PRODL.

mullw k: Multiply W with 8-bit literal k, the 16-bit product returns in
PRODH:PRODL.

Neither instruction affects status flags, and both require only one instruction
cycle.   Listing 7.1 gives the mult8x8 subroutine of Figure 7.2 implemented using the
mulwf instruction. The advantages in terms of code size and speed in using the mulwf
instruction versus a shift/add approach are obvious. 

LISTING 7.1 Multiplication using MULWF.

;; do 8x8 mult using hw instruction

mult8x8

movf   mc,w

mulwf  mp        ; PRODH:PRODL = mp * W

movff  PRODL,mp

movff  PRODH,mc

return

The shift/add approach in Figure 7.2 is scalable, in that it can be applied to any
size operands. It is straightforward to extend the code of Figure 7.2 to use int
(16x16) or long (32x32) operands. Using the 8x8 hardware multiply of the multw in-
struction in larger operations requires more effort than scaling the algorithm of
Figure 7.2. To illustrate, a 16x16 multiplication s*r is performed using 8x8 multi-
plication operations in Figure 7.5. Four 16-bit partial products are formed as
pp0=sL*rL, pp1=sL*rH, pp2=sH*rL, and pp3=sH*SL where {sL, rL} and {sH, rH} are the
lower and upper bytes of the 16-bit values s, r. Observe that the partial products pp1,
pp2 are shifted to the left such that the lower bytes of these partial products align
with the upper byte of pp0; the lower byte of pp3 is aligned with the upper bytes of
pp1, pp2. When performing the byte additions of the partial products, care must be
taken to propagate the carries during the summation. 

sH                  sL

32-bit product

rH                  rL

x
(sL*rL)L(sL*rL)H

(sL*rH)L(sL*rH)H

(sH*rL)L(sH*rL)H

(sH*rH)L(sH*rH)H+

p7:p0p15:p8p23:p16p31:p24

s7:s0s15:s8
sH sL

s

r7:r0r15:r8
rH rL

r

pp0

pp1

pp2

pp3

p0p1p2p3

FIGURE 7.5 Unsigned 16x16 multiplication as 8x8 multiplication.



A subroutine that implements the 16x16 multiply of Figure 7.5 is seen in List-
ing 7.2 . The partial products pp0, pp3 are computed first, and copied to product
bytes p0:p1, and p2:p3, respectively. The partial product pp1 is computed next, and
the sums p1+pp1L, p2+pp1H+Cflag, p3+0+Cflag are performed in order. The final mulwf
instruction computes pp2, and the sums p1+pp2L, p2+pp2H+Cflag, p3+0+Cflag are com-
puted to generate the final 32-bit product.

LISTING  7.2 Assembly code for unsigned 16x16 using MULWF.

CBLOCK 0x00

mp:2,mc:2,p:4

endc

;; do p = mc * mp, 

;; 16x16 mult using mulwf 

mult16x16

movf mp,w

mulwf mc          ;pp0 = mpL * mcL

movff PRODL,p

movff PRODH,p+1   ; save pp0

movf  mp+1,w

mulwf mc+1        ;pp3 = mpH * mcH

movff PRODL,p+2

movff PRODH,p+3   ;pp3

movf  mp,w

mulwf mc+1        ; pp1 = mpL * mcH

movf  PRODL,w

addwf p+1,f       ;p1 + pp1L

movf  PRODH,w

addwfc p+2,f      ;p2 + pp1H + carry

clrf  WREG

addwfc p+3,f      ; p3 + zero + carry

movf  mp+1,w

mulwf mc          ; pp2 = mpH *mcL

movf  PRODL,w

addwf p+1,f       ;p1 + pp2L

movf  PRODH,w

addwfc p+2,f      ;p2 + pp2H + carry

clrf  WREG

addwfc p+3,f      ;p3 + carry

return

Signed multiplication requires different hardware or instruction sequences
than unsigned multiplication does. Many microprocessors provide both unsigned
and signed multiply instructions. If a microprocessor has no hardware support for
multiply, a shift/add/subtract approach called Booth’s algorithm can be used to 
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iteratively determine the product in a manner similar to that of Figure 7.2. A good
discussion of Booth’s algorithm can be found in [3]. Most modern processors have
hardware support for at least unsigned multiply, and this can be used to create a
signed multiply. One simple approach is to convert each operand to positive num-
bers, perform the unsigned multiply, and then negate the product by subtracting it
from 0 if either of the operands was originally negative. However, there is a more
efficient method. Consider the multiplication in Equation 7.1.

P = A * ( 1) (7.1)

Equation 7.2 shows the operation of Equation 7.1 as 8-bit numbers using an
unsigned multiply.

P = A * 255 (7.2)

The –1 in Equation 7.1 is 0xFF in 8 bits, or 255 as an unsigned number as seen
in Equation 7.2. To reach the correct product of Equation 7.1, Equation 7.2 is
rewritten as shown in Equation 7.3.

P = A * (255 – 256) = A*255 – A*256 = A*255 – (A << 8) (7.3)

Equation 7.3 indicates that the product of the unsigned multiply must be post-
corrected by subtracting A*256 or A<<8 from the product. For an 8x8 unsigned
multiply, this is the same as subtracting A from the upper byte of the 16-bit prod-
uct, as the lower byte of A<<8 is a zero value. Table 7.2 lists the steps for a signed n
x n multiply using an unsigned n x n multiply.

Listing 7.3 shows the algorithm of Table 7.2  implemented in PIC18 assembly
code using the mulwf instruction. This approach is efficient in that it requires no
extra memory locations, but it is still double the number of instructions of the un-
signed 8x8 multiply of Listing 7.1. Adding support for signed operands to the 16x16
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Steps

1. Perform the A * B unsigned multiply, each operand is n bits.

2. If B is negative, subtract A << n from the product.

3. If A is negative, subtract B << n from the product.

TABLE 7.2 Signed Multiply Algorithm Using Unsigned Multiply



unsigned multiply of Listing 7.1  requires 12 additional instructions, an increase of
about one third.

LISTING 7.3 Signed 8x8 multiply using mulwf instruction.

;; do 8x8 signed mult using mulwf instruction

mult8x8

movf mc,w

mulwf mp

btfsc mp,7     ;; test sign of mp

subwf PRODH,f  ;; mp negative, subtract mc << 8

movf  mp,w

btfsc mc,7     ;; test sign of mc

subwf PRODH,f  ;; mc negative, subtract mp << 8

movff PRODL,mp

movff PRODH,mc

return

Sample Question: What does the product 0x3A * 0xA8 return if the numbers are
unsigned? signed? (two’s complement)

Answer: As unsigned numbers, the product is 0x3A * 0xA8 = 58 * 168 =
9744 = 0x2610.
As signed numbers, the product is 0x3A * 0xA8 = +58 * (-88) = -5104 =
0xEC10.

7.3 DIVISION 

Equation 7.4 represents the division operation, where p is the dividend, q is the
quotient, d is the divisor, and r is the remainder.

(7.4)

The relationship between q, r, p, and d is more clearly expressed by Equation 7.5.

(7.5)

Implementations of the division operation typically use a 2n-bit dividend, an n-
bit divisor, and produce an n-bit quotient and n-bit remainder. Figure 7.6  shows a
paper and pen division of an 8-bit dividend by a 4-bit quotient, producing a 4-bit
quotient and a 4-bit remainder. The subtraction performed at each step produces
a partial dividend, which forms the dividend for the next stage. The last subtraction
produces the remainder, which is guaranteed to be in the range 0 to d 1. Unlike
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multiplication, overflow can occur if the quotient requires more than n bits, which
is true if the value formed by the upper n bits of the dividend is greater than or
equal to the divisor.

Several iterative division algorithms use shift/subtract operations to produce
the quotient and remainder. Figure 7.7 shows the restoring division algorithm for a
2n-bit dividend p and an n-bit divisor d. The high and low bytes of p are designated
as pH and pL, respectively. On algorithm entry, the comparison pH >= d is performed
to check for overflow; if true, the Carry flag is set to “1” and the algorithm termi-
nates. Like the add/shift multiplication algorithm, the main loop performs n itera-
tions, with each iteration determining a quotient bit. A quotient bit is “1” if the
partial dividend Cflag,pH >= d, in which case the new partial dividend is pH – d. A
quotient bit is “0” if Cflag,pH < d, and the partial dividend remains the same. The
first operation of the loop performs the shift Cflag pH pL, moving the partial
dividend into the Cflag and upper n bits of pH. If the shift produces a carry, the par-
tial dividend is greater than the divisor, so the new partial dividend is computed as
pH pH - d and the quotient bit is set to “1” (the LSb of pL is the current quotient
bit). If no carry is produced by the shift, the subtraction pH pH - d is performed,
which has two side effects: a) the comparison d > pH is determined by the state of
the Cflag, and b) the new partial dividend is computed. If Cflag is a “1”, this indicates
that no borrow occurred, so pH >= d, the new partial dividend is valid, and the quo-
tient bit is set to “1”. If Cflag is a “0”, a borrow occurred, so pH < d meaning the par-
tial dividend should have been left undisturbed. In this case, the operation pH pH

+ d is performed to restore the partial dividend to its original value and the quotient
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Check:
p = q * d + r
   = 11 * 14 + 3
   = 154 + 3
   = 157

p7p6p5p4p3p2p1p0
d3d2d1d0

q3q2q1q0

q3*d- 0

pd1

q2*d

p1p0

0-

0

0

q1*d

p0

0- 0

pd2

q0*d0-

pd3

r3r2r1r0

dividend

quotientdivisor (d)

partial
dividend

remainder

1 0 0 1 1 1 0 1

Decimal

1 1 1 0
1 1 1 0

1 0 1 1

-

0 1 0 1 1
0 0 0 0-

1 0 1 1 0
1 1 1 0-

1 0 0 0 1
1 1 1 0-

0 0 1 1

Binary

14 157
11

140-
17
14
3

FIGURE 7.6 Unsigned division (8-bit dividend, 4-bit quotient).



bit is cleared to “0”. This action of performing the subtraction pH pH - d and
then restoring the partial dividend, if necessary, is why this algorithm is called
restoring division. When the loop terminates after n iterations, the quotient is con-
tained in pL, and the remainder in pH.

Table 7.3 shows the restoring division algorithm steps for the binary division
of Figure 7.6. The execution time of the algorithm is dependent upon the number
of restoring steps needed, as each restore requires an extra addition operation.
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Unsigned Division Shift/Subtract Restoring Algorithm
p (dividend) 2n-bit,   d (divisor) n-bit, k (counter)

n-bit quotient returns in lower dividend byte (pL)
n-bit remainder in upper dividend byte (pH)
If C

flag
 set on return, then overflow.

k = n

C
flag

 ,pH ←  pH ←  d

C
flag

←  0 

k?

1

restore partial dividend,
quotient bit is already 0

pH >= d?

Shift left  (C
flag

←  pH ←   pL)

C
flag

   pH ←  pH + d

C
flag

   pL(LSB) ←  1

   k ←  k −  1

0 (borrow, d > pH)

1

0

quotient bit is 1

exit

overflow
yes

noC
flag

←  1 

exit

nonzero

0

pH > d

pH >= d

pH ←  pH ←  d

FIGURE 7.7 Unsigned restoring division algorithm.



An assembly language subroutine that implements restoring division for a 16-
bit dividend and an 8-bit quotient is seen in Listing 7.4. The worst-case execution
time through the loop is 13 instruction cycles (52 clock cycles), resulting in ap-
proximately 104 instruction cycles (416 clock cycles) worst-case execution time re-
quired for completion, not counting loop setup/exit and subroutine call/return. It
is possible to augment the ALU with extra logic to support division operations, but
it is a more difficult task to speed up division than multiplication. Even on high-
performance microprocessors that have division hardware support, integer division
is 5 to 30 times slower than multiplication [4].

LISTING 7.4 Restoring division subroutine for 16-bit dividend, 8-bit divisor.

div16_8

;check for overflow

movf   d,w

subwf  p+1,w      ;p MSByte >= d?

bc     div_exit   ;if C=1, then overflow

movlw  8

movwf  k          ;loop counter is 8

div_loop
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k Cflag pH pL d Comment

4 0 1001 1101 1110 Initial values

4 1 0011 1010 1110 shift left Cflag pH pL

4 x 0101 1010 1110 Cflag =1 in previous step, do pH pH-d

3 x 0101 1011 1110 pL(MSb) 1; k--

3 0 1011 0110 1110 shift left Cflag pH pL

3 0 0101 0110 1110 Cflag =0 in previous step, do Cflag ,pH pH-d

2 x 1011 0110 1110 Cflag =0 in previous step, restore by pH pH+d; k--

2 1 0110 1100 1110 shift left Cflag pH pL

2 x 1000 1100 1110 Cflag =1 in previous step, do pH pH-d

1 x 1000 1101 1110 pL(MSb) 1; k--

1 1 0001 1010 1110 shift left Cflag pH pL

1 x 0011 1010 1110 Cflag =1 in previous step, do pH pH-d

0 x 0011 1011 1110 pL(MSb) 1; k--

0 x 0011 1011 1110 Algorithm exit, pH is remainder, pL is quotient

TABLE 7.3 Numerical Example for Restoring Division Algorithm
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movf   d,w        ;load divisor into W

bcf    STATUS,C

rlcf   p

rlcf   p+1        ;shift left of dividend

bc     div_dosub  ;if C=1, pd > d, do sub

subwf  p+1,f      ;create pd

bc     div_q_1    ;if C=1, pd>=d, quotient bit is 1

addwf  p+1,f      ;restore pd

bra    div_dec_k

div_dosub

subwf  p+1,f      ;create pd

div_q_1

bsf    p,0        ;quotient bit is ‘1’

div_dec_k

decfsz k,f        ;k--

bra    div_loop

bcf    STATUS,C   ;no overflow, clear carry

div_exit

return

Signed division can be accomplished by converting the dividend and divisor to
positive numbers, performing the unsigned division, and then post-correcting the
sign of the quotient and remainder based on the sign of the dividend and remain-
der. Table 7.4 gives the steps for performing signed division using an unsigned di-
vision operation.

Unlike multiplication, if a microprocessor has an explicit integer division in-
struction, such as a 16-bit/8-bit operation, it is not possible to use this instruction
in the implementation of a larger operation such as a 32-bit/16-bit division. As
such, some microprocessors offer different sized integer division operations such as
16-bit/8-bit, 32-bit/16-bit, and 64-bit/32-bit.
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Steps

1. Convert dividend and divisor to positive numbers by subtracting from 0 if 
negative.

2. Perform the unsigned division.

3. If either of the original operands is negative, make the quotient negative by           
subtracting from zero.

4. If the original dividend is negative, make the remainder negative by subtracting 
from zero.

TABLE 7.4 Signed Division Algorithm Using Unsigned Division



Sample Question: What does the operation 0x2EF0 ÷ 0x8D return if the numbers are
unsigned? signed (two’s complement)?

Answer: As unsigned numbers, 0x2EF0 ÷ 0x8D = 12016 ÷ 141 = 85 (0x55)
quotient, 31 (0x1F) is the remainder. As a check, quotient * divisor + re-
mainder = dividend, or 85 * 141 + 31 = 12016.
As signed numbers, 0x2EF0 ÷ 0x8D = 12016 ÷ ( 115) = 104 (0x98) quo-
tient, 56 (0x38) is the remainder. As a check, quotient * divisor + remain-
der = dividend, or ( 104) * ( 115) + 56 = 12016.

7.4 FIXED-POINT AND SATURATING ARITHMETIC

Up to this point, we have viewed binary integers as having the decimal point always
located to the right of the least significant bit. The formal name for this type of
representation is fixed-point, because the decimal point is fixed to a particular loca-
tion. The decimal point can be positioned in any location within the binary num-
ber, as long as the application is consistent about where the decimal point is
located. A fixed-point binary number is said to have the format x.y, where x is the
number of digits to the left of the decimal point (integer portion) and y is the num-
ber of digits to the right of the decimal point (fractional portion). The integer por-
tion of the number has range 0 to 2x-1, while the fractional range is 0 to (1 2-y).
The 8-bit unsigned integer representation used to this point has thus been 8.0 fixed-
point numbers. A 0.8  fixed-point number has a number range of 0 to (1 2-8), or
0 to approximately 0.9961. A 6.2 fixed-point number has a number range 0 to
63.75. Table 7.5 shows examples of different 8-bit fixed-point formats. 

Decimal to x.y Binary Format

An unsigned decimal number is converted to its fixed-point representation by con-
verting the integer and fractional portions separately. The integer portion is 
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Format Min Max Example

8.0 0 255 0xA7 = 10100111 = 167 

6.2 0 63.75 0xA7 = 101001.11 = 41.75

4.4 0 15.9375 0xA7 = 1010.0111 = 10.4375

0.8 0 0.99609375 0xA7 = 0.10100111 = 0.65234375

TABLE 7.5 Sample Fixed-Point Formats



converted to binary following the procedures given in Chapter 1, “Number System
and Digital Logic Review.” The fractional portion f is converted to binary through
an iterative process of performing the comparison f*2 >= 1; if this is true, the new
binary digit is “1” and the new fractional part is f = f*2 1. If f*2 <= 1, the new
binary digit is “0”, and the new fractional part is f = f*2. The binary digits of the
fractional part are determined left to right (most significant to least significant).
The process stops when y binary bits of the final x.y binary result have been com-
puted. The fractional portion of the final x.y binary result may only be an approx-
imation of the fractional decimal part, as there may not be enough y digits to
accurately represent the decimal fraction portion. Obviously, the more bits used for
y in the x.y format, the better the approximation.

Sample Question: Convert 13.365 to a binary 8-bit number with 4.4 fixed-point format.

Answer: The integer portion 13 has the binary value 1101. The following steps
do the conversion of the fractional portion 0.365 to its 4-bit binary represen-
tation.

1. 0.365*2 = 0.73, which is < 1. The first (leftmost) binary digit is 0, and
the new f is 0.73.
2. 0.73*2 = 1.46, which is > 1. The second binary digit is 1, and the new
f is 1.46 1 = 0.46.
3. 0.46*2 = 0.92, which is < 1. The third binary digit is 0; the new f is
0.92.
4. 0.92*2 = 1.84, which is > 1. The fourth and last binary digit is 1.

The value 13.365 converted to a 4.4 binary format is 0b11010101, or 0xD5.

x.y Binary Format to Decimal

A fixed-point binary number is converted to decimal by multiplying each bit by its
appropriate binary weight. The fractional bits have weights 2-1, 2-2, ... to 2-y going
from leftmost bit to rightmost bit. Another method is to view the n-bit number as
an n.0 fixed-point number and divide that number by 2y to get the x.y decimal
value. Observe that dividing by 2y is the same as shifting the n.0 fixed-point num-
ber to the right by y positions.

Sample Question: Convert 0xD5, an unsigned 4.4 binary number, to its decimal value. 

Answer: The value 0xD5 is 0b11010101, so the integer portion is 1101, or 13.
The fractional portion 0101 is (left to right):

0*2-1 + 1*2-2 + 0*2-3 + 1*2-3 = 0 + 0.25 + 0 + 0.0625 = 0.3125.
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Thus, 0xD5, an unsigned 4.4 binary number, is 13.3125. Note that the value
0xD5 was the result obtained in the previous sample problem when convert-
ing 13.365 to a 4.4 binary format. This indicates the approximation that oc-
curs in the decimal to fixed-point binary conversion because of the limited
number of bits in the fractional portion. An alternate method is to note that
0xD5 is the value 213 as an 8.0 fixed-point number and compute 213/(24) =
213/16 = 13.3125. 

0.n Fixed-Point Format and Saturating Operations

In the coverage of the multiplication operation, you may have noticed a troubling
problem: to prevent overflow, the size of the operands have to keep doubling! For
example, an 8x8 multiplication produces a 16-bit product. If this value is then used
in a subsequent 16x16 multiplication operation, a 32-bit product is produced. Note
that the product size doubles again to 64 bits if the previous 32-bit product is used
in a 32x32 multiplication. Obviously, it not possible to keep doubling the size of the
operands in each multiplication, and so eventually an n-bit value must be used to
hold the result of an n x n bit multiplication. If the operands are viewed as un-
signed integers between 0 and 2n-1, overflow occurs if the upper n-bit value of the
actual 2n-bit product is nonzero. When overflow does occur, either for multiplica-
tion, addition, or subtraction, what can be done about it? In some cases, it is suffi-
cient to simply set an error flag and let the higher level application code deal with
the problem. In other cases, such as real-time digital signal processing applications
like audio or video data manipulation, there is no way to halt the system to “fix” the
overflow problem. One approach to keep functioning in the presence of overflow
is to produce a value that is a reasonable approximation of the correct answer. The
0.n fixed-point format is often used for data in digital signal processing applica-
tions, as it has advantages in regard to multiplication overflow and using the same
sized operands for all operations. Numbers in 0.n fixed-point format have the range
[0,1) (up to 1 but not including 1), where the maximum value gets closer to 1 as n
increases. When two 0.n fixed-point numbers are multiplied, the upper n bits of the
2n-bit product are kept, while the lower n bits are discarded to keep the resulting
product size as n bits. The lower n bits of the 0.2n product that are discarded are the
least significant bits, which are the bits that one wants to be discarded if precision
has to be limited. With the 0.n fixed-point representation, the multiplication oper-
ation cannot overflow, because the result is always in the range [0,1). Also, while the
result is not the exact product since bits have been discarded, it is a good approxi-
mation of the correct product.

It would be nice to have addition and subtraction operations that performed in
a similar manner with regard to overflow; that is, when overflow occurs, a value is
returned that is a close approximation of the correct result. Saturating addition and
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subtraction operations clip results to maximum and minimum values in the pres-
ence of overflow or underflow. Figure 7.8 shows examples of unsigned saturating
addition and subtraction for 8-bit numbers. On unsigned overflow (carry out of the
most significant bit), the result is saturated to all “1”s, which is the maximum un-
signed value. On unsigned underflow (borrow from the most significant bit), the
result is clipped to the minimum value of zero. It is clear that the unsaturated re-
sults are nonsensical when overflow occurs, while the saturated results return the
closest possible approximation given the range limits.

Listing 7.5 shows assembly code for j = j+i implemented as unsigned, 8-bit
saturating addition. If the carry flag is set after the addwf instruction, the setf in-
struction is used to set the j result to all “1”s. Signed saturating addition clips val-
ues to either the maximum positive value or maximum negative value on two’s
complement overflow. Some microprocessors, especially those touted as being es-
pecially suited for digital signal processing applications, have specialized instruc-
tions that directly implement saturating arithmetic. The C language does not have
saturating arithmetic operators or data types, and thus saturating arithmetic must
be implemented as a specialized library of function calls.

LISTING 7.5 Assembly code for unsigned 8-bit saturating addition.

satadd_8bit

movf   i,w

addwf  j,f

bnc    skip_1

setf   j,f   ;saturate

skip_

....rest of code...
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8.0 format

  0x60
+ 0xA7
  0x07

   96
+ 167
    7

 0.375
+0.65234375
 0.02734375

0.8 format 8.0 format

  0x60
+ 0xA7
  0xFF

   96
+ 167
  255

 0.375
+0.65234375
 0.99609375 

0.8 format
unsaturating
add

saturating
add

8.0 format

  0x60
- 0xA7
  0xB9

   96
- 167
  185

 0.375
-0.65234375
 0.77265625

0.8 format 8.0 format

  0x60
- 0xA7
  0x00

   96
- 167
    0

 0.375
-0.65234375
 0.0

0.8 format
unsaturating
subtraction

saturating
subtraction

FIGURE 7.8 Unsigned saturating addition/subtraction examples.
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Sample Question: What does the sum 0xA0 + 0x90 equal as a saturated unsigned
addition? As a saturated signed addition?

Answer: With binary addition, the sum 0xA0 + 0x90 = 0x30, with C = 1, V =
1. As a saturated unsigned addition, the result clips to the maximum unsigned
value of 0xFF because unsigned overflow occurred (C = 1). As a saturated
signed addition, the result clips to the maximum signed negative value of
0x80 because two negative numbers were added and the two’s complement
overflow occurred (V = 1).

7.5 FLOATING-POINT NUMBER REPRESENTATION

Fixed-point representation forces an application to determine a priori the number
of bits to devote to the integer and fractional parts. More bits used for the integer
portion means less precision for the fractional part, and vice versa. Floating-point
(FP) representation encodes an exponent field in the binary encoding, removing
the need to allocate a fixed number of bits for the integer and fractional represen-
tation. This section gives a brief overview of floating-point number encoding and
floating-point number operations in microprocessors; a more detailed discussion is
found in [5].

IEEE 754 Floating-Point Encoding

Many different encodings for floating-point numbers have been proposed and used
over the years, but in 1985, after a long review process, the IEEE 754 Standard for
Binary Floating-Point Arithmetic was approved. Figure 7.9 shows the formats for
single and double precision floating-point numbers in IEEE 754 format. The single
precision format is 32 bits, while the double precision format is 64 bits. Each en-
coding is divided into sign, exponent, and significand fields. The use of these fields
to produce a floating-point number is given by Equation 7.6.

sign exponent significand
31 30 23 22 0

Single Precision (32 bits)

8 bits 23 bits

sign exponent significand
63 62 52 51 0

11 bits 52 bits

Double Precision (64 bits)

FIGURE 7.9 Single precision and double precision FP formats.



( 1)s x 1.significand x 2(exponent-bias) (7.6)

This is a signed magnitude encoding, so the most significant bit is the sign bit,
which is “1” if the number is negative, and “0” if positive. The significand field de-
termines the precision of the floating-point number. You can view the significand
as encoding both the integer and fractional parts of the floating-point number.
The exponent field determines the range of the floating-point number. For the sin-
gle precision format, the exponent field is 8 bits and is encoded in bias 127, which
means that 127 has to be subtracted from the field value to determine the actual ex-
ponent. For normal floating-point numbers, the exponent codes 0x01 through
0xFE are allowed. The exponent encodings 0x00 (all 0s) and 0xFF (all 1s) are re-
served for so-called special numbers, discussed later in this section. Thus, the ex-
ponent range for single precision, IEEE 754 floating-point numbers is 2+127 (10+38)
to 2-126 (10-38). The double precision format uses an 11-bit exponent field, with a
bias value of 1023. The exponent range for double precision, IEEE 754 floating-
point numbers is 2+1023 (10+307) to 2-1022 (10-308). In the C language, the float and
double types are used for single precision and double precision floating-point vari-
ables, respectively. The MPLAB assembler does not support specification of float-
ing-point values as a data type; you must convert decimal floating-point numbers
to their equivalent byte encodings manually.

Figure 7.10 shows an example of converting a decimal number to its single-pre-
cision, floating-point number representation. First, the decimal number is con-
verted to its binary representation by converting the integer and fractional parts to
binary. The binary number is then normalized to the form of Equation 7.6 by shift-
ing the number to the left or right. Each time the number is shifted to the left (mul-
tiplied by 2), the exponent is decremented by 1. Each time the number is shifted to
the right (divided by 2), the exponent is incremented by 1. Observe that the “1” to
the left of the decimal point in Equation 7.6 is not encoded in the significand; it is
understood to be in the encoding. This is called a phantom one bit, and provides an
extra bit of precision to the significand without having to provide space for it in the
significand field. 

Converting a binary value in single precision FP format to its decimal repre-
sentation is done by simply converting each component of Equation 7.6 to its dec-
imal representation and multiplying as seen in Figure 7.11. The most common
error in this conversion is to forget to add the phantom one bit to the significand.

The all ones and all zero exponent encodings are reserved for special number
encoding. Special numbers are zero, positive/negative infinity (± ), and NaN (Not
a Number). Table 7.6 gives the encodings for special numbers. Infinity is produced
when anything is divided by zero. A NaN is produced by invalid operations, such
as zero divided by zero, or infinity minus infinity.
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1. Number is negative, so sign bit is 1.

2. Convert 28.75 to binary.
    Integer portion:            28 = 0x1C = 0b11100
    Fractional portion:       0.75 = 0b11
    So, 28.75 = 11100.11 x 20

3. Normalize so that number is the form 1.mmm x 2y

       Shift right    11100.11 x 20 >> 1 = 1110.011 x 21

11100.11 x 20 >> 2 = 111.0011 x 22

11100.11 x 20 >> 3 = 11.10011 x 23

11100.11 x 20 >> 4 = 1.110011 x 24 (this is normalized form)

3. Determine the bit fields.
     Sign bit = 1
     Exponent field = 4 + 127 = 131 = 0x83 = 0b10000011
     Significand field = 0b110011000.....0  (23 bits total)

Final Result:

    1  10000011 11001100000000000000000

Convert -28.75 to single precision floating-point format.

Sign Exponent Significand

FIGURE 7.10 Decimal to single precision FP format conversion.

The value 0x44AED200 is a single precision floating-point number, find the decimal value.

In Binary: 
       0 10001001 01011101101001000000000

Sign Exponent Significand 

= 0x44AED200 

1. Sign bit is 0, so number is positive.

2. Exponent field is 0b10001001 = 0x89, so exponent is 
    0x89 - 127 = 137 - 127 = 10.

3. Number is:   + 1. 01011101101001 x 210

= +10101110110.1001 x 20

4. Integer portion 0b10101110110 = 0x576 = 1398
    Fractional portion  0b0.1001 = 1x2-1 + 1x2-4 = 0.5 + 0.0625 =  0.5625

So, 0x44AED200 = +1398.5625

Do not forget phantom bit!!! 

FIGURE 7.11 Single precision FP format to decimal conversion.



Sample Question: What does the 32-bit value 0xFF800000 represent as a single precision
floating-point number?

Answer: The value is 0xFF800000 = 0b1111 1111 1000 0000 0000 0000 0000
0000.
Grouping this into fields produces sign bit = 1, exponent = 1111 1111, signif-
icand is all zeros. By Table 7.6, this value is (negative infinity). 

Floating-Point Operations

A complete discussion of the implementation of floating-point arithmetic is be-
yond the scope of this book. To provide a glimpse at what is involved in perform-
ing floating-point arithmetic, the basic steps required to perform a floating-point
addition are given in Table 7.7. The hardware required to support floating-point
operations is much more complex than fixed-point arithmetic. Speed comparisons
of floating-point instructions versus integer instructions depend greatly on the par-
ticular hardware floating-point implementation. In comparing single-precision
floating-point operations versus integer operations on the Intel Pentium® IV
processor, FP add/subtraction instructions are five times slower than integer oper-
ations, FP multiplication is about two times slower than integer multiplication,
and FP division is actually faster than integer division [4].
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Special Number Encoding

zero All fields are zero

± Exponent field all ones, significand is zero

NaN Exponent field all ones, significand is nonzero

TABLE 7.6 Special Number Encodings

Steps

1. Detect special numbers in operands and handle these boundary cases.

2. For nonspecial number operands, align the decimal points of the significands of 
the two operands (make the exponent fields equal) by shifting one of the 
operands to the left or right as many times as necessary. This process is called 
denormalization.

3. Add the significands.

4. Normalize the result.

TABLE 7.7 Floating-Point Addition
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For microprocessors like the PIC18 that do not have floating-point hardware
support, library subroutines are used to implement floating-point operations. To
provide a feel for the relative time differences between integer and floating-point
operations on the PIC18, the C code in Listing 7.6 was used to test different opera-
tions (addition, multiplication, division) using long and float data types. Each
loop iteration reads values from two arrays, performs an arithmetic operation on
those values, and stores the result in a third array.

LISTING 7.6 Simple C benchmark for long vs float operations.

for (i=0; i< 10; i++) {

*ptrc = *ptra + *ptrb;   // add contents of two arrays

ptra++; ptrb++;ptrc++;

}

Table 7.8 gives the instruction cycles per loop iteration of the code in Listing 7.6
for the three different operations tested with long and float data types. The code
was compiled with the C compiler in this textbook using the optimization option,
and executed in the MPLAB simulator. You may be surprised that the float to long

ratio of the loop iteration times is not any higher than shown given the complexity
of floating-point arithmetic. Each loop iteration contains significant memory ac-
cess overhead in reading the arrays, updating pointers, and saving the result, which
is the same overhead regardless of the operation that is used. This overhead is pre-
sent in any realistic application and thus should be considered when comparing op-
eration execution times. The data movement overhead is especially significant
when the operand data size does not match the natural data size of the processor,
which is true in this case as each operand is 32 bits, and the natural data size of the
PIC18 is 8 bits. The message to be gleaned from the numbers in Table 7.8 is that you
should be cognizant of the execution time differences between different arithmetic
operators of the same data type, and between different data types (such as integer
versus floating-point) for the same arithmetic operation.

Operation Instruction Cycles per Loop Iteration

Long Float Float/Long Ratio

Addition 55 279 5.1

Multiplication 134 494 3.7

Division 605 768 1.3

TABLE 7.8 PIC18 long versus float C Performance



7.6 BCD ARITHMETIC

Binary Coded Decimal (BCD) encodes each digit of a decimal number as its 4-bit bi-
nary value. This means that the decimal value 83 is simply 0x83 as an 8-bit BCD
number. Thus, an 8-bit BCD number can represent the number range 0 to 99. This
is a less efficient coding scheme than binary representation, as the codes 0x9A to
0xFF are unused. Some rotary encoders that track the movement of a rotary shaft
as it turns either clockwise or counter-clockwise use BCD outputs. Some rotary en-
coders output incremental codes that only describe the direction of shaft move-
ment; others output absolute position information. If absolute position
information is given in BCD, BCD subtraction must be performed to compute the
distance between two absolute positions. Addition must be done to compute a fin-
ishing location given a starting location and a distance to travel. Adding the two
numbers using binary arithmetic, and then post-correcting the sum to obtain the
BCD value performs BCD addition.

A BCD digit is a 4-bit value. When two BCD digits are added using binary ad-
dition, if the result digit is greater than 9 or if a carry is produced, the result digit
must be decimal adjusted by adding 6 to produce the correct BCD digit. Similarly,
when two BCD digits are subtracted using binary subtraction, if the result digit is
greater than 9 or if a borrow is produced, the result digit must be decimal adjusted
by subtracting 6 to produce the correct digit. The DC (Decimal Carry) flag in the
STATUS register is used for BCD post-correction after addition operations; the DC
flag is set if there is a carry from bit 3 to bit 4 during a binary addition. The daw
(Decimal Adjust W) instruction post-corrects the W register contents to the correct
BCD value after any addition or increment instruction that affects the C and DC
flags. The daw instruction adds 6 to the lower 4 bits (lower digit) of the W register
if the DC flag is 1 or if the lower digit is greater than 9; the upper digit is corrected
by +6 if the C flag is 1 or if the upper digit is greater than 9. Unfortunately, the daw
instruction cannot be used after a subtraction operation, so BCD subtraction re-
quires more effort. Recall the binary subtraction A B is performed as A + ~B +
1, where ~B+1 is the two’s complement of B. Similarly, the BCD subtraction A B
can be performed as A + (99 B +1), where 99 B+1 is the ten’s complement of B.
Figure 7.12a shows the 8-bit BCD addition 0x39+0x28. After the binary addition,
DCflag = 1 and the result is 0x61. Because DCflag = 1, the lower digit must be cor-
rected by adding 6 to reach the correct result of 0x67. Figure 7.12b shows the BCD
subtraction 0x42-0x24 using binary subtraction, which produces the value 0x1E
and a borrow from the upper 4 bits. Because there was a borrow from the upper 4
bits, the lower digit must be post-corrected by subtracting 6 to produce the correct
result of 0x18. Figure 7.12c shows the BCD subtraction 0x42 0x24 performed by
adding the ten’s complement, 0x42+(0x99 0x24+1). The ten’s complement of
0x24 is computed as 0x99 0x24+1 = 0x76. Observe that 0x24+0x76 = 0x00 in
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BCD arithmetic, or (+n) + ( n) = 0. The ten’s complement of 0x24 is then
added to 0x42, or 0x42+0x76 = 0xB8. This sets Cflag = 1, so the upper digit is
post-corrected by adding 6, producing the correct result of 0x18. Observe that both
Figure 7.12b and Figure 7.12c produce the same result, but the method in Figure
7.12c is used on the PIC18 as this allows use of the daw instruction.

Figure 7.13a shows assembly code for the BCD 8-bit addition j = j+i, using the
numbers from Figure 7.12a, while Figure 7.13b gives assembly code for the BCD 8-
bit subtraction j = j-i using the ten’s complement approach of Figure 7.12c. Ex-
tended precision BCD arithmetic is done in the same manner as extended precision
binary arithmetic using the addwfc instruction.

198 Microprocessors

  0x39
+ 0x28
  0x61 
+ 0x06 
  0x67 

after binary addition, DC flag  = 1, 
so decimal adjust adds 6 to rightmost digit

Carry from lower 4-bits to higher 4-bits, 
sets DC = 1

  0x42
- 0x24
  0x1E 
- 0x06 
  0x18 

Final answer, correct BCD

Borrow from higher 4-bits to
to lower four bits

Decimal adjust lower digit by 
subtracting 6

Form 10’s complement of -24, then use this 
value in addition
  0x99
- 0x24
  0x75 
+ 0x01 
  0x76 

(b) BCD Subtraction

(a) BCD Addition

  0x42
+ 0x76
  0xB8 
+ 0x60 
  0x18 

Carry out of left
digit, so decimal
adjust adds 6 to 
left digit

(c) BCD Subtraction

FIGURE 7.12 BCD addition and subtraction.

 movlw 0x39
 movwf i
 movlw 0x28
 movwf j
 movf  i,w
 addwf j,w   ; do add
 daw         ; post correct W
 movwf j     ; save result 

(a) BCD Addition  j = j + i

  movlw 0x24
  movwf i
  movlw 0x42
  movwf j
  movf  i,w
  sublw 0x99   ; subtract 99
  incf  WREG,w ; add 1 for 10's complement
  addwf j,w    ; now do addition
  daw          ; post correct W
  movwf j      ; save result

(b) BCD Subtraction j = j - i

FIGURE 7.13 Assembly code for BCD 8-bit addition and subtraction.
ON THE CD



Sample Question: What does 0x56 + 0x29 produce as a BCD sum?

Answer: Using binary addition, 0x56 + 0x29 = 0x7F. Post-correcting for BCD
produces 0x7F + 0x06 = 0x85. So, as a BCD sum, 0x56 + 0x29 = 0x85.

7.7 ASCII DATA CONVERSION

A common task in microprocessor programs is to convert numerical data in ASCII
format to binary, or vice versa. This functionality is generally provided by format-
ted IO functions in high-level languages, such as the printf (ASCII output) and
scanf (ASCII input) C library functions. While the amount of ASCII data manipu-
lation required in typical microcontroller applications is limited, the need for
ASCII numerical manipulation invariably arises and one should have some famil-
iarity with the problem.

Binary to ASCII-Hex

Suppose you wanted to see the bytes of a single or double precision floating-point
number printed in ASCII format. The code in Figure 7.14 prints the individual
bytes of a single precision and double precision floating-point number in ASCII-
hex format. The C function char2hex() is the key piece of code in this discussion,
as it converts a char variable into the ASCII-hex representation of that number. For
example, the 8-bit value 0xA3 is converted to the two ASCII values 0x41, 0x33, as
these are the ASCII codes for the two hex digits “A” and “3”, respectively. The
char2hex() function is called for each byte of the single-precision and double-
precision floating-point numbers f and d, respectively. The pointer variable ptr is
used to iterate over the bytes of the floating-point numbers from most significant
to least significant, which are assumed to be stored in little-endian order in mem-
ory. The char buf[2] array is used as temporary storage for the two ASCII charac-
ters generated by char2hex(). The char2hex() function converts the upper 4 bits,
then the lower 4 bits of the input variable c to its ASCII equivalent. The 4-bit value
that represents one hex digit is first compared to 10. If it is greater or equal to 10, it
is converted to its ASCII equivalent “A” (0x41) through “F” (0x46) by adding the
value 0x37. If it is less than 10, 0x30 is added to the 4-bit value to produce the ap-
propriate ASCII digit “0” (0x30) through “9” (0x39). In C, an integer can be printed
in ASCII-hex format using the %x format in printf(). An example usage is printf
(“c = %x”,c), which prints c = 3A if the binary value of c is 0x3A (see Appendix D,
“Notes on the C Language,” for more information on printf()).
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An assembly language version of the char2hex() function along with a test pro-
gram is shown in Figure 7.15. The comparison c >= 10 contained in the C code is
performed in the assembly code by placing the 4-bit value to be tested in the lower
4 bits of W, and executing addlw -D’10’, which effectively performs w-10. The 10
is added back later by either addlw 0x37+D’10’ or addlw 0x30+D’10’ to produce the
ASCII codes for “A” to “F” or “0” to “9”, respectively. This code makes use of the
swapf instruction, which swaps the lower and upper nibbles of the source operand.

Binary to ASCII-Decimal

Table 7.9 shows the steps necessary to convert a binary number to its unsigned
ASCII-decimal representation. The successive division by 10 produces the digits
from least significant digit to most significant digit. The C statement
printf(“%d”,i) prints the value of the i variable in decimal; the printf() C library
function implements the algorithm of Table 7.9 when formatting numbers in
ASCII-decimal format.

ON THE CD

float f;   //single precision
double d;  //double precision
char *ptr;
int i;
char buf[2]; //temp space

main(){

 f = 1398.5625;
 ptr = (char *) &f;
 printf("float: %6.2f bytes are: ",
        f);
 // print the four bytes
 for (i=0;i<4;i++){
  char2hex(*(ptr+3-i),buf);
  putchar(buf[0]); // print MS digit
  putchar(buf[1]); // print LS digit
 }
 printf("\n");
 d = -28.75;
 ptr = (char *) &d;
 printf("double: %6.2lf bytes are: ",
        d);
 for (i=0;i<8;i++){
  char2hex(*(ptr+7-i),buf);
  putchar(buf[0]); // print MS digit
  putchar(buf[1]); // print LS digit
 }
 printf("\n");
}

main() Code

void char2hex(
unsigned char c,
unsigned char *s){

  unsigned char tmp;

  tmp = c >> 4;
  // first hex digit
  if (tmp >= 10) 
    tmp = tmp + 0x37;
  else tmp = tmp + 0x30;
  *s = tmp;
  s++;
  // second hex digit
  tmp = c & 0x0F;
  if (tmp >= 10) 
    tmp = tmp + 0x37;
  else tmp = tmp + 0x30;
  *s = tmp;
}

char2hex() Function

FIGURE 7.14 C code for ASCII-hex display of floating-point numbers.



ASCII-Hex to Binary

The hex2char() C function of Figure 7.16 does the reverse of the char2hex() C
function, in that it converts two ASCII characters representing the hex value of an
8-bit number into the binary value of that number. The main() code of Figure 7.16
passes a two-element char buffer containing the ASCII-hex digits to the hex2char()
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CBLOCK 0x60
   c,s:2
ENDC

char2hex
  movff s,FSR0L
  movff s+1,FSR0H
  ;; do most significant digit
  movf  c,w
  ;; move upper 4-bits to lower 4-bits
  swapf  WREG,w
  andlw  0x0F        ;mask off upper bits
  addlw  -D'10'      ; w-10
  bnc   c2hex_1
  addlw  0x37+D'10'
  bra   c2hex_2
c2hex_1
  addlw  0x30+D'10'
c2hex_2
  movwf POSTINC0     ;store digit
  ;; do least signicant digit
  movf  c,w
  andlw  0x0F        ;mask off upper bits
  addlw  -D'10'
  bnc   c2hex_3
  addlw  0x37+D'10'
  bra   c2hex_4
c2hex_3
  addlw  0x30+D'10'
c2hex_4
  movwf INDF0        ;store digit
  return

Test program char2hex() Implementation 

CBLOCK 0x00
  buf:2
 ENDC

  org    0
  goto main 

  org 0x0100
main
  movlw low buf
  movwf s
  movlw high buf
  movwf s+1
  movlw 0x2F
  movwf c
  call  char2hex
here
  goto   here

c >= 10 comparison
done by W-10, the -10
is added back. 

FIGURE 7.15 Assembly code implementation of the char2hex()
function.

Steps (digits are determined least significant to most significant)

1. If the number is 9 or less, set the quotient to the number and go to step 3; else, 
divide the number by 10.

2. Add 0x30 to the remainder; this is the ASCII-decimal digit.

3. If the quotient is 9 or less, then this is the last nonzero digit, so add 0x30 to the 
quotient to get the ASCII value of the last digit, and exit. If the quotient is 10 or 
greater, set the number equal to the quotient and loop back to 1.

TABLE 7.9 Conversion of a Binary Number to Unsigned ASCII-Decimal
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function, and saves the return value in c. The hex2char() result is checked using the
C formatted input function sscanf() in the statement sscanf(buf,”%x”,&i). The %x
format causes the string in buf to be scanned for an ASCII-hex value, which is con-
verted to binary and returned in the int variable i. A failure message is printed if
the result returned by hex2char() does not match the result returned by sscanf().
The hex2char() function converts the first ASCII-hex digit by comparing the ASCII
value to 0x3A; if greater than 0x3A, the character must be in the range “A” (0x41)
to “F” (0x46), so the value 0x37 is subtracted to get the binary value. If the charac-
ter is less than 0x3A, it must be in the range “0” (0x30) to “9” (0x39), so the value
0x30 is subtracted from the character to obtain the binary value. The resulting 4-bit
value is placed in the upper half of the char variable c. The second ASCII-hex char-
acter is converted in the same way as the first, to produce the lower 4-bit binary
value. Finally, the statement c = c | tmp combines the upper 4 bits with the lower
4 bits, and c is returned as the converted 8-bit binary value. 

An assembly language version of the hex2char() C subroutine is seen in Figure
7.17. The address of the two-digit ASCII-hex number to be converted is passed in
s of the static parameter block of the subroutine, and the 8-bit value is passed back
in the W register. This is a straightforward conversion of the C function.

char buf[3]; // temp space
unsigned char c;
unsigned int i;
main(){

 buf[0] = '9'; buf[1] = 'A';
 //terminate string
 //for sscanf
 buf[2]= 0x00; 
 c = hex2char(buf);
 //use sscanf to check
 sscanf(buf,"%x",&i);
 if (i != c)
  printf("hex2char failed!\n");
 else
  printf("hex2char passed!\n");

}

main() Code

unsigned char hex2char(unsigned char *s){
  unsigned char tmp,c;

  tmp = *s;
  s++;
  // convert 1st char to upper 4-bits
  if (tmp >= 0x3A) tmp = tmp - 0x37;
   else tmp = tmp - 0x30;
  // move to upper four bits
  c = tmp << 4; 
  // convert 2nd char to lower 4-bits
  tmp = *s;
  if (tmp >= 0x3A) tmp = tmp - 0x37;
   else tmp = tmp - 0x30;
  //combine lower 4-bits with upper 4-bits
  c = c | tmp;
  return(c);
}

hex2char() Function

FIGURE 7.16 C code for converting ASCII-hex to binary.
ON THE CD



ASCII-Decimal to Binary

Table 7.9 shows the steps necessary to convert an ASCII-decimal number to its bi-
nary value. The conversion proceeds from most significant digit to least significant
digit, converting each digit d to its binary value, and forming the sum r = r*10 +
d where r is the cumulative result. The number range that can be converted is de-
pendent upon the size of r. In C, ASCII-decimal to binary conversion can be ac-
complished with sscanf() using the %d format. An example is sscanf(buf,”%d”,&i),
which converts the first ASCII-decimal string found in buf to binary, and returns
the result in i.
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CBLOCK 0x60
   c,tmp,s:2
ENDC

hex2char
  movff s,FSR0L
  movff s+1,FSR0H
  ;; do most significant ASCII-hex char
  movff POSTINC0,tmp
  movf  tmp,w
  addlw  0-0x3A      ;w-0x3A
  bnc   hex2c_1
  movlw 0x37
  bra   hex2c_2
hex2c_1
  movlw 0x30
hex2c_2
  subwf tmp,f
  swapf tmp          ;move lower 4-bits to upper
  movf  tmp,w
  andlw 0xF0         ;clear lower 4-bits
  movwf c            ;save in variable c
  ;; do least signicant ASCII-hex char
  movff INDF0,tmp
  movf  tmp,w
  addlw  0-0x3A      ;w-0x3A
  bnc   hex2c_3
  movlw 0x37
  bra   hex2c_4
hex2c_3
  movlw 0x30
hex2c_4
  subwf tmp,w        ; get lower 4-bit value
  iorwf c,w          ; combine upper 4-bits with lower
  return             ; W reg has 8-bit return value

Test program hex2char() Implementation 

CBLOCK 0x00
  buf:2
 ENDC

  org    0
  goto main 

  org 0x0100
main
  movlw "9"
  movwf buf
  movlw "A"
  movwf buf+1
  movlw low buf
  movwf s
  movlw high buf
  movwf s+1
  call  hex2char
here
  goto   here

tmp  >= 0x3A comparison

FIGURE 7.17 Assembly code implementation of the hex2char() function.
ON THE CD



SUMMARY

Multiplication operations in the PIC18 are enhanced by the availability of an 8x8
array multiplier, which can be used to implement higher precision multiplications.
Hardware support for division does not exist on the PIC18, but can be imple-
mented using the restoring division algorithm, which requires n loop iterations for
a 2n-bit quotient and an n-bit divisor. Saturating arithmetic is a method for deal-
ing with overflow in addition and subtraction by clipping the result to either the
maximum or minimum values of the number range in case of overflow or under-
flow, respectively. Floating-point representation encodes an exponent field in ad-
dition to magnitude and sign information, greatly expanding the number range
that can be represented, at the cost of extra complexity in performing floating-
point calculations. Binary Coded Decimal encodes each decimal digit as a 4-bit
value, providing fast conversion from BCD to decimal, and vice versa. Support for
BCD arithmetic is present in the PIC18 via the DC flag and the daw instruction.
Conversion of ASCII numerical data in hex or decimal formats to binary, and vice
versa, is required for input/output operations of ASCII numerical data and is usu-
ally implemented in the form of formatted IO subroutines.

REVIEW PROBLEMS

1. What is the 16-bit result for 0x39 * 0xAD if these numbers represent un-
signed 8-bit integers?

2. What is the 16-bit result for 0x39 * 0xAD if these numbers represent
signed integers using two’s complement representation?

3. What data type in C is needed for a multiplication result of a char variable
(8-bit) times an int variable (16-bit) if overflow is to be avoided?
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Steps

1. r = 0.

2. For each digit d in the ASCII-decimal number starting with the most significant 
digit:

3. Convert d to its 4-bit binary value, and let r = r * 10 + d.

4. If d is the last digit, exit and return r as the result; else, advance to the next digit 
and go to 3.

TABLE 7.10 Conversion of an ASCII-Decimal Number to Binary



4. Extend the 16x16 unsigned multiply of Listing 7.2 to a 16x16 signed mul-
tiply.

5. What is the value 0x93AD divided by 0xC5 if these numbers represent un-
signed 8-bit integers? Give both quotient and remainder. 

6. What is the value 0x93A9 divided by 0x3B if these numbers represent
signed integers using two’s complement representation? Give both quo-
tient and remainder.

7. Divide by zero is an illegal operation; what does the code of Listing 7.4 do
if the divisor is zero?

8. Extend the code of Listing 7.4 to perform signed division.
9. What is the value 0xC4 as a 0.8 fixed-point number?

10. What is the value 0xC4 as a 4.4 fixed-point number?
11. Saturating signed addition is defined as saturating to either the maximum

positive value or maximum negative value in the case of overflow using
two’s complement encoding. What is the result for 0x39 + 0x59 using
saturating signed addition?

12. Write a PIC18 instruction sequence that implements signed saturating ad-
dition as defined by the previous problem.

13. What is the value –0.15625 in single precision floating-point format?
14. The value 0x42F18000 is a single-precision floating-point number; what is

its decimal value?
15. Write the steps of an algorithm that compares two single-precision float-

ing-point numbers. Assume both numbers are normalized before the com-
pare is done, and that you do not have to handle special numbers. Hint:
Think about comparing the numbers by comparing the individual sign, ex-
ponent, and significand fields. 

16. What flag would you check to detect overflow in BCD addition of two 8-
bit numbers?

17. What is the ten’s complement of the BCD value 0x58?
18. Rewrite the char2hex() subroutine of  Figure 7.21 such that a subroutine is

called by char2hex() to convert each character to its appropriate 4-bit
value.

19. Assuming the divide subroutine of Listing 7.4, what is the largest binary
number that can be converted to decimal using the algorithm of Table 7.9?

20. Implement the algorithm of Table 7.10 in PIC18 assembly language for any
ASCII-decimal string up to three digits (0 to 999).
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207

The PIC18Fxx2: System
Startup and Parallel Port IO

8

T
his chapter introduces the hardware side of the PIC18Fxx2 by exploring reset
behavior and parallel port IO. In addition, the nuances of writing C code for
PIC18Fxx2 applications are examined.

8.1 LEARNING OBJECTIVES

After reading this chapter, you will be able to:

Implement a simple PIC18F242 system that has an oscillator, power supply,
and reset switch.
Write C code for the PIC18 that implements IO via pushbutton switches and
LEDs using a finite state machine approach.

In This Chapter

High-Level Languages versus Assembly Language
C Compilation for the PIC18F242
PIC18F242 Startup Schematic
ledflash.c – The First C Program for PIC18F242 Startup
Datasheet Reading – A Critical Skill
PIC18Fxx2 Reset Sources
Experimenting with RESET, SLEEP, and the Watchdog Timer
Parallel Port Operation
LED/Switch IO and State Machine Programming
Interfacing to an LCD Module
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Discuss the different features of the PIC18 parallel ports such as bidirectional
capability, weak pullups, and open-drain outputs.
Describe the factors that affect dynamic power consumption in CMOS cir-
cuits.
Identify common features of integrated circuit datasheets.
Discuss the use of sleep mode in the PIC18 and its effect on power consump-
tion.
Describe the operation of the watchdog timer and its interaction with sleep
mode.
Implement a parallel interface between a PIC18 and a liquid crystal display
module.

8.2 HIGH-LEVEL LANGUAGES VERSUS ASSEMBLY LANGUAGE

Previous chapters explored the instruction set of the PIC18 and assembly language
programming in the context of C programming. This was done so that the linkage
from high-level language constructs such as data types, conditional statements,
loop structures, subroutines, signed/unsigned arithmetic, and so forth to assembly
language is clear. This understanding is needed, as most programming of micro-
processors and microcontrollers is done in a high-level language such as C, not as-
sembly language, and therefore one must be cognizant of the performance and
memory usage repercussions when using features of a high-level language. For ex-
ample, at this point you would not use floating-point data types for convenience
(or out of ignorance), but rather, would carefully weigh whether the computations
required by your application actually need the large number range available with
floating-point representation. You now know that using floating-point data types
requires more memory space for variables, more program memory for calcula-
tions, and more execution time for application code. The same tradeoffs apply
when weighing the choice between long and char data types, but not on as dramatic
a scale as floating-point versus integer types. 

Why is most programming of microprocessors and microcontrollers done in a
high-level language and not assembly language? One reason is programmer pro-
ductivity, which is usually measured in the number of debugged code lines pro-
duced per day by a programmer. At this point, you know that it generally takes
more assembly language statements than C statements to implement the same task,
because C statements imply data movement or arithmetic operations that require
multiple register transfer operations when mapped to a specific microprocessor ar-
chitecture. Writing more statements takes more time; hence it generally takes
longer to write applications in assembly language than in a high-level language. 



Another reason is code clarity; code in a higher level language is typically easier to
read and understand than assembly language because the fine-grain details of op-
erator implementation are hidden. Another reason is portability; code written in a
high-level language is easier to port to another microprocessor than assembly lan-
guage because it is the compiler’s task to translate the C to the target microproces-
sor instruction set. This is important, as code is often reused from application to
application, and you do not want to lose the time and money invested in creating
an application suite if the target microprocessor changes.

So, when is assembly language needed? One reason to write in assembly lan-
guage is to implement special arithmetic functions that are not available in the
high-level language of choice, such as implementing saturating integer arithmetic
in C. Another reason is to write a performance-critical section of code in assembly
language if the compiler cannot be trusted to produce code that meets required per-
formance specifications. Yet another reason might be to use certain features of the
processor that can only be accessed by special instructions within the instruction
set. All of these reasons require an understanding of assembly language program-
ming. Even when writing in a high-level language, one should be aware of the fea-
tures of the instruction set and architecture of the target processor. For example, if
the target processor is a 32-bit processor, using 32-bit data types versus 8-bit data
types will probably not have much impact on the execution speed of integer oper-
ations.

The term embedded system is often applied to microcontroller applications be-
cause the microcontroller is hidden within the target system, with no visible exter-
nal interface. A car typically has 10s of microcontrollers within it, yet this fact is not
apparent to the car owner. What high-level languages are used to program embed-
ded systems? The C++ language is a popular choice for complex applications writ-
ten for high-performance microprocessors. However, the C programming language
is often the language of choice for an embedded system, as there is a fairly tight cou-
pling between C statements and assembly language statements. In addition, most
embedded system programs are control-intensive, and do not require complex data
structures. Thus, the powerful data abstraction capabilities of an object-oriented
programming language such as C++ are often not required in embedded system
applications. If a compiler is available for a microcontroller, in general, it will be a
C compiler and not a C++ compiler. This does not mean that there are no micro-
controller applications programmed in C++, but rather, that C is the more popu-
lar choice, especially for lower performance microcontrollers.

This chapter begins the hardware topic coverage in this book. Over the next
seven chapters, the details of the major hardware subsystems of the PIC18 are ex-
plored, and sample applications discussed. To exercise the features of these hard-
ware subsystems, application programs that transfer data between the subsystems
and memory, configure subsystems for different operating modes, and check 
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subsystem operation status are presented. These programs are written in C to pro-
mote code clarity. It is a difficult enough task to grasp the operational details of a
hardware subsystem without the additional problem of struggling with long as-
sembly language programs, where the details of memory transfers and arithmetic
operator implementation mask the overall program functionality. The previous
coverage of the PIC18 instruction set and assembly language programming tech-
niques in the context of the C language has prepared you for moving beyond as-
sembly language when discussing the hardware subsystems of the PIC18. In
covering the PIC18 hardware subsystem details, it is expected that the reader will
frequently reference the PIC18Fxx2 data sheet [6], available from the Microchip
WWW site at www.microchip.com. This book does not attempt to duplicate all of
the information in the PIC18FXX2 data sheet, which is clearly an unnecessary task.
Instead, this book presents key functionality of each subsystem in the context of ap-
plication examples. In some cases, detailed descriptions of the registers associated
with a subsystem and individual register bits are presented in this book; at other
times, the reader is referred to the datasheet. The ability to read datasheets and ex-
tract key information is a necessary survival skill for any person interfacing micro-
processors or microcontrollers to other devices. A section within this chapter is
devoted to providing tips on datasheet reading for those readers who are encoun-
tering datasheets for the first time.

8.3 C COMPILATION FOR THE PIC18F242

In this book, the C programs for hardware application examples use the PICC-18
C compiler from HI-TECH Software. A demo version of this compiler is on the
CD-ROM included with this book. Details on using the compiler within MPLAB
are given in Appendix C, “HI-TECH PICC-18 C Compiler Demo for the
PIC18F242.” In Chapter 2, “The Stored Program Machine,” a compiler is defined
as a program that translates statements in a high-level language to assembly lan-
guage. Figure 8.1 shows the steps of transforming a C program into machine code
that can be programmed into the PIC18. The compiler first transforms the C code
into unoptimized assembly language, which is done by looking at each C statement
individually and implementing it as a sequence of instructions. The optimization
stage then looks at groups of assembly language instructions, and attempts to re-
duce the number of instructions by considering data transfer requirements of the
entire group. The right-hand side of Figure 8.1 shows an example compiler opti-
mization, in which two C statements are translated into four assembly language in-
structions when each C statement is considered individually. The optimizer then
considers the four assembly language instructions as a group, and notes that the W
register already contains the value of j from the previous operation, and therefore
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the second movf j,w instruction can be removed. This is only a small example, as
there are many different types of compiler optimizations that are performed. Typ-
ically, code size is reduced and performance improved after optimization.

After optimization, an assembler internal to the compiler translates the assem-
bly language to machine code that is then placed within an object code (.obj) file. If
a program becomes large, it is regarded as good programming practice to split the
source code among several files, where each file contains functions that are related
to each other. This makes the source code easier to maintain, and allows a group of
programmers to work on the same microcontroller application concurrently. Thus,
an application may have several object files, and it is the job of the linker to com-
bine these files into a single file that is executed by the microprocessor. In the case
of the PIC18, this “executable” file is a .hex file, which contains an ASCII-hex rep-
resentation of the program memory contents and is downloaded into the program
memory of the PIC18 (see Appendix F, “The Jolt/Colt Serial Bootloaders,” for de-
tails on how this is accomplished).

 C Code (.c) 

 compilation 

 Unoptimized
Assembly Code 

 optimization 

 Optimized
Assembly Code (.as) 

 Machine code
(.obj) 

 assembly 

 link 

 Executable
(.hex) 

 Example Optimization 

i = i + j;
k = k + j; 

 compilation 

movf  j,w
addwf i,f   ; i=i+j
movf  j,w
addwf k,f   ; k=k+j

 optimization 

movf  j,w
addwf i,f   ; i=i+j
addwf k,f   ; k=k+j W already contains j,

remove 2nd movf

 From .c to .hex 

FIGURE 8.1 The compilation process.



Special Function Registers and bit Variables

A C compiler for a microcontroller must provide access to the special function reg-
isters and individual bits of those registers. In the PICC-18 compiler, all special
function registers have C define statements for them contained in a header file (.h)
that is particular to the target device. For example, a special function register used
for parallel port IO and discussed later in this chapter is named PORTB, whose lo-
cation in the file registers is 0xF81. In the PICC-18 installation directory, a file
named PIC18/include/pic18xx2.h is the header file used for PIC18Fxx2 devices.
Within this file is contained the following line that defines the special function reg-
ister 0xF81 as the unsigned char variable PORTB.

static volatile near unsigned char PORTB @ 0xF81;

This means that PORTB can be used in the same manner as any C variable
name; for example, the PORTB register contents can be assigned a value using a C
assignment statement, such as PORTB = 0xF0.

In PIC18 assembly language, individual bits of file registers are set and cleared
using the bsf and bcf instructions, respectively. In addition, the instructions btfsc
(bit test, skip if clear) and btfss (bit test, skip if set) are used for conditional exe-
cution based on the status of an individual bit. One way to accomplish the same
functionality in C is to use macros as seen in Listing 8.1, which define bitset, bit-
clr, and bittst macros using C bitwise logical operations. Listing 8.1 also contains
examples uses of these macros. The code for a macro is replicated inline wherever
it is used; the statement bitset(PORTB,2) may look like a function call but is re-
placed by the code PORTB |= (1 << (2)) during compilation. The |= operator is a
shorthand notation for PORTB = PORTB | (1 << (2)).

LISTING 8.1 C Macros for bitset/bitclr/bittst and example uses.

#define bitset(var,bitno) ((var) |= (1 << (bitno)))

#define bitclr(var,bitno) ((var) &= ~(1 << (bitno)))

#define bittst(var,bitno) (var & (1 << (bitno)))

// example uses

bitset(PORTB, 2);   //PORTB, bit 2 is set to 1

bitclr(PORTB, 7);   //PORTB, bit 7 is cleared to 0

if (bittst(PORTB,6)) {

//execute if_body if PORTB, bit 6 is 1

}

if (!bittst(PORTB,5)) {

//execute if_body if PORTB, bit 5 is 0

}
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In the PICC-18 compiler, the bitset and bitclr C macros compile directly to
the corresponding bsf and bcf instructions, making these macros very efficient.
Similarly, the bittst macro also compiles to either the btfss or btfsc instruction,
depending on context. However, because bit set/clear/test operations are so preva-
lent in microcontroller applications, the PICC-18 compiler defines a bit data type
that supports naming of individual register bits as separate variables, allowing them
to be used any place a normal C variable is used. Most individual bits of special
function registers are defined using bit data types in the pic18xx2.h header file. For
example, the following line defines bit 5 of PORTB as a bit variable named RB5.

static volatile near bit RB5 @ ((unsigned)&PORTB*8)+5;

Listing 8.2 shows the bit set/clear/test operations of Listing 8.1 implemented
using bit variables instead of C macros.

LISTING 8.2 Bit set/clear/test using bit variables.

// example uses of bit variables

RB2 = 1;   //PORTB, bit 2 is set to 1

RB7 = 0;   //PORTB, bit 7 is cleared to 0

if (RB6) {

//execute if_body if PORTB, bit 6 is 1

}

if (!RB5) {

//execute if_body if PORTB, bit 5 is 0

}

One advantage to using bit variables is improved code clarity, as the statement
CARRY = 1 is clearer in its intent of setting the carry flag than bitset(STATUS,0), as
one has to remember that bit 0 of the STATUS register is the Carry flag. Another
advantage is that it helps in porting code between PIC microcontroller families, as
using bit variables can isolate code from changes such as status or control bits
changing positions within a register, or being moved to a different register alto-
gether. The header file for the target device contains the register and position in-
formation for a named bit, and thus code can be made portable between closely
related PIC microcontrollers (not all porting issues can be solved this way, but this
helps). The disadvantage to using bit variables is that the bit data type is not a stan-
dard data type in the C language, but is an extension to the language added by HI-
TECH Software. This means any code using bit variables has to be changed if a
different C compiler is used, such as the Microchip MCC18 compiler. Another
possible problem is that the use of bit variables masks the fact that a bit is the tar-
get of an assignment instead of a register. For example, there is nothing inherent in
the statements PORTB = 1 and RB6 = 1 that clues a reader unfamiliar with PIC18 de-
tails that PORTB is an 8-bit register whose contents is assigned the value 0x01,
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while RB6 is an individual bit within PORTB. This lack of distinction between reg-
isters and bits is confusing only if the reader is unaware of PIC18 hardware details
before reading PIC18 C code. In this book, all named bits of special function regis-
ters are introduced in proper context before showing their usage in C code. The C
code examples in this book use both bittst/bitset/bitclr macros and bit vari-
ables, with one being favored over the other if code clarity is improved within a par-
ticular context. 

PICC-18 Runtime Code

The runtime code produced by the PICC-18 compiler first initializes all global vari-
ables (to zero if they are not given an explicit initial value) and then jumps to the
entry point of main(). Qualifiers can be used with variable declarations to control
particulars about where the variable is located in memory, and how it is initialized.
Table 8.1 lists the qualifiers used within examples in this book; see the PICC-18
compiler documentation for a complete description of all qualifiers. A variable 
declared outside of a function is a global variable; local variables within a function
are called auto variables. An auto variable is only given an initial value if one is ex-
plicitly stated, unlike global variables that have a default initial value of zero. If an
auto variable is given an initial value, the variable is initialized each time the func-
tion is called. Auto variables are not guaranteed to retain their values between func-
tion calls. A static qualifier applied to an auto variable means the auto variable is
only initialized once, and causes it to retain its value between function calls. The
static qualifier also causes the variable to have a nonshared memory address (ex-
plained later in this section), the same as a global variable. The persistent qualifier
can be used on a global variable to prevent it from being initialized by the startup
code that is executed before main() is called. This is useful for tracking events be-
tween processor resets, and its use is covered in more detail later within this chap-
ter. The volatile qualifier tells the compiler that this variable may change its value
between successive accesses in the code; that is, some other agent such as an exter-
nal pin change or interrupt (see Chapter 10, “Interrupts and a First Look at
Timers”) can change the variable’s value. This prevents certain compiler optimiza-
tions from being applied to the variable. 

In the PICC-18 compiler, static allocation is used for function parameters and
auto variables, so function recursion is not supported. During the compilation
process, the PICC-18 compiler builds a call graph to determine the functions that
are active at any given time. Those functions not active at the same time share the
same data memory space for parameters and local (auto) variables as shown in Fig-
ure 8.2. This can be done because local variables in C are not guaranteed to retain
their values between function calls. This provides efficient utilization of the avail-
able data memory space. If a local variable is declared static, its memory space is



not shared, as it must retain its value between function calls. The call graph also al-
lows the compiler to determine if recursive calls are being made; if a recursive call
is found, an error message is printed. The map file produced by the compiler gives
the call graph and the locations of all functions and global variables (see Appendix
C for more details on PICC-18 compiler usage).

By default, variables are allocated anywhere there is free memory in the file reg-
isters. The storage for active auto variables is limited to one bank, or 256 bytes.
Thus, a variable declaration such as char buf[300] is not allowed within a function
(an auto variable), but could be declared as static char buf[300] within the func-
tion or declared as a global variable external to the function. 
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main() { 
 int p;
 char v;
 ....
 ....
 subA(p);
 ...
 ...
 subB(v);
 ...
 ...
}

 Locations are shared

subA(int z) { 
 char k,j;
 ....
 ....
 ....
}

subB(char y) { 
 int s;
 ....
 ....
 ....
}

 Call graph:

 main subA
subB } Not active as same time so parameter/local variable memory

spaces can use the same locations.

Data Memory Allocation:
0x1FC    k
0x1FD    j
0x1FE    z LSByte
0x1FF    z MSbyte

Data Memory Allocation:
0x1FD   s LSByte
0x1FE    s MSByte
0x1FF    y }

FIGURE 8.2 PICC-18 compiler static allocation.

Qualifier Example Comment

static static char i =1; Initialize only once, retains value between function 
calls.

persistent persistent char j; For global variables, do not touch with reset code.

volatile volatile char k; Can be changed between accesses.

TABLE 8.1 Variable Qualifiers



8.4 PIC18F242 STARTUP SCHEMATIC

The version of the PIC18xx2 used in the interfacing examples in this book is the
PIC18F242 and its pin diagram is seen in Figure 8.3. This device is imminently suit-
able for experimentation on a protoboard, given its small footprint of 28 pins and
the dual-inline package (DIP). An external pin usually has more than one internal
function mapped to it because of the limited number of pins on the 28-pin pack-
age. Control bits within PIC18 special function registers determine the mapping of
internal functions to external pins.

A brief summary of the pin functions used in this book is given here; more de-
tails are provided in the appropriate chapter covering that functionality. The arrows
next to the pin in Figure 8.3 indicate the pin direction; an arrow pointing into the
device indicates an input-only pin, an arrow pointing out of the device indicates an
output-only pin, and arrows on both ends indicates a bidirectional pin (a pin that
can function as either an input or output).

Vdd,Vss: These are power (Vdd) and ground (Vss) pins; observe that there is
more than one ground pin. It is not unusual for an integrated circuit to have
multiple power and ground pins, all of which must be connected.

MCLR#: This input pin resets the device when brought low. The # symbol in
the name indicates a low true signal.
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 MCLR#/Vpp
RA0/AN0
 RA1/AN1

RA2/AN2/Vref-
RA3/AN3/Vref+

RA4/T0CKI
RA5/AN4/SS#/LVDIN

VSS
OSC1/CLKI

OSC2/CLKO/RA6
RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2*

RC2/CCP1
RC3/SCK/SCL

1
2
3
4
5
6
7
8
9
10
11
12
13
14 

RB7/PGD
RB6/PGC
RB5/PGM
RB4
RB3/CCP2*

RB2/INT2
RB1/INT1
RB0/INT0
VDD
VSS
RC7/RX/DT
RC6/TX/CK
RC5/SDO
RC4/SDI/SDA

28
27
26
25
24
23
22
21
20
19
18
17
16
15

 P
IC

18
F2

42

 *RB3 is the alternate pin for the CCP2 pin multiplexing

 Figure redrawn by author from PIC18Fxx2 datasheet (DS39564B),  Microchip Technology Inc. 

FIGURE 8.3 PIC18F242 pin diagram.



Vpp, PGD, PGC, PGM: These pins are used to download a program into the
device via an external programmer (see Appendix F).

OSC1, OSC2: These pins are used to provide the main clock source for the de-
vice (details in this chapter).

RAn, RBn, RCn: These bidirectional pins are parallel port IO pins (details in
this chapter). In this book, we principally use the RBn pins (PORTB) for par-
allel IO, as these pins share the least amount of functionality with other inter-
nal subsystems.

ANn, Vref-, Vref+: The ANn inputs are the analog inputs for the analog-to-
digital converter subsystem (Chapter 12, “Data Conversion”). The Vref-/Vref+
pins are used to provide negative and positive voltage references for the analog-
to-digital converter.

TX, RX: These pins are used for asynchronous serial transmit (TX) and receive
(RX) (see Chapter 9, “Asynchronous Serial IO”).

SCL, SDA: These pins implement the I2C synchronous serial data interface (see
Chapter 11, “Synchronous Serial IO”).

SCK, SDI, SDO, SS#: These pins implement the serial peripheral interface
(SPI), which is a synchronous serial data transfer protocol (see Chapter 11).

CCP1, CCP2: These pins are used by the capture and compare module, which
is useful for measuring time between external events and also square wave gen-
eration (see Chapter 13, “Timers”).

INTn: These pins provide external interrupt sources to the PIC18 (see Chapter
10).

A schematic used to test PIC18F242 functionality by flashing a light emitting
diode (LED) is seen in Figure 8.4. A PIC18F242 requires that Vdd be in the range
4.2 V to 5.5 V, while a PIC18LF242 supports a wider Vdd range of 2.0 V to 5.5 V.
The “L” in the PIC18LF242 part number stands for low power; reducing Vdd re-
duces power consumption. Further details on power consumption of CMOS cir-
cuits are provided later in this chapter. An external AC-to-DC wall transformer
provides power that outputs 9 V unregulated, which means that the output voltage
can fluctuate depending upon the amount of current that is drawn from the trans-
former. A LM340T5 voltage regulator is used to provide a stable 5 V output as the
Vdd for this system (Appendix E, “Suggested Laboratory Exercises,” contains a
complete list of the components used in the interfacing examples of this book as
well as a picture of a completed protoboard layout). The fuse in the power path is
a safety precaution; it will blow (no longer conduct current) if excessive current is
drawn from the power supply. The total current required for our PIC18 system
after all peripheral chips have been added is under 40 mA (1 mA = milliAmperes

The PIC18Fxx2: System Startup and Parallel Port IO 217



218 Microprocessors

= 0.001 A), so a 200 mA fuse provides more than enough margin. Excessive cur-
rent can be drawn if a short (a low resistance path) is created between Vdd and Vss
by a wiring mistake during circuit hookup, or by component failure.

The 0.1 μf capacitor connected from Vdd to Vss is called a decoupling capaci-
tor; it assists in supplying transient current needs caused by high-frequency digital
switching. This capacitor should be placed as close as possible to the Vdd and Vss
pins of the device for maximum effectiveness; having these two pins adjacent to
each other on the package allows this capacitor to be placed directly across Vdd and
Vss. This capacitor is important; the author has seen several examples in lab where
a PIC18 system has acted erratically when a student has neglected to include the de-
coupling capacitor. Appendix G, “Circuits 001,” provides a brief introduction to el-
ementary circuit concepts if you are unfamiliar with basic circuit elements such as
resistors, capacitors, diodes, and so forth. You only need a hobbyist-level intuition
about basic circuit concepts for the interfacing topics in this book; detailed circuit
analysis background is not required.

When power is applied to the PIC18F242, the device does a self-reset, which
means that the program counter is cleared to 0 and the first instruction is fetched
from location 0. This is known as a power-on reset (POR). However, it is also con-
venient to have a manual reset capability during testing to restart a program with-
out needing to cycle power. The momentary pushbutton connected to the MCLR#
input applies a low voltage to MCLR# when pushed, causing the PIC18 to reset. The
10 k resistor that connects the MCLR# pin to Vdd is called a pullup resistor, as it
keeps the MCLR# input pulled up to near 5 V when the pushbutton is released. If

 Vdd

 Vss

 Vpp/
MCLR#

Reset
Switch

 10 kΩ

 PIC18LF242

 RB1

 Osc1

 L1

power-on
LED

 470 Ω

 fuse

LM340T5
  (7805)

+9V Wall 
Transformer

 Osc2

 Crystal
7.3728 MHz

 15 pF

 15 pF  470 Ω  L2

 +5V  0.1 μF

 Important! Place across Vdd/Vss pins as
close as possible to package

 Power
On/Off

 Slide
Switch

FIGURE 8.4 PIC18F242 schematic for flashing an LED.



the pullup resistor is removed, and a direct connection is made from MCLR# to
Vdd, a short is created when the pushbutton is pressed, causing excessive current
flow and probably causing the fuse to blow. If the pullup resistor and Vdd connec-
tion is not made at all, the input floats between 0 V and Vdd when the pushbutton
is not pressed. A floating input can read as either “0” or “1” depending on the
switching activity of nearby pins, causing spurious circuit operation. A PIC18 with
a floating MCLR# input can experience intermittent resets, a problem that is diffi-
cult to debug. The L1 LED and the 10K resistor connected from Vdd to MCLR#
causes the LED to light dimly when the reset button is pressed, giving visual feed-
back that reset is being applied. More importantly, if the PIC program memory is
modified by an external programmer (Appendix F), a high voltage (12 V, the pro-
gramming voltage Vpp) is applied to the Vpp/MCLR# pin. The LED between
MCLR# and Vdd prevents this high voltage from appearing on the Vdd bus, avert-
ing damage to other devices sharing the Vdd bus.

The crystal connected between the OSC1 and OSC2 pins provides an accurate
clock source for the device. The 15 pF capacitors along with an internal amplifier
circuit in the PIC18 causes the crystal to begin oscillation shortly after power is ap-
plied (startup time is typically less than 50 ms and can vary, see [7] for a complete
discussion of PIC oscillator characteristics). The waveform produced by the crystal
oscillator is a sinusoidal signal; this is converted to a square-wave clock signal
within the PIC18. In the examples in this book, an internal PIC18 option called
HSPLL (high speed crystal/resonator with Phase Locked Loop) is used that multi-
plies the crystal frequency by four to produce the internal clock frequency FOSC.
Thus, the 7.3728 MHz crystal frequency results in an internal clock frequency of
29.4912 MHz. You will discover later that this “strange” frequency is useful for
asynchronous serial communication. Two other methods of clock generation for
the PIC18 are:

An external resistor/capacitor can be connected to the OSC1 input; this is an
inexpensive method of clock generation but the highest clock frequency is lim-
ited, and clock frequency accuracy is sacrificed.
An external clock can be input directly into the OSC1 pin. Many varieties of ex-
ternal oscillator devices are available that provide an accurate, high frequency
clock waveform but the cost is typically twice that of a crystal/capacitor net-
work.

Details on oscillator options for the PIC18 are found in the PIC18Fxx2
datasheet [6].
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8.5 LEDFLASH.C—THE FIRST C PROGRAM FOR
PIC18F242 STARTUP

The C code of Figure 8.5 flashes the L2 LED connected to pin RB1 in Figure 8.4.
The statement #include <pic18.h> includes the generic PIC18 header file; addi-
tional #include statements within the pic18.h file cause a device-specific header file,
such as the pic18xx2.h, to be included based upon the target device specified within
MPLAB and passed to the PICC-18 compiler. 

Figure 8.5 is the first C code listing for PIC18 hardware experiments presented
in this book. Because of space considerations, the C source code given in figures is
typically not complete—the figure source code will usually omit C functions previ-
ously covered or omit include statements for various header files. Most of the C
source code used in book figures that illustrate PIC18 hardware features is included
on the companion CD-ROM in their complete form; please use these source files
when attempting to duplicate the experiments.
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#include <pic18.h>

#include "config.h"

void a_delay(void)
{
  unsigned int i,k;
  // change count values to alter delay 
  for (k=1800; --k;) {
    for(i = 200 ; --i ;);
  }
}

// just flash LED on port RB1 
// use this to test if PIC board is alive 
main(void){
  TRISB1 = 0;     // configure RB1 as output 
  RB1 = 0;        // set RB1 low initially

  while(1) { 
    a_delay();  // call delay subroutine
    RB1 = 1;    // turn on RB1 (LED) 
    a_delay();
    RB1 = 0;    // turn off RB1 (LED) 
  }
}

 Subroutine for software delay

 Standard PIC18 header file

Infinite loop that blinks LED.
Only exit is through MCLR# reset
or power cycle.

Contains configuration bits
and bit macros.
See the file on the 
 CDROM at
./code/common/config.h

__CONFIG(1,HSPLL);
__CONFIG(2, BORDIS & PWRTDIS & WDTDIS);
__CONFIG(4, DEBUGDIS & LVPDIS);
#define bitset(var,bitno) ((var) |= (1 << (bitno)))
#define bitclr(var,bitno) ((var) &= ~(1 << (bitno)))
#define bittst(var,bitno) (var & (1 << (bitno)))

}

}

FIGURE 8.5 C code for flashing an LED.
ON THE CD



Configuration Bits

The CONFIG lines are C macros that define PIC18 configuration bit settings for the
compiler. Configuration bits select different operating modes for the PIC18 and are
stored in configuration registers in program memory beginning at location 0x300001.
Each CONFIG statement specifies bit settings in a different configuration register; 
for example, __CONFIG(4, DEBUGDIS & LVPDIS) specifies the configuration bits for 
configuration register 4. After compilation, configuration bits and the program
machine code are found in the .hex file produced by the compiler. The CONFIG state-
ments in Figure 8.5 select the following modes, which are used in the hardware ex-
amples in this book.

HSPLL: This controls oscillator selection. The HSPLL option creates the inter-
nal clock via an external crystal whose frequency is multiplied by 4.

BORDIS: This option disables brown-out reset. A brown-out refers to a failure
in operation due to Vdd droop, a common problem in battery-operated sys-
tems. The PIC18 has a brown-out detection circuit that generates a device reset
when the Vdd value drops below one of four selectable trigger levels.

PWRTDIS: This option disables the power-up timer. A timer on a microcon-
troller is simply a counter that is clocked at a particular frequency, and gener-
ates an action when a particular count is reached. The amount of time to trigger
the event depends on the clock frequency of the counter, and the size of the
counter. The power-up timer on the PIC18 implements a fixed delay (typical
value is 72 ms) after power-up. Its intended use is to provide time for the
power supply to stabilize before fetching of the first instruction.

WDTDIS: This option allows the Watchdog Timer (WDT) to be disabled in
software via the SWDTEN bit (bit 0) of the WDT configuration register (WDT-
CON). If this option is not specified, the watchdog timer is always enabled and
cannot be disabled in software. Additional information on the watchdog timer
and its usage is included later in this chapter.

DEBUGDIS: This option disables the PIC18 in-circuit debug (ICD) capability,
which provides simple debugging functions such as breakpoints and limited
register examination while the microprocessor is in-circuit (i.e., on the proto-
board or circuit board). When enabled, pins RB6 and RB7 are used to transfer
debugging information in a serial manner to an external programmer that sup-
ports the ICD functionality. Furthermore, the in-circuit debugger uses some
return address stack space (2 locations), data memory (10 bytes), and program
memory (512 bytes) when enabled. While the examples in this book do not ex-
plicitly use the PIC18 ICD capability, you can experiment with ICD if you have
the required external programmer support (see Appendix F for more details).
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LVPDIS: This option disables the low-voltage programming mode of the
PIC18. When enabled, the program memory is programmed using the normal
Vdd supply instead of using a higher programming voltage applied to the Vpp
pin. Pin RB5 is lost for parallel IO usage when this option is enabled, and must
be held low during normal operation. The PIC18 system used in this book has
an asynchronous serial port interface, allowing the PIC18 to program itself
from bytes downloaded through the serial port using a program referred to as
a serial bootloader, which negates the need for low-voltage programming. The
asynchronous serial port is discussed in Chapter 9, and the serial bootloader in
Appendix F.

Appendix A, “PIC18Fxx2 Architecture, Instruction Set, Register Summary,”
summarizes the configuration registers and their bit definitions; a complete list of
the configuration bits and their functions is found in the PIC18Fxx2 datasheet.

Flashing the LED

Pin RB1 is a bidirectional, parallel port pin and can either be configured as an input
or as an output. Pin RB1 is just 1 bit of the 8-bit parallel port called PORTB. The
RB1 pin must be configured as an output to drive the LED, which is accomplished
by the statement TRISB1 = 0. Each bit of the special function register TRISB controls
the direction of the corresponding PORTB bit. A “1” in a TRISB bit configures the
corresponding PORTB pin as an input, while a “0” configures the PORTB pin as an
output (additional details on parallel port IO are given later in this chapter). The
statement RB1 = 1 assigns a zero to the RB1 data latch, thus driving the RB1 pin low
and turning off the LED. The statement while(1){} creates an infinite loop, whose
loop body alternately turns the LED on (RB1 = 1) and off (RB1 = 0). A time delay is
created between each RB1 assignment by the function call a_delay(), which is com-
posed of two nested for{} counting loops. This type of time delay is called a soft-
ware delay loop, and the delay time is dependent upon the number of instructions
in the loop and the clock frequency of the PIC18. The delay can be increased or de-
creased by changing the count values in the nested for{} loops of the a_delay()
function. The delay must be long enough so that the LED can fully turn off or turn
on between RB1 pin assignments. If the delay is too short, the LED will appear al-
ways on, even though an oscilloscope trace would reveal that RB1 is transitioning
between low and high voltages (a square wave output). Software delays are easy to
implement, but hardware timers are much better at creating accurate time delays.
The timer subsystem of the PIC18 and its usage is first discussed in Chapter 10, and
covered in more detail in Chapter 13. Observe that the only method of terminating
the while(1){} loop in Figure 8.5 is by cycling power or reset via the pushbutton on
MCLR#. This infinite loop nature is typical of microcontroller applications because
if the loop is exited, there is nowhere to go!
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Figure 8.6 gives a macro, DelayUs(x) (delay for x microseconds), and a func-
tion, DelayMs(cnt) (delay for cnt milliseconds), that provide a better implementa-
tion of software delay loops than the a_delay() function of Figure 8.6. This code is
a variation of the sample delay-loop code provided with the HI-TECH PICC-18
compiler and works well for internal clock frequencies (FOSC) greater than 12
MHz. Under full compiler optimization, the DelayUs(x) macro compiles to a loop
that contains three instruction cycles (12 clock cycles); hence the loop takes 1 μs if
FOSC is 12 MHz. The DelayUs(x) macro is less accurate for lower values of x and
where FOSC is not evenly divisible by 12, but typically software delay loops are not
used where high accuracy is needed. The result of the computation (x * FOSC)/

12MHz should not exceed 255, since the _dcnt loop variable is an 8-bit value; for
FOSC = 40 MHz, this limits x to a maximum value of 76. The DelayMs(cnt) func-
tion contains two nested loops; the inner loop is a 1 ms delay that is executed cnt
times by the outer loop to provide a cnt ms delay. The inner loop’s 1 ms delay is
performed by calling DelayUs(50) 20 times, as 20*50 μs = 1000 μs = 1 ms. Full
compiler optimization should be enabled when using this delay code, else longer
delays than expected are generated. Code examples in this book that use software
delay loops make use of these functions.

8.6 DATASHEET READING—A CRITICAL SKILL 

At this point, the phrase “Topic x is discussed in more detail in the PIC18Fxx2
datasheet” has been used several times. It is impractical for this book to replicate all
PIC18Fxx2 datasheet information, as this datasheet is over 300 pages in length! As
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#define FOSC    29491L   // Internal clock freq in KHz
#define MHZ     *1000L   // number of KHz in a MHz 
#define KHZ     *1       // number of KHz in a KHz 

#define DelayUs(x) { unsigned char _dcnt; \
                     _dcnt = ((x* FOSC)/(12MHZ)); \
                     while(--_dcnt != 0) \
                       continue; }

void DelayMs(unsigned char cnt)
{
        unsigned char   i;
        do {
                i = 20;
                do {
                        DelayUs(50);
                } while(--i);
        } while(--cnt);
}

Compiles to loop with 12 clock
cycles, 1 μs per iteration if 
FOSC = 12 MHz 

Call DelayUs(50)
20 times for
1 ms delay

        movlb ??
loop    decfsz _dcnt,f
        bra loop

..loop exit...

 When using these functions, must use full optimization!

Be cautious of overflow
in _dcnt variable. For
40 MHz, x max is 76.

FIGURE 8.6 Delay loop code (see CD-ROM file ./code/common/delay.h).
ON THE CD



such, you must become comfortable with reading the PIC18Fxx2 datasheet, and the
datasheets of other devices referenced in this book, to gain full understanding of the
interfacing examples. The information detail in a component datasheet may ini-
tially seem overwhelming, but this can be countered by knowing how typical
datasheets are organized, and where to look for certain types of information. A typ-
ical component datasheet is organized as follows:

Initial summary and pinouts: The first section contains a device functional
summary, which includes pin diagrams and individual pin descriptions.

Functional description: Individual sections discuss the functional details of the
device operation. In the PIC18Fxx2 datasheet, these sections correspond to the
subsystems of the PIC18 such as the timers, the analog-to-digital converter,
etc., with each section containing the special function registers used by the sub-
system and the individual bit definitions of these SFRs. Step-by-step instruc-
tions for subsystem configuration and usage are provided. Each section ends
with a summary that lists all of the special function registers used by a particu-
lar subsystem, which is very useful for quick reference.

Electrical characteristics: Electrical characteristics are divided into DC specifi-
cations (operating voltage, power consumption, output port drive capability,
etc.) and AC specifications (timing characteristics such as propagation delay,
maximum clock frequency, etc.). This section contains tables of values with
minimum, typical, and maximum values; the typical values are used in this
book whenever timing information is given. For the PIC18Fxx2, graphs such as
current requirements versus voltage and frequency are provided in this section.
The electrical characteristics section always contains a table labeled as Absolute
Maximum Ratings, which are the maximum voltage/current values that can be
experienced without damaging the device. These are not the typical operating
voltage/current ratings of the device. For example, the maximum voltage rating
of the Vdd pin is –0.3 V to +7.5 V. However, the actual operating voltage of
the PIC18Fxx2 is 4.2 V to 5.5 V.

For a microprocessor, the component datasheet such as [6] contains informa-
tion specific to the features of that particular processor, but may only contain sum-
maries if this information is common to many members of a microprocessor
family. Expanded descriptions of features common to all microprocessor family
members, such as the instruction set or hardware subsystems, are contained in ref-
erence manuals for that family [8]. Application notes such as [7] give detailed usage
examples of particular microprocessor features. Datasheets, reference manuals, and
application notes assume a general familiarity and previous background with sim-
ilar components on the part of the reader. Books such as this one are useful for
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readers who are new to these devices, or for experienced readers who are looking
for a single source that combines and summarizes information from datasheets, ap-
plication notes, and reference manuals. The ability to read a datasheet is a critical
skill for any practicing engineer, engineering student, or hobbyist, and skills are ob-
tained only through practice. So please, take the time to peruse the PIC18Fxx2
datasheet and the datasheets of other devices used in the hardware examples when
working through the remaining chapters. 

8.7 PIC18FXX2 RESET SOURCES

Methods of resetting the PIC18Fxx2 discussed to this point have been power-on,
MCLR#, brown-out, stack underflow, and stack overflow. Figure 8.7 shows a sim-
plified version of the reset circuitry for the PIC18Fxx2. The RESET instruction pro-
vides software reset capability, which is useful if some catastrophic error is detected
and a clean start is desired. The power-up timer (PWRT) and oscillator start-up
timer (OST) delay the release of reset after power is applied. The OST provides a
1024 cycle counter delay after the clock is applied, providing extra time for the os-
cillator to stabilize, while the PWRT provides a fixed delay (typically 72 ms) for
power stabilization. Observe that the PWRT has a separate on-chip clock source
and that its delay is placed in series with the OST if the power-up timer is enabled. 

RESET
Instruction

 MCLR#

Stack
Pointer

WDT
Module

 Vdd

Vdd Rise
Detect

Brown-out
Reset

 OSC1
10-bit Ripple Counter

On-chip
RC OSC1 10-bit Ripple Counter

Enable OST

Enable PWRT

PWRT

OST

BOREN

SLEEP

WDT Time-out
Reset

R

Q
Reset

S

 Figure redrawn by author from PIC18Fxx2

 datasheet (DS39564B),  Microchip Technology Inc. 

External Reset

Stack Full/Underflow Reset

Power-on Reset

Note  1: This is a separate oscillator from the RC oscillator of the CLKI pin.

FIGURE 8.7 Reset sources for the PIC18Fxx2.1

1 Figure 8.7 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.
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The watchdog timer (WDT) also has a separate on-chip clock source and can
act as a reset source if enabled. Figure 8.8 shows a block diagram of the WDT. A
postscalar on a timer is used to lengthen the timeout period of the timer. The WDT
has a postscalar controlled by 3 bits WDTPS2:0 stored in the configuration registers
of program memory. These bits select postscale values of 1:1 (bits = 000), 1:2 (bits
= 001), 1:4 (bits = 010), and so on, up to a maximum of 1:128 (bits = 111). A
typical WDT timeout value without postscaling is 18 ms. Using a maximum
postscale value of 1:128 (WDTPS2:0 = 111) increases this timeout value to 18 ms
* 128 = 2.3 s.

One use of the watchdog timer is to place a maximum wait time for some ex-
ternal event to occur. For example, assume the PIC18 has sent a request for infor-
mation to an external device, and is now waiting for a response. If the external
device fails, or if the request is corrupted such that the external device never re-
ceived the request, the processor is stuck in an infinite loop, waiting for a response
that it will never receive. The WDT timer can act as an alarm clock, forcing a device
reset upon expiration, allowing recovery from this infinite wait scenario. To pre-
vent WDT timeout during normal operation, the PIC18 instruction CLRWDT (clear
watchdog timer, has no arguments) must be executed periodically to reset the
WDT before the WDT expires.

Another use of the WDT timer is to wake the PIC18 from sleep mode, a low-
power standby mode entered by executing the PIC18 instruction SLEEP (has no ar-
guments). Sleep mode stops the internal clock, thus freezing all register contents
and dramatically lowering power consumption. One way to exit sleep mode is for
the WDT to expire; even though the internal clock is stopped, the WDT continues
running because it has an independent, internally generated clock source. Sleep
mode exit caused by WDT expiration is called WDT wake-up. When WDT wake-
up occurs, the PIC18 resumes at the instruction immediately following the SLEEP
instruction. One can envision an application in which the PIC18 enters sleep mode

Watchdog
Timer (WDT)WDTEN

(config. bit)
Enable

SWDTEN bit
(WDTCON[0])

Postscaler

8-to-1 Mux

8

WDT Time-out

WDTPS2:WDTPS0
  (config. bits)

FIGURE 8.8 Watchdog timer block diagram.



in-between reading data from external sensors, with the WDT used to wake the
processor for the next sensor reading.

CMOS Power Consumption

Why does entering sleep mode decrease power consumption? The answer is intu-
itive; if the clock is stopped, no transistors are switching, which means no energy is
being dissipated, thus reducing power. Of course, some energy is being dissipated,
even with the clock stopped, but the amount is much lower than with the clock
running. Power dissipation in a CMOS circuit is divided into two categories: static
(Ps) and dynamic (Pd). Static power is the power dissipated when no switching ac-
tivity is occurring and is due to high-resistance leakage paths between Vdd and
ground within CMOS transistors. Power dissipation is measured in watts (1 Watt
= 1 Volt * Amp), but in datasheets, power dissipation is typically given as power
supply current for a particular operating condition. Typical sleep mode current for
the PIC18Fxx2@4.2 V with the WDT enabled is 13 μA. When transistors are
switching, dynamic power is dissipated. The principle contribution to dynamic
power dissipation Pd is given in Equation 8.1, where Vdd is the power supply volt-
age, f the switching frequency, and c the amount of capacitance being switched.

Pd = Vdd2 * f * c (8.1)

Either Vdd or the clock frequency can be reduced to lower Pd; the capacitance
that is switched each clock cycle depends on the circuit topology, which is fixed. It
is obviously more effective to lower Vdd if possible due to the square relationship
between Vdd and Pd.

Figure 8.9 shows curves of Idd versus FOSC (clock frequency) for several dif-
ferent Vdd curves (data taken from the PIC18Fxx2 datasheet [6]). It is apparent
that lower Vdd and/or lower clock frequency reduces power consumption. Also ob-
serve that for Vdd = 2.5 V, the maximum clock frequency shown is approxi-
mately 12 MHz. This is because as Vdd is lowered, transistors take longer to switch,
causing CMOS gates to have longer propagation delays, thus reducing the maxi-
mum clock speed at which a sequential circuit can be switched. This is the tradeoff
associated with lowering Vdd to reduce power dissipation—the maximum achiev-
able performance is also reduced. Note that current draw at @ 4 V, 20 MHz is
about 5.5 mA, so the sleep mode current of 13 μA reduces power supply current
by a factor greater than 400!
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Sample Question: Assume a PIC18 is consuming 13 mA@5 V, 40 MHz. If the voltage,
frequency is reduced to 4 V, 20 MHz, what is the new predicted current draw based on
Equation 8.1?

Answer: It is known that 13 mA ~ 5 V * 5 V * 40 MHz * c, so c ~ 13 mA/(5
V* 5 V*40 MHz).
We are looking for y mA ~ 4 V * 4 V * 20 MHz * c. Replacing c in this equa-
tion gives y mA ~ 16 * 20 * 13 mA/(25 * 40) =  4.2 mA, expected current
draw.

8.8 EXPERIMENTING WITH RESET, SLEEP, AND THE 
WATCHDOG TIMER

The RCON register contains status bits that are used for determining the reset type
that occurred. Figure 8.10 defines the RCON register bits and their values under
various reset conditions. It is important to be able to determine the reset source in
order to execute different code segments based on reset type. For example, after a
watchdog timer reset, if the WDT is being used as a timeout for some type of IO op-
eration, status information can be displayed to help determine the reason for the
timeout. The POR# bit (Power-on Reset Status bit) is cleared to “0” on power-on
reset (POR). After power-on reset has occurred, this bit has to be manually set to
“1” in software to distinguish future resets from a power-on reset.
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2 Figure 8.9 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.



Figure 8.11 shows a C program useful for experimenting with the different
PIC18 reset conditions. The code assumes the existence of a serial port connection
for displaying the results of the printf() statements and reading serial port input,
which is discussed in Chapter 9.

On main() entry, the program initializes the serial port, and then determines if
a power-on reset or watchdog timer reset has occurred. If the test POR == 0 is true,
power-on reset has occurred and the variable reset_cnt is initialized to zero. Ob-
serve that POR = 1 is included, as this bit is unaffected by other reset types, so it must
be set in order to detect other reset types. In addition, the persistent qualifier is
used for the declaration of reset_cnt, excluding it from being initialized by the
start-up code executed before main() entry. This means that reset_cnt is only ini-
tialized in the if{} body of the POR test, allowing this variable to keep a count of
the number of non-POR resets experienced. If the test TO == 0 is true, the watchdog
timer has expired, causing a reset. The watchdog timer is then disabled by clearing
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FIGURE 8.10 RCON register definition, bit values under 
different reset conditions.3

3 Figure 8.10 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.



the SWDTEN bit, which is bit 0 of the WDTCON register. After these two reset
checks, the reset_cnt variable is incremented, and an infinite while(1){} loop is en-
tered. A choice menu is printed within the loop, giving the user the option of en-
abling the watchdog timer, entering sleep mode, or enabling the watchdog timer,
and then entering sleep mode. Choice #1 enables the watchdog timer via the state-
ment SWDTEN = 1, which sets the SWDTEN bit. If nothing else is done after this
choice is made, the WDT expires after approximately two seconds assuming the
WDT postscaler is set to 128:1. This causes a reset, and the message “Watchdog
timer reset has occurred” is printed by the code that detects this condition. Choice
#2 enters sleep mode by executing the SLEEP instruction, which is inserted in the C
code by the statement asm(“SLEEP”). This is known as inline assembly, and allows as-
sembly language instructions to be specified directly within C code. After this
choice is made, the only method of waking the processor is to press the MCLR#
reset button, or to cycle power (assuming the schematic of Figure 8.4). Choice #3
first enables the watchdog timer, and then enters sleep mode. Two seconds later,
the watchdog timer expires, waking the processor from sleep mode, and causing ex-
ecution to resume at the instruction following the SLEEP instruction. Since this is at
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void pcrlf (void) // print a newline to terminal
{
  putch(0x0a);  putch(0x0d);
}

persistent char reset_cnt;

main(void){
  int i;
  char c;

  serial_init(95,1); // 19200 in HSPLL mode, crystal = 7.3728 MHz
  pcrlf(); 
  if (POR == 0){
    printf("Power-on reset has occurred."); pcrlf();
    POR = 1;  // setting to bit to 1 means that will 
              // remain a '1' for other reset types
    reset_cnt = 0;
  }
  if (TO == 0) {
    SWDTEN = 0; // disable watchdog timer
    printf("Watchdog timer reset has occurred."); pcrlf();
  }
  i = reset_cnt;
  printf("Reset cnt is: %d",i);
  pcrlf();
  reset_cnt++;
  while(1) {
    printf("'1' to enable watchdog timer"); pcrlf();
    printf("'2' for sleep mode");  pcrlf();
    printf("'3 ' for both watchdog timer and sleep mode");  pcrlf();
    printf("Anything else does nothing, enter keypress: ");
    c = getch();
    putch(c);
    pcrlf();
    if (c == '1') SWDTEN = 1;  // enable watchdog timer
    else if (c == '2') asm("sleep");
    else if (c == '3') {
      SWDTEN = 1;     // enable watchdog timer
      asm("sleep");
    }
  }
}

persistent qualifier prevents variable from being 
initialized by start-up code prior to main

 Initializes serial interface, discussed in Chapter 9.

 Detects power-on reset

 reset_cnt only initialized here

 Detects watchdog timer expiration

 Inline assembly used to insert SLEEP
instruction

 reset_cnt increases in value for each non-POR reset

FIGURE 8.11 Program (reset.c) for experimenting with reset types.
ON THE CD



The PIC18Fxx2: System Startup and Parallel Port IO 231

the end of the loop, a jump is made back to the beginning of the loop, and the
choice menu is reprinted. If no choices are made, the watchdog timer expires again
after another two seconds, causing a device reset. Extending this code to check for
other reset conditions, or generating other types of reset is left for the review prob-
lems at the end of the chapter. Figure 8.12 shows terminal output from testing the
code of Figure 8.11. 

8.9 PARALLEL PORT OPERATION

Parallel port IO refers to groups of pins whose values can be read or written as a
group via special function registers. On the PIC18F242, three parallel ports are
available: PORTA, PORTB, and PORTC. Two additional ports, PORTD and

Power-on reset, so reset_cnt is 0

Pressed reset button to generate 
MCLR# reset, so 
reset_cnt increments

Menu reprinted,
but no input typed,
WDT reset occurs, WDT disabled.

Typed “2”, so sleeps.
Must press reset to wakeup,
incrementing reset_cnt

Typed “1”, WDT enabled.

reset_cnt increments.

Typed “3”, so WDT enabled 
and sleep.
WDT expires, waking PIC.
Loop and re-display menu.
No input typed, WDT reset occurs,
WDT disabled.

Cycle Power

Power-on reset, so reset_cnt is 0

reset_cnt increments.

FIGURE 8.12 Testing the reset.c program.
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PORTE, are available on larger pin count versions of the PIC18Fxx2. Only PORTA,
PORTB, and PORTC are discussed in this book, as the PIC18F242 is the target de-
vice for the interfacing examples. Each parallel port has three special function reg-
isters associated with it: PORTx/TRISx/LATx, where x is A, B, or C. The TRISx
register is used to configure each bidirectional port bit as either an input or output.
A “1” in a TRISx register bit configures the associated PORTx register bit to be an
input, while a “0” configures the associated PORTx register bit to be an output. The
LATx register is the data latch used to drive the port pins when it is configured as
an output. Reading PORTx returns the values of the external pins, while reading
LATx reads the data latch value. Writing to either LATx or PORTx writes to the
data latch of the associated port. Please note that reading LATx may not return the
same value as reading PORTx. If the port is configured as an input, reading LATx
returns the last value written to LATx or PORTx, while reading PORTx returns the
value of the external pin. If the port is configured as an output, reading LATx will
normally return the same value as reading PORTx because the data latch is driving
the external pin. However, if there is another external driver that is clashing with
the port driver, or if the port driver itself is a special case like an open drain output
(explained later in this section), LATx and PORTx may return different values
when read. A write to a port bit configured as an input changes the value of the out-
put data latch (LATx), but does not change the value seen on the external pin whose
value is set by whatever is driving that pin.

PORTB

Figure 8.13 shows the internal logic of port pins RB[2:0]. Each port has slightly dif-
ferent features, and the PIC18Fxx2 datasheet should be consulted for a complete
description of each port’s capabilities. This diagram clearly shows the differences
between the PORTB, LATB, and TRISB special function registers. The TRISA reg-
ister controls port direction, PORTB represents the state of the external pins, and
LATB holds the data used to drive the port pins. 

Figure 8.13 shows that the TRISB[y] bit is connected to the enable input of the
tristate buffer that is on the output data latch that drives the PORTB pin. If
TRISB[y] is “0” (the port bit is an output), the tristate buffer is enabled, and sim-
ply passes its input value to its output. If TRISB[y] is “1” (the port bit is an input),
the tristate buffer is disabled, and its output becomes high impedance, whose state
is commonly designated as “Z”. Figure 8.14 shows that one can think of the tristate
buffer enable as controlling a switch on the output of the buffer; the switch is closed
when the enable is asserted, allowing the buffer to drive its output. The switch is
open when the enable is negated, causing the output to float (also known as high
impedance). Note that a port bit cannot be both an input and an output simulta-
neously; it is either one or the other based on the setting of the TRISB[y] bit. 
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The lower part of Figure 8.14 shows data flow on a bidirectional data link using one
wire; data is either flowing from CPU_a to CPU_b or vice versa, but never both di-
rections at the same time over one wire if voltage mode signaling is used.

In Figure 8.13, if a port is configured as an input and the RBPU bit (INT-
CON2[7]) is “0”, the weak pullup is enabled; observe that this enables the weak
pullup for all PORTB pins configured as inputs. The weak pullup is implemented
as a high-resistance P-transistor; when enabled, the gate of this transistor is “0”,
turning it on. The weak pullup is useful for eliminating the need for an external
pullup resistor on an input switch (see Figure 8.15). The term weak is used because
the resistance is high enough that an external driver can overpower the pullup re-
sistor and pull the input to near ground, producing a “0” input. PORTB is the only
port with internal weak pullups. Note that a pushbutton switch configured as a
low-true input switch must have some form of pullup resistor, either internal or ex-
ternal, or the input floats when the pushbutton is not pressed, allowing the input to
be read as either “1” or “0”.

The PORTB pin logic of Figure 8.13 shows both a TTL buffer and a Schmitt
trigger buffer used for driving internal signals from the external pin. Figure 8.16
shows the Vin/Vout characteristics of these two input buffer types. Observe that for
a Schmitt trigger, a low-to-high transition must become close to Vdd before the

4 Figure 8.13 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.
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buffer trips; conversely, a high-to-low transition must be close to ground before the
buffer trips. This hysteresis in the buffer action provides extra immunity against
noise on the input signal, and is also used for transforming slowly changing inputs
into signals with fast rise and fall times. Schmitt triggers consume more power than
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bidirectional IO.

P
 RBPU = 0

Weak Pullup
Enabled

Vdd

IO Pin

TRISBn = 1
0

Vdd
No External
Pullup 
Needed

Must always have
some form of pullup,
or input floats when
switch is not pressed.

FIGURE 8.15 Weak pullup operation.



TTL inputs, and thus are only used on inputs that either provide internal interrupts
(such as RB0, RB1, RB2, MCLR#) or drive the clock signal of an internal subsystem.

PORTA pins are shared with the analog-to-digital converter subsystem, and the
default configuration is for these pins to be analog inputs, causing a “0” to always
be read for those inputs when reading special function register PORTA. To config-
ure all PORTA pins for digital operation, the statement ADCON1 = 0x06 is required;
other values written to the ADCON1 register provide different combinations of
analog/digital inputs (see the PIC18Fxx2 datasheet and Chapter 12 for more de-
tails). Pins RA0:RA3 and RA5 provide bidirectional IO, CMOS logic levels for out-
put, and use a TTL buffer for input. Pin RA4 is different; it is an open-drain output
configuration, which can either drive its output low or leave it floating (see Figure
8.17). The term open-drain is used because the drain terminal of the N pulldown
transistor is open; there is no P pullup transistor. The right-hand side of Figure 8.17
shows a common use of open-drain outputs, which is to implement wired logic. The
three RA4 outputs of the CPUs are wired directly together, and pulled up to Vdd
through an external resistor. This is a low-true wired-or configuration because the
BUSY line is asserted low, turning on the LED, whenever CPU_a or CPU_b or
CPU_c asserts its RA4 output low. If all RA4 outputs are floating, the BUSY line is
high, and the LED is turned off. You cannot connect normal CMOS outputs di-
rectly together like this because there will be a clash when one output drives high,
and another output drives low, resulting in an uncertain voltage level on the wire.
A common mistake is to use RA4 as a normal output that must provide both high
and low voltage levels. This is difficult to debug, as a “1” written to RA4 causes the
output to float, which can be read by the receiving logic (if it is a CMOS input) as
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FIGURE 8.16 TTL buffer versus Schmitt trigger buffer PORTA.



either a “1” or “0”. Thus, the system will fail intermittently, which is one of the most
difficult types of hardware problems to debug.

PORTC

PORTC pins are bidirectional, with CMOS output drivers. In the PIC18F242, the
PORTC output pins are shared with other subsystem functions that are used in this
book’s interfacing examples. As such, the examples in this book use PORTB and
PORTA pins for any parallel IO needs. Details on the PORTC parallel port logic, as
well as PORTD and PORTE can be found in the PIC18Fxx2 datasheet.

Sample Question: Write C code that configures pins RB0, RB2, RB4 as outputs, and the
rest of PORTB as inputs.

Answer: Recall that if a TRISx bit is a “1”, the port pin functions as an input;
a “0” configures the port as an output. This configuration can be accom-
plished in two ways; either by a single assignment to the TRISB register or by
individual TRISB bit assignments. The statement TRISB = 0xEA (0b11101010)
works, as this clears bits TRISB4, TRISB2, TRISB0 to “0” and sets the rest as “1”.
If the TRISB configuration occurs after power-on reset (POR), then the state-
ments:

TRISB4 = 0; TRISB2 = 0; TRISB0 = 0;
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FIGURE 8.17 Pin RA4, open-drain output.5

5 Figure 8.17 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.



also works, as all bits in the TRISB register are reset to “1” after power-on reset
(see Appendix A for the settings of all special function register bits after POR).
Obviously one statement is more efficient than multiple statements, but if you
are new to microcontrollers it is suggested that you use the coding style that
you understand the best.

8.10 LED/SWITCH IO AND STATE MACHINE PROGRAMMING

A common input device is a momentary pushbutton switch. Figure 8.18 shows a
pushbutton switch connected to RB6. When the pushbutton is released (not
pressed) the RB6 input reads as “1”; when the pushbutton is pressed the RB6 input
reads as “0”. 

Assume we would like to count the number of pushbutton presses and releases;
each press and release counts as one switch activation. A common mistake is shown
in code segment (a), which increments a variable i when RB6 returns “0”. The
problem with this code is that the variable i is not only incremented when the
pushbutton is pressed, but is also incremented for as long as the pushbutton is held
down. Human reaction times on pushbutton switches are measured in tens of mil-
liseconds, so i is incremented many times for each pushbutton activation! 

Code segment (b) shows a correct solution to this problem. When the
while(1){} loop is entered, the code becomes trapped in the loop while(RB6){},
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 RB6 Input
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 RB4

main(){
int i;
 TRISB = 0xEF;
 RB4 = 0;
 i = 0;
 while (1) {
   if (!RB6) {
   //switch pressed
   //increment i 
   i++;
   }
 }
}

 a. Incorrect, variable i is
incremented as long as
the switch is pushed, which
could be a long time! Count number of

switch presses.

main(){
 int i;
 TRISB = 0xEF;
 RB4 = 0;
 i = 0;
 while (1) {
   // wait for press 
   while (RB6); //loop (1)
   DelayMs(30); //debounce
   // wait for release
   while (!RB6); //loop (2)
   DelayMs(30); // debounce
   i++;
 } 

 b.  Correct, loop 1 executed while
switch is not pressed. Once pressed,
becomes trapped in loop 2 until
switch is released, at which point
variable i is incremented. 

 10 kΩ

FIGURE 8.18 LED/switch IO example #1.
ON THE CD
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which loops waiting for the pushbutton to be pressed. Once the pushbutton is
pressed, the code is then trapped in the loop while(!RB6){}, waiting for the push-
button to be released. Upon release, the variable i is incremented and the code be-
comes trapped in the loop while(RB6){} again. Thus, i is incremented only once for
each press and release of the pushbutton. The DelayMs(30) function calls are in-
cluded after each change in the input switch status to ensure that all switch bounce
has settled before continuing. Mechanical switch bounce can produce multiple
pulses when a pushbutton is activated. The required delay is a function of the me-
chanics of the switch bounce, which can only be seen by using an oscilloscope to
capture the switch waveform or from a manufacturer data sheet. The value of 30
ms used here should be adequate for common momentary switches. This is a sim-
ple method for debouncing a switch with the drawback that the CPU cycles spent
in the software delay loop are wasted. Alternate methods for switch debouncing are
presented in Chapter 10. 

Another example of LED/switch IO is given in Figure 8.19, in which the goal is
to toggle the LED each time the pushbutton is pressed and released. Code segment
(a) is incorrect, as the if{!RB6} statement only turns on the LED as long as the
pushbutton is held down. Code segment (b) is correct, as the two statements
while(RB6){}, while(!RB6){} wait for a press and release before turning on the LED;
then the next two statements while(RB6){}, while(!RB6){} wait for a subsequent
press and release before turning off the LED. The bit assignments LB4 = 1, LB4 = 0

can be used instead of RB4 = 1, RB4 = 0, as this also writes to the port data latch reg-
ister. For the PICC-18 compiler, data latch bits can also be referenced using the
LAT prefix (e.g., LATB4).

Sample Question: Assume the same LED/switch configuration of Figure 8.19. Write a
while(1){} loop that blinks the LED twice for each switch press and release. Assume
the port is already configured.

Answer: One solution is shown in Listing 8.3.

LISTING 8.3 Solution A.

while(1){

while(RB6); DelayMs(30);   //wait for press

while(!RB6); DelayMs(30);  // wait for release

//blink twice

RB4 = 1; DelayMs(200);     //turn on, delay for blink

RB4 = 0; DelayMs(200);     //turn off, delay for blink

RB4 = 1; DelayMs(200);     //turn on, delay for blink

RB4 = 0; DelayMs(200);     //turn off, delay for blink

}



The DelayMs(200) software delay is necessary to actually see the LED turning off
and on. A common mistake is to forget to include this delay; the RB4 pin still tog-
gles but the LED will appear to be dimly ”on,” as it cannot respond fast enough to
the changes on the RB4 pin. An alternate solution is shown in Listing 8.4.

LISTING 8.4 Solution B.

while(1){

char i;

while(RB6); DelayMs(30);   //wait for press

while(!RB6); DelayMs(30);  // wait for release

//blink twice

for (i=0;i!=(2*2); i++) {//four times thru loop blinks twice

if (LB4)RB4 = 0; else RB4 = 1; //toggle RB4

DelayMs(200);

} //end for 

}//end while

The for{} loop iterates four times; each pass through the loop the LED is either
turned off or on, so the LED is blinked for every two passes through the loop. The
LED is toggled by reading the status of the data latch bit LB4; if it is “1”, it is cleared
to “0”; else it is set to “1”. Other solutions are possible; it is suggested that you use
the coding style that you understand the best.
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main(){
 TRISB = 0xEF;
 RB4 = 0;
 while (1) {
   if (!RB6){
     //switch pressed, 
     //turn on LED 
     RB4 = 1;
   }
   if (RB6) {
   // switch released, 
   // turn off LED 
     RB4 = 0;
    }
 } 

 a. Incorrect, LED is “on”
only when switch is pressed;
it is “off” when switch is
released.

 Toggle LED for
each switch press.

main(){
 TRISB = 0xEF;
 RB4 = 0;
while (1) {
   // wait for press
   while (RB6);
   DelayMs(30); //debounce
   //wait for release
   while (!RB6);
   DelayMs(30); //debounce
   RB4 = 1; // turn on
   // wait for press
   while (RB6);
   DelayMs(30); //debounce
   // wait for release
   while (!RB6);
   DelayMs(30); //debounce
   RB4 = 0; // turn off
 } 

 b.  Correct, LED is toggled for 
each press and release of the
switch.

 10 kΩ

FIGURE 8.19 LED/switch IO example #2.
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State Machine IO Programming

The loop structures of Figures 8.18 and 8.19 wait for an IO event (switch press and
release) and then perform an action. A common task in microcontroller applica-
tions is to perform a sequence of events that span a series of IO actions. A finite
state machine approach for code structure is useful for these types of problems. Fig-
ure 8.20 shows a state machine specification of an LED/switch IO problem. Each
state accomplishes an action, such as turning the LED off, turning the LED on, or
blinking the LED. Transitions between states are controlled by an event on the
pushbutton, which is a press, a release, or both a press and release. State OFF turns
the LED off and transitions to state ON by a press and release. State ON turns 
on the LED and transitions to the next state on a press and release. The next state
from the ON state is state OFF if the RB7 input is 0; else the next state is the BLINK
state. The BLINK state flashes the LED until the pushbutton is pressed, at which
point it transitions to state STOP. The stop STATE freezes the LED on as long as the
pushbutton is pressed. State STOP transitions to state OFF when the pushbutton is
released.

 Vdd

 RB0 Pushbutton
input for RB0
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 Switch for providing RB7 input

 RB7?

 OFF

 ON

no

 Turn LED Off

 RB0
 Press and Release

 Turn LED On
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 RB0

 BLINK

 STOP

 1
If PORTB weak pullup is enabled,
external resistor on RB0 and Vdd selection
on RB7 are not required.

 10 kΩ

FIGURE 8.20 State machine specification of LED/switch IO.
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Figure 8.21 gives a C code implementation of the LED/switch IO state machine
of Figure 8.20. The #define statements define labels for each state with the state 
assignment arbitrarily chosen to start at 0. In a software state machine, the state assign-
ments are usually unimportant, unlike a hardware finite state machine in which
state assignments affect the logic generated for the state machine implementation.
The unsigned char state variable is used to keep track of the current state. 

// State definitions
#define LED_OFF     0  // turn off
#define LED_ON      1  // turn on
#define LED_BLINK   2  // start blinking
#define LED_STOP    3  // stop blinking
unsigned char state;
main(void){
  serial_init(95,1); // 19200 in HSPLL mode, crystal = 7.3728 MHz
  pcrlf(); // this subroutine prints a newline to the terminal
  printf("Led Switch/IO started");pcrlf();
  // RB4 is the output, RB7, RB0 are inputs
  TRISB = 0xEF; LATB = 0x00; STATE = LED_OFF;
  // enable the weak pullup on port B
  RBPU = 0;
  while(1) {
    switch (state) {
      case LED_OFF:
         printf("LED_OFF");pcrlf();
          LATB4 = 0;
          while(RB0);DelayMs(30);  // wait for press
          while(!RB0);DelayMs(30); // wait for release
          state = LED_ON;
          break;
      case LED_ON:
         printf("LED_ON");pcrlf();
          LATB4 = 1;
          while(RB0);DelayMs(30);  // wait for press
          while(!RB0);DelayMs(30); // wait for release
          if (RB7) state = LED_BLINK;
           else state = LED_OFF;
          break;
      case LED_BLINK:
        printf("LED_BLINK");pcrlf();
        while (RB0) { // while not pressed
          // toggle LED
          if (LATB4) LATB4 = 0;
             else LATB4 = 1;
          DelayMs(250);
        } 
        DelayMs(30);
        state = LED_STOP;
        break;
      case LED_STOP:
        printf("LED_STOP");pcrlf();
        LATB4 = 1;  // freeze on
        while(!RB0);DelayMs(30); // wait for release
        state = LED_OFF;
        break;
    }
  }
}

Enable weak pullup

Could use RB4 here as well

Toggles LED each time through the loop,
delay so we can see LED blink

}  State Definitions

printf statements in each state are
included for debugging.

}

} Chooses next state based on RB7 value

Must have break at end of each case block
or will execute next case block!!!!

Change state variable so next time  through
loop will execute new case block. 

 Variable for tracking current state

FIGURE 8.21 C code for LED/switch IO.
ON THE CD
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The main() code performs initialization of the serial port and PORTB, and then
enters a while(1){} loop that uses a C switch statement to execute different code
segments based upon the state variable. A printf() statement that prints the state
name is the first statement in each case block and is included for debugging pur-
poses. Each case block performs its associated action and only changes the state
variable to the next state once its specified pushbutton event is detected. It is very
important to end each case block with a break statement, or else the next case
block code is executed regardless of the state value. Reading the current state of
LB4 (data latch port B, bit 4) and complementing it toggles the LED in the
LED_BLINK state. A read of RB4 can be used here instead of LB4, because the ex-
ternal pin value will be the same as the data latch value because there are not mul-
tiple drivers on the RB4 external pin, so no possibility of driver conflict exists.
However, in general, if you need to read the last value written to an output port, the
data latch register should be read instead of the port register.

Figure 8.22 shows console output while testing the C code of Figure 8.21. The
RB7 input was “1” for the first two times that the LED_ON state was exited, caus-
ing the next state to be LED_BLINK. After this, the RB7 input was low the next two
times that the LED_ON state was exited, causing the following state to be LED_OFF.

8.11 INTERFACING TO AN LCD MODULE

A liquid crystal display (LCD) is often used in microcontroller applications, as they
are low power and can display both alphanumeric and graphics. Disadvantages of
LCDs are that they have low viewing angles, are more expensive than LED displays,
and must be lit by either ambient light or a back light. LCD modules display multi-
ple characters; with part numbers using a k x n designation where k is the number

 Initial state
 Press & Release 
 Press & Release, RB7 = 1, so blink LED 
 Press, stop blinking 
 Release, turn off 
 Press & Release 
 Press & Release, RB7 = 1, so blink LED 
 Press, stop blinking 
 Release, turn off 
 Press & Release 
 Press & Release, RB7 = 0, so go back to OFF 
 Press & Release 
 Press & Release, RB7 = 0, so go back to OFF 

FIGURE 8.22 Console output for LED/switch IO C code.



of characters displayed on each of the n display lines. LCD modules have either a
parallel or serial interface, with many LCD parallel interfaces standardized around
the Hitachi HD44780 LCD controller. Figure 8.23 shows a PIC18 to LCD interface
for a Hantronix 16x2 LCD module (part# HDM16216L-5). This interface is inde-
pendent of the k x n organization of the LCD module, and is applicable for most
LCD modules based on the HD44780 LCD controller. 

The interface is divided into control lines (E, R/W#, RS), data lines (D7:D0),
and power (Vdd, Vss, VL, K, A). The 4-bit interface mode is used to reduce the
number of connections between the PIC18 and the LCD. In 4-bit mode, 8-bit data
is sent in two 4-bit transfers on lines D7:D4, allowing D3:D0 to be unconnected.
The K, A inputs are for the back light display (see datasheet [9]), while the Vdd
VL voltage difference determines the intensity of the displayed numerals (connect-
ing VL to VSS provides maximum intensity but may cause Vdd VL to exceed the
maximum recommended VL value on some LCD modules). A logic high on the
R/W# signal indicates a read operation; the LCD module provides data to the
PIC18. A logic low on R/W# is a write operation; the PIC provides data to the LCD
module. The E signal is a data strobe used to signal valid data on the Dn, RS, and
R/W# lines. To perform a write operation, the PIC places data on the Dn/RS sig-
nals, R/W# is driven low, and E is brought high and then low. The LCD latches the
input data on the falling edge of E, so the Dn lines must satisfy the setup time Tds,
while the control lines RS, R/W# are latched on the rising edge of E and must sat-
isfy the setup time Tas. Not all timings are shown on the diagram; there are small
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FIGURE 8.23 PIC18 to LCD interface (4-bit mode).



hold times about the E edges that must be satisfied as well (see [9], these are easily
satisfied by typical microcontroller operation). To read data from the LCD, data is
placed on the RS signal, R/W# is driven high, and E is brought high. After the data
delay time Tddr has elapsed, valid data is ready on the Dn lines from the LCD,
which can then be read by the PIC. The E signal is brought low to finish the read
operation. The use of the PIC18 RA2, RA3, and RA5 pins for the LCD control sig-
nals is an arbitrary choice; however, you must be careful to not use pin RA4 for any
of these control signals, as the open drain structure of this port prevents it from
providing a high output.

A subset of the available LCD commands [10] is shown in Table 8.2. If RS = 0,
the D7:D0 bits represent an LCD command that affects mode, screen, or cursor po-
sition. If RS = 1, the D7:D0 bits contain data being written to or read from the
LCD data display RAM (DD RAM) in the form of an ASCII character code.

The internal memory configuration of an LCD is dependent upon the particu-
lar module. The HDM16216L-5 is a 16x2 display, but its internal data display RAM
has 80 total locations with 40 locations mapped to line 1 (addresses 0x00 to 0x27)
and 40 locations mapped to line 2 (addresses 0x40 to 0x67). The 16x2 display is a
window into these 80 locations, with only 16 characters of each line displayed at any
given time as shown in Figure 8.24. By default, the display shows locations 
0x00-0x0F of line 1, and locations 0x40-0x4F of line 2. A left shift moves the display
to the right, causing locations 0x01-0x10 to be displayed in line 1, and locations
0x41-0x50 in line 2. This creates the appearance that the displayed line has shifted
one position to the left, as the leftmost character disappears, and the character in
column 1 now appears in column 0. Continual left shifting causes the lines to scroll
marquee-fashion, moving right to left across the display.
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 Unshifted Display

 Data Display RAM Memory Locations

0x00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 ... 26 0x27

0x40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 ... 66 0x67

 Line 1

 Line 2

 After Display Left Shift

 One more Display Left Shift

 LCD Window

 LCD Window

 LCD Window

 For left shift, window moves right, so characters appear to shift left off of the display.

 Window movement Character movement

 Window movement Character movement

0x00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 ... 26 0x27

0x40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 ... 66 0x67

 Line 1

 Line 2

0x00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 10 11 12 13 ... 26 0x27

0x40 41 42 43 44 45 46 47 48 49 4A 4B 4C 4D 4E 4F 50 51 52 53 ... 66 0x67

 Line 1

 Line 2

FIGURE 8.24 LCD data display RAM.



An internal address counter determines where the current data write operation
places data. The address counter also specifies the cursor location. Initializing the
display sets the address counter to zero, placing the cursor to the home position of
location 0 (position 0 of line 1, upper left-hand corner of the display). A write data
operation writes data to the current address location, and then increments or decre-
ments the address counter depending on the mode setting (entry mode set com-
mand in Table 8.2). In increment mode, the address counter is incremented by one
and the cursor moves one position to the right on the display. Each additional
write places data at the current address counter location, and increments the ad-
dress counter. Assuming the display is unshifted, the 17th write (to location 16)
places data “off-screen” (the data is not visible), but the data is still contained in DD
RAM. A right shift of the display has to be performed to see the data contained in
location 16. Each LCD command requires a fixed amount of time execute. The PIC
software communicating with the LCD can either have built-in delays that are
guaranteed to exceed the required LCD command execution time, or the LCD can
be polled via the read busy flag command to determine if the module is ready for
another command. Before sending a command, a polling loop is used to continually
read the busy flag status; the loop is exited when the busy flag returns “0”. Other
commands exist for loading custom character fonts; see the datasheet [10]. 
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Command RS R/W# D7:D0 Description

Clear Display 0 0 0000 0001 Clear display, returns cursor to 
home position (82 μs ~ 1.64 ms)

Return Home 0 0 0000 001x Returns cursor and shifted display 
to home (40 μs ~ 1.64 ms)

Entry Mode Set 0 0 0000 01d0 Enable the display, set cursor move 
direction (d=1 increment, d=0
decrement) (40 μs)

Display On/Off 0 0 0000 1dcb Display on/off (d), Cursor on/off 
(c), blink at cursor position on/off 
(b) (40 μs)

Cursor & Display 0 0 0001 cr00 c=1 shift display, c=0 move cursor,
Shift r=1 right shift, r=0 left shift

Function Set 0 0 001i n000 8-bit interface (i=1), 4-bit interface 
(i=0), one line (n=0), two lines 
(n=1) (40 μs)

TABLE 8.2 LCD Command Subset
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Figure 8.25 shows two functions, epulse() and lcd_write(), that are used for
writing to the LCD assuming the interface of Figure 8.23. Both functions use the
macro definitions at the top of the page; these macros make code modifications eas-
ier if a different selection of parallel port signals is used for the LCD interface. The
EHIGH/ELOW, RSHIGH/RSLOW, and RWHIGH/RLOW macros are used to set the E/RS/RW sig-
nal lines high or low. The E_OUTPUT, RS_OUTPUT, and RW_OUTPUT macros are used to
configure the E, RS, and R/W# port lines as outputs. The ADCON1 = 0x06 statement
in the E_OUTPUT macro is used to configure all pins of PORTA as digital IO; the
PORTA pins are analog inputs pins by default, as they are shared with the analog-
to-digital converter subsystem. The BUSY_FLAG macro returns the value of the port
signal that is the MSb of the 4-bit interface. The DATA_DIR_RD macro is used to set
the pins used for the 4-bit data bus as inputs, while the DATA_DIR_WR macro is used
to set the same pins as outputs. The OUTPUT_DATA(x) macro is used to write data to
the 4-bit data bus of the LCD interface. The epulse() function simply pulses the E
signal line high; the DelayUs(1) software delay is pessimistic and can be removed if
the PIC clock speed is slow enough so that one instruction cycle meets the 500 ns
minimum E pulse width. The lcd_write() function writes 1 byte of data passed in
cmd to the LCD, assuming a 4-bit interface. If chk_busy is nonzero, the busy flag is
polled until it returns nonzero before performing the write. Observe that in the
busy flag loop, the first read returns the upper 4 bits, while the second read returns
the lower 4 bits. The busy flag is the MSb of the upper 4-bit transfer. If chk_busy is
zero, a pessimistic delay of 10 ms is performed before writing the byte instead of
using the busy flag. After some commands, such as the function set command, the
busy flag cannot be used so a delay must be performed instead. If data_flag is
nonzero, the RS signal is set to “1” during the write; else it is set to “0”. Finally, if
dflag is zero, only the upper 4 bits are written (the initial command that selects the
4-bit interface requires only a single 4-bit transfer as the LCD is in 8-bit mode on
power-up).

Set DD Address 0 0 1nnn nnnn DD RAM address set equal to 
nnnnnnnn (40 μs)

Read Busy Flag 0 1 fnnn nnnn Busy flag (f) returns in D7 
(1=Busy), D6:D0 contains address 
counter value (1 μs)

Write Data 1 0 nnnn nnnn Data nnnnnnnn written at current 
DD RAM address (46 μs)

Read Data 1 1 nnnn nnnn Data nnnnnnnn at current address 
location in DD RAM is returned (46
μs)



The code in Figure 8.26 uses the lcd_write() function within the putch() func-
tion so that the formatted output function printf() can be used for writing strings
to the LCD. The main() code first calls lcd_init(), which initializes the display
using the commands of Table 8.2. Observe that none of the lcd_write() calls in
lcd_init() uses the busy flag for status checking; instead, the constant delay mode
of lcd_write() is used. After initialization, the address counter of the LCD is at lo-
cation 0. The first printf() in main() writes to the first line of the LCD. Only the
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// macros to isolate interface dependencies
#define EHIGH          RA2=1
#define ELOW           RA2=0
#define E_OUTPUT       {ADCON1=0x06;TRISA2 = 0;}
#define RSHIGH         RA5=1
#define RSLOW          RA5=0
#define RS_OUTPUT      TRISA5 = 0
#define RWHIGH         RA3=1
#define RWLOW          RA3=0
#define RW_OUTPUT      TRISA3 = 0
#define BUSY_FLAG      RB3
#define DATA_DIR_RD    {TRISB3=1;TRISB2=1;\
                        TRISB1=1;TRISB0=1;}
#define DATA_DIR_WR    {TRISB3=0;TRISB2=0;\
                       TRISB1=0;TRISB0=0;}
#define OUTPUT_DATA(x) {PORTB = x;}

void epulse(void){
  DelayUs(1);  EHIGH;  DelayUs(1); 
  ELOW; DelayUs(1);
}
void lcd_write(
     unsigned char cmd, unsigned char data_flag, 
     unsigned char chk_busy, unsigned char dflag){
  char bflag,c;
  if (chk_busy) {
    RSLOW;       //RS = 0 to check busy
    // check busy
    DATA_DIR_RD;  //data pins inputs
    RWHIGH;       // R/W = 1, for read
    do {
      EHIGH; DelayUs(1); //upper 4-bits
      bflag = BUSY_FLAG;
      ELOW; DelayUs(1);
      epulse();       // lower 4-bits
    } while(bflag);
  } else DelayMs(10); // no busy, do delay
  DATA_DIR_WR;
  if (data_flag)  RSHIGH// RS=1, data byte
  else    RSLOW;   // RS=0, command byte
  RWLOW;       // R/W = 0, for write
  c = cmd >> 4;  // send upper 4 bits
  OUTPUT_DATA(c);
  epulse();
  if (dflag) {
    c = cmd & 0x0F;  //send lower 4 bits
    OUTPUT_DATA(c);
    epulse();
  }
}

 RA2=E

 RA5 = RS = 0 (command)
 RA3 = R/W#  = 1 (read)

Upper
4 bits RB[3:0]

 RA2=E

Lower
4 bits

 Read Busy flag, returns in RB3 of first
 4 bits

}
}

} Macros to isolate 
code from
port pins used
 to implement
LCD interface

 RA5 = RS = data_flag
 RA3 = R/W#  = 0 (write)

Upper
4 bits RB[3:0]

 RA2=E

Lower
4 bits

}

}

 Write data in two 4-bit transfers

FIGURE 8.25 lcd_write(), epulse() functions for the LCD interface.ON THE CD



first 16 characters of the printf() string are visible in the display, even though the
entire string is stored in the LCD data display RAM. The following statement
lcd_write(0xC0,0,1,1) sets the internal address counter to 0x40 (first position of
second line), so that the next printf statement writes to the second line of the dis-
play. The 0xC0 byte in the lcd_write() function call is the Set DD address com-
mand, where 0xC0 = 0b1100000. The format of this command is 1nnnnnnn, where
nnnnnnn is the data display address. Thus, the lower 7 bits of 0xC0 is 1000000, or
0x40, the address of the first location on the second line. An infinite loop is then en-
tered in which the statement lcd_write(0x18,0,1,1) is followed by a 0.3-second
delay. The 0x18 (0x00011000) command byte is the cursor & display shift com-
mand from Table 8.2 and has the format 0001cr00, with c = 1, r = 0 specifying a
display left shift. The continual looping of this command causes the strings to scroll
across the display moving right to left, with a 0.3-second delay between shifts. More
sophisticated LCD modules allow graphical operations, such as turning on/off a
pixel specified by a X,Y screen location.
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void lcd_init(void) {
 DelayMs(50);  //wait for device to reset on power-on, pessimistic
 lcd_write(0x20,0,0,0);  // 4 bit interface
 lcd_write(0x28,0,0,1);  // 2 line display, 5x7 font
 lcd_write(0x28,0,0,1);  // repeat
 lcd_write(0x06,0,0,1);  // enable display
 lcd_write(0x0C,0,0,1);  // turn display on; cursor and blink is off
 lcd_write(0x01,0,0,1);  // clear display, move cursor to home
 DelayMs(3);   // wait for busy flag to be ready
}

// send 8 bit char to LCD
void putch (char c) {
    lcd_write(c,1,1,1);
}

main(void){
  // configure control pins as outputs
  // initialize as low
  E_OUTPUT;  RS_OUTPUT;  RW_OUTPUT;
  ELOW; RSLOW;  RWLOW;
  lcd_init ();
  printf("******Hello, my name is Bob********");
  lcd_write(0xC0,0,1,1);  // cursor to 2nd line
  printf("-----these lines are moving!-------");
  while(1) {
      // shift left
      lcd_write(0x18,0,1,1);
      DelayMs(100);
      DelayMs(100);
      DelayMs(100);
  }
}

 Initialize the display

Define putch() as  a character write to the LCD 
so that printf can be used for formatted output.

Write line 1, 
Set address counter to first 
location of line 2,
write line 2

 }

Loop continually left shifts,
causing lines 1 and 2 to scroll across
the display, moving right to left.

 }

 }

 } Configure control, initialize low

FIGURE 8.26 Write two strings to LCD and shift display (see CD-ROM file 
./code/chap8/F_8_25_lcd_lines_4bit.c).ON THE CD



SUMMARY

Code written in a high-level language (HLL) such as C is usually clearer in its intent,
has fewer source lines, and is more portable than code written in assembly lan-
guage. As such, many microcontroller applications are written in a HLL rather than
assembly. However, understanding assembly language and the implementation of
HLL constructs in assembly language is critical in writing efficient HLL microcon-
troller applications. The HI-TECH software PICC-18 C compiler is used for the ex-
amples in this book and provides a powerful tool for experimenting with
PIC18F242 applications. A simple PIC18F242 hardware system used to flash an
LED only requires a power source, a clock source, and a reset switch. A PIC18Fxx2
has many different sources of reset, with status bits in the RCON register used to
determine the reset source. Reducing power consumption is an issue in many mi-
crocontroller applications, and SLEEP mode in the PIC18Fxx2 can reduce current
draw by a factor greater than 400 by stopping the internal clock. The watchdog
timer runs on an independent clock source, and can be used to wake the PIC18Fxx2
from SLEEP mode and resume execution. The PIC18F242 has three parallel ports
(PORTA, PORTB, PORTC) of varying capabilities, but all of them can implement
bidirectional IO whose data direction is controlled by a corresponding data direc-
tion register (TRISA, TRISB, TRISC). An LCD module interface in 4-bit mode can
be implemented using eight of the parallel port pins on the PIC18F242.

REVIEW PROBLEMS

These problems assume access to a PIC18F242 system with the capabilities of the
startup schematic of Figure 8.4.

1. The –Mfile option to the HI-TECH PICC-18 compiler produces a map file
that specifies the memory locations of functions and variables. Compile the
ledflash.c code with full optimization and give the locations of functions
main()and a_delay(). Examine the compiled code for a_delay() and de-
termine the memory location reserved for variable i (Hint: The auto vari-
able i is not listed in the variable map, so import the hex file into MPLAB
and look for the code that initializes i in the for{} loop).

2. Create a test program whose main() contains the code given in this prob-
lem. Compile this program with full optimization and without, and use the
MPLAB StopWatch to determine the accuracy of the DelayMs(1) delay for
a clock frequency of 40 MHz. (Hint: Find the code that implements the
statement PORT = ~PORTB and put a breakpoint at this location.)
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while(1){

DelayMs(1);

PORTB = ~PORTB;

}

3. Compile ledflash.c with and without optimization and compare the code
(memory used for instructions) and data sizes (memory used for vari-
ables).

4. Modify the a_delay() function of the ledflash.c code to use DelayMs() to
implement a delay that flashes the LED two times per second.

5. What is the maximum parameter value that can be used with the DelayUs()
macro of Figure 8.6 for FOSC = 30 MHz?

6. In the schematic of Figure 8.4, erratic operation occurs if the connection
from VPP/MCLR# pin to the LED and the pullup resistor is left off. Why
is this?

7. Draw a schematic for a pushbutton switch that implements a high-true
function; i.e., provides logic one when pressed and logic zero when not
pressed. You can only use a resistor and a pushbutton.

8. Modify the code of Figure 8.11 to print messages that distinguish between
WDT reset and WDT wake-up.

9. Modify the code of Figure 8.11 to provide a choice for software reset (the
RESET instruction), and print out a message if this type of reset occurs. If
this choice is selected, perform a software reset.

10. Modify the code of Figure 8.11 to provide a choice for stack overflow reset,
and print out a message if this type of reset occurs. If this choice is selected,
cause a stack overflow reset to occur.

11. From the PIC18Fxx2 datasheet, what is the typical Idd current in HS mode
for a crystal frequency of 10 MHz, and a Vdd of 5 V? (Hint: Look at the
DC Graphs and Tables section.)

12. From the PIC18Fxx2 datasheet (see the RESET section) or Appendix A,
what is the value of the bits in the Bank Select Register after a power-on
reset?

13. For the LED/switch configuration of Figure 8.18, write code that blinks the
LED once per second if the switch is pushed; else it blinks at twice per sec-
ond.

14. For the LED/switch configuration of Figure 8.18, write code that repeats
the following events: a press and release of the switch starts the LED blink-
ing, a subsequent press and release stops the LED blinking. 

15. Assume a low-true pushbutton input on RB4, and four high-true LEDs
connected to pins RB0 through RB3. Write C code that configures PORTB
for this operation, with the LEDs initially off. Then, enter a loop, where
each press and release of the switch turns the LEDs on in sequence, with the
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LED previously on being turned off (e.g., 1st press/release, RB0 is 1/RB3 is
0, 2nd press/release RB1 is 1/RB0 is 0, 3rd press/release RB2 is 1/RB1 is 0, 4th

press/release RB3 is 1/RB2 is 0, repeat).
16. What is needed external to pin RA4 if it is to provide a high voltage? Recall

that pin RA4 is an open-drain output.
17. The HSPLL oscillator option multiplies the crystal frequency by 4 inter-

nally, while the HS option does not. If a PIC18 is drawing 16 mA using the
HSPLL option, what is the expected current draw if the HS option is used
with the same crystal?

18. Using an IDD versus FOSC graph in the PIC18 datasheet, compare ex-
pected versus computed IDD reduction for two different voltage/frequency
pairs of your choosing.

19. Assume RA4 is configured as an output and the assignment RA4 = 0 is ex-
ecuted. What does a read of RA4 return? What does a read of LA4 return?
Now assume the assignment RA4 = 1 is executed. What does a read of RA4
return? What does a read of LA4 return? Careful—pin RA4 is an open-
drain output!

20. Discuss how a vertical scroll function might be implemented on the LCD
module of Figure 8.23.
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Asynchronous Serial IO9

T
his chapter introduces serial IO in the form of asynchronous serial transfer
using the Universal Synchronous Asynchronous Receiver Transmitter
(USART) subsystem of the PIC18Fxx2. A serial interface using RS232 sig-

naling is implemented for the PIC18F242 reference system, allowing character
input/output via a serial port connection to a personal computer.

9.1 LEARNING OBJECTIVES

After reading this chapter, you will be able to:

Describe the differences between synchronous and asynchronous serial data
transfer.

In This Chapter

IO Channel Basics
Synchronous Serial IO
Asynchronous Serial IO
The PIC18Fxx2 USART
The RS232 Standard
Serial IO Examples



Draw the waveform for an asynchronous serial data transfer that includes a
start bit, data bits, and stop bits.
Write C code that sends and receives asynchronous serial data via the USART
subsystem of the PIC18Fxx2.
Implement a RS232-compatible interface for the PIC18F242.

9.2 IO CHANNEL BASICS

Parallel IO uses a group of signals for data transfer, with a clock or data strobe sig-
nal typically used for controlling the transfer. Figure 9.1 a shows a 16-bit parallel IO
link between CPU_a and CPU_b, with a clock signal used to perform one data
transfer each clock cycle. The bandwidth of a communication channel is usually ex-
pressed as the number of bytes transferred per second (B/s), or the number of bits
transferred per second (b/s). Please observe the capitalization difference between
Bps (Bytes/second) and bps (bits/second); Bps is related to bps via the relationship
Bps = bps/8. For Figure 9.1a, the bandwidth is 600 MB/s (M = 106) if the clock
frequency is 300 MHz, because 2 bytes are transferred each clock cycle. Data sent
1 bit at a time is called serial data transfer, and Figure 9.1b shows a synchronous se-
rial interface that uses a single bit line with a separate clock to accomplish the trans-
fer. The bandwidth of this channel is 1/16th that of the bandwidth of Figure 9.1b,
because the 16 data lines have been replaced by only one data line. The advantage
of parallel IO is obvious in that it has n times the bandwidth of a serial channel, as-
suming both channels use the same data transfer rate, and the parallel channel has
n data lines. 
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 CPU_a
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 Bandwidth (bps) =  16 * 1/Fclk
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a. Parallel Channel

 Q

 CLK

 CPU_a
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 Bandwidth (bps) =  1 * 1/Fclk

 CLK

b. Serial Channel

 ?  ?  ?

FIGURE 9.1 Parallel versus serial IO example.



High bandwidth, low cost, and reliable transfers are the desirable properties of
any IO channel. Unfortunately, these properties conflict with each other, as in-
creasing bandwidth typically increases costs, and decreases the reliability of the IO
transfer. Increasing IO channel bandwidth can be done by any combination of the
following actions:

1. Increase the number of signals carrying data; e.g., increase a parallel IO
channel from 8 bits to 16 bits.

2. Decrease the amount of time between data transfers; e.g., increase the clock
speed of a parallel IO channel.

3. Use a signaling method that encodes more data in the same time interval;
e.g., use a four-level voltage signaling method so that 2 bits are encoded in
each signaling interval (00 = 0 V, 01 = 1/3 Vdd, 10 = 2/3 Vdd, 11 =
Vdd).

Methods 1 and 2 are the most common ways used to increase IO channel band-
width. Doubling the number of signal lines in an IO channel doubles the band-
width, but it also doubles the cost of the IO channel. Decreasing the time used for
each transfer increases bandwidth, but also increases the complexity of the elec-
tronics used for driving and receiving data signals, increasing the cost of each data
signal. One method of decreasing the time between transfers is to use reduced volt-
age swing on the data lines instead of requiring the data signals to transition fully
between Vdd and ground. Swinging a data line by 200 millivolts to indicate a
change from “1” to “0” or vice versa is accomplished faster than requiring a signal
to transition from 0 to Vdd.

Figure 9.2 defines the terms simplex, half-duplex, and duplex in reference to
communication channels. A simplex channel allows data transfer in one direction
only. A half-duplex channel supports transfer in either direction, but in only one
direction per data transfer. A duplex channel (also referred to as full-duplex) sup-
ports transfers in both directions simultaneously.

A physical connection between two systems is either a unidirectional wire
(transfer in only one direction), or a bidirectional wire (transfer in either direction).
In Chapter 8, “The PIC18Fxx2: System Startup and Parallel Port IO ,” we saw that
tristate buffers are required to implement a bidirectional port. A single unidirec-
tional wire can implement a simplex channel, while a single bidirectional wire can
implement a half-duplex channel. Two unidirectional wires can implement a 
duplex channel with each wire providing communication in one direction. An 
advanced electrical signaling method known as current mode signaling can be used
to implement a duplex channel using a single wire. A simplified diagram of this
concept is shown in Figure 9.3. Instead of driving the wire to a particular voltage
level, data is represented by different current values. Current levels on a wire add 
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together, so if CPU_a places Ia on the wire and CPU_b places Ib on the wire, the
total current on the wire is Ia+Ib. At each source, the amount of current placed on
the wire is subtracted from the amount of current received. This means that CPU_a
sees the received current as Ib, while CPU_b sees the received current as Ia. Current
mode signaling is used in some chipsets for high-performance microprocessors; all
of the devices discussed in this book use voltage mode signaling.

The principle advantage of serial IO is that it is cheaper to implement in terms
of integrated circuit and connector pin count than parallel IO. Serial IO is typically
used for data transfer between devices that require external cabling, such as be-
tween a keyboard and a personal computer. This is because a serial cable requires
fewer wires than a parallel cable, which reduces the cost. It also makes the cable less
bulky and reduces the physical connector size, an issue when there are multiple IO
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a. Simplex Channel

 CPU_a  CPU_b

Can be done with one 
unidirectional wire

 CPU_a  CPU_b

b. Half Duplex Channel
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 CPU_a  CPU_b

c. Duplex Channel

 CPU_a  CPU_b
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unidirectional wires

 CPU_a  CPU_b

FIGURE 9.2 Simplex, half-duplex, and duplex communication channels.
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FIGURE 9.3 Duplex communication using current-mode signaling.



cable connections to a device. In addition, wires within an IO cable are subject to
crosstalk, defined as a voltage change on a wire inducing a voltage change in a neigh-
boring wire. Crosstalk can corrupt data transfers, resulting in an unreliable com-
munication channel. Crosstalk increases with cable length and with higher
signaling speeds. Methods for combating crosstalk increases the cabling costs, and
thus serves as another reason for reducing the number of signals in an IO cable.
Parallel IO is typically used for short distance communication between integrated
circuits in the same system, where speed is important and cabling is not an issue.

9.3 SYNCHRONOUS SERIAL IO

Synchronous serial IO either sends a clock as a separate signal as in Figure 9.1b, en-
codes the clock with the data, or uses a scheme that allows the receiving clock to re-
main synchronized to the bit stream. Sending a clock as a separate signal is an
intuitive solution for synchronous IO, but at high signaling speeds, wire delay be-
comes significant especially in external cabling. If the wire delays of the serial data
wire and clock signal are significantly mismatched, the active clock edge can clock
in the wrong data bit at the receiver (see Figure 9.4).
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FIGURE 9.4 Synchronous serial IO: sending the clock with the data.
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An alternate method of synchronous serial IO is to encode the clock in the data
stream, so that the receiver can extract the clock. This method is used by the high-
speed serial IO standard known as IEEE 1394, or FireWire, and Figure 9.5 shows
how this is accomplished using data strobe encoding. The data line always contains
the value of the serial data, while the strobe line encodes the clock. The value of the
strobe line is dependent upon the data signal; between 2-bit intervals if the data sig-
nal does not change value, the strobe line changes value. If the data signal changes
values, the strobe line remains at its current value. An XOR gate and a dual-edge
triggered DFF is used to extract the serial data from the data/strobe signal pair as
shown in Figure 9.5. This protocol can tolerate a wider range of wire delay differ-
ences than if the clock is sent as a separate signal, and the data rate can dynamically
vary since the receiver extracts the clock. The serial data stream shown in Figure 9.5
is called non-return-to-zero (NRZ) format, which is the most intuitive method for
representing serial data. 

You may wonder at this point why such a complicated scheme is necessary. If
the sender and receiver agree on the same clock rate, why does a clock need to be
sent with the data? One problem with not sending a clock is that the sender and re-
ceiver generate their respective clocks independently, and even if the clock rates are
perfectly matched there is no guarantee that the clocks are in phase, which means
that their clock edges align. Moreover, it is not possible to generate perfectly
matched clocks using different sources; some percentage mismatch in the clock fre-
quency is always present. Even if the clock edges are somehow magically aligned
initially, even very small clock frequency mismatches cause them to eventually be-
come out of phase. Figure 9.6 shows how an analog circuit called a phase locked
loop (PLL) is used to synchronize a receiver clock with an incoming serial bit

serial
data

Data

 0

 1

 0  0  0

 1  1

Strobe
} Data/Strobe Encoding

of serial data

D

CK
Q

D xor S } Extracted Clock

Strobe

Data

Dual-Edge Triggered DFF

Extracted serial data

}non-return-to-zero (NRZ) format

FIGURE 9.5 Synchronous serial IO: encoding the clock with the data. 
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stream. Both systems use an independently generated reference clock that is the
same frequency, within some percent tolerance mismatch. The PLL’s function at
the receiver is to produce a synchronized clock from the received serial bit stream
and receiver reference clock, with the synchronized clock in phase with the sender’s
reference clock. To accomplish this, the serial bit stream must meet a minimum
transition density; that is, there is a maximum time interval over which the bit
stream’s value can remain at the same voltage level. The PLL loses synchronization
if the bit stream does not change voltage level for longer than this maximum time
interval. The Universal Serial Bus (USB) and Controller Area Network (CAN) ser-
ial transmission standards use this synchronization method. Guaranteeing a par-
ticular transition density can be accomplished in multiple ways; Chapter 15,
“Beyond the PIC18Fxx2,” discusses this in more detail for the USB and CAN stan-
dards.

The form of synchronous data transmission supported by the USART subsys-
tem of the PIC18Fxx2 is that of Figure 9.4, in which the clock is sent as a separate
signal. Synchronous data transmission using the PIC18Fxx2 is covered in Chapter
11, “Synchronous Serial IO.”

9.4 ASYNCHRONOUS SERIAL IO

Asynchronous serial IO has none of the synchronization methods used by syn-
chronous serial IO. Instead, the sender and receiver agree on a common data rate,
and the sender sends its data to the receiver in NRZ format. This means that 
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FIGURE 9.6 Synchronous serial IO: maintaining synchronization with a PLL. 
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asynchronous IO looks like Figure 9.6, except that the PLL is removed. The advan-
tage of asynchronous serial IO over synchronous serial IO is that its hardware re-
quirements are simpler, but asynchronous serial IO sacrifices bandwidth when
compared with synchronous serial IO. Figure 9.7 shows an asynchronous serial
data frame. Before transmission begins, the line is in the idle or mark condition,
which is a logic “1”. The time required for sending 1 bit is referred to as a bit time.
The start of transmission is indicated by a transition from the idle condition to logic
“0”, known as the space condition. This first bit is called the start bit, and is how the
receiver detects the beginning of a transmission. Data bits are sent least significant
bit (LSb) to most significant bit (MSb), with common data formats being 7 data +
even/odd parity or 8 data bits. The transmission ends with at least one stop bit, de-
fined as the line remaining at “1” for at least 1 bit time. A total of 10 bit times are
required for 1 start bit, 8 data bits, and 1 stop bit.

A parity bit is a bit added by the sender to provide error detection of single bit
errors. Parity is either even or odd. The value of an even or odd parity bit is such that
the total number of “1” bits in the n data bits + parity bit is even or odd, respec-
tively. For example, if a 7-bit data field is 0b0101101, odd parity has a value of “1”,
while an even parity bit is “0”. The receiver checks the value of the parity bit, and
an incorrect parity indicates that some type of transmission error has occurred. A
single parity bit is guaranteed to detect any single bit error; that is, only 1 bit of the
n data bits + parity is received in error. If multiple bit errors occur, parity may or
may not detect the error. Figure 9.8 gives three examples of asynchronous serial
data frames.

Format: 7 data bits + parity + 1 stop bit

D0 D1 D2 D3 D4 D5 D6 P D0
start
bit

stop
bit

start
bit

1 (mark)

0 (space)

Format: 8 data + 1 stop bit

D0 D1 D2 D3 D4 D5 D6 D7 D0
start
bit

stop
bit

start
bit

Format: 8 data + 2 stop bits

D0 D1 D2 D3 D4 D5 D6 D7 D0
start
bit

stop
bit

start
bit

stop
bit

FIGURE 9.7 Asynchronous data frame.
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In Figure 9.7, each bit is sent within a signaling interval, with only 1 bit sent per
signaling interval. This book refers to the signaling interval as a bit time, with the
data rate of the channel in bits per second (bps) given in Equation 9.1. 

9.1

A term commonly used to refer to the data rate of an asynchronous channel is
baud rate, whose definition is the number of signaling events per unit time. If only
1 bit is sent per signaling interval, baud rate is equal to bits per second. However, if
more than 1 bit is sent per interval, such as a four-level voltage signaling scheme
that sends 2 bits per signaling event, then bits per second is twice the baud rate. This
book only discusses signaling methods in which 1 bit is sent per signaling interval,
so baud rate is used interchangeably with bit rate.

Figure 9.9 shows how phase and frequency differences between receiver and
sender clocks are handled. Given a data rate of y bps, the clock used by the
sender/receiver for accessing the serial data is a multiple of this rate, usually 16x or
64x. Assuming a 16x clock, when the receiver detects a start bit (high to low transi-
tion), it counts 8 clock periods and then captures the input value. After this point,
the receiver samples the input line every 16 clock periods, placing the sampling
point near the center of the bit interval, giving the receiver maximum tolerance for
mismatch between receiver and transmitter clocks. Over time, any receiver/trans-
mitter clock mismatch shifts the sampling point away from the bit time midpoint,
eventually causing a reception error when the sampling point is shifted out of a bit
interval. Sampling at the midpoint of the bit time gives a 50% error margin, or ±8
clock periods about the center of the clock interval. For a frame with 10 bit times,
this gives a 50%/10 = 5% error tolerance in sender/receiver clock mismatch. This
is an optimistic mismatch assumption; a more pessimistic calculation accounting

0x2D = 0b00101101 sent as 7 data bits + odd parity + 1 stop bit

1 0 1 1 0 1 0    1 D0
start
bit

stop
bit

start
bit

1 (mark)

0 (space)
parityLSb

0x2D = 0b00101101 sent as 7 data bits + even parity + 1 stop bit

1 0 1 1 0 1 0    0 D0
start
bit

stop
bit

start
bit

1 (mark)

0 (space)
parityLSb

0xAD = 0b10101101 sent as 8 data bits + 1 stop bit

1 0 1 1 0 1 0    1 D0
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bit
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bit
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bit

1 (mark)

0 (space)
MSbLSb

FIGURE 9.8 Example asynchronous serial data frames.
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for rise and fall times of the input signal and maximum phase mismatch uses only
a 30% margin (approximately ±5 clock periods about the midpoint). This gives an
error tolerance of 30%/10 = 3% error tolerance for sender/receiver clock mis-
match. Observe that the error tolerance decreases linearly as the number of bit
times in the frame increases; for this reason, asynchronous transmission frames are
typically limited to 10 bit times. This is not a problem for synchronous serial data
transmission, which can send an unlimited number of bits per frame because the
receiver remains synchronized to the serial input stream. Thus, even if asynchro-
nous and synchronous serial channels have the same bit time, the synchronous
channel has a higher effective data transfer rate because it does not have the overhead
of the start and stop bits sent for every 8 data bits of the asynchronous transmission. 

Figure 9.10 shows a software-based asynchronous serial data link. Two PORTB
pins, RB2 and RB3, implement transmit and receive, respectively, forming a duplex
communication channel. The putch() function sends an 8-bit value serially from
LSb to MSb using 1 stop bit. The delay_1bit() function is assumed to delay for 1
bit time. Observe that the putch() function assumes that RB2 is already in the idle
(high) condition before sending the start bit. After sending the 8 data bits, the stop
bit is sent, leaving the RB2 output in the idle condition. The getch() function re-
turns an 8-bit value from the serial link by first waiting for a start bit (RB3 becomes
a “0”). Once a start bit is detected, the function uses the delay_onehalf_bit() func-
tion to wait until the middle of the bit time. It then loops eight times, delaying a full
bit time and then reading the RB3 input. The function delays for an additional full
bit time before exiting to account for the stop bit. Software-driven serial links using
parallel port bits can work well, but their maximum performance is limited by the
accuracy of the delay functions used to implement bit delays. Also, even though the
separate TX, RX lines of Figure 9.10 have the capability of implementing a duplex
channel, the putch()/getch() functions as written cannot perform duplex commu-
nication. This is because all of the CPU’s resources are either spent transmitting or
receiving a character; it cannot do both simultaneously using the functions of 

1 (mark)

0 (space)

            0   1    2    3    4    5    6    7    8    9    10  11  12  13  14   15  0   1    2     3 

D0Start Bit
Sample at bit time
midpoint

Sampling clock frequency is 16x the data rate (sampling clock period is 1/16 bit time)

16x sampling
clock

FIGURE 9.9 Asynchronous serial data transmission.



Figure 9.10. One solution to this problem is to use dedicated hardware to imple-
ment the TX/RX functionality as seen in the next section.

Sample Question: For asynchronous serial transmission, with 1 bit sent per signaling
interval, what is the bit time in microseconds for a baud rate of 57600?

Answer: From Equation 9.1, it is seen that: 
bit time = 1/baud_rate = 1/57600 = 1.74e-5 * 1e6 μs/s = 17.6 μs.

Sample Question: Assume a data format of 7 data bits + even parity. What is the parity
bit value for the data 0x2A? 

Answer: 0x2A = 0b0101010 (7 bits); the number of “1” bits is odd, so the par-
ity bit value is “1”.

9.5 THE PIC18FXX2 USART

On less capable members of the PICmicro family, implementing a serial link using
parallel port IO is the only available option. This approach becomes more difficult
to implement at higher serial data rates, because the bit times become small, re-
quiring more accuracy in the delay functions. Also, at higher data rates it requires
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void putch(
unsigned char c)
{
  unsigned char i;
  RB2 = 0;
  delay_1bit();

  for(i=0;i<8;i++) {
    if (bittst(c,0))
      RB2 = 1;
    else RB2 = 0;
    delay_1bit();
    c = c >> 1;
  }
  RB2 = 1;
  delay_1bit();
}

} Send start bit

Send start+8 data+ stop

Send 8 data bits, LSb to MSb

} One data bit

Right shift for
next bit

} Send stop bit

unsigned char getch(void)
{
  unsigned char i,c;

  c = 0x00;
  while(RB3);

  delay_onehalf_bit();

  for(i=0;i<8;i++) {
   delay_1bit();
   if (RB3) c = c | 0x80;
   if (i != 7) c = c >> 1;
  }
  delay_1bit();
  return(c);
}

Receive start+8 data+ stop

Software Asynchronous
Serial Link

putch - send one 8-bit datum
getch - receive one 8-bit datum

Wait for start bit 
(exit when RB3 = = 0)

Wait for
middle of 
bit time

} Receive one
bit

Right shift
for next bit

Receive stop bit, no error
check

FIGURE 9.10 A software-based asynchronous serial data link.
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all of the CPU resources to implement the serial link. More powerful members of
the PICmicro family, including the PIC18, have a hardware subsystem called the
Universal Synchronous Asynchronous Receiver Transmitter (USART) that imple-
ments both asynchronous and synchronous data transmission. For asynchronous
transmission, a write to a special function register is all that is required in terms of
CPU resources; the USART handles the details of sending the start, data, and stop
bits. For asynchronous reception, the USART automatically shifts in any serial data
it receives, and sets a status flag indicating that data is ready. All the CPU has to do
at that point is read a special function register to receive data.

The USART is the second major hardware subsystem, after parallel port IO, ex-
amined in this book. Hardware subsystems use special function registers in two dif-
ferent ways: either as data registers or as control registers for the subsystem. Data
registers are either used for transferring data from the subsystem to the external
pins (a write operation to an external device), or for transferring data from the ex-
ternal pins to the subsystem (a read operation from an external device). Control
registers contain a mixture of configuration and status bits. Configuration bits spec-
ify the operating mode of the subsystem, while status bits indicate the operational
state of the subsystem. 

Table 9.1 gives a summary of the special function registers and bits used dur-
ing asynchronous serial data transmission and receive. The TXIF (Transmit Inter-
rupt Flag) bit indicates if the USART can accept new data for transmission; if TXIF
= 1, a write to the TXREG causes that data to be shifted out of the TX pin of the
USART subsystem. 

The need for the TXIF status bit is seen Figure 9.11, which contains the USART
transmit block diagram. 

Name SFR(bit) Type Comment

TXREG n/a Data Write to send async. serial data

RCREG n/a Data Read to input async. serial data

TXIF PIR1[4] Status if “1”, can accept new data for transmit

RCIF PIR1[5] Status if “1”, has new data available

FERR RCSTA[2] Status if “1”, framing error occurred on receive

OERR RCSTA[1] Status if “1”, overrun error occurred on receive

TABLE 9.1 SFR Data/Control for Asynchronous Transmit and Receive



The TXREG register is a buffer register for the TSR register that performs the
shifting of serial data through the TX pin. The TXIF bit is a “1” if TXREG is empty,
thus the TXIF status bit must be checked before any write is done to TXREG, or
data that is waiting to be sent may be lost. A write to the TXREG clears the TXIF bit
to a “0” in the second instruction cycle after the write operation. The TXIF bit is a
read-only bit; it is only cleared by a write to TXREG. Observe that if both TSR and
TXREG are empty, a write to TXREG clears the TXIF bit, which is quickly set back
to “1” once the TXREG contents are transferred to the empty TSR. At this point, a
second value can be written to TXREG. Thus, two values can be written in quick
succession to the USART transmit block if it is empty. However, a third write must
wait for the serial shift operation in TSR to finish, causing TXREG to be emptied.
Some USARTs on other microprocessors have up to 16 locations for buffering data
in their transmit blocks. The PIC18 USART allows either 8 or 9 data bits to be
transmitted; it does not support a 7-bit format with parity. Our examples always
use 8-bit data, as that is the format supported by RS232 communication, a com-
mon form of asynchronous serial IO. An RS232 interface is discussed later in this
chapter.

Figure 9.12 shows the USART receiver block diagram. Serial data enters via the
RX pin and the receiver block automatically shifts the data into the RSR register
upon detection of a start bit. The CREN (Continuous Receive Enable, RCSTA[4])
bit must be a “1” to enable the USART receiver block. The RSR contents are trans-
ferred to the RCREG after stop bit reception. This sets the RCIF (Receive Interrupt
Flag) bit to “1” indicating available data in RCREG. The RCIF bit is cleared to “0”
after a read from RCREG. A two-deep first-in, first-out (FIFO) buffer is used to im-
plement RCREG, providing time flexibility for the main application in reading the
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FIGURE 9.11 USART transmitter block diagram.1

1 Figure 9.11 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.
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RCREG contents. A FIFO buffer can hold multiple data items that are extracted
from the buffer in the same order as written (Chapter 10 contains details on a soft-
ware FIFO buffer implementation). If the RSR register and the RCREG FIFO are
full (three characters total), the start bit detection of the fourth character triggers an
overrun error, setting the OERR status bit to a “1”. The OERR bit is read-only; to
clear it the CREN bit must be cleared to a “0”. When overrun occurs, no further
values are transferred from RSR to RCREG until the OERR bit is cleared. A fram-
ing error occurs if a “0” is received for a stop bit, which sets the FERR status bit to
a “1”. A separate FERR bit is maintained for each received 8-bit value. The FERR bit
in RCSTA reflects the framing status for the value returned by the next read of
RCREG. This means the FERR bit status must be checked before reading RCREG,
as this updates FERR with the framing status for the next 8-bit datum in the FIFO.

Figure 9.13 shows the putch()/getch() functions of Figure 9.10 rewritten to use
the PIC18 USART. The putch() function waits for the TXREG to become empty via
the while(!TXIF){} loop that exits when TXIF is “1”, and then writes the input
value c to the TXREG. The watchdog timer is cleared within this loop in the event
it is enabled. The getch() function waits for data to be available via the
while(!RCIF){} loop that exits when RCIF is “1”, and then returns the RCREG
value. The watchdog timer is also cleared within this loop because it could be an 
arbitrarily long wait for input data. Obviously, the clrwdt instructions are not
needed in putch() and getch() if the watchdog timer is disabled. The C formatted
IO functions printf() and scanf() supplied by the HI-TECH PICC-18 compiler
use the putch() and getch() functions for single character IO. This provides a 
powerful method for performing ASCII data IO within PIC18 applications. Later in
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FIGURE 9.12 USART receiver block diagram.2

2 Figure 9.12 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.
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this chapter we discuss the final details of using the PIC18 USART to form a serial
data link to a personal computer.

The baud rate (BR) of the serial interface is controlled by the baud rate clock
generator, and is calculated by Equation 9.2. The SPBRG register is an 8-bit regis-
ter, meaning its value varies between 0 and 255. High- and low-speed modes are se-
lected by the BRGH (High Baud Rate Select Bit, TXSTA(2)) configuration bit, with
BRGH = 1 selecting high-speed mode. 

S = 64 (low speed), S = 16 (high speed)         (9.2)

Equation 9.3 solves Equation 9.2 for SPBRG, because PIC18 applications need
to know the SPBRG value required to achieve a particular baud rate.

(round to nearest integer) (9.3)

Figure 9.14 shows SPBRG values for common baud rates using FOSC values of
29.4912 MHz and 40 MHz. The SPBRG values are computed for both low- and
high-speed modes using Equation 9.3, and rounded to the nearest integer. Because
of this rounding, the actual achieved baud rate may be significantly different from
the desired baud rate. Observe that for FOSC = 29.4912 MHz, the actual baud
rate is exactly the desired baud rate, because the commonly used baud rates are all
evenly divisible by powers of two into 29.4912 MHz. Differences between actual
and desired baud rates appear for FOSC = 40 MHz, but in only a couple of cases
does the percentage error exceed the conservative 3% error tolerance for asynchro-
nous communication. Observe that in high-speed mode, some of the lower baud
rates require SPBRG values greater than 255, which means that these baud rates are

void putch(unsigned char c)
{
  // wait until TXREG empty
  while (!TXIF){
    asm("clrwdt");
    };
  TXREG = c;
  asm("clrwdt");
}

unsigned char getch(void)
{
   // wait until data available
  while (!RCIF){
    // ok to wait forever for input
    // so clear watchdog timer
    asm("clrwdt");
  };
  return(RCREG);
}

FIGURE 9.13 putch()/getch() functions for USART (see CD-ROM file
./code/common/serio.c).ON THE CD

SPBRG =  
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(S*BR)
1

BR = 
FOSC
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unachievable in this mode. In low-speed mode for the FOSC = 40 MHz case, the
SPBRG rounding causes unacceptable error for the two highest baud rates.

The registers and bits involved in configuring the USART for asynchronous
transmission and reception are given in Table 9.2. The special function registers in-
volved are the SPBRG, TXSTA, and RXSTA registers. 

FOSC = 29.4912 MHz

FOSC = 40 MHz

Baud Rate 
SPBRG 

(Hi Speed) 
Actual %err 

SPBRG 
(Low Speed) 

Actual %err 

230400 7 230400 0.0% 1 230400 0.0% 
115200 15 115200 0.0% 3 115200 0.0% 
57600 31 57600 0.0% 7 57600 0.0% 
38400 47 38400 0.0% 11 38400 0.0% 
19200 95 19200 0.0% 23 19200 0.0% 

9600 191 9600 0.0% 47 9600 0.0% 
4800 383 n/a  95 4800 0.0% 

Baud Rate 
SPBRG 

(Hi Speed) 
Actual %err 

SPBRG 
(Low Speed) 

Actual %err 

230400 10 227272.7 -1.4% 2 208333 -9.6% 
115200 21 113636.4 -1.4% 4 125000 8.5% 
57600 42 58139.53 0.9% 10 56818.2 -1.4% 
38400 64 38461.54 0.2% 15 39062.5 1.7% 
19200 129 19230.77 0.2% 32 18939.4 -1.4% 

9600 259 n/a  64 9615.38 0.2% 
4800 520 n/a  129 4807.69 0.2% 

FIGURE 9.14 SPBRG values for common baud rates.

Name SFR(bit) Comment

SPBRG n/a This register contains the baud rate divisor

BRGH TXSTA[2] Baud rate control; if “1” high speed, else low speed

TX9 TXSTA[6] If “1”, 9-bit transmission, else 8-bit transmission

TXEN TXSTA[5] If “1”, transmit is enabled, else is disabled

SYNC TXSTA[4] “0” for UART asynchronous mode

RX9 RCSTA[6] If “1”, 9-bit reception, else 8-bit reception

CREN RCSTA[4] If “1”, receive is enabled, else is disabled

SPEN RCSTA[7] If “1”, external pins selected for TX/RX function

TRISC6 TRISC[6] Must be “0” so that RC6/TX/DT pin is an output

TRISC7 TRISC[7] Must be “1” so that RC7/RX/CK pin is an input

TABLE 9.2 Control Registers/Bits for Asynchronous Configuration



Listing 9.1 gives a C function used in this book for initializing the USART. Two
char parameters, brg and hi_speed, are used to specify the SPBRG values and
high/low speed selection, respectively. Before exit, the CREN bit is cleared first and
then set in case the USART had already been previously initialized; this ensures that
the OERR status bit is cleared. In the example files provided on the companion CD-
ROM, this function is in the file ./code/common/serial.c, which is included via the
statement #include “serial.c” in programs that use asynchronous serial IO. Two C
compiler header files named stdio.h, and ctype.h define character IO and character
manipulation functions; these standard header files are included in the PICC-18 C
compiler installation. The stdio.h include file is necessary if the printf() and scanf()
library functions are used.

LISTING 9.1 USART initialization for asynchronous mode (see CD-ROM file
./code/common/serial.c).

// standard header files for ascii IO functions,

// ascii manipulation functions

#include <stdio.h>

#include <ctype.h>

void serial_init(char brg, char hi_speed)

{

// setup Async communication 

TX9 = 0;

TXEN = 1;                 // transmit enable

SYNC = 0;                 // async mode 

if (hi_speed)   BRGH = 1; // hi speed mode 

else BRGH = 0;           // lo speed mode 

SPBRG = brg;              // set baud rate register

bitset(TRISC, 7);         // RC7 input

bitclr(TRISC, 6);         // RC6 output 

RX9 = 0;                  // 8-bit reception

SPEN = 1;                 // serial port enable

CREN = 0;                 // clear enable first 

CREN = 1;                 // now enable 

}

Sample Question: What is the required SPBRG value assuming high-speed mode, a 12
MHz FOSC, and a desired baud rate of 19200?

Answer: Using Equation 9.2, SPBRG = (12.0e6 / (16 * 19200)) – 1 = 38.1; so
SPBRG = 38.
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Sample Question: For the previous sample question, what is the percentage difference
between the desired baud rate and the actual baud rate?

Answer: Using SPBRG = 38, the actual baud rate from Equation 9.2 is
(12e6)/[16*(38+1)] = 19231. 
The %difference is (actual-desired)/desired*100%, so 
(19231-19200)/19200*100% = 0.16%.

9.6 THE RS232 STANDARD

The Electronic Industries Association standard EIA-RS232 defines signaling levels,
external cabling, and handshaking protocols for asynchronous communication.
RS232 cabling uses either a 9-pin connector (DB9) or a 25-pin connector (DB25),
with the DB9 commonly used on personal computers. Figure 9.15 shows a minimal
RS232 PIC-to-PC asynchronous serial connection. The MAX 202 RS232 trans-
ceiver from Maxim provides a conversion between RS232 logic levels and CMOS
logic levels. A RS232 logic one has a range of 3 V to 25 V ( 9 V typical), and a
RS232 logic zero has a range of +3 V to +25 V (+9 V typical). This is a minimal
connection, as there are many other signals defined in the RS232 standard that are
used for external modem control and flow control. This minimal connection has
no method for either device to signal the other device about its ability to receive
data; it is assumed by the sender that the receiver is always able to accept new data.
Two pins named CTS (Clear to Send, pin 8 on the DB9) and RTS (Request to Send,
pin 7 on the DB9) can be used as handshaking lines to implement hardware flow
control if desired. The RTS signal is an output from the PC (input to PIC), while
the CTS signal is an output from the PIC (input to PC), and both signals are low
true (logic 0 when asserted). Hardware flow control means that the PC will assert
its RTS output, asking for permission to the send data. The PIC must assert the CTS
line to tell the PC that it is ready to receive data; to stop the data flow from the PC,
all that is necessary is for the PIC to negate the CTS output. Notice that this controls
the flow of data in one direction only, from the PC to the PIC. This is because the
RS232 standard was originally intended for communication between a terminal
and a modem, designated as Data Terminal Equipment (DTE, the PC) and Data
Communication Equipment (DCE, now represented by the PIC), respectively. In
this historical model, the modem performed relatively low-speed communication
over phone lines to a remote site. This means that the modem’s input buffer could
become full, requiring it to tell the DTE (the PC) to stop sending data. It was as-
sumed that the DTE (the PC) was always ready to accept data from the modem (the
DCE). On the PIC, implementing hardware flow control requires using two paral-
lel port pins, which are precious resources on the 28-pin 18F242. For typical asyn-



chronous communication speeds, hardware flow control is not required and thus
this book does not use it.

A detailed view of the MAX202 is given in Figure 9.16. An on-chip voltage
doubler and voltage inverter that uses external 0.1 μF capacitors produces ±10 V
for use as RS232 voltage levels from the +5 V supply. There are two pairs of trans-
ceivers in this package, which means that the RTS/CTS signals could be imple-
mented in addition to the RX/TX signals if desired. Other RS232 transceivers from
MAXIM such as the MAX3235E or MAX203 use internal capacitors for producing
RS232 voltage levels. 

A terminal program such as the HyperTerminal program included in Windows
is required for RS232 communication via the minimal interface of Figure 9.15. The
HyperTerminal configuration and terminal windows are shown in Figure 9.17.
Personal computers have multiple serial ports, known as COM1, COM2, and so on.
The number of serial ports and the correspondence of port numbers to external se-
rial port connectors are manufacturer specific. When opening a HyperTerminal
window, you must specify the particular COM port to use as well as the baud rate,
data format, and flow control method. For the minimal RS232 PIC interface, a 
serial data format of 8 bits, no parity, 1 stop bit, and no flow control is required.
Many personal computers, especially portable computers, no longer include an ex-
ternal serial port due to the emergence of the Universal Serial Bus (USB) as the new
standard for serial communications (see Chapter 15). Fortunately, there exist USB-
to-RS232 adapters that allow a USB port to be used as a RS232 serial port. Be aware
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that some USB-to-RS232 adapters will not work with the minimal RS232 interface
of Figure 9.15, as they require the additional RS232 handshaking signals.
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9.7 SERIAL IO EXAMPLES

Listing 9.2 contains a program used to test the minimal RS232 link of Figure 9.15
via an infinite loop that waits for a character to become available, increments the
character, and then echoes it back. Thus, an “A” is echoed as “B”, a “B” as “C”, and
so on. Incrementing the character is important, as this indicates that the PIC is per-
forming the character echo, rather than some sort of local echo mode in whatever
terminal program is being used for the test. The program of Listing 9.2 uses the se-
rial_init() function of Listing 9.1, the putch(), getch() functions of Figure 9.13,
and uses an SPBRG value calculated for a baud rate of 19200, high-speed mode, and
FOSC = 29.4912 MHz.

LISTING 9.2 echo.c program for testing RS232 link.

main(void){

unsigned char c;

// init serial port

// 19200 in HSPLL mode, crystal = 7.3728 MHz

serial_init(95,1);

while(1) {

c = getch();    // wait for character

c++;            // increment character 
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putch(c);       // send it back 

}

}

Listing 9.3 attempts to automatically detect the baud rate via the autobaud()
function before entering the character echo loop. The autobaud() function expects
the user to set the baud rate by repeatedly typing the carriage return character (re-
turn key). The function uses a loop that inputs a character using a baud rate speci-
fied by a value from the baud_rate array. These baud rates are arranged from lowest
to highest, with the lowest being 9600 and the highest 230400. The baud_rate array
entries specify the SPBRG value for the target baud rate assuming FOSC = 29.4912
MHz and high-speed mode. The upper bits of the carriage return character (0x0D
= 0b00001101) are read as “1”s if the PIC baud rate is set too low because the PC
will have finished transmitting the character and returned the line to the idle state
(“1”) while the PIC is still inputting bits at the slower baud rate. If the received
character is not 0x0D, the UART is re-initialized to the next higher baud rate and
getch() is called to receive another character. The loop is restarted at the lowest
baud rate if either a framing or overrun error occurs.

LISTING 9.3 autobaud.c program for automatically detecting baud rate.

void pcrlf (void){  // output a carriage return, line feed

putch(0x0a); putch(0x0d);

}

// HSPLL mode, crystal = 7.3728 MHz

// so FOSC = 29,491,200

// baud rates: 9600, 19200,38400, 57600, 115200, 230400

char baud_rate[] = {191,95,47,31,15,7};

// enter carriage return repeatedly to set baud rate

void autobaud(void){

char i, c, exit;

i=0;

serial_init(baud_rate[i],1);

exit = 0;

while(!exit) {

// wait for character

while (!RCIF);           // check RCIF bit 

c = RCREG;

if (FERR || OERR) {

// baud rate too fast, reset

i = 0;

CREN = 0;              // clear error

CREN = 1;

}

if (c == 0x0D) {         // found baud rate
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printf(“Found baud rate.”); pcrlf();

exit = 1;

} else {

i++;

if (i > 5) i = 0;      // try again

serial_init(baud_rate[i],1);

}

}

}

// Try to automatically determine baud rate,

// then echo

main(void){

char c;

autobaud();

while(1){

// do character echo

c = getch();

c++;

putch(c);

}

}

Serial Port Debugging

An asynchronous serial port offers a versatile communication method for a stand-
alone PIC18 system. However, implementing a functional serial port can be a frus-
trating experience, as there are many failure points. The most common error is
swapping the TX and RX pins, or incorrectly identifying them on the DB9 connec-
tor. With a serial cable connected to the COM port of a personal computer, the
voltage between the TX pin and GND is typically between 8 V and 10 V, which
is a RS232 logic 1 (the mark condition). Because the RX pin is an input, any volt-
age measurement made on this pin can float, but will typically show 0 V. Another
common problem is leaving the ground (GND) pin unconnected. If the PIC system
and the personal computer do not share a common ground, the serial port opera-
tion may be very erratic—sometimes appearing to work and sometimes not. Once
you have correctly identified TX, RX, and GND on the DB9, debugging of the ser-
ial port is best done using the echo program of Listing 9.2 and an oscilloscope set for
single-trigger mode that can capture the serial waveform of a character. The fol-
lowing step-by-step debugging process can be followed in order to trace serial port
problems.

1. Verify that there is approximately ± 10 V on the pins indicated in the
MAX202 datasheet. This indicates that the capacitors are placed correctly.
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2. Verify the correct HyperTerminal settings of 19200 baud, 8 bits + 1 stop bit
+ no parity, and no flow control. If garbled characters appear, this usually
means that the baud rate is set to the wrong value.

3. Determine if the typed character is reaching the DB9 connector by placing
the scope input on the TX pin of the DB9, and use single trigger mode, ris-
ing edge triggered. The voltage level on the TX pin of the DB9 should be ap-
proximately 8 V when the line is idle. Type a key on the keyboard; this
should cause the scope to trigger and capture the serial waveform of the re-
ceived character. If this does not happen, either the scope is configured
wrong, or you have the TX pin identified incorrectly. Move the scope input
to the Rin pin of the MAX202 and verify that the same character is being
received at that point (if it is not, there is a wiring error between the DB9
TX pin and the MAX202).

4. Determine if the typed character is passing through the MAX202 by plac-
ing the scope input on the Rout pin of the MAX202, and use single trigger
mode, falling edge triggered (note that this triggering is the reverse of the
previous step because of the logic inversion performed by the MAX202).
This voltage level should be at +5 V when the line is idle. Type a key on the
keyboard; this should cause the scope to trigger and capture the serial
waveform of the received character. If this does not happen, either the
MAX202 is nonfunctional (check power/ground connections), or you have
used a Rout pin that is not associated with the Rin pin that you verified in
the previous step. If you capture a character at this point, place the scope
input on the RX pin of the PIC and verify that the same character can be
captured at the PIC (if no character is seen, there is a wiring error from the
MAX202 to the PIC18).

At this point, you have verified that a character is reaching the PIC. The re-
maining steps trace the path from the PIC back to the DB9.

5. Determine if the received character is being transmitted by the PIC by plac-
ing the scope input on the PIC TX pin, and use single trigger mode, falling
edge triggered. This voltage level should be at +5 V when the line is idle.
Type a key on the keyboard; this should cause the scope to trigger and cap-
ture the serial waveform of the transmitted character. If this does not hap-
pen, the PIC is either not receiving the character in the first place (check
the previous step), the PIC is programmed with the incorrect program
(not echo.c), or the PIC is inoperative (check the clock waveform on the
OSC1 pin, voltage level of the board). If you capture a serial character on
the TX pin of the PIC, move the scope trace to the Tin pin of the MAX 202,
and verify that the same character is being received at that pin.
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6. Determine if the transmitted character is flowing through the MAX202 by
placing the scope input on the Tout pin of the MAX202, and use single
trigger mode, rising edge triggered. This voltage level should be at approx-
imately 8 V when the line is idle. Type a key on the keyboard; this should
cause the scope to trigger and capture the serial waveform of the transmit-
ted character. If this does not happen, the Tout pin being used is not asso-
ciated with the Tin pin used in the previous step, or the MAX202 is
nonfunctional. After verifying that a character is being transmitted, move
the scope input to the RX pin on the DB9 and verify that the transmitted
character is present at that point.

These steps should identify the problem if you have trouble implementing the
minimal RS232 interface of Figure 9.15.

SUMMARY

Data transfer between a processor and an external device can either be parallel
(multiple bits at once) or serial (1 bit at a time). Parallel IO offers the highest band-
width, but has the greatest cost in terms of pin count and mechanical difficulties in
cabling. Serial IO is typically used for communication that requires cabling exter-
nal to a microprocessor system. Synchronous serial IO means that the receiver re-
mains synchronized to the bit stream. Receiver synchronization is maintained by
either sending the clock as a separate signal, encoding the clock in the bit stream al-
lowing the receiver to extract a clock, or guaranteeing a minimum transition den-
sity in the bit stream allowing the receiver to use a phase locked loop to maintain
synchronization. Synchronous serial IO data streams can send an unlimited num-
ber of bits in a single transmission because the receiver remains synchronized to the
bit stream. Asynchronous serial IO does not have any of these mechanisms, limit-
ing transmitted data length to only a few bits, after which the line is returned to an
idle state allowing the receiver to resynchronize at the start of the next transmission.
A minimal duplex asynchronous link is implemented with three signals: transmit,
receive, and ground. The PIC18 USART subsystem supports both asynchronous
and synchronous serial data transmission. Serial data transmission is accomplished
by writing the data to be sent into the TXREG after waiting for it to become empty by
checking the TXIF status flag. Serial data is automatically input by the receive block
of the USART with data availability indicated by the RCIF status bit. The RS232
standard provides signaling and connector specifications for implementing an
asynchronous serial data interface. A minimal RS232 interface for a PIC18 consists
of an integrated circuit for converting between CMOS and RS232 voltage levels,
and the three-wire connection of receive, transmit, and ground. A personal com-
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puter with an RS232 interface and a terminal program provides a versatile com-
munication mechanism for a standalone PIC18 system.

REVIEW PROBLEMS

1. What is the bandwidth in MB/s of a parallel data link that consists of 32
wires for data transfer, a clock speed of 8 MHz, and data transfer every sec-
ond rising clock edge?

2. Assume a PIC18 with an FOSC of 40 MHz, and PORTB for data transfer.
Suppose you want to transfer 256 bytes of data to an external device. How
long does it take to transfer this data, using the code in this problem? Ex-
press this transfer rate in MB/s.

clrf cnt

lfsr FSR0,data_array ;get address of data to transfer loop    

movff POSTINC0,PORTB ; write data to PORTB

decfsz cnt ;decrement counter

bra loop ;will loop 256 times

;;rest of code

3. What is 1 bit time in microseconds for a baud rate of 19200?
4. How long does it take to send 64 bytes of data at 57600 baud using asyn-

chronous serial transmission assuming 8 data bits and 5 stop bit times be-
tween each character?

5. Give the maximum bandwidth of an asynchronous serial link operating at
115,200 baud in B/s assuming a format of 8-data bits and the minimum
time of 1 stop bit between transmissions.

6. Draw the waveform for an asynchronous transmission assuming 8 data
bits, 1 stop bit for the data value 0xA0.

7. Draw the waveform for an asynchronous transmission assuming 8 data
bits, 1 stop bit for the data value 0x38.

8. Modify the getch() code of Figure 9.13 to check for USART overrun im-
mediately after function entry. If USART overrun has occurred, execute a
software reset via inline assembly code.

9. What is the parity bit for the 7-bit value 0x38 assuming even parity?
10. Change the putch() code of Figure 9.13 so that it replaces the MSb of the

data to be sent with an even parity bit. (Hint: What value does the sequen-
tial exclusive-OR of the bits in the lower 7 bits give you?)

11. For an asynchronous serial transfer, assume a 16x clock on the receive side,
and a data format of 16 data bits + 1 stop + 1 start. Using a conservative
error tolerance of ±5 clocks about the midpoint of the bit time, what is the
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maximum % tolerance in frequency mismatch between the sender and re-
ceiver?

12. Assume a baud rate of 38400 and compute the maximum time before over-
run given the USART receiver block diagram of Figure 9.12. Express this
time in instruction cycles, assuming four clocks per instruction cycle and
FOSC = 40 MHz. 

13. For FOSC = 6 MHz and assuming high-speed mode, give the baud rates of
Figure 9.14 that cannot be supported either because they do not fall in the
8-bit range of SPBRG or exceed 3% error (use a spreadsheet for these cal-
culations).

14. For FOSC = 6 MHz and assuming low-speed mode, give the baud rates of
Figure 9.14 that cannot be supported either because they do not fall in the
8-bit range of SPBRG or exceed 3% error (use a spreadsheet for these cal-
culations).

15. When would you expect a framing error to be more probable; if the
sender’s baud rate was higher than the receiver’s, or vice versa? Explain.

16. Assume that the sender baud rate is higher than the receiver baud rate;
under what conditions could a framing error occur?

17. It seems inconvenient that RS232 voltage levels are different from CMOS
voltage levels. Offer a solid engineering reason as to why this was done (re-
late your answer to cost, performance, reliability, or functionality). Use
the datasheet of the MAX202 to help your argument. 

18. Look up the specifications for the EIA RS422 standard. What is the princi-
ple difference between this standard and the RS232 standard? What are its
advantages, if any?

19. What changes are necessary to the autobaud() function of Listing 9.3 if the
baud rates are searched from highest to lowest? Would you expect it to
function equally well? Why or why not?

20. Change the getch() code of Figure 9.13 so that it assumes that the MSb of
the received data is an odd parity bit and checks the received character for
a parity error. Set a global variable PERR to “1” if a parity error is detected.
(Hint: For computing parity, what value does the sequential exclusive-OR
of the bits in the lower 7 bits give you?)
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Interrupts and a First Look
at Timers

T
his chapter discusses interrupts, which are of critical importance when im-
plementing efficient input/output operations for microcontroller applica-
tions. Topics include interrupt fundamentals, PIC18 interrupt sources, and

software techniques for implementing interrupt-driven IO. A first look at the pow-
erful timer subsystem of the PIC18 uses a timer as a periodic interrupt source.

10.1 LEARNING OBJECTIVES

After reading this chapter, you will be able to:
Discuss the general function of interrupts within a microprocessor, and inter-
rupt implementation on the PIC18.
Describe the difference between polled IO and interrupt-driven IO.

In This Chapter

Interrupt Basics
PIC18 Interrupt Details
Interrupt-Driven Asynchronous Serial Data Input
Using a Software FIFO with Interrupt-Driven IO
Other Interrupt Sources, Sleep Mode
State Machine Programming for Interrupt-Driven IO
The Timer Subsystem: Timer2
Switch Debouncing Using a Timer
A Rotary Encoder Interface
A Numeric Keypad Interface
On Writing and Debugging ISRs
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Implement an interrupt service routine in C for the PIC18.
Write C functions for performing interrupt-driven asynchronous serial IO.
Implement software FIFO buffering for interrupt-driven IO.
Implement an interrupt service routine using a state machine approach.
Discuss the structure of the PIC18 Timer2 subsystem and use it to generate pe-
riodic interrupts.
Implement an interrupt-driven interface for a rotary encoder.
Implement an interrupt-driven interface for a keypad.

10.2 INTERRUPT BASICS

An interrupt in a microprocessor is a forced deviation from normal program flow
by an external or internal event. On the PIC18 are many possible internal and ex-
ternal events such as rising or falling edges on external pins, arrival of serial data,
timer expiration, and so forth that can cause interrupts. Figure 10.1 illustrates what
happens when an interrupt occurs on the PIC18. During normal program flow, 
assume some external or internal event triggers an interrupt. After the current 
instruction is finished, the BSR, W, and STATUS registers are saved in the shadow
registers, the return address is pushed on the stack, and the PC is set to a pre-
determined location called the interrupt vector causing execution to continue at
that point. A retfie (return from interrupt) instruction is executed to return to
normal program flow. The code that is executed when the interrupt occurs is re-
ferred to as the interrupt service routine (ISR). The ISR’s function is to respond to
whatever event triggered the interrupt. As an example, if the interrupt was triggered
by the arrival of asynchronous serial data, the ISR would read the USART RCREG,
save this data, and return. When viewing Figure 10.1, it is tempting to think of the
ISR as a subroutine that is called by the main() program. However, the ISR is never
manually called as a normal C function is called; instead, the ISR is invoked auto-
matically by the PIC18 interrupt hardware on an interrupt occurrence. An ISR is
said to execute in the background, while the normal program flow executes in the
foreground. This book informally refers to background code as ISR code execution,
and foreground code as main() code execution.

You may question at this point why this capability is needed. The IO examples
presented in the last chapter used a technique referred to as polling, where a status
flag is checked repeatedly to determine data availability. This is referred to as polled
IO, and is usually an inefficient method for implementing IO operations. Imagine
if your cell phone operated on the polled IO principle. This would mean that you
would occasionally have to pull it out of your pocket or purse, open it, and ask
“Hello, is there anybody there?” This may seem laughable, but this is how we have
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been accomplishing IO to this point. The problem with this approach is obvious—
either you check your phone too often, which wastes your time, or you do not
check it often enough, causing you to miss an important call. It is much more 
efficient to have the phone notify you of an incoming call. The ringer on your cell
phone implements an interrupt; when the ringer sounds, you stop what you are
doing and answer the phone, thus servicing the interrupt. This is known as interrupt-
driven IO. On the PIC18, each interrupt source has an associated interrupt flag bit
that becomes a “1” when the interrupt source event occurs. As an example, the
RCIF bit is the receive character interrupt flag, and becomes a “1” when asynchro-
nous serial data is available. Most interrupt flag bits are contained in two special
function registers named PIR1 (peripheral interrupt request flag register 1) and
PIR2 (peripheral interrupt request flag register 2).

Continuing the cell phone analogy, there are times when you do not want to
answer the phone, like in a meeting or a movie theatre. At these times, you turn off
the ringer, causing incoming calls to be ignored. On the PIC18, each interrupt
source has an interrupt enable bit that must be a “1” in order for an interrupt to be
invoked when the interrupt flag bit becomes a “1”. If the interrupt enable bit is “0”,
the interrupt is masked or disabled. For example, the RCIE bit (receive character in-
terrupt enable, PIE1[5]) is the interrupt enable for the RCIF interrupt. Most inter-
rupt enable bits are in two special function registers, PIE1 (peripheral interrupt
enable register 1) and PIE2 (peripheral interrupt enable register 2). It is important
to understand that the interrupt enable bit being a “0” does not prevent the inter-
rupt flag bit from becoming a “1”, just like turning off the phone ringer does not
prevent incoming phone calls from arriving. A “0” interrupt enable bit only prevents
an interrupt from being generated; in other words, it prevents a jump to the ISR.
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Normal Program flow

main() {

 instr1
 instr2
 instr3
 .....
 instrN

 instrN+1
 instrN+2
 ......
 ......
 ......
}

Interrupt occurs

Interrupt Service Routine (ISR)

interrupt my_isr () {

ISR responsibilities:
   (a) save processor context
   (b) service interrupt
   (c) restore processor context

retfie
}

ISR called by interrupt generation logic, main() code does not call ISR explictly.

W, STATUS, BSR saved in 
shadow regs, return address saved 
on stack, interrupts of same priority
 are masked, PC = interrupt vector

Restore W, STATUS, BSR from shadow
regs, PC = return address, unmask
interrupts of same priority

FIGURE 10.1 Interrupting normal program flow.



At the risk of overusing the cell phone analogy, assume you are talking on the
phone with a friend, and that you are notified via call-waiting of an incoming call
from your spouse, significant other, or other family member. You may say some-
thing like “Hold for a moment, there is an incoming call that I need to check,” and
then switch to the other call. This means that the incoming call has a higher prior-
ity than the current call. On the PIC18, each interrupt source has an interrupt pri-
ority bit that when “0”, classifies the interrupt as a low priority interrupt, while a “1”
classifies the interrupt as high priority. A high priority interrupt is allowed to in-
terrupt a low priority interrupt, but not vice versa. Interrupt priorities are covered
in more detail in the next section. The RCIP bit (receive character interrupt prior-
ity, IPR1[5]) is the interrupt priority bit for the RCIF interrupt. Most interrupt pri-
ority bits are contained in two special function registers named IPR1 (peripheral
interrupt priority register 1) and IPR2 (peripheral interrupt priority register 2).

10.3 PIC18 INTERRUPT DETAILS

Figure 10.2 gives a logic diagram of PIC18 interrupt generation. If the IPEN bit (in-
terrupt priority enable bit, RCON[7]) is a “1”, interrupt priorities are enabled and
an interrupt is classified as either high priority or low priority, based on the setting
of its interrupt priority bit. High priority interrupts vector to location 0x0008, and
low priority interrupts vector to location 0x0018. The GIE/GIEH bit (global inter-
rupt enable, INTCON[7]) enables all unmasked interrupts if its value is “1”, or
masks all enabled interrupts if its value is “0”. The GIE/GIEH bit functions the same
regardless of the IPEN bit setting. With priorities enabled (IPEN = 1), the
PEIE/GIEL bit (peripheral interrupt enable, INTCON[6]) enables (“1”) or disables
(“0”) all low priority interrupts. For a low priority interrupt to occur, the
GIE/GIEH, PEIE/GIEL, interrupt flag, and associated interrupt enable bits must all
be “1”. For a high priority interrupt to occur, the GIE/GIEH, interrupt flag, and as-
sociated interrupt enable bits must all be “1”. The PEIE/GIEL bit is automatically
cleared before entering the low priority ISR; this prevents a low priority interrupt
from being recognized during the execution of the ISR. However, a high priority in-
terrupt can interrupt a low priority ISR. Because any interrupt pushes the return
address on the return address stack and saves BSR, W, and STATUS in the shadow
registers, a low priority ISR must save these registers in different temporary loca-
tions, as a high priority interrupt will overwrite the shadow register contents. Be-
cause of this, the shadow registers in practice are only useful for the high priority
ISR. The GIE/GIEH bit is automatically cleared before entering the high priority
ISR, preventing any interrupt from being recognized within the high priority ISR.
A retfie instruction restores GIE/GIEH to a “1” on return from a high priority in-
terrupt, or PEIE/GIEL to a “1” on return from a low priority interrupt. This re-
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enables interrupts once normal program execution is resumed. The ISR should
also clear the particular interrupt flag that caused the interrupt or disable the inter-
rupt until the interrupt flag is cleared at a later time. In Figure 10.2, observe that in-
terrupt INT0 has no priority bit, and is always classified as a high priority interrupt.

If the IPEN bit (interrupt priority enable bit, RCON[7]) is a “0”, interrupt pri-
orities are disabled and all interrupts are classified as high priority interrupts; the
value of the individual interrupt priority bits have no effect. In this mode, setting
the PEIE/GIEL bit to a “0” disables a subset of interrupts known as peripheral in-
terrupts, which are those interrupts whose interrupt enable bits are contained in the
PIE1 and PIE2 special function registers. The GIE/GIEH, interrupt flag, and asso-
ciated interrupt enable bits must be “1” for a nonperipheral interrupt to occur; in
addition to these bits the PEIE/GIEL bit must also be a “1” for a peripheral inter-
rupt to occur. Having priorities disabled is the default mode of operation and is
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RBIP GIEH/GIE

(no priority bit for INT0)

g1

g2

g3

g4
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 Figure redrawn by author from PIC18Fxx2

 datasheet (DS39564B),  Microchip Technology Inc. 

FIGURE 10.2 PIC18 interrupt generation.1

1 Figure 10.2 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.



compatible with previous PICmicro families. The applications covered in this book
do not require interrupt priorities, and thus all C source examples that use inter-
rupts disable the priority mechanism (IPEN = 0).

The responsibilities of an ISR can be summarized as:

1. Save the processor context. Any registers that are used by the ISR and may
be used during normal program execution must be saved. The W, BSR, and
STATUS registers are saved in the shadow registers for any interrupt. How-
ever, if the ISR modifies other registers such as FSRx or PRODH/PRODL
that may be in use by the code being interrupted, these must be saved as
well. As discussed previously, low priority interrupts should save the W,
BSR, and STATUS registers in temporary locations because a high priority
interrupt will overwrite the shadow register contents.

2. Service the interrupt. Perform the actions required when the interrupt oc-
curs. If multiple interrupts are enabled, identify the interrupt source by
checking the interrupt flag bits of the enabled interrupts. The associated in-
terrupt flag must be cleared either directly or as a side effect of servicing the
interrupt. If this is not done, the processor will hang in an infinite loop
upon execution of the retfie instruction, as the interrupt flag being a “1”
will immediately generate another interrupt. In some cases, it is not possi-
ble to clear the interrupt flag immediately, as it may not be possible to re-
move the interrupt source until a later time. In this situation, the ISR
should disable the interrupt until the interrupt flag can be reliably cleared.

3. Restore the processor context and execute a retfie instruction to return to
foreground code execution.

Figure 10.3 shows the assembly language structure for high and low priority in-
terrupt service routines. Jumps in the form of goto instructions to the appropriate
ISRs are placed at the vector locations 0x0008 and 0x0018. The low priority ISR
uses temporary locations w_temp, status_temp, and bsr_temp for storing the W,
STATUS, and BSR registers, respectively, as the shadow registers may be corrupted
by a high priority interrupt. Observe that the W register is stored first, using the
movwf instruction, which does not affect the status flags. Thus, the next movff in-
struction that saves STATUS is saving the status flags as they were at the time of the
interrupt. The STATUS register is restored last on exit, because the previous in-
struction movf w_temp,w that restores W affects the status register. The retfie 1 in-
struction in the high priority ISR restores W, BSR, and STATUS from the shadow
registers, while the retfie 0 instruction used in the low priority ISR explicitly
avoids restoring these registers from the shadow registers (the 0/1 argument to the
retfie instruction controls restoring of the shadow registers).
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Sample Question: Using Figure 10.2, why does GIE = 0 disable all interrupts?

Answer: When GIE = 0, the output of gates g5 and g6 are both forced low 
regardless of the other inputs, thus preventing any interrupt from being 
generated.

10.4 INTERRUPT-DRIVEN ASYNCHRONOUS SERIAL DATA INPUT

Figure 10.4 shows the echo.c program of the previous chapter rewritten to use
interrupt-driven IO for asynchronous data reception. This example only illustrates
the mechanics of using interrupts, as interrupt-driven IO is not required for the
task of character echo. 

The interrupt qualifier is used to identify the pic_isr() function as an ISR to
the HI-TECH PICC-18 compiler. The compiler assumes a high priority interrupt
by default; the additional qualifier low_priority used after interrupt would indi-
cate a low priority interrupt. The pic_isr() function checks the RCIF bit to deter-
mine if asynchronous data reception triggered the interrupt; if this bit is set, the
RCREG value is read and saved in the variable received_char. Checking the RCIF
flag is not actually necessary if this is the only interrupt source that is enabled. The
variable got_char_flag is then given a value of “1”, notifying main() that the ISR has
placed valid data in the received_char variable. Recall that reading RCREG has the
side effect of clearing the RCIF flag, which is needed to prevent an interrupt from
being triggered on ISR exit due to RCIF still being a “1”. Typically, an ISR must 
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CBLOCK 0x7D
    w_temp, status_temp, bsr_temp
  ENDC

  ORG 0x008
  goto  isr_high_priority
  ORG 0x0018
  goto  isr_low_priority

  ORG 0x?????
isr_high_priority
  ;;; ISR high priority code
  ;;; ...code goes here...
  retfie 1  ;; use shadow reg

isr_low_priority
  movwf  w_temp
  movff  STATUS,status_temp
  movff  BSR, bsr_temp
  ;;....ISR CODE ...
  ;; ....code goes here..
  movff  bsr_temp,bsr 
  movf   w_temp,w
  movff  status_temp,STATUS
  retfie 0

Temporary storage
for W, STATUS, BSR

}

} High priority interrupt vector

} Low priority interrupt vector

High priority interrupt service routine

Restore from shadow registers

Low priority interrupt service routine

} Save W, STATUS, BSR in temporary
locations

} Restore W, STATUS, BSR from temporary
locations

FIGURE 10.3 ISR assembly language structure.



notify the foreground code that its action has occurred; hence the use of the
got_char_flag variable. Any variable such as got_char_flag that is used by the ISR
(background) to communicate with main() code (foreground) is called a sema-
phore. The setting of the semaphore by the ISR signals the main() code that the ISR
has performed some action. The foreground code’s resetting of the semaphore is an
acknowledgment to the ISR that the semaphore has been recognized. In some cases,
it may be required that the ISR not raise a new semaphore until it detects that the
previous semaphore has been acknowledged.

The while(1){} loop in main() waits for data to become available by monitor-
ing got_char_flag; once this is nonzero, the value in received_char is incremented
and echoed using the putch() function. Observe that the volatile modifier is used
in the variable declaration of the got_char_flag and received_char variables. This
notifies the compiler that these variables can be modified by an external agent (e.g.,
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volatile unsigned int got_char_flag;
volatile unsigned char received_char;

// interrupt service routine
void interrupt
pic_isr(void)
{
  // see if this interrupt was 
  // generated by a receive character
   if (RCIF) {
     // reading RCREG clears interrupt bit
    received_char = RCREG;
    got_char_flag = 1;
  }
}

main(void){
  unsigned char c;

  // init serial port
  // 19200 in HSPLL mode, crystal = 7.3728 MHz
  serial_init(95,1);

  // enable interrupts
  IPEN = 0; // priorities disabled
  RCIE = 1; // receive interrupt enable
  PEIE = 1; // perpherial interrupts enabled
  GIE = 1;  // global interrupts enabled
  while(1) {
    // wait for interrupt 
    while (!got_char_flag);
    c = received_char;
    got_char_flag =0;  // clear flag 
    c++;               // increment char 
    putch (c);         // send the char 
  }
}

interrupt qualifier for function notifies
the compiler that this function is an
ISR (high priority assumed).

Use volatile qualifier for any variables
modified within ISR; 
notifies compiler that variable can be 
modified between accesses.

} If receive character interrupt,
read character, save it, set flag
to signal main() that interrupt
occurred 

} Enable async receive character
interrupt 

}
Wait until ISR reads character, then
read it and clear the ISR semaphore
got_char_flag

FIGURE 10.4 echo.c rewritten to use interrupt-driven receive.
ON THE CD



an ISR) between successive accesses (reads), and prevents certain compiler opti-
mizations from being applied.

Figure 10.5 gives an example where interrupt-driven IO is useful for improving
an application’s operation. In this example, the PIC18 application is a loop that
reads an ASCII-decimal number from the asynchronous serial port, computes the
floating-point square root, and prints the result. Polled IO for serial data input
works for this application, as long as there is enough time to calculate the square
root and print the result before overrun occurs in the USART receive block. 

Figure 10.6 gives an implementation of the square root application using polled
IO and with no buffering other than what is available within the USART receive
block. The ASCII-decimal number is input from the USART receive port using the
scanf() library function, which requires a function named getche() that returns a
single character and also echoes the character to the console. This is accomplished
by calling getch() to read the character from the serial port, and then using putch()
for character echo. The %d format code used with scanf() converts the ASCII-
decimal string read from the serial port to a int data type, which is placed in the
variable ivalue. The scanf() function expects a carriage return to mark the end of
the string that it is scanning for input values. The assignment statement temp_fp =

ivalue causes the compiler to generate code that converts ivalue to a floating-point
value because temp_fp is declared as type double. The square root is calculated by
the statement root_fp = sqrt(temp_fp), where sqrt() is a C library call that requires
a double as the type of its input parameter and uses a double for the type of its return
value. The printf() statement displays the result via the serial port output. 
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While the result is printing, more data is being sent, and the data is lost unless buffered.

main(){
  while(1) {
    // read ASCII-decimal number
   // compute square root
   // print square root
  }

PIC18F242

'2','4','9','16','25','36', ...
ASCII-decimal input stream

RS232 Serial link

'The square root of ?? is ??'
ASCII result stream

FIGURE 10.5 Square root application.



This program functions as expected when entering input values by manually
typing characters into the terminal window. However, if one cuts and pastes a large
number of entries into the terminal window, overrun error occurs within the
USART because too many input characters arrive while the result string is being
printed. Once USART overrun occurs, the RSR input shift register of the USART
receiver block no longer transfers data into RCREG. This causes scanf() to hang,
waiting for new input as seen in Figure 10.7. The next section discusses an ap-
proach for solving this problem. The number of input entries required to generate
USART overrun is dependent upon the terminal program used to send serial data
and the baud rate of the serial link. The DelayMs(5) function call is a tuneable soft-
ware delay that is included to assist in forcing USART overrun.
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#include "math.h"
unsigned char getch (void){
  // check RCIF bit
 while (!RCIF);
 return(RCREG);
}

// needed by scanf library call,
// get character and echo
unsigned char getche (void){
  unsigned char c;
  c = getch();
  putch(c);
  return(c);
}

unsigned int ivalue, root;
double temp_fp, root_fp;

main(void){
 // 19200 in HSPLL mode, crystal = 7.3728 MHz
 serial_init(95,1);
 printf("No buffering.");  pcrlf();
 printf("Hit any key to start..."); pcrlf();
 getch();
 while(1) {
  // read integer for input using scanf
  scanf("%d",&ivalue);
  // convert integer to floating point value
  temp_fp = ivalue;
  // use library routine to compute floating point square root
  root_fp = sqrt(temp_fp);

  //convert to nearest integer as demo compiler does not support
  // floats in printf() statements.
  root = (unsigned int)root_fp;
  printf("Square root of %d is: %d ",ivalue,root); pcrlf();
  DelayMs(5); // tuneable delay for USART overrun
 }
}

Polled asynchronous character
input.  The putch(), pcrlf(), serial_init() 
functions are not shown.

} Read a character and echo it back,
required by scanf() library function 
that performs formatted input.

Read ASCII-decimal integer from
async serial input using scanf()

}

Convert to floating point type (double)

Compute square root using
library function.

Print result.

need for sqrt() library function

Include tuneable delay to help force USART overrun as some terminal programs
have a considerable idle time between characters, lowering the effective data rate.

FIGURE 10.6 Square root code with polled IO and no buffering.ON THE CD



10.5 USING A SOFTWARE FIFO WITH INTERRUPT-DRIVEN IO

USART overrun occurs in the square root application because characters are arriv-
ing while the result is being printed. If the PIC18 USART had a larger hardware
FIFO buffer, it might be possible to avoid overrun; it would depend on the number
of consecutive input entries sent and the baud rate. It is obvious that changing the
USART receive hardware is not an option. Instead, a FIFO buffer implemented in
software must supplement the USART hardware buffering. Figure 10.8 gives the
structure of a software FIFO with eight locations. Two pointers, named head and
tail, are used for accessing the buffer. The FIFO is empty when head is equal to tail.
Data is placed into the buffer by incrementing the head pointer, and then storing
data at buffer[head]. This means that data is available in the buffer whenever head
is not equal to tail. Data is taken out of the buffer by incrementing tail, and then
reading data from buffer[tail]. Observe that data comes out of the buffer in the
same order in which it is placed into the buffer; hence the first-in, first-out (FIFO)
designation.

Figure 10.9 illustrates several pieces of data being placed into the buffer. When
the head pointer reaches the end of the buffer, the next write operation must wrap
the head pointer to the beginning of the buffer. For this reason, this data structure
is also referred to as a circular buffer. In Figure 10.9c, the write operation leaves the
head pointer equal to the tail pointer, causing the buffer to appear empty even
though it contains eight valid data items. This is buffer overrun, which means that
under these rules for buffer insertion and extraction, an n location buffer can hold
a maximum of n-1 data elements.
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2
4
9
16
25
36
49
64
81
100
....

Cut and paste these values 
into terminal
window to simulate 
continuous input stream

scanf() library function hangs when USART overrun
occurs because data is no longer reaching RCREG

FIGURE 10.7 Terminal output for square root code with polled IO and no 
buffering.



Figure 10.10 shows the square root application modified to use interrupt-
driven receive and a software FIFO for holding incoming data. The buffer size is set
by #define BUFMAX 32 , or 32 bytes. Variables of type char are used for the buffer
(ichar[BUFMAX]), head (head), and tail (tail) pointers. Within the ISR, if serial data
has been received, head is incremented and wrapped to zero if it is equal to BUFMAX;
then ibuf[head] = RCEG saves the data in the buffer. The getch() subroutine now
waits for data availability via the while(head == tail){} loop, which exits when
head is not equal to tail, indicating that the ISR has placed data into the buffer. Data
is extracted from the buffer by incrementing tail and wrapping to zero if necessary,
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0:?????head tail

(a) head == tail 
when empty

1:?????

2:?????

3:?????

4:?????

5:?????

6:?????

7:?????

0:?????

head
tail

(b) Write: head++, 
store data at [head]

1:dataA

2:????

3:?????

4:?????

5:?????

6:?????

7:?????

0:?????

head tail

(c) Read: tail++, 
retreive data at [tail]

1:dataA

2:?????

3:?????

4:?????

5:?????

6:?????

7:?????

FIGURE 10.8 Software FIFO structure.

0:?????

head

tail

(a) Placing data into
buffer

1:dataA

2:dataB

3:dataC

4:dataD

5:dataE

6:dataF

7:dataG

head

tail

(b) Wrap head pointer
at end of buffer

head tail

(c) Buffer overrun, buffer
now appears to be empty

0:dataH

1:dataA

2:dataB

3:dataC

4:dataD

5:dataE

6:dataF

7:dataG

0:dataH

1:dataI

2:dataB

3:dataC

4:dataD

5:dataE

6:dataF

7:dataG

FIGURE 10.9 Software FIFO overrun.



and then data is read from ibuf[tail]. The only modification required for main()
is initialization code that enables the RCIF interrupt.

Figure 10.11 shows a screenshot of the terminal output for the square root
code of Figure 10.10. The application behaves as expected for the values that are cut
and pasted into the terminal window. This does not mean that buffer overrun will
never occur. Because each result output stream has more characters in it than the
input stream, eventually overrun will occur if enough input values are continuously
sent to the application. The software FIFO and interrupt-driven receive has delayed
the occurrence of overrun, but not prevented it. Increasing the buffer size delays the
occurrence of overrun even longer, but still does not prevent it as long as the out-
going stream (formatted result string) requires more bandwidth than the incoming
stream (ASCII-decimal input). A software FIFO and interrupt-driven IO prevents
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#define BUFMAX 32
// head points to last character received
volatile unsigned char ibuf[BUFMAX], head, tail;

unsigned char getch (void){
  unsigned char c;
  while (head == tail);
  tail = tail + 1;
  if (tail == BUFMAX) tail = 0;
  c = ibuf[tail];
  return(c);
}

// interrupt service routine
void interrupt pic_isr(void) {
  // see if this interrupt was 
  //generated by a receive character
  if (RCIF) { 
    head = head + 1;
    if (head == BUFMAX) head = 0;
    ibuf[head] = RCREG;
  }
}
unsigned ivalue, root;
double temp_fp, root_fp;

main(void){
  // 19200 in HSPLL mode, crystal = 7.3728 MHz
  serial_init(95,1);
  // enable received character interrupt
  IPEN = 0;    RCIE = 1;    PEIE = 1;   GIE = 1;
  printf("Has software fifo buffer.");  pcrlf();
  printf("Hit any key to start...");  pcrlf();
  getch();
  while(1) {
    // read integer for input using scanf
    scanf("%d",&ivalue);
    // convert integer to floating point value
    temp_fp = ivalue;
    // use library routine to compute floating point square root
    root_fp = sqrt(temp_fp);
    root = (unsigned int)root_fp;  // integer square root
    printf("Square root of %d is: %d ",ivalue,root); pcrlf();
    DelayMs(5); // tuneable delay for USART overrun
  }
}

Wait for data to be inserted into buffer by ISR

} ISR places data in buffer using the head pointer

Enable interrupt on 
async. serial data receive

} Extract character from buffer using tail pointer
and return 

}

putch(), getche(), pcrlf() functions not shown as they
are unchanged.

}Variables added to support
software FIFO

while(1){} body is
unchanged; use of interrupt
receive and software FIFO is
transparent.

FIGURE 10.10 Square root code with interrupt-driven receive and 
software FIFO.ON THE CD



overflow for limited bursts of input data, where the FIFO buffer size is based on the
expected worst-case input data burst.

Sample Question: Where would an overflow check of the software FIFO be placed in the
code?

Answer: The software FIFO overflows if head becomes equal to tail after it is
incremented. The buffer overflow check would be placed in the ISR because
this is where head is modified when data is placed into the buffer.

Interrupt-Driven Asynchronous Transmit

At this point, a natural question is, “Can asynchronous data transmit be interrupt-
driven as well?” The answer is “yes,” and the changes required to putch() and the
ISR are shown in Figure 10.12. For interrupt-driven transmit, putch() places data
into the buffer, while the ISR extracts data from the buffer. The variables added to
support the transmit software FIFO are txbuf[BUFMAX] (the buffer), txhead (the
transmit head pointer), and txtail (the transmit tail pointer). After data is placed
into txbuf by putch(), the transmit interrupt is enabled by the statement TXIE = 1.
This is different from how the receive interrupt enable is handled; the RCIE bit is
set to “1” in the initialization portion of main() and then left always enabled. Be-
cause the TXIF flag is a “1” whenever the TXREG is empty, we cannot leave the
transmit interrupt always enabled, or else interrupts are continually generated. 
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2
4
9
16
25
36
49
64
81
100
....

Cut and paste these values 
into terminal
window to simulate 
continuous input stream

Software FIFO results in
no lost characters, program
performs as expected.

FIGURE 10.11 Terminal output for modified square root code.



Interrupts and a First Look at Timers 295

Looking more closely at the putch() code, observe that the txhead variable is
first copied to the temporary variable tmp, which is then incremented and com-
pared to txtail. If tmp is equal to txtail, the transmit software buffer is full, so the
statement while(tmp == txtail){} loops until the ISR removes at least one charac-
ter from the transmit buffer. The tmp variable is used instead of txhead to prevent
the ISR code from falsely believing that the transmit buffer is empty, which is true
when txhead == txtail. Once room exists in the transmit buffer, the tmp variable is
copied to txhead, and data is placed at txbuf[txhead]. Within the ISR, it is impera-
tive that both flag bits, TXIF and RCIF, be checked to discover which interrupt ac-
tually requires servicing now that two interrupt sources are enabled. If the TXIF flag
is set, the ISR uses the condition txhead == txtail to determine if there is data in
the transmit buffer. If this condition is true, the buffer is empty, and further trans-
mit interrupts are disabled by the statement TXIE = 0. If the buffer has data, a char-

#define BUFMAX 32
volatile unsigned char txbuf[BUFMAX];
volatile unsigned char txhead, txtail;

void putch (unsigned char c)
{
  char tmp;

  // must use tmp because we do not want ISR thinking
  // that buffer is empty
  tmp = txhead;
  tmp++;
  if (tmp == BUFMAX) tmp = 0;
  // wait until buffer space is freed
  while(tmp == txtail); 
  txbuf[tmp] = c;
  txhead = tmp;
  // enable interrupt
  TXIE = 1;
}
void interrupt pic_isr(void)
{
  // receive interrupt
  if (RCIF) { 
    head = head + 1;
    if (head == BUFMAX) head = 0;
    ibuf[head] = RCREG;
  }
  // transmit interrupt
  if (TXIF) {  //check TXIF bit
    if (txtail == txhead) {
      //buffer empty, disable interrupts
      TXIE = 0;
    } else {
      // get character
      txtail = txtail + 1;
      if (txtail == BUFMAX) txtail = 0;
      TXREG = txbuf[txtail];
    }
  }
}

}
wait for available space in buffer

Transmit software FIFO empty,
so disable transmit interrupt }

} Variables added to support
transmit software FIFO

place data in transmit software FIFO,
enable transmit interrupt

} Extract data from transmit software FIFO,
write to TXREG 

} Receive interrupt code, places data into
receive software FIFO

FIGURE 10.12 Interrupt-driven asynchronous data transmission.ON THE CD



acter is extracted from the buffer using the txtail pointer and written to TXREG,
which has the side effect of clearing the TXIF flag. The motivation for using 
interrupt-driven transmit is to recover the wasted instruction cycles that the CPU
spends waiting for the TXREG to become empty. The size of the transmit software
buffer should be large enough to accommodate the most common output data
bursts without having to wait for free space in the buffer. However, the getch()
function checks for transmit buffer overrun and waits if necessary, so no data is lost
if the outgoing data requirements exceed the buffer size.

10.6 OTHER INTERRUPT SOURCES, SLEEP MODE

Many PIC18 hardware subsystems generate interrupts, and these are covered in the
particular chapter that discusses the subsystem (e.g., Chapter 13 discusses use of the
Timer1/Timer3 subsystems, so Timer1/Timer3 interrupts are covered in that chap-
ter). In Figure 10.2, the three interrupts labeled INT0IF, INT1IF, INT2IF are asso-
ciated with pins RB0/INT0, RB1/INT1, and RB2/INT2, respectively. These are
called external interrupts, and can be configured via corresponding INTEDGx bits
in the INTCON2 register to generate an interrupt on either a rising (INTEDGx =
1) or falling (INTEDGx = 0) input edge. The RBIF interrupt of Figure 10.2 is an
interrupt-on-change feature associated with any bits RB[7:4] that are configured as
inputs. The values of these pins are compared against the values latched into these
bits on the last read, and any difference generates an interrupt if it is enabled. The
RBIF flag remains set as long as the mismatch remains. To reset the RBIF flag, a
read or write of PORTB must be done (except the MOVFF instruction) followed by
a clear of the RBIF flag. An example use of the RBIF interrupt is presented in Sec-
tion 10.11 using a keypad interface. The TMR0IF interrupt is covered in Chapter
13, “Timers,” which discusses the various timers within the PIC18.

In Chapter 8, “The PIC18Fxx2: System Startup and Parallel Port IO,” the
watchdog timer was used to wake the processor from sleep mode, which is a
standby mode useful for power conservation. There are many ways to wake the
processor from sleep mode, all them having to do with actions on external pins or
with internal subsystems that function on a clock source that is different from the
main clock, like the watchdog timer (see the PIC18 datasheet for a complete list of
actions that can wake the processor from sleep mode). In the square root applica-
tion, any time spent waiting for serial data input is wasted, as there is no work to be
performed if there is no input. Assume the processor is put into sleep mode if no
input characters arrive within the watchdog timer interval. Is there a way for the
USART subsystem to wake the processor upon arrival of data on the asynchronous
serial input port? Unfortunately, the answer is “no,” as the receive block of the
USART is inactive during sleep mode, because it operates from the main processor
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clock that is stopped during sleep. Thus, the receive block cannot shift in a charac-
ter during sleep. However, the RX input can also be tied to the RB0/INT0 input,
and the falling edge of an arriving start bit used to wake the processor. Unfortu-
nately, the arriving character is garbled as the USART wakes up after the falling
edge of the start bit. The next character will be read correctly, as long as the RX
input is idle long enough between the first character and the second characters to
allow the USART to synchronize on the start bit of the second character. The
amount of time needed for the PIC18 to begin operating after wakeup depends on
the oscillator mode used. If an external clock is used (EC, ECIO clock modes),
wakeup is almost immediate as there is no oscillator circuit startup time. The worst-
case condition for wakeup time from sleep mode occurs if an external crystal is used
(HS/PLL, HS, XT, LP modes), as the oscillator circuit is turned off during sleep.
The crystal oscillator startup time can be significant [7], up to 120 ms depending on
the crystal type used and oscillator mode. The sender must use at least one leading
whitespace character in front of an ASCII-decimal number to serve as the wakeup
character in case the receiver has gone to sleep after the last input value and delay
the sending of the second character until the wakeup time has elapsed.

Figure 10.13 shows the square root application of Figure 10.10 modified to
support this wakeup scheme. The code now has asm(“clrwdt”) placed in strategic
places such as putch() and the RCIF code for the ISR to avoid watchdog timeout
during normal operation. However, the wait loop while(head == tail){} in
getch() specifically does not include an asm(“clrwdt”), as we want to generate a
WDT reset if new characters do not arrive within a timeout period. In main(), pin
RB0 is configured as an input, and INTEDG0 = 0 configures INT0IF to be set on a
falling edge arrival. The test TO == 0 is true if the WDT has expired, which indicates
no input characters have arrived within a watchdog timer interval, and the proces-
sor should enter sleep mode. The watchdog timer is disabled (SWDTEN = 0) and the
INT0IF interrupt is enabled (INT0IE = 1) before sleeping, as we only want a start bit
arrival to wake the processor, not the watchdog timer. After being awaken by a
falling edge on RB0 (start bit arrival), the asynchronous serial receive is re-enabled
(CREN = 1), the watchdog timer enabled (SWDTEN = 1), and the ignore_flag variable
is set indicating to the ISR that this input character should be ignored as it will be
corrupted. If main() is entered by any type of reset other than watchdog timeout,
the welcome message is displayed and the watchdog timer enabled. 
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Figure 10.14 shows terminal output from the code of Figure 10.13, with the
processor allowed to enter sleep mode and then be awakened by character input.

void putch (
 unsigned char c)
{
  asm("clrwdt");
  while (!TXIF) {
    asm("clrwdt");
  }
  TXREG = c;
}
unsigned char getch (void)
{
  unsigned char c;
  // now wait for character
  // WDT will cause timeout
  // if no characters arrive
  while (head == tail);
  tail = tail + 1;
  if (tail == BUFMAX) 
      tail = 0;
  c = ibuf[tail];
  return(c);
}

volatile ignore_flag;

void interrupt pic_isr(void)
{
 if (INT0IF) {
  // successfully woken
  // the PIC, so disable, 
  // and clear flag
  INT0IF = 0;
  INT0IE = 0;
 }

 if (RCIF) { 
  asm("clrwdt");
  if (!ignore_flag) {
   head = head + 1;
   if (head == BUFMAX) 
    head = 0;
    ibuf[head] = RCREG;
  } else ignore_flag = 0;
 }
}

Clear WDT
to avoid
timeout

}

Start bit arrival

main(void){
 // set RB0 for input, 
 // falling edge interrupt
 TRISB0 = 1;
 INTEDG0 = 0;
 // 19200 in HSPLL mode, 
 // crystal = 7.3728 MHz
 serial_init(95,1);
 // enable interrupts
 IPEN = 0;
 RCIE = 1;
 PEIE = 1;
 GIE = 1;
 if (TO ==0 ) {
  //WDT timer went off 
  //waiting for input
  // enable RB0 interrupt 
  // before falling asleep
  printf("Sleeping...");pcrlf();
  SWDTEN = 0; // disable watchdog timer
  INT0IF = 0;
  INT0IE = 1; // enable RB0 interrupt
  CREN = 0;   // disable receive
  asm("sleep");
  CREN = 1;   // enable receive
  ignore_flag = 1; // ignore this character
  SWDTEN = 1;     // enable watchdog timer
  printf("Awake!");pcrlf();
 } else {
  // any other reset, print start message
  SWDTEN = 1;  // enable watchdog timer
  pcrlf();
  printf(
    "Software RX FIFO buf + WDT on input."); 
    pcrlf();
  printf("Hit any key to start...");pcrlf();
  getch();
 }
 while(1) {
  // read integer for input using scanf
  scanf("%d",&ivalue);
  //compute square root, print as integer
  temp_fp = ivalue;
  root_fp = sqrt(temp_fp);
  root = (unsigned int)root_fp; 
  printf("Square root of %d is: %d",
   ivalue,root); pcrlf();
}RB0/INT0

RC7/RX

PIC
Start bit
wakens PIC

Config INT0 interrupt

True if WDT timeout (input idle)
Enter sleep mode

Wakeup point

Set to “1”
after waking
to ignore
next char.

FIGURE 10.13 Square root code with RX software FIFO, wakeup support.
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Sample Question: Given a low true pushbutton switch on the RB0 port, which is
configured as an input, if the switch is pushed and released, what happens to the INT0IF
flag assuming INT0IE = 0 and INTEDG0 = 1?

Answer: The INT0 input is configured to be rising edge triggered by the state-
ment INTEDG0 = 1. A falling edge occurs on INT0 when the switch is
pushed, but this does not affect the INT0IF flag. When the switch is released,
a rising edge occurs and the INT0IF flag is set. However, no interrupt is gen-
erated because INT0IE = 0. Having INT0IE = 0 does not prevent the
INT0IF flag from being set when a rising edge occurs on the RB0 pin.

10.7 STATE MACHINE PROGRAMMING FOR INTERRUPT-DRIVEN IO

The interrupt service routine examples presented to this point have had fairly sim-
ple actions, which were repeated each time the interrupt occurred. Many
input/output applications require an ISR to perform a sequence of actions over a
span of multiple interrupts. A state machine approach can be used to solve this
problem as was done previously in Chapter 8. However, there are some differences
in using a state machine in an ISR versus using a state machine in the foreground
code. Figure 10.15 shows a LED/switch IO example that is implemented using an
interrupt-driven finite state machine.

While using interrupts for this example is not necessary, it illustrates an ap-
proach that proves useful in later chapters. The application uses interrupt-driven
IO via the RB0/INT0 interrupt to detect pushbutton activations that control the
state of an LED. The application begins in the START state with the LED off. The
first switch activation starts the LED blinking, and moves to the BLINK state. The
application remains in the BLINK state where the LED is kept blinking, as long as
the RB7 input is a “1” on each switch activation. If the RB7 input is a “0” on switch
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No input, sleep
Character arrival wakes PIC

No input, sleep
Character arrival wakes PIC

FIGURE 10.14 Test of wakeup code.



activation, the LED is frozen on, and the application progresses to state ON. The
next switch activation turns the LED off, and the application returns to the START
state. The interrupt service routine pic_isr() in Figure 10.15 implements the state
machine with each state transition triggered by a falling edge on RB0/INT0, indi-
cating a switch activation. The ISR_DelayMs(30) software delay function is used to
debounce the switch input; the ISR_DelayMs function is a copy of the DelayMs func-
tion with only a name change. This is necessary because the HI-TECH PICC-18
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#define START_STATE 0
#define BLINK_STATE 1
#define ON_STATE 2
volatile unsigned char state, led_blink;
volatile unsigned char led_on, int_flag;
void interrupt pic_isr(void){
 if (INT0IF) {
  ISR_DelayMs(30); //debounce
  INT0IF = 0; int_flag = 1;
  switch(state) {
   case START_STATE:
    state = BLINK_STATE; led_blink = 1;
    break;
   case  BLINK_STATE:
    if (!RB7) {
     led_blink = 0; led_on = 1;
     state = ON_STATE;
    }
    break;
   case ON_STATE:
    led_on = 0; state = START_STATE;
    break;
  }
 }
}
void print_debug(void){
 printf("State: %d, Led_on: %d, led_blink: %d",
      state,led_on,led_blink); pcrlf();
}
main(void){
  serial_init(95,1);// 19200 in HSPLL mode, crystal = 7.3728 MHz
  RBPU = 0; // weak pullups enabled
  // set RB0 for input, rising edge interrupt initially
  TRISB = 0xEF;  //RB4 is output, others inputs
  INTEDG0 = 0; // falling edge
  RB4 = 0; // turn LED off
  printf("INT0 FSM started (with debug).");pcrlf();
  // enable interrupts
  IPEN = 0; INT0IF = 0; INT0IE = 1; PEIE = 1; GIE = 1;
  print_debug();
  while(1) {
    if (int_flag) {print_debug(); int_flag = 0;}
    if (led_blink) {//LED toggle, delay
      if (LATB4) RB4 = 0; else RB4 = 1;
      DelayMs(250); DelayMs(250);
    }
    else if (led_on) RB4 = 1;
    else RB4 = 0;
  }
}

 RB0

 PIC 470 Ω
 RB4

 RB7
 Vdd

PORTB weak 
pullup is enabled

 RB0
Start LED
blinking

 RB7?

 RB0

Freeze LED
on

Freeze LED
off

 RB0

 START

 BLINK

 ON

 1

 0

}

print state for debugging

} Update LED based on led_blink and
led_on semaphores

Loop is free-running, not synchronized to interrupt

} Configure ports, INT0 is falling
edge triggered

Enable interrupts

Debug

FIGURE 10.15 Interrupt-driven LED/switch IO example.



compiler does not support function recursion, so the same function cannot be
called from both an ISR and main(). Typically, delays or waits of any sort in an ISR
are to be avoided, as the ISR should do its job as quickly as possible and exit. Sec-
tion 10.9 examines a more efficient method for debouncing a switch that does not
involve placing a delay in the ISR. Observe that the ISR_DelayMs(30) function call
is placed before the INT0IF = 0 statement that clears the interrupt flag. This is im-
portant, as we need all switch bounces to have settled before clearing the flag be-
cause each active edge caused by switch bounce sets the flag. The state variable
contains the current state of the ISR, with a C switch statement used to select an ac-
tion based upon the current state. Observe that unlike the state machine code used
for the LED/switch IO example in Chapter 8, the case blocks do not wait for IO
events since the ISR has been triggered by the pushbutton switch event. Instead, the
case blocks modify semaphores led_on, led_blink, and int_flag that are used to
communicate with the main() code, which is just a free-running loop that controls
the LED status. The term free-running is used because the internal code of the
while(1){} loop within main() does not have any wait conditions based on variables
modified by the ISR. In a real application, the main() loop would be performing ad-
ditional useful work, with the ISR handling IO events. Within the free running
while(1){} loop of main(), the LED is toggled if led_blink is “1”, turned on if
led_on is “1”, or is turned off if neither of these conditions is true. The int_flag is
only used for debugging purposes; it is set by the ISR when a switch event occurs.
Debugging information is printed from the while(1){} loop when int_flag is set,
after which the int_flag semaphore is cleared.

Figure 10.16 gives sample terminal output for the code of Figure 10.15. The
timeline shows three pushbutton activations. Observe that the active input edge
triggers the ISR, and the code in the case block for a state is executed after the
active edge occurs. Changing the state from START to BLINK in a case block means
the BLINK case block is executed on the next active edge.

While the output of Figure 10.16 looks valid, there are some constraints that
you may not have noticed. For example, during the DelayMS() function called by
the while(1){} loop of main(), what happens if one or more switch events arrive?
The ISR will process them, but they will be ignored by the main() code, as it is exe-
cuting the delay loop within DelayMS().

Figure 10.17 shows a DelayMsKill() function with a kill_delay variable that is
used to short circuit the delay. The ISR now sets kill_delay = 1 when halting the
blinking of the LED. The main() code uses DelayMsKill() instead of DelayMs(), and
now has better responsiveness to requested status changes for the LED. This simply
illustrates that when dealing with interrupts, one must be careful about consider-
ing the interactions between the ISR and the foreground code.
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char kill_delay;

void DelayMsKill(unsigned char cnt)
{
        unsigned char   i;
        do {
                i = 20;
                do {
                        DelayUs(50);
                } while(--i && !kill_delay);
        } while(--cnt && !kill_delay);
}

void interrupt pic_isr(void){
  if (INT0IF) {
    ISR_DelayMs(30);
    INT0IF = 0; int_flag = 1;
    switch(state) {
      case START_STATE:
            kill_delay = 0;
            state = BLINK_STATE; led_blink = 1;
            break;
      case  BLINK_STATE:
            if (!RB2) {
              kill_delay = 1;
              led_blink = 0; led_on = 1;
              state = ON_STATE;
            }
            break;
       case ON_STATE:
            led_on = 0; state = START_STATE;
            break;
    }
  }
}

Add new delay function
that allows the delay
to be aborted via
the kill_delay variable.

Abort delay on the LED
blink

}

In main(), replace DelayMs() with DelayMsKill()

Ensure that this is zero when blinking
the LED
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1. Initial Conditions (state is START)
2. INT0, goto BLINK, LED starts blinking
3. INT0, RB7 =1 so stay in BLINK
4. INT0, RB7 =1, so stay in BLINK
5. INT0, RB7 =0, goto ON, LED on
6. INT0, goto START, LED off

8. INT0, RB7 =0, goto ON, LED on
7. INT0, goto BLINK, LED starts blinking

9. INT0, goto START, LED off
~~

state = START

ISR triggrd,
state changed 
to BLINK,
led_blink = 1,
ISR exited.

timeline

switch input

~~

~~

LED blinking,
done by main()

state = BLINK

ISR triggrd,
state changed 
to ON,
led_blink = 0,
led_on = 1,
ISR exited.

~~

~~

LED on,
done by main()

state = ON

ISR triggrd,
state changed 
to START,
led_on = 0,
ISR exited.

FIGURE 10.16 Terminal output for state machine ISR example. 

FIGURE 10.17 DelayMSKill() function (see CD-ROM file
./code/common/delay.h).ON THE CD



Figure 10.18 shows the ISR of a second interrupt-driven LED/switch IO prob-
lem that requires the active edge to be changed between states. 

States OFF and ON are exited after a switch press and release, so INT0 is con-
figured for rising-edge triggering in these states. However, state BLINK is exited on
a falling edge input to RB0, so state ON changes INT0 interrupt from rising-edge
triggered to falling-edge triggered before transitioning to state BLINK. Dynamically
changing the active interrupt edge for an INTx interrupt input is useful in Chapter
13, which discusses pulse width measurement.
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#define OFF_STATE 0
#define ON_STATE 1
#define BLINK_STATE 2
#define STOP_STATE 3

volatile unsigned char state, led_blink;
volatile unsigned char led_on, int_flag;

void interrupt pic_isr(void){
 if (INT0IF) {
 ISR_DelayMs(30); //debounce
 INT0IF = 0; int_flag = 1;
 switch(state) {
  case OFF_STATE: 
   // exited rising edge
   state = ON_STATE;
   led_on = 1; // turn on led
   break;
  case ON_STATE: 
   // exited rising edge
   if (RB7) {
    // change to falling edge trigger
    INTEDG0 = 0;
    led_blink = 1; state = BLINK_STATE;
   }else {
    led_on = 0; state = OFF_STATE;
   }break;
   case  BLINK_STATE: 
    // exited on falling edge
    led_blink = 0;led_on = 1;
    // change to rising edge trigger
    INTEDG0 = 1; state = STOP_STATE;
    break;
   case STOP_STATE: 
    // exited on rising edge
    led_on = 0;state = OFF_STATE;
    break;
   }//end switch
 }// end if(INT0IF)
}//end
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 RB7
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pullup is enabled
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Remainder of code not shown, same as previous example except INT0 
initialized for rising edge triggered interrupt within main().

FIGURE 10.18 LED/switch IO example with active edge changes.
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10.8 THE TIMER SUBSYSTEM: TIMER2

It is only natural that a first look at PIC18 timers be done within this chapter, as a
common timer application is periodic interrupt generation. The PIC18 has four
timers (0–3) with Timer2 discussed here and the other timers covered in Chapter
13. As mentioned previously in the context of the watchdog timer, a timer is a
counter that triggers an action when its count reaches a particular value. Figure
10.19 shows the Timer2 subsystem, which consists of an 8-bit timer, a prescaler (1,
4, 16), an 8-bit period register (PR2), and a postscaler (1 through 16). The prescaler
divides the timer input clock, whose source is FOSC/4 (the instruction cycle clock).
The 8-bit period register is used as the comparison value against the timer value;
when they are equal, this asserts the Timer2 equal signal (TMR2_EQ) and resets the
timer to zero. The postscaler sets the Timer2 interrupt flag (TMR2IF) for every 1 of
n TMR2_EQ events, where n is 1 through 16. A postscaler value of 1:1 means that
the TMR2IF bit is set for each TMR2_EQ event, while a postscaler value of 1:16
means the TMR2IF bit is set once for every 16 TMR2_EQ events.

You may wonder why the prescaler is only limited to values 1, 4, and 16 while
the postscaler has values 1 through 16. The prescaler must be a high-speed circuit,
as its function is to divide the input clock frequency. Figure 10.20 shows the classic
DFF circuit for achieving a divide-by-2 of the input clock frequency. This circuit is
fast and reliable with the minimum input clock period limited to Tcqn + Tsu,
where Tcq is the propagation delay from clock-to-qn and Tsu is the setup time of
the D input. This value expressed as a frequency is 1/(Tcqn+Tsu) and is given as the
DFF toggle frequency in datasheets. A divide-by-2n circuit is built by placing n of
these circuits in series as shown in Figure 10.20. The CLKD2 (CLK/2), CLKD4
(CLK/4), and CLKD8 (CLK/8) signals are passed through another DFF (not
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FOSC/4    Prescaler
1:1, 1:4, 1:16

 Postscaler
1:1 to 1:16
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 Figure redrawn by author from PIC18Fxx2

 datasheet (DS39564B),  Microchip Technology Inc. 

FIGURE 10.19 Timer2 subsystem.2

2 Figure 10.19 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.



shown) clocked by CLK to resynchronize these signals to CLK. A postscaler does
not have to be high speed and is implemented as a second small counter that is
placed after the primary counter.

The Timer2 interrupt flag period (TMR2IF_PER) is given in Equation 10.1 as
a function of PR2, TOSC, prescaler (PRE), and postscaler (POST) values. Recall
that TOSC is the period of the primary clock, with TOSC = (1/FOSC). The “+1”
is present because it requires a clock cycle to reset Timer2 back to zero once PR2
and Timer2 become equal. This means Equation 10.1 simplifies to
4*FOSC*PRE*POST when PR2 = 0. If PR2 = 255, Equation 10.1 becomes
256*4*FOSC*PRE*POST. If the maximum values PRE = 16 and POST = 16 are
used, Equation 10.1 becomes 256*256*TOSC* 4, which gives the same timeout
value as using a 16-bit timer clocked by FOSC/4 (216 * TOSC * 4). 

TMR2IF_PER = (PR2+1) * PRE * POST * TOSC * 4 (10.1)

A common application of timers is periodic interrupt generation to accomplish
some action that must be performed at fixed time intervals. Typically, multiple so-
lutions exist for a Timer2 interrupt period, as Equation 10.1 has three variables
(PRE, POST, PR2). Given a desired interrupt period, one approach is to pick val-
ues for PRE and POST and then solve Equation 10.1 for PR2 because PR2 has the
largest range of the three adjustable variables. Equation 10.2 solves Equation 10.1
for PR2; note that the PR2 value must be rounded to the nearest integer.

(round to nearest integer)             (10.2)
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Figure 10.21a shows four solutions for a Timer2 periodic interrupt at a fre-
quency of 4 kHz (an interrupt period of 250 μs). The postscaler was adjusted for the
first three cases to give the largest PR2 value that did not exceed 255. The last case
(PRE = 1, POST = 1, PR = 1842) is included to show an invalid solution where
PR2 exceeds 255, the maximum value of an 8-bit register. The %error between the
desired frequency and actual frequency is due to rounding of the PR2 value to the
nearest integer. In general, the smallest percent error between expected and actual
frequencies usually occurs for the highest PR2 value, but this is not guaranteed. Fig-
ure 10.21b shows the effect on percent error as POST is increased, causing PR2 to
decrease. The smallest percent error occurs for the case of PRE = 1, POST = 9,
and PR2 = 204. The required accuracy for a periodic interrupt interval is applica-
tion dependent; in most applications any of the valid solutions in Figure 10.21
would be acceptable.

Figure 10.22 shows the bit definitions of the Timer2 configuration register
(T2CON). Note that the postscale bit field is one less than the desired postscaler
value (for 1:4 use 0b0011, for 1:5 use 0b0100, for 1:16 use 0b1111, etc.). 
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(a) Timer2 solutions for 4 kHz interrupt frequency

Invalid, PR2 > 255

(b) Timer2 solutions for 4 kHz interrupt frequency, increasing postscaler value

FOSC Pre Post 
Desired 
Frequency PR 

Actual 
Frequency % Error 

29491200 1 7 4000 262 4004.8 0.12% 
29491200 4 2 4000 229 4007.0 0.17% 
29491200 16 1 4000 114 4007.0 0.17% 
29491200 1 1 4000 1842 4000.4 0.01% 

 

FOSC Pre Post 
Desired 
Frequency PR 

Actual 
Frequency % Error 

29491200 1 7 4000 262 4004.8 0.12% 
29491200 1 8 4000 229 4007.0 0.17% 
29491200 1 9 4000 204 3996.1 -0.10% 
29491200 1 10 4000 183 4007.0 0.17% 
29491200 1 11 4000 167 3989.6 -0.26% 
29491200 1 12 4000 153 3989.6 -0.26% 
29491200 1 13 4000 141 3993.9 -0.15% 
29491200 1 14 4000 131 3989.6 -0.26% 
29491200 1 15 4000 122 3996.1 -0.10% 

FIGURE 10.21 PR2 values for an interrupt frequency of 4 kHz.



Sample Question: Assuming FOSC = 30 MHz, what Timer2 configuration will generate
a periodic interrupt every 5 ms?

Answer: Using Equation 10.2 and letting POST = 16, we find:
PR2 = [ 5 ms / [(1/30 MHz)*4*PRE*16] ] = [0.005/[3.33e-8 * 4 * PRE*16] 

This results in PR2 = 2343 for PRE = 1, PR2 = 585 for PRE = 4, and PR2
= 145 for PRE = 16. Thus, the only valid choice for POST = 16 is PRE =
16, PR2 = 145, as this is the only configuration that gives a PR2 < 255. 

10.9 SWITCH DEBOUNCING USING A TIMER

The LED/switch examples of Section 10.7 use a 30 ms software delay in the ISR for
switch debouncing. This is not the best method to use, as the ISR is stealing time
from the foreground code via wasted cycles in the software delay loop. A better
method is to use a timer for switch debouncing as shown in Figure 10.23. The goal
is to create a semaphore that signals a press and release of the momentary switch in
the presence of switch bounce. Timer2 is configured to generate periodic interrupts
and the INTx input is configured as a falling edge interrupt.

The first falling edge from a switch activation triggers the ISR, which sets a sem-
aphore and then disables the interrupt so that successive falling edges due to switch
bounce do not generate interrupts. On each Timer2 interrupt thereafter, a counter
is kept that tracks the number of successive Timer2 interrupts that the INT2 input
remains high. If the INT2 input remains high long enough, it is considered idle and
the INT2 interrupt is re-enabled.
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 TOUTPS3

TMR2ON: Timer2 On Bit (1 is on, 0 is off)

T2CKPS1: T2CKPS0: Timer2 Clock Prescale
  00 = Prescaler is 1
  01 = Prescaler is 4
  1x = Prescaler is 16

7 6 5 4 3 2 1 0

 T2CON: Timer2 Control Register

 -- u -- : unimplemented

TOUTPS3:TOUTPS2  Postscale Select
   0000 = 1:1 Postscale
   0001 = 1:2 Postscale
   0010 = 1:3 Postscale
    .......
   1110 = 1:15 Postscale
   1111 = 1:16 Postscale

-- u --  TOUTPS2 TOUTPS3 TOUTPS3 TMR2ON  T2CKPS1  T2CKPS0

FIGURE 10.22 Timer2 configuration register (T2CON).



Figure 10.24 shows the C code implementation of this debounce scheme. The
button variable is the semaphore that is set by the ISR when a falling edge occurs on
the INT2 input indicating that switch activation has occurred. Observe that once
the INT2 interrupt is recognized, it is disabled via INT2IE = 0 and the button_de-
bounce count value is cleared. The INT2IF flag is not cleared at this time because
any switch bounce that is present sets the flag; the INT2IF flag cannot be reliably
cleared until the switch bounce has settled. For each Timer2 interrupt, if the INT2
interrupt is disabled, this means that the last switch activation is being debounced.
If the RB2 input is high, the debounce counter, button_debounce, is incremented. If
the RB2 input is low, button_debounce is cleared. Once RB2 has tested high for DE-
BOUNCE consecutive Timer2 interrupts it is considered idle. If RB2 is idle and the
previous semaphore has been acknowledged (i.e., button has been cleared by the
foreground code), the INT2 interrupt is re-enabled via INT2IE = 1 for triggering by
a switch activation.

The main() code of Figure 10.24 initializes the INT2 input for falling edge trig-
gering and Timer2 for periodic interrupt generation. The values POST = 11, PRE
= 16, and PR2 = 250 for a FOSC = 29.4952 MHz (PIC reference board) give a
Timer2 interrupt period of approximately 6 ms. With DEBOUNCE = 5, this means
that the RB2 input remaining high for approximately 24 to 30 ms is considered
idle. The variation in the debounce time is because the Timer2 value is unknown
when the switch activation occurs. Thus, the first Timer2 interrupt may occur any-
where in the 5 ms interrupt interval. The while(1){} loop is free-running with re-
spect to the button semaphore; when the button semaphore is set, a message is
printed and the semaphore is acknowledged by clearing it.
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renable interrupt after
semaphore reset and 
push button is idletime

bounce

~~

PIC
 Vdd

Input
Switch

RB2/INT2
Use INTx falling edge interrupt
to detect push button activation.

PortB
pullup

FIGURE 10.23 Using a timer to debounce an interrupt-driven switch input.



This approach sets the button semaphore on each press and release of the push
button switch. If the interface requires that a press and hold be detected, a similar
approach that waits for the input to be idle low can be used. The next section dis-
cusses a second example in which a periodic interrupt is used to sample noisy in-
puts to reject momentary pulses or glitches that may be present.

10.10 A ROTARY ENCODER INTERFACE

A rotary encoder is used to encode the direction and distance of mechanical shaft
rotation. There are different ways to accomplish this; Figure 10.25 shows a 2-bit
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#define DEBOUNCE  5
volatile unsigned char button, button_debounce;

void interrupt pic_isr(void){
 if (INT2IF && INT2IE) {
  // pushbutton detected
  INT2IE = 0;  button = 1;  button_debounce = 0;
 }
 if (TMR2IF) { // debouncing timer
  TMR2IF = 0;
  if (!INT2IE) {
   if (RB2) {
    if (button_debounce != DEBOUNCE) 
      button_debounce++;
    }
   else button_debounce=0;
   if (button_debounce == DEBOUNCE && !button){
    //button idle high ,re-enable interrupt
    INT2IF=0; INT2IE=1;
   }
  }
 }
}
main(void){
 serial_init(95,1); // 19200 in HSPLL mode, crystal = 7.3728 MHz
 // configure INT2 for falling edge interrupt input
 TRISB2 = 1;  INT2IF = 0; INTEDG2 = 0;  INT2IE = 1;
 RBPU = 0; // enable weak pullup on port B
 // configure timer 2
 // post scale of 11, prescale 16, PR=250, FOSC=29.4912 MHz
 // gives interrupt interval of ~ 6 ms
 TOUTPS3 = 1; TOUTPS2 = 0; TOUTPS1 = 1; TOUTPS0 = 0;
 T2CKPS1 = 1;  PR2 = 250;
 // enable TMR2 interrupt
 IPEN = 0;  TMR2IF = 0; TMR2IE = 1;   PEIE = 1;  GIE = 1;
 TMR2ON = 1 ;
 pcrlf();  printf("Pushbutton with Timer2 Debounce");  pcrlf();
 while(1) {
  if (button) {
   button=0; // acknowledge this semaphore
   printf("Push Button activated!"); pcrlf();
  }
 }// end while
}//end main

}

Falling edge interrupt,
set the semaphore and
disable interrupt

}
If the interrupt is disabled, then
debounce the switch by waiting
for it to become idle high.
After the switch is debounced and
the semaphore is acknowledged,  
then reenable the interrupt.

}

}

Configure Timer2
for ~6 ms interrupt
period

}
Configure
INT2 for
falling edge 
interrupt

If pushbutton is activated,
then print message and
reset the semaphore

5 * 6 ms = 24 to 30 ms debounce time

FIGURE 10.24 Switch debounce implementation.
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Gray code rotary encoder. Clockwise rotation of the shaft produces the sequence
00, 10, 11, 01, and counterclockwise rotation produces 00, 01, 11, and 10. In a Gray
code, adjacent encodings differ by only one bit position. Rotation direction is de-
termined by comparing the current 2-bit value with the last value. For example, if
the current value is 11 and the last value is 10, the shaft is rotating in a clockwise di-
rection. One common use for a rotary encoder is as an input device on a control
panel where clockwise rotation increments a selected parameter setting, while
counter-clockwise rotation decrements the parameter. The rotary encoder of Fig-
ure 10.25 is an incremental encoder as the absolute position of the shaft is indeter-
minate; only relative motion is encoded. Some rotary encoders include more bits
that provide absolute shaft position, in BCD or binary encoding. An n-position en-
coder outputs n-codes for each complete shaft rotation. Common values of n for 2-
bit incremental rotary encoders are 16 and 32.

Rotary encoders use mechanical, optical, or magnetic means of detecting shaft
rotation, with mechanical encoders being the least expensive and magnetic the
most expensive. A key specification for optical and mechanical encoders is rota-
tional life with optical ~ 1 million and mechanical ~ 100,000 rotations due to me-
chanical wear. Magnetic encoders are meant for high-speed rotational applications
with encoder lifetime measured in thousands of hours for a fixed rotational speed
in revolutions per minute (RPMs).

Figure 10.26 shows ISR code that uses INT0/INT1 edge triggered interrupts for
a rotary encoder interface. The ISR triggers on the occurrence of an active edge on
either INT0 or INT1. The ISR checks the flag bits INT0IF/INT1IF, determines
which interrupt occurred, and toggles the appropriate edge bit INTEDG0/INT-
EDG1. The update_state() function then reads the INT0/INT1 inputs and com-
pares them against the previous state to determine clockwise or counterclockwise
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FIGURE 10.25 Two-bit Gray code rotary encoder.
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rotation of the encoder. If a valid state transition is found, the count variable is ei-
ther incremented or decremented appropriately. Observe that an invalid state tran-
sition indicates that an illegal transition has occurred, perhaps caused by noise,
and the state variable is reset to the current value of the INT0/INT1 inputs. 

#define S0 0
#define S1 1
#define S2 2
#define S3 3

volatile unsigned char state, last_state;
volatile unsigned char count, last_count;

update_state(){
  state = PORTB & 0x3;
  switch(state) {
  case S0:
    if (last_state == S1) count++;
    else if (last_state == S2) count--;
    break;
  case S1:
    if (last_state == S3) count++;
    else if (last_state == S0) count--;
    break;
  case S2:
    if (last_state == S0) count++;
    else if (last_state == S3) count--;
    break;
  case S3:
    if (last_state == S2) count++;
    else if (last_state == S1) count--;
    break;
  }
  if (last_count != count) {
    // valid pulse
    last_state = state;
    last_count = count;
  } else {
    // invalid transistion, reset last state
    last_state = state;
  }
}
void interrupt pic_isr(void){
  if (INT0IF || INT1IF) {
    if (INT0IF) {
      INT0IF = 0;
      // toggle active edge
      if (INTEDG0) INTEDG0 = 0; else INTEDG0 = 1;
    }
    if (INT1IF) {
      INT1IF = 0;
      // toggle active edge
      if (INTEDG1) INTEDG1 = 0; else INTEDG1 = 1;
    }
    update_state();
  }
}

Update the state and count
variables based upon the INT0/INT input
values.

} Check previous state and determine if
rotating clockwise or counter-clockwise

Should not get here unless illegal transition
occurred, attempt a recovery

} INT0 Active Edge occurred

} INT1 Active Edge occurred

INT0/RB0

INT1/RB1

PIC

Rotary
Encoder

Internal pullups enabled

FIGURE 10.26 Two-bit rotary encoder interface using INT0/INT1 interrupts.
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The main() code shown in Figure 10.27 initializes the INT0/INT1 active inter-
rupt edges (INTEDG0/INTEDG1) by reading the current value of the INT0/INT1
inputs; if the input is high, the falling edge is chosen, else the rising edge is selected.
This is necessary because the initial values of the rotary encoder outputs depend
upon the current shaft position, which is unknown at main() startup. The state
variable used by the ISR of Figure 10.26 to track the position of the rotary encoder
is also initialized by main() based upon the INT0/INT1 inputs. The while(1){} loop
in the main() code waits for a change on the count variable and prints its value once
a change is detected.

The code of Figures 10.26 and 10.27 works well as long as the signal transitions
are noise free and clean of contact bounce, which is generally true of the signals
produced by optical and magnetic encoders. However, mechanical encoders have
contact bounce that will cause the count variable to change multiple times for a sin-
gle shaft movement, potentially creating errors in code that samples the count
value. Figure 10.28 illustrates this problem, as the ISR is triggered on each edge of
the contact bounce, causing count to be modified each time. There is a possibility

main(void){
  unsigned char count_old;
  // set RB0, RB1 for input
  TRISB0 = 1; TRISB1 = 1;
  RBPU = 0; // enable weak pullups

  if (RB0) INTEDG0 = 0; // falling edge
  else INTEDG0 = 1; // rising edge
  if (RB1) INTEDG1 = 0; // falling edge
  else INTEDG1 = 1; // rising edge

  last_state = PORTB & 0x03; // init last state

  serial_init(95,1); // 19200 in HSPLL mode, crystal = 7.3728 MHz
  pcrlf();  printf("Rotary Test Started");  pcrlf();
  // enable INT0,INT1 interrupts
  IPEN = 0;  INT0IF = 0; INT0IE = 1;
  INT1IF = 0; INT1IE = 1;
  PEIE = 1;  GIE = 1;

  printf("No Debounce");  pcrlf();
  printf("Rotary Switch Test Started");
  pcrlf();
  while(1) {
    //tip: don't put volatile variables in printfs, may change
    // by the time the printf gets around to printing it!
    if (count != count_old){
      count_old = count;
      printf("Count: %x",count_old);
      pcrlf();
    }
  }
}

Initialize active edges based on 
INT0/INT1 input values. }

} Enable INT0/INT1 Interrupts

Print count variable when it
changes

FIGURE 10.27 main() for initializing INT0/INT1 interrupts, state
variable.



that count can be sampled by the normal program flow when it contains an incor-
rect value, causing unreliable behavior.

As was done for the LED/switch IO example of the previous section, Timer2 is
used as a periodic interrupt for debouncing the rotary encoder inputs. Figure 10.29
shows an ISR triggered by Timer2 that samples the INT0/RB0, INT1/RB1 inputs on
each interrupt. The int0_last, int1_last variables contain the last stable values of
the INT0, INT1 inputs. If an input is different from its last stable value and remains
that way for DEBOUNCE consecutive interrupt periods, the input has reached a new
stable value and the update_state() function is called to update the state, count
variables. The int0_cnt, int1_cnt variables are used for tracking the number of
consecutive interrupts that an input remains changed from its previous value. The
count variable for an input is reset to zero if the input returns to its previous value
before DEBOUNCE consecutive interrupt periods occurs. This approach uses Timer2
as the only interrupt source, the RB0/INT0 and RB1/INT1 interrupts are not en-
abled. The update_state() function is not shown in Figure 10.29, as it is the same
function from Figure 10.26.

Figure 10.30 shows the main() code for configuring Timer2 as a periodic inter-
rupt source. Timer2 is configured in the same manner as the switch debouncing ex-
ample in which values of FOSC = 29.4952 MHz, POST = 11, PRE = 16, and
PR2 = 250 give an interrupt period of approximately 6 ms. With DEBOUNCE = 5,
this means that any pulses of width less than 30 ms are rejected as switch bounce
or noise. The pulse width rejection should be chosen based on worst-case datasheet
values for contact bounce. The sampling period should be chosen to guarantee sev-
eral samples between valid input changes, with the time between input changes de-
pendent upon the maximum expected shaft rotation speed and the number of
positions for the encoder.
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count invalid

INT0 or INT1

Contact bounce edges, ISR triggered on each edge, modifies count each time
as each state transition is valid since it is returning to the previous state on the bounce.

input settled

time

FIGURE 10.28 Switch bounce in mechanical encoders.
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volatile unsigned char state,last_state;
volatile unsigned char count,last_count;
volatile unsigned char int0_cnt,int0_last;
volatile unsigned char int1_cnt,int1_last;
volatile unsigned char update_flag;

#define DEBOUNCE  5

void interrupt pic_isr(void){
  if (TMR2IF) {
    // debouncing rotary inputs
    TMR2IF = 0;
    if (RB0 != int0_last) {
      int0_cnt++;
      if (int0_cnt == DEBOUNCE) {
        update_flag = 1; 
        int0_cnt = 0;int0_last = RB0;
      }
    }
    // reset cnt, if pulse width 
    // not long enough
    else if (int0_cnt)  int0_cnt = 0;

    if (RB1 != int1_last) {
      int1_cnt++;
      if (int1_cnt == DEBOUNCE) {
        update_flag = 1; 
        int1_cnt = 0; int1_last = RB1;
      }
    }
    // reset cnt, if pulse width 
    // not long enough
    else if (int1_cnt)   int1_cnt = 0;

    if (update_flag) {
      // can read the rotary inputs
      update_state();
      update_flag = 0;
    }
  }
}

Rotary encoder input must be stable
for this many consecutive Timer2 
interrupts to be classified as a valid input

} Variables for tracking stability
of rotary encoder inputs

Has RB0 input changed value?
Yes, track number of times it remains stable

} Stable for DEBOUNCE interrupt periods,
set update flag, record input value

Reset counter if not
stable for long enough

} Check stability of RB1 input

}
Update state and count variables;
update_state() function not shown as
it is unchanged from previous example.

FIGURE 10.29 Using Timer2 to sample the rotary encoder outputs.ON THE CD



10.11 A NUMERIC KEYPAD INTERFACE

A numeric keypad is a common element in a microcontroller system, as it provides
an inexpensive method of input. A numeric keypad is simply a matrix of switches
arranged in rows and columns and has no active electronics; a keypress connects a
row and column pin together as shown in Figure 10.31. 

The 4x3 numeric keypad of Figure 10.31 is shown connected to the PIC in Fig-
ure 10.32. The RB[3:1] port pins are configured as outputs driving low and con-
nected to the row pins, while RB[7:4] are configured as inputs with the weak pullup
enabled and connected to the column pins.
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main(void){
  unsigned char count_old;
  // set RB0, RB1 for input
TRISB0 = 1; TRISB1 = 1;

  RBPU = 0; // enable weak pullups
  int0_last = RB0;
  int1_last = RB1;
  last_state = PORTB & 0x03; // init last state
  serial_init(95,1); // 19200 in HSPLL mode, crystal = 7.3728 MHz

  // configure timer 2
  // post scale of 11
  TOUTPS3 = 1; TOUTPS2 = 0;
  TOUTPS1 = 1; TOUTPS0 = 0;
  // pre scale of 16 */
  T2CKPS1 = 1;
  TMR2ON = 1 ;
  PR2 = 250;

  // enable TMR2 interrupt
  IPEN = 0;  TMR2IF = 0; TMR2IE = 1;
  PEIE = 1;  GIE = 1;
  printf("With Timer2 Debounce");  pcrlf();
  printf("Rotary Switch Test Started");
  pcrlf();
  while(1) {
    //tip: don't put volatile variables in printfs, may change
    // by the time the printf gets around to printing it!
    if (count != count_old){
      count_old = count;
      printf("Count: %x",count_old);
      pcrlf();
    }
  }
}

Timer2 Interrupt period = POST*PRE*4*TOSC*PR2
= 11*16*4*(1/29491200)*250 = 6 ms (approx) 

} Postscale bits = 1010 for postscaler of 1:11

Prescale = 16
Turn on Timer2
Set period register

} Enable Timer2 interrupt

FIGURE 10.30 Configuring Timer2 for sampling the rotary encoder 
inputs (see CD-ROM file ./code/chap10/F_10_29_rotint_debounced.c). ON THE CD



If no key is pressed, RB[7:4] reads as “1111”, as there are no connections to the
RB[3:1] pins. Recall that the interrupt-on-change feature of PORTB generates an
interrupt if the value of pins RB[7:4] changes from the last time a read was done on
this port. By reading PORTB when no key is pressed and latching a “1111” into the
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FIGURE 10.31 4x3 numeric keypad.
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FIGURE 10.32 4x3 numeric keypad connected to PIC.
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PORTB[7:4] register bits, the interrupt-on-change feature can be used to detect a
keypress, as any keypress connects one of the RB[7:4] inputs to one of the RB[3:1]
outputs, causing that input to become “0” and changing the RB[7:4] port value. In
Figure 10.32b, key “8” is pressed, causing RB5 to become a “0”. 

After a keypress is detected, determining which key is actually pressed is done
through a procedure known as a keypad scan. A keypad scan steps through the
rows, configuring each row port as an output driving low with the other ports con-
figured as inputs. For each row configured as an output, the corresponding column
input is checked to see if it is a “0”, indicating a connection between the row and
column pin. In Figure 10.32c, RB1 is driving low but all of the column inputs
RB[7:4] are high, so it is known that keys 3, 6, 9, and # are not pressed. In Figure
10.32d, RB2 is driving low and column input RB5 is found to be low, indicating
that key 8 is pressed causing the connection between RB2 and RB5. 

Figure 10.33 shows the ISR code and keyscan() function for the keypad inter-
face. The keyscan() function scans the keypad as previously described using two
nested loops. The outer loop steps through the column inputs, while the inner loop
steps through the rows, configuring each row as an output driving low and check-
ing the column input to see if it is zero. The key variable is incremented each time
through the inner loop and is used as an index into the key_table string to return
an ASCII value of the key that is pressed.

The ISR is initially triggered by RBIF, the interrupt-on-change of port RB[7:4]
from “1111” to a different value indicating a key press. The RBIF interrupt is dis-
abled once it has occurred, as clearing the RBIF flag is unreliable at this point as it
may become set again because of key bounce. Timer2 is used to debounce the key-
pad and has been configured for an 8 ms interrupt period. After the RBIF interrupt
is disabled, the dly_cnt variable that is used to track the number of Timer2 inter-
rupts is cleared to zero, Timer2 is turned on, and the Timer2 interrupt is enabled.
Once two Timer2 interrupts have occurred indicating that 16 ms has elapsed since
a keypress was detected, the keypad is considered debounced and the keypad value
is read by keyscan. The returned keypad value is placed in the keyflag variable,
which is used as a semaphore to main() to indicate that a keypress has occurred.
Observe that the test for an RBIF interrupt is written as RBIF && RBIE because the
RBIF flag cannot be reliably cleared as long as a key is pressed or switch bounce is
active.

The main() code for the keypad interface is shown in Figure 10.34. The initial-
ization includes configuring RB[7:4] as inputs and RB[3:1] as outputs and enabling
the weak pullup. Timer2 is configured for PRE = 16, POST = 16, and PR2 =
229, which gives an 8 ms timeout for FOSC = 29.4912 MHz.

The while(1){} loop first calls the key_pad() function, which waits until the
RB[7:4] inputs have been stable at “1111” for 100 ms, indicating an idle condition



(no key is pressed). The key_pad() function clears the RBIF flag before exiting, as
the interrupt-on-change feature can now be used to detect a keypress since a “1111”
is latched into RB[7:4] by the last PORTB read. The while(1){} loop then clears the
keyflag semaphore, enables the interrupt-on-change interrupt (RBIE = 1), and then
waits for the ISR to set the keyflag semaphore. After the keyflag semaphore be-
comes nonzero, its value is printed to the console as the keypress value. If the “#”
key is pressed, a carriage return/line feed is also printed. Sample output from the
keypad application is shown after the main() code of Figure 10.34.
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const unsigned char
    key_table[] = "123456789*0#";

//RB3,RB2,R1 are rows
//RB7,RB6,RB4,RB3 are columns
unsigned char keyscan(void) {
 char row,col,key;
 // all rows as inputs, 
 //latches already have zeros
 TRISB3=1; TRISB2=1; TRISB1=1;
 key = 0;
 for (col=7; col >3;col--) {
  for (row=3; row >0; row--) {
   //set row as output
   bitclr(TRISB,row); 
   if (!bittst(PORTB,col)) {
    // found key press, 
    //return all rows as outputs
    TRISB3=0; TRISB2=0; TRISB1=0;
    return(key_table[key]);
   }
   bitset(TRISB,row);
   key++;
  }
 }
 TRISB3=0; TRISB2=0; TRISB1=0;
 return('E');
}

volatile unsigned char keyflag, dly_cnt;
void interrupt isr(void){
// check RBIE because RBIF is unstable
 if (RBIF && RBIE) {
  // disable interrupt
  RBIE = 0;
  dly_cnt=0;
  // start debounce timer
  TMR2=0; TMR2IF=0;  TMR2IE=1;
  TMR2ON=1;
 }
 if (TMR2IF) {
  TMR2IF=0;
  dly_cnt++;
  if (dly_cnt == 2){
   //debounced, read key
   keyflag = keyscan();
   TMR2IE = 0; TMR2ON=0;
  }
 }
}

col input ?

All rows (RB[3:1]) as inputs,
                 key = 0 

For col = RB7 to RB3

For row = RB3 to RB1

set row as output, driving 0

Found key,
return
key_table[key]

exit

last row?

restore row
to input,
next row,
key++

last col?

next colreturn ‘E’,
(no key)

exit

yes

0

yes

no
1

keyscan()

PORTB interrupt-on-change triggers
interrupt when RB[7:4] changes value 
from “1111”

Key lookup table

Disable interrupt-on-change because RBIF status
will be unpredictable due to possible key bounce

Start debounce timer (TMR2),
clear delay counter}

}
Each TMR2 interrupt is approximately 8 ms.
Assume that keypad is debounced after two TMR2 
interrupts, so read keypad and disable debounce timer.

keyflag is semaphore to main() code, 
contains keypress value.

no

FIGURE 10.33 ISR and keyscan() function keypad interface.
ON THE CD



10.12 ON WRITING AND DEBUGGING ISRS

When writing ISRs, one must be careful not to place too much work within the ISR,
as this can either cause other interrupt events to be missed or steal too much time
away from the normal program flow. Within an ISR, there should never be a wait
for an event—that is the function of the interrupt that triggers the ISR. As much
work as possible should be placed in the normal program flow, with the ISR only
performing time-critical operations. 
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// wait until keypad idle for 100 ms
// when exit RB[7:4] = 1111
keypad_idle() {
  char cnt,c;
  cnt = 0;
  while(cnt < 5) {
    c = PORTB & 0xF0;
    if (c == 0xF0) cnt++ ;
    else cnt=0;
    DelayMs(20);
  }
  // clear interrupt flag now that port is stable
  RBIF = 0;
}

main(void){

  // 19200 in HSPLL mode, crystal = 7.3728 MHz
  serial_init(95,1); 
  TRISB=0xF1; // RB3,RB2,R1 outputs
  RB3=0; RB2=0; RB1=0;  // pull these low
  // enable the weak pullup on port B
  RBPU = 0;
  // configure timer 2
  // post scale of 16
  TOUTPS3 = 1; TOUTPS2 = 1; 
  TOUTPS1 = 1; TOUTPS0 = 1;
  // pre scale of 16 */
  T2CKPS1 = 1;
  PR2 = 229;  // interrupt interrupt interval of 8 ms
  // unmask interrupts
  IPEN = 0;  PEIE = 1;  GIE = 1;
  keyflag = 0;
  pcrlf();printf("Keypad test"); pcrlf();
  while(1) {
    // wait for key
    keypad_idle();
    keyflag = 0;
    RBIE = 1;
    while(!keyflag);
    printf("%c",keyflag);
    if (keyflag == '#') 
     pcrlf();
  }
}

Clear RBIF flag after RB[7:4] is stable.

}

After a keypress, wait for keypad to become idle 
by checking that RB[7:4] remains “1111” for 100 ms.
This is needed so that the next keypress is detected
by interrupt-on-change of RB[7:4].

Configure Timer2 for
PRE=16, POST=16, PR2=229.
Interrupt interval is ~8 ms
for FOSC=29.4912 MHz

} Wait for keypad to become idle, clear keyflag semaphore.
Enable interrupt-on-change, wait for ISR to set keyflag 
semaphore.

}

} Wait for the keyflag semaphore to become non-zero, 
then print keypress; if ‘#’ then print CRLF

Console output for test of key pad code

}
Configure PORTB for keypad interface

FIGURE 10.34 main() code for keypad interface (see CD-ROM file 
./code/chap10/F_10_33_keytst.c).ON THE CD
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Because most ISRs are time-sensitive, putting print statements that output data
to a serial port in an ISR to examine ISR variables is usually not an option, as this
destroys the interrupt timing. It may be valid to place a print statement in the fore-
ground code to examine an ISR variable, but the variable value should always be
copied to a temporary variable first because the ISR variable value may be changed
by the time the print statement is executed. If you are trying to trace a variable value
over several interrupt intervals, using a print statement may not be an option if the
print is not fast enough to monitor the variable value. In this case, a trace buffer can
be used in which copies of the variable over several interrupt intervals are kept, and
then printed when the trace buffer fills up. Listing 10.1 shows modifications to the
code of Figure 10.26 that adds a trace buffer (trace) with 16 entries (#define TMAX
16) for tracking changes to the count variable. Within the update_state() function,
the count variable is saved in trace anytime its value changes. The while(1){} loop
of main() prints the contents of the trace buffer after it fills up, and then empties the
buffer by resetting the trace buffer count variable tcnt to zero.

LISTING 10.1 Trace buffer modifications for code of Figure 10.26. 

#define TMAX 16

volatile unsigned char trace[TMAX];  // trace buffer

volatile unsigned char tcnt;         //pointer to trace buffer entry

update_state(){

...// code sections omitted...

if (last_count != count) {

// valid pulse

last_state = state;

last_count = count;

// save count value in trace buffer

if (tcnt != TMAX) trace[tcnt++] = count;

} else {

// invalid transition, reset last state

last_state = state;

}

} // end update_state()

main(void) {

// code omitted 

while(1) {

// print trace buffer contents when full

if (tcnt == TMAX){

for (i=0; i< TMAX;i++) {

printf(“Trace %d: Count %d”,i,trace[i]);

pcrlf();

}

tcnt = 0;// mark trace buffer as empty

}

ON THE CD
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}

}  // end main()

Figure 10.35 shows console output for the code of Figure 10.26 without a trace
buffer and with a trace buffer (Listing 10.1). The code was tested with a mechani-
cal rotary encoder that was turned rapidly in an effort to produce contact bounce.
The console output of the trace buffer code over several tests clearly showed con-
tact bounce with a typical output given in Figure 10.35b. The code without a trace
buffer either showed expected values for count as seen in Figure 10.35a, or skipped
values because the print statement in the while{} loop could not keep up with the
count variable update. Clearly, a trace buffer is required in this case to observe the
actual changes made to the count variable.

SUMMARY

Interrupts are crucial for efficient input/output operations. Interrupt-driven IO
means that an IO event generates an interrupt, suspending normal program 
execution while an interrupt service routine performs the requested IO operation.
This is more efficient than polled IO, as buffers can be used to store incoming or
outgoing data, and less CPU cycles are wasted in checking for data availability or IO
operation termination. The PIC18 interrupt system provides many different 
interrupt sources, from external pin events to internal events generated by hard-
ware subsystems. Some interrupts can wake the processor from sleep mode, which
allows the processor to conserve power while waiting for IO activity. Complex 

Bounce!!

(a) No trace buffer (b) With trace buffer

}Output looks normal

FIGURE 10.35 Console output comparison for Figure 10.27 code.
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interrupt-driven IO sequences may require a finite state machine approach, in
which the ISR uses a state variable to traverse different sets of actions that span mul-
tiple interrupt events. Timers have many uses, one of which is to efficiently de-
bounce mechanical inputs.

REVIEW PROBLEMS

1. The return and retfie instructions perform very similar actions, but have
a key difference. What is this difference and why is it needed?

2. Modify the ISR code of Figure 10.10 to turn on an LED connected to RB2
when overrun of the software FIFO buffer is detected. 

3. In the logic diagram of Figure 10.2, what is the function of gate g1?
4. In the logic diagram of Figure 10.2, what is the function of gate g2?
5. In the logic diagram of Figure 10.2, what is the function of gate g3?
6. In the logic diagram of Figure 10.2, what is the function of gate g4? (Hint:

When IPEN = 0, you will also need to consider the function of gate g1.)
7. Interrupt latency is the elapsed time between an interrupt occurrence, and

execution of the ISR’s first instruction. Propose a method for measuring
this value using an oscilloscope and a program of your design.

8. Write C code that implements the state chart of Figure 10.36. Use an ap-
proach similar to that used in Figure 10.15.

 Vdd

 RB0

Input switch to
generate falling 
edge on RB0

 PIC 470 Ω

 RB1

 RB2

 Vdd

 Switch for
providing 
RB2 input

 RB0

Start LED
blinking
(1 Hz rate)

 RB2?
 0  1

 RB2?
 0

 RB2?

Freeze LED
on

 RB0

 0
 1

 1

 RB0

Freeze LED
off

Start LED
blinking
(2 Hz rate)

Note active edge
change

 10 kΩ

FIGURE 10.36 State chart for sample application.



9. Assume an application heavily relies on software delay loops like DelayMS(),
and requires that they be accurate. If the code also requires the use of in-
terrupts, what can happen to the accuracy of the software delay loops?
What can be done to preserve the accuracy? What would the side effect of
this be?

The following questions assume that the same pushbutton input switch is con-
nected to both RB2/INT2 and RB1/INT1; these inputs are brought low when the
pushbutton is pressed. The code in Listing 10.2 is the base application for these
questions. Each question is independent of the other questions; the requested code
changes are not cumulative.

LISTING 10.2 INT0/INT1 interrupt exercise.

void interrupt high_isr(void){

if (INT2IF) {

INT2IF = 0;   // STATEMENT A

}

if (INT1IF) {

INT1IF = 0;  // STATEMENT B

}

} // end high_isr()

void interrupt low_priority low_isr(void)

{

if (INT2IF) {

INT2IF = 0;  // STATEMENT C

}

if (INT1IF) {

INT1IF = 0;  // STATEMENT D

}

} // end low_isr()

main(void){

// set RB1/RB2 for input, falling edge interrupt

TRISB = 0x06;

INTEDG2 = 0; INTEDG1 = 0;

IPEN = 1;  // priorities enabled

// enable INT2 interrupt, low priority

INT2IP = 0;  INT2IF = 0;  INT2IE = 1;

// enable INT1 interrupt, high priority

INT1IP = 1;  INT1IF = 0;  INT1IE = 1;

PEIE = 1;  GIE = 1;

while(1); // do nothing

}
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10. For Listing 10.2, give the order in which the statements A, B, C, D are 
executed, if they are executed at all, when the pushbutton is pressed and 
released one time. Be careful—priorities are enabled by the statement 
IPEN = 1.

11. Assume the statement IPEN = 1 is changed to IPEN = 0 in Listing 10.2. Give
the order in which the statements A, B, C, D are executed, if they are exe-
cuted at all, when the pushbutton is pressed and released one time.

12. Assume the statement INTEDG2 = 0 is changed to INTEDG2 = 1 in Listing
10.2. Give the order in which the statements A, B, C, D are executed, if they
are executed at all, when the pushbutton is pressed and released one time.

13. Assume the statement INTEDG1 = 0 is changed to INTEDG1 = 1 in Listing
10.2. Give the order in which the statements A, B, C, D are executed, if they
are executed at all, when the pushbutton is pressed and released one time.

14. Assume the statement INT2IP = 0 is changed to INT2IP = 1 in Listing 10.2.
Give the order in which the statements A, B, C, D are executed, if they are
executed at all, when the pushbutton is pressed and released one time.

15. Assume the statement INT1IP = 1 is changed to INT1IP = 0 in Listing 10.2.
Give the order in which the statements A, B, C, D are executed, if they are
executed at all, when the pushbutton is pressed and released one time.

16. Assume the statement INT1IE = 1 is changed to INT1IE = 0 in Listing 10.2.
Give the order in which the statements A, B, C, D are executed, if they are
executed at all, when the pushbutton is pressed and released one time.

17. Assume the statement INT2IE = 1 is changed to INT2IE = 0 in Listing 10.2.
Give the order in which the statements A, B, C, D are executed, if they are
executed at all, when the pushbutton is pressed and released one time.

18. Assume the statement PEIE = 1 is changed to PEIE = 0 in Listing 10.2. Give
the order in which the statements A, B, C, D are executed, if they are exe-
cuted at all, when the pushbutton is pressed and released one time.

19. Assume the statement GIE = 1 is changed to GIE = 0 in Listing 10.2. Give
the order in which the statements A, B, C, D are executed, if they are exe-
cuted at all, when the pushbutton is pressed and released one time.

20. Assume the code changes of problems 18 and 15 are both made. Give the
order in which the statements A, B, C, D are executed, if they are executed
at all, when the pushbutton is pressed and released one time.

Answer the following questions:

21. Give the PR2, POST, and PRE values for a Timer2 interrupt that generates
an interrupt at a 2 kHz rate assuming FOSC = 10 MHz. For a PRE value
of your choice, use the POST value that gives the largest possible PR2 value.
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22. Give the PR2, POST, and PRE values for a Timer2 interrupt that generates
an interrupt at a 3.5 kHz rate assuming FOSC = 8 MHz. Use the POST
value that gives the largest possible PR2 value.

23. Assume a Timer2 interrupt is using POST = 5, PRE = 4, and PR2 = 63.
How can these values be changed to generate an interrupt with a period
that is 10 times longer?

24. Assume a Timer2 interrupt is using POST = 5, PRE = 4, and PR2 = 40.
If these values are changed to POST = 10, PRE = 16, and PR2 = 120
what is the relationship between the original interrupt period and the new
interrupt period?

25. Assuming FOSC = 25 MHz, what is the longest interrupt interval that
can be generated using Timer2?

26. Modify the keypad code to add an input software FIFO that has room for
eight key values.

27. Modify the update_state() function of the rotary encoder code of Figure
10.26 such the count value is limited between min and max variable values. 

28. Assume a low-true pushbutton input on RB0, and four high-true LEDs
connected to pins RB4 through RB7. Write C code that configures PORTB
for this operation, with the LEDs initially off. Then enter a loop, where
each press and release of the switch turns the LEDs on in sequence, with the
LED previously on being turned off (i.e., 1st press/release, RB4 is 1/RB7 is
0, 2nd press/release RB5 is 1/RB4 is 0, 3rd press/release RB6 is 1/RB5 is 0, 4th

press/release RB7 is 1/RB6 is 0, repeat). Use an interrupt-driven approach
for reading the pushbutton and use the debouncing approach of Figure
10.23 and Figure 10.24.
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Synchronous Serial IO11

T
his chapter discusses synchronous serial IO as implemented on the PIC18. The
Serial Peripheral Interface (SPI) and I2C (Inter IC) bus protocols are covered,
with sample interfaces to a digital potentiometer and serial EEPROMs.

11.1 LEARNING OBJECTIVES

After reading this chapter, you will be able to:

Compare and contrast synchronous serial IO on the PIC18 using the SPI and
I2C protocols. 
Discuss the uses of digital potentiometers and serial EEPROMs in PIC18
applications.

In This Chapter

The PIC18 and Synchronous Serial IO
USART Synchronous Mode
The Serial Peripheral Interface (SPI)
SPI Examples: A Digital Potentiometer and a Serial EEPROM
The I2C Bus
I2C on the PIC18Fxx2
The 24LC515 Serial EEPROM
Double Buffering for Interrupt-Driven Writes 



Interface a PIC18 to a serial EEPROM using the SPI protocol.
Interface a PIC18 to a digital potentiometer using the SPI protocol.
Interface a PIC18 to a serial EEPROM using the I2C protocol.
Use interrupt-driven double buffering to implement continuous data stream
applications.

11.2 THE PIC18 AND SYNCHRONOUS SERIAL IO

In Chapter 9, “Asynchronous Serial IO,” we discussed three methods for synchro-
nizing a receiver to a serial data stream. The simplest method sends the clock as a
separate signal, which is the mechanism used by the subsystems on the PIC18 that
support synchronous serial IO. PIC18 synchronous serial IO options are summa-
rized in Table 11.1. The USART subsystem was previously discussed in Chapter 9
for asynchronous IO; when used in synchronous mode the TX and RX pins are
used for clock (CK) and data pins (DT), respectively. 

The Master Synchronous Serial Port (MSSP) subsystem supports two industry-
standard serial protocols, namely the Serial Peripheral Interface (SPI) and Inter IC
(I2C) bus. All three mechanisms support both a master mode and a slave mode. In
master mode, the PIC18 supplies the clock for all transactions, while in slave mode
the external peripheral supplies the clock. Slave mode is useful for waking the
processor from sleep mode via incoming serial data, but requires an intelligent pe-
ripheral capable of initiating data transfers. In this chapter, all synchronous serial
IO examples use master mode; in other words, the PIC18 initiates all data transfers
whether it be transmit or receive.
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Subsystem Protocol Classification Pins (18F242)

USART n/a Half-duplex RC6/TX/CK (clock), RC7/RX/DT (data)

MSSP SPI Duplex RC3/SCK/SCL (clock), RC4/SDI/SDA
(data in), RC5/SDO (data out)

MSSP I2C Half-duplex RC3/SCK/SCL (clock), RC4/SDI/SDA
(data)

TABLE 11.1 PIC18 Synchronous Serial IO Summary



11.3 USART SYNCHRONOUS MODE

The synchronous mode of the USART subsystem is the simplest of the three syn-
chronous serial protocols available on the PIC18. Figure 11.1 shows a timing dia-
gram of USART synchronous transmit, which from a coding perspective is done in
the same way as asynchronous transmit. If the TXIF bit is clear, TXREG can accept
new data and a write to TXREG triggers synchronous transmit if TXEN (transmit
enable) is set. Data is shifted out LSb first and is valid on the falling clock edge.
There is no hardware method for changing the bit ordering to MSb first; the bit re-
versal would have to be done in software before the value is written to TXREG.

The timing for synchronous reception, single byte receive is seen in Figure 11.2.
Because this is master mode, reception is initiated by writing a “1” to the SREN
(Single Receive Enable) bit. This causes eight clock pulses (or nine, if RX9 = 1) to
be generated, with data clocked in on each falling edge. It is assumed that some ex-
ternal peripheral is actively driving the DT pin with new data on each clock pulse.
The RCIF bit is set once all bits have been received. Continuous clock pulses are
sent if the CREN (Continuous Receive Enable) bit is set; clearing CREN halts con-
tinuous reception. Observe that the asynchronous reception used earlier automat-
ically inputs any received data on the RX pin, which is significantly different from
this mode in which the PIC has to “ask” the peripheral to provide data by sending
clock pulses to the peripheral.

Equation 11.1 gives the baud rate calculation for synchronous mode. The
BRGH bit in asynchronous mode that selected low or high speed mode has no ef-
fect in this case. As with asynchronous transmission, the SPBRG register value in
Equation 11.1 sets the baud rate. Because this is synchronous transmission where
the clock is sent with the data, there are no “pre-defined” baud rates with synchro-
nous peripherals as there are with asynchronous transfer. Instead, synchronous 
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Data sent LSb first, valid on falling clock edge

 B0  B1  B2  B3  B4  B5  B6  B7DT

CK

Transmit triggered by write to TXREG if TXEN = 1, or by setting TXEN = 1
if write to TXREG has already been done.  TXIF bit is 1 if TXREG can accept new data.

PIC Peripheral (clock)

PIC Peripheral (data)

FIGURE 11.1 USART synchronous transmit.



peripherals accept a wide range of input clock frequencies, with typically only a
maximum value specified in the data sheet.

(11.1)

Table 11.2 gives configuration bit settings for synchronous serial transmission.
Even though the RC7/RX/DT pin is bidirectional (outgoing on data transmission,
incoming on data reception), the TRISC[7] bit setting should not be changed dur-
ing transmission because an internal multiplexer is used to select the USART TSR
register as the data source of the output pin instead of the port data latch.
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Data sent LSb first, valid on falling clock edge

 B0  B1  B2  B3  B4  B5  B6  B7DT

CK

SREN bit

RCIF bit

Manually set by code
to initiate reception

Automatically cleared
by hardware after reception complete

Set when data available in RCREG

PIC Peripheral (data)

PIC Peripheral (clock)

FIGURE 11.2 USART synchronous receive.

BR = 
FOSC

(4 * (SPBRG 1))+

Name SFR(bit) Comment

SPBRG n/a This register contains the baud rate divisor.

CSRC TXSTA[7] If “1”, synchronous master mode (selects BRG as clock 
source); else “0” for synchronous slave mode. This bit is 
ignored in asynchronous mode.

TX9 TXSTA[6] If “1”, 9-bit transmission; else 8-bit transmission.

TXEN TXSTA[5] If “1”, transmit is enabled; else is disabled.

SYNC TXSTA[4] “1” for UART synchronous mode.

RX9 RCSTA[6] If “1”, 9-bit reception; else 8-bit reception.

SREN RCSTA[5] Set to “1” to enable single synchronous receive.

CREN RCSTA[4] “1” to enable continuous synchronous receive.

SPEN RCSTA[7] Must be “1” to configure CK/DT as serial port.

TABLE 11.2 Control Registers/Bits for USART Synchronous Configuration



11.4 THE SERIAL PERIPHERAL INTERFACE (SPI)

The Serial Peripheral Interface, originally developed by Motorola, is a three-wire syn-
chronous serial link that has developed into a de facto standard due to its adoption by
multiple semiconductor vendors. Figure 11.3 shows an SPI connection between a PIC
and a peripheral device. An SPI port achieves full-duplex communication by shifting
in data via the serial data input (SDI) pin while shifting out data through the serial
data output (SDO) pin. In master mode, the PIC initiates all transactions by supply-
ing the clock via the SCK pin. Observe that unlike the USART synchronous trans-
mission, data is sent MSb first. Data is written to the SSPBUF register to initiate either
transmit or receive. For receive (PIC from peripheral) operation, dummy data is
written to SSPBUF if the peripheral device does not care about incoming data on its
SDI pin. For transmit (PIC to peripheral) operation, the PIC can ignore the new data
shifted into the SSPBUF register if no valid data is expected. The SSPIF (Master Syn-
chronous Serial Port Interrupt Flag, PIR1[3]) is automatically set when a transaction
is complete; it must be manually reset before the next transaction is initiated. 
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Data sent MSb first; received data is clocked in as transmitted data is clocked out

 O7  O6  O5  O4  O3  O2  O1  O0SDO

SCK

SMP=1
SDI

CKP=0

Serial input Buffer
     (SSPBUF)

Shift Register
  (SSPSR)

Serial input Buffer
     (SSPBUF)

Shift Register
  (SSPSR)

SCK

SDI

SDO

SCK

SDO

MSb LSb MSb LSb

SDI

PIC (Master) Peripheral (Slave)

CKE=1

SSPIF bit
Manually cleared by code 
before transaction

Set by hardware after 
transaction is complete

 I7  I6  I5  I4  I3  I2  I1  I0

 Figure redrawn by author from PIC18Fxx2 datasheet (DS39564B),  Microchip Technology Inc. 

FIGURE 11.3 Serial peripheral interface.1

TRISC6 TRISC[6] Must be “0” so that RC6/TX/CK pin is an output.

TRISC7 TRISC[7] Must be “1” so that RC7/RX/DT pin is an input.

1 Figure 11.3 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.
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Configuration bits CKE (clock edge select, SSPSTAT[6]), CKP (clock polarity
select, SSPCON1[4]), and SMP (input sample select, SSPSTAT[7]) provide con-
siderable flexibility for data transmit and receive. The CKE and CKP bits are used
for transmit; CKE selects the active clock edge for SDO valid data while CKP selects
the clock polarity, either idle high or idle low. Figure 11.4 shows the four cases for
the CKE and CKP bit settings. Observe that for CKP = 0 (clock idle low), CKE =
0 has SDO stable on the falling clock edge, while CKE = 1 provides valid SD0 data
on the rising clock edge. For CKP = 1 (clock idle high) this is reversed, with CKE
= 0 providing stable SD0 data on the rising clock edge and CKE = 1 makes SDO
valid on the falling clock edge. The SMP bit determines where the SDI input is sam-
pled during receive, either in the middle of the SCK period (SMP = 0) or at the
end of the SCK period (SMP = 1) as shown in Figure 11.4. The required settings
for the CKE, CKP, and SMP bits depend upon the target peripheral.

The SCK frequency is controlled by the SSPM (Synchronous Serial Port Mode
select, SSPCON1[3:0]) bits. The four choices for master mode are “0011” (Timer2
output divided by 2), “0010” (FOSC/64), “0001” (FOSC/16), and “0000”

 b7  b6  b5  b4  b3  b2  b1  b0SDO (CKE = 0)

SCK
(CKP = 0, CKE = 0)

SCK
(CKP = 1, CKE = 0)

SCK
(CKP = 0, CKE = 1)

SCK
(CKP = 1, CKE = 1)

 b7  b6  b5  b4  b3  b2  b1  b0SDO (CKE = 1)

Input Sample
 (SMP = 0)

 b7  b6  b5  b4  b3  b2  b1  b0

 b7  b6  b5  b4  b3  b2  b1  b0

SDI (SMP = 0)

Input Sample
 (SMP = 1)

SDI (SMP = 1)

Write to SSPBUF
 Figure redrawn by author from PIC18Fxx2 datasheet (DS39564B),  Microchip Technology Inc. 

SSPIF

Next Q4 cycle
after Q2 ?

SSPSR to SSPBUF

FIGURE 11.4 CKE/CKP/SMP cases for SPI transmission.2

2 Figure 11.4 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.



(FOSC/4). Table 11.3 summarizes the configuration bits used for SPI mode trans-
fers. Observe that SCK, SDI, and SDO are shared with the PORTC pins and that
TRISC must be used to configure these pins as inputs or outputs as shown in Table 11.3.
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Name SFR(bit) Comment

SSPEN SSPCON1[5] Must be “1” to enable SCK, SDO, SDI pins

SSPM[3:] SSPCON1[3:0] “0011”, SPI Master Mode, SCK= TMR2/2

“0010”, SPI Master Mode, SCK= FOSC/64

“0001”, SPI Master Mode, SCK = FOSC/16

“0000”, SPI Master Mode, SCK = FOSC/4

CKE SSPSTAT[6] For CKP = 0: 

“1”: SDO valid on rising SCK edge

“0”: SDO valid on falling SCK edge

For CKP = 1: 

“1”: SDO valid on falling SCK edge

“0”: SDO valid on rising SCK edge

CKP SSPCON1[4] “1”: SCK idle high, “0”: SCK idle low

SMP SSPSTAT[7] “1”: sample SDI at end of SCK in master mode

“0”: sample SDI in middle of SCK in master mode

(must be a “0” in slave mode)

SSPIF PIR1[3] Set to “1” after transmission complete

TRISC3 TRISC[3] Must be “0” so that RC3/SCK/SCL pin is an output

TRISC4 TRISC[4] Must be “1” so that RC4/SDI/SDA pin is an input

TRISC5 TRISC[5] Must be “0” so that RC5/SDO pin is an output

TABLE 11.3 Control Registers/Bits for SPI Master Mode Configuration



Sample Question: What are the required settings for CKP, CKE, and SMP for the SPI
waveform specification shown in Figure 11.5?

Answer: The clock is idle high, so CKP = 1. Output data is stable on the ris-
ing clock edge, so CKE = 0 by Figure 11.4. Data is sampled in the middle of
SCK, so SMP = 0. 

11.5 SPI EXAMPLES: A DIGITAL POTENTIOMETER AND
A SERIAL EEPROM

Many peripheral devices such as analog-to-digital converters, digital-to-analog
converters, digital potentiometers, and serial EEPROMs are available with SPI-
compatible interfaces. As discussed previously, the advantage of a serial interface is
low pin count at the cost of reduced IO bandwidth.

The MCP41xxx Digital Potentiometer

Figure 11.6 shows an application of a MCP41xxx digital potentiometer [12] as a
contrast control for the LCD module discussed in Chapter 8, “The PIC18Fxx2:
System Startup and Parallel Port IO.” A potentiometer is a device that provides a
variable resistance. An analog potentiometer typically has three terminals; between
two of the terminals the potentiometer’s full resistance is available (reference ter-
minals PA0, PB0 in Figure 11.6). The third terminal is called the wiper (terminal
PW0 in Figure 11.6), and this terminal provides a variable resistance when mea-
sured between the wiper and either one of the reference terminals. When the two
reference terminals are connected to Vdd and ground, changing the wiper setting
varies the voltage on the wiper terminal between Vdd and ground. An analog po-
tentiometer’s wiper setting is changed via some mechanical interface; for example,
turning a shaft. A digital potentiometer’s wiper setting is changed using a parallel
or serial interface, with serial interfaces being the most common. 
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 I7SDI

SCK

 O7  O6SDO

~~

What are the needed CKE, CKP, and SPM 
settings for this transfer? 

 I6
~~

~~
~~

FIGURE 11.5 A sample SPI waveform specification.



The MCP41xxx digital potentiometer comes in 10 K (MCP41010), 50 K
(MCP41050), and 100 K (MCP41100) configurations and uses an SPI port for set-
ting the 8-bit wiper register for the potentiometer. In the configuration shown in
Figure 11.6, a wiper value of 255 sets the PW0 output voltage to approximately
255/256 * Vdd, while a value of 0 sets the PW0 output voltage to ground. The
wiper register is set to 0x80 on power-up. Higher potentiometer values reduce the
static current that is drawn by the potentiometer when it is active. For example, a
50 K potentiometer with Vdd = 5 V draws 5 V/50 K = 100 μA static current
through the potentiometer resistance, while a 100 K potentiometer reduces this
current by 50% to 50 μA.

Figure 11.7 shows the command protocol for the MCP41xxx. Each transaction
consists of 2 bytes, a command byte and a data byte. The CS# (Chip Select) input
must be brought low to enable the device before any data is sent and brought high
after transmission is finished in order to execute the command. The wiper register
is set by the command byte 0x11 followed by the wiper register value. The shut-
down command opens (disconnects) the potentiometer by opening the PA0 ter-
minal and shorting the PW0 and PB terminals. This reduces total static current
draw of the MCP41xxx to less than 1 μA. The data byte for the shutdown com-
mand is ignored but it still must be sent for the command to be recognized. If
MCP41xxx shutdown mode were to be used with the LCD application of Figure
11.6, you would want to reverse the PA0 and PB0 connections so that VL of the
LCD is shorted to Vdd during shutdown, blanking the display. This would mean
that a wiper code of 255 sets the PW0 voltage to near ground, while a code of 0 sets
the PW0 voltage to Vdd.
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PIC

SCK

SDO

SCK

SI

MCP41xxx

CS#RB4

Vss

Vdd PA0

PB0

PW0

PW0 voltage varies
between 0 and Vdd, used
for contrast control to LCD

Vdd
LCD

VL

Vss

Vdd

FIGURE 11.6 PIC to MCP41xxx digital potentiometer interface.



Figure 11.8 gives code for testing the PIC to MCP41xxx interface. The
while(1){} loop of main() prompts the user for an 8-bit value and sends this as the
wiper register value to the MCP41xxx via the spi_setpotmtr(unsigned char c){}
function. Within the spi_setpotmtr() function, the chip select of the MCP41xxx is
brought low by the command bitclr(PORTB, POTCS) statement, where POTCS is
defined as 4. This is equivalent to writing RB4 = 0, but the bitclr macro is used so
that changing to a different PORTB pin for chip select only requires modifying the
#define POTCS 4 statement. After the chip select is asserted, the command byte
(0x11) is written followed by the data byte passed to the function in the c parameter.
Observe that after a byte is written to SSPBUF, the while(!SSPIF) loop waits for the
SSPIF to become nonzero, indicating that the transmission is finished. The 
statement SSPIF = 0 is then used to manually reset the SSPIF bit before the next
transmission. The MCP41xxx chip select is negated by the bitset(PORTB,POTCS)
statement before exiting spi_setpotmtr(). The SPI initialization code in main() uses
a positive clock polarity (CKP = 0) and data transmitted on the rising edge (CKE
= 1), as that matches the SPI specifications in the MCP41xxx datasheet. The SCK
frequency of FOSC/16 gives an SCK of approximately 1.8 MHz for the 29.4912
MHz FOSC of the PIC18F242 reference board. This SCK frequency is safely below
the maximum 10 MHz SCK frequency of the MCP41050 device used for testing.
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1

Potentiometer data registers 
loaded on rising edge

Must be low for
device enable

2 3 4 5 6 7 8 9 2 10 11 12 13 14 15

X X C1 C0 X X X P0 D7 D6 D5 D4 D3 D2 D1 D0

CS#

SCK

SI

Command Byte Data Byte
X : don’t care bits
C1, C0: command bits, “01”  set wiper register to data byte, “10” shutdown
P0: must be “1” to select potentiometer for command
Sample commands:  0x11 - write wiper register,  0x21 - shutdown potentiometer  

MSb LSb MSb LSb

Input data latched
on rising edge

FIGURE 11.7 MCP41xxx command protocol.



The 25LC640 Serial EEPROM

Figure 11.9 shows a PIC18 to 25LC640 serial EEPROM [13] interface. The 25LC640
is a 64 Kb serial EEPROM with an internal 8K x 8 organization and uses an SPI
port for communication. The HOLD# input allows a data transfer to be interrupted
mid-stream and the WP# input disables write operations to the device. These ca-
pabilities are not needed in this example, so these pins are tied high to disable them.
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#include        <pic18.h>
#include "config.h"
#include "serial.c"
#include "serio.c"

//RB4 is select for potentiometer
#define POTCS 4

spi_setpotmtr(unsigned char c){
  bitclr(PORTB, POTCS);  // select potmtr
  SSPBUF = 0x11; // write command
  while(!SSPIF); // wait until transmited
  SSPIF = 0;     // reset
  SSPBUF = c;    // write data
  while(!SSPIF); // wait until transmited
  SSPIF = 0;     // reset
  bitset(PORTB, POTCS);  // deselect potmtr
}
main(void){
  unsigned char pv;

  // set select line for output
  bitclr(TRISB,POTCS);
  bitset(PORTB, POTCS);  // deselect pot

  serial_init(95,1); // 19200 in HSPLL mode, crystal = 7.3728 MHz

  // configure SPI port for potentiometer
  CKE = 1; // data transmitted rising edge of SCK
  CKP = 0; // clk idle is low
  bitclr(TRISC,3);  //SCK, output
  bitclr(TRISC,5);  // SDO, output
  bitset(TRISC,4);  // SDI pin is input, unused
  // SPI Master Mode FOSC/16
  SSPM3 = 0;  SSPM2 = 0; SSPM1 = 0;  SSPM0 = 1;
  SSPEN = 0; // reset Sync Serial port
  SSPEN = 1; // enable Sync Serial port
  SSPIF = 0;  // clear SPIF bit

  pcrlf();  printf("Potentiometer test started");  pcrlf();
  while(1) {
    printf("Input value (0-255): ");
    scanf("%d", &pv);
    pcrlf();
    printf("Sending %d to pot.",pv);
    pcrlf();
    spi_setpotmtr(pv);
  }
}

Include files for configuration bits and
asynchronous serial port IO

}

}

Assert Chip Select

Function for setting potentiometer wiper register

Write command byte, wait for 
transmit to end, then reset SSPIF

} Write data byte, wait for 
transmit to end, then reset SSPIF

Negate Chip Select

}Configure RB4 as an output, ensure
that it is high, deselecting MCP41xxx

}
Configure SPI port.
Must use CKE=1, CKP=0
as that is compatible with
datasheet specs for
MCP41xxx.
Use FOSC/16,  sets SCK
as approx. 1.8 Mhz for 
29.49 MHz FOSC

} Prompt user for 8-bit input value,
send to potentiometer and
use voltmeter to check 
potentiometer output value.

FIGURE 11.8 Test code for PIC to MCP41xxx interface.
ON THE CD



A serial EEPROM is useful as nonvolatile data storage when the 256 bytes of on-
chip data EEPROM available in the PIC18 is not sufficient. The MCP41xxx from
the previous example is included in Figure 11.9 to illustrate how multiple SPI pe-
ripherals coexist in the same system. Observe that the PIC18 uses RB7 as the EEP-
ROM chip select, while RB4 is used as the potentiometer chip select. It is important
that only one SPI peripheral be enabled at a time via its chip select to avoid confu-
sion over which peripheral is being accessed. Without using external logic, each ad-
ditional SPI peripheral requires a unique port line for chip select control.

Figure 11.10 gives the read operation details for the 25LC640. The first byte
sent is the command byte, which has a value of 0x03. 
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PIC

SCK

SDO

SCK

SI

      25LC640
64K x 8 EEPROM

SO

RB7

Vss

Vdd
HOLD# and WP# (write
protect) disabled by tieing
them to Vdd

Vdd

SDI

CS#

HOLD#

WP#

SCK

SI

Vss

VddCS#

PB0

PA0

PW0

?

?

?

MCP41xxx Potentiometer
RB4

Each SPI peripheral requires
a unique port line for CS#

FIGURE 11.9 PIC to 25LC640 serial EEPROM interface.
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CS#

SCK

SI
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Cmd

don’t
care

~~

AddrHi AddrLo

~~

8 Clks

~~

8 Clks

~~

8 Clks

xxxx????

16-bit address

????

Rd DataSO

SI data transmitted on
rising edge, so use CKE=1

SCK idle low, so use
CKP = 0

SO data transmitted after
falling edge, so use SMP=1

Can be repeated to sequentialy
read memory contents; internal 
address counter increments on 
each operation.

FIGURE 11.10 25LC640 read operation.



The next 2 bytes are the most significant byte and least significant byte of the
16-bit address. Because the 25LC640 has only 8K locations (213), the upper 3 bits of
the address MSB are ignored. This address value is loaded into an internal address
counter within the 25LC640. The next SPI operation returns the contents of this
address via the SO data line (the input data on the SI line is ignored by the
25LC640). This also increments the internal address counter. At this point, the op-
eration can be terminated by negating CS# or another SPI operation will return the
byte at the successive memory location. The entire memory contents of the
25LC640 can be sequentially read in this manner without sending another address
value. The internal address counter rolls over to 0x0000 once the value 0x1FFF (213

– 1, or 8191) is reached. As with all SPI transmissions, data in each byte is trans-
mitted MSb first. The 25LC640 inputs data on the rising edge of SCK with output
data produced after the SCK falling edge. PIC18 configuration bits of CKP = 0
(SCK idle low), CKE = 1 (output data stable on rising edge), and SMP = 1 (input
data sampled at end of the SCK period) satisfy the SPI communication require-
ments of the 25LC640.

Figure 11.11 shows the write operation sequence for the 25LC640, which con-
sists of a write command byte (0x2), the 16-bit address, and up to 32 data bytes. The
write operation is triggered after CS# is negated and has a worst-case completion
time of 5 ms. Once the bytes have been received by the serial EEPROM, it takes the
same amount of time to write 1 byte as 32 bytes, so it is more efficient to write as
many bytes at a time as possible. 

The incoming bytes are placed into an internal 32-byte write buffer using the
lower 5 bits of the address, while the upper 8 bits of the address determine the
memory page that is written. The starting address of a 32-byte page has its last 5 bits
as all zeros, while the ending address has all ones for the last 5 bits. If the write com-
mand address does not begin on a 32-byte page boundary, multiple bytes sent in
the write command may cause page wrapping to occur if the internal address
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FIGURE 11.11 25LC640 write operation.
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counter increments past a page boundary as shown in Figure 11.12b. In most ap-
plications, either a single byte is written and thus page wrapping cannot occur, or
the starting address is forced to align to a page boundary and a complete page of 32
bytes is written.

An internal write enable latch must be set before any write command is issued.
Figure 11.13 shows a C function named spi_memwren() that accomplishes this by
writing the command byte 0x06 to the 25LC640. The write enable latch is reset after
a write operation is complete so this function must be called before every write.

The write operation is internally self-timed, which means that the internal pro-
gramming of the target locations continues until the device detects that the write
has successfully completed. The 5 ms write completion time is a worst-case time;
placing a software delay loop after the write operation could satisfy this constraint.

8 Clks

0x06

CS#

SCK

SI
Write Enable Cmd

~~

????????

#define MEMCS 7
#define MEM_WREN  6

// do write enable
spi_memwren(){
  bitclr(PORTB,MEMCS); // Assert CS
  SSPBUF = MEM_WREN;
  while(!SSPIF); // wait until transmited
  SSPIF = 0;     // reset
  bitset(PORTB,MEMCS); // Negate CS
}

RB7 drives CS#

FIGURE 11.13 C code for setting the write enable latch  (see CD-ROM file 
./code/chap11/F_11_16_spimemtst.c).ON THE CD

                                          1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
address : 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F
          h e l l o _ a n d _ h o w d y ! - - - - - - - - - - - - - - - - 

(a) Write the 16 byte string “hello_and_howdy!” beginning at location 0x???0 (page start)

   (b) Write the 16 byte string “hello_and_howdy!” beginning at location 0x??1A 

                                          1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
address : 0 1 2 3 4 5 6 7 8 9 A B C D E F 0 1 2 3 4 5 6 7 8 9 A B C D E F

          a n d _ h o w d y ! - - - - - - - - - - - - - - - - h e l l o _  

page start : last 5 bits
of address = “00000”

page end : last 5 bits
of address = “11111”

‘-’ locations are unchanged

‘-’ locations are unchanged

FIGURE 11.12 Page boundary wrapping during write.



However, this is a waste of processor clock cycles and the write can actually com-
plete much sooner than that. An internal status register provides a bit named WIP
(write in progress, STATUS[0]) that is a “1” while the write operation is underway.
Before starting a write operation, this bit can be polled via the read status command.
Figure 11.14 shows a C function named spi_memrdsr() that reads the 25LC640 
status register by sending the command byte 0x05 followed by a dummy byte that
causes the status register byte to be returned to the PIC via the EEPROM SO output.

Both the spi_memrdsr() and spi_memwren() functions are used by the
spi_memrw() function of Figure 11.15 that reads or writes 32 bytes to the serial EEP-
ROM. For a write operation, the write_flag parameter is nonzero and the 32 bytes
contained in buf are written to the starting location specified by addr. Before be-
ginning a read or write operation, a do-while{} loop polls the EEPROM status reg-
ister via the spi_memrdsr() function and loops while the write-in-progress bit
(status[0]) is one, indicating a previous write is still underway. Once the write-in-
progress bit returns as zero, the loop exits and the spi_memwren() function is called
to set the write enable latch. The 16-bit address is split into high byte and low byte
by the statements addr_hi = addr >> 8 and addr_lo = addr & 0x00FF, respectively.
The write operation begins by asserting the chip select line via bitclr(PORTB,MEMCS).
The write command byte (0x02) is then sent, followed by the high address byte, and
then the low address byte. A for{} loop then sends the 32 bytes stored in the buf pa-
rameter. The bitset(PORTB,MEMCS) statement terminates the write operation by
negating the chip select.
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8 Clks

0x05

CS#

SCK

SI
Read Status
Cmd

~~

 xxxx

~~

8 Clks

????

don’t
care

StatusSO

#define MEMCS 7
#define MEM_RDSR 5 //rd status cmd

// read status register
unsigned char spi_memrdsr(){
  bitclr(PORTB,MEMCS); // Assert CS
  SSPBUF = MEM_RDSR;
  while(!SSPIF); // wait until transmited
  SSPIF = 0;     // reset
  // dummy data for read
  SSPBUF = 0;
  while(!SSPIF); // wait until transmited
  SSPIF = 0;     // reset
  bitset(PORTB,MEMCS); // Negate CS
  return(SSPBUF); // return status
}

FIGURE 11.14 C Code for reading the EEPROM status register (see CD-ROM file 
./code/chap11/F_11_16_spimemtst.c).ON THE CD



For a read operation, the write_flag parameter is zero and 32 bytes are read
from the EEPROM starting at location addr and written to the buf array during the
for{} loop. The read command byte 0x3 precedes the high and low address bytes
that specify the starting address for the read operation. There are no page bound-
aries for read operations and thus the entire EEPROM contents could be returned
in one call to spi_memrw() if there was enough room in buf to store these values. Of
course, there is not enough internal storage on the PIC18 to hold this many bytes,
so a buffer size of 32 bytes was chosen for read to match the write page buffer size.
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no

write_flag?

#define MEMCS 7
#define MEM_WRITE 2
#define MEM_READ 3

//write or read 32 bytes
spi_memrw(char *buf, unsigned int addr, 
       char write_flag){
  unsigned char addr_lo, addr_hi, status;
  char i;

  // ensure last write is finished
  do {
    status = spi_memrdsr();
  }while (bittst(status,0));
  // do write enable if write
  if (write_flag) spi_memwren(); 
  addr_lo = addr & 0x00FF;
  addr_hi = (addr >> 8);
  bitclr(PORTB,MEMCS); // Assert CS
  if (write_flag)  SSPBUF = MEM_WRITE;
   else SSPBUF = MEM_READ;
  while(!SSPIF); // wait until transmited
  SSPIF = 0;     // reset
  SSPBUF = addr_hi;  // send high byte address
  while(!SSPIF); // wait until transmited
  SSPIF = 0;     // reset
  SSPBUF = addr_lo; // send low byte address
  while(!SSPIF); // wait until transmited
  SSPIF = 0;     // reset
  for (i=0;i<32;i++){ // send 32 bytes
    SSPBUF= *buf;  //for read, don’t care data
    while(!SSPIF); // wait until transmited
    SSPIF = 0;     // reset
    if (!write_flag) *buf = SSPBUF;
    buf++;
  }
  bitset(PORTB,MEMCS); // Negate CS
}

read status

write in
progress?

32 bytes?

do write enable

Assert Chip Select

Send Addr Hi

Send Addr Lo

Send Write byte 
(SSBUF = *buf)

write_flag?

Save Read byte
*buf  = SSPBUF

buf++

Negate Chip Select

yes

no

yes

no

yes

Exit

Write-in-progress
bit is status[0]

write_flag?
no

yesSend Read 
Cmd (0x3) Send Write 

Cmd (0x2)

no

yes

FIGURE 11.15 C code for reading/writing 32 bytes from/to the serial 
EEPROM (see CD-ROM file ./code/chap11/F_11_16_spimemtst.c).ON THE CD



Figure 11.16 gives the C code for main() that uses the spi_memrw() function to
test the serial EEPROM. After configuring the SPI port, the user is prompted to
choose either write or read mode. In write mode, a loop prompts the user to enter
32 characters that are then written to the serial EEPROM. On each pass through the
loop, the memaddr variable that specifies the starting location is incremented by 32
so that writes are performed to successive pages. In read mode, a 32-byte page is
read and displayed each time the user enters a character, starting from location 0.
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SPI Port configured
for 25LC640 serial
EEPROM operation.

These are the same settings
as were used for the
MCP41xxx digital
potentiometer

char membuf[32];
int memaddr;
main(void){
  unsigned char mode,i;

  // set RB7 for output
  TRISB = 0x7F;
  bitset(PORTB,MEMCS);
  serial_init(95,1); // 19200 in HSPLL mode, crystal = 7.3728 MHz

  // configure SPI port for serial eeprom
  CKE = 1; // data transmitted rising edge of SCK
  CKP = 0; // clk idle is low
  SMP = 1; // sample data at end of period
  bitclr(TRISC,3);  //SCK, output
  bitclr(TRISC,5);  // SDO, output
  bitset(TRISC,4);  // SDI pin is input
  // SPI Master Mode FOSC/16
  SSPM3 = 0;  SSPM2 = 0; SSPM1 = 0;  SSPM0 = 1;
  SSPEN = 0;
  SSPEN = 1;
  SSPIF = 0;  // clear SPIF bit
  pcrlf();  printf("Mem Test Started");  pcrlf();

  memaddr = 0;
  printf ("Enter 'w' for write mode, anything else reads: ");
  mode = getche();
  pcrlf();
  while(1) {
    if (mode == 'w') {
      printf("Enter 32 chars.");pcrlf();
      for(i = 0;i< 32;i++) {
        membuf[i] = getche();
      }
      pcrlf();printf("Doing Write");pcrlf();
      spi_memrw(membuf,memaddr,1); // do write
      memaddr = memaddr +32;
    } else {
      spi_memrw(membuf,memaddr,0); // do read
      for(i = 0;i< 32;i++) putch(membuf[i]);
      pcrlf();
      printf("Any key continues read...");pcrlf();
      getch();
      memaddr = memaddr +32;
    }
  }
}

}
}

Prompt user to enter 32 bytes,
capture them, then write them
to the serial EEPROM.
Increment memory address
by 32 for next write.

} Read 32 bytes from the 
serial EEPROM, then
display them.
Repeat on each keypress.

FIGURE 11.16 main() for testing PIC18 to serial EEPROM interface.ON THE CD



Figure 11.17 shows console output from testing the code of Figure 11.16. Three
32-byte strings are entered and written to the first three pages of serial EEPROM
memory. Reset is asserted to terminate the write mode and then these strings are re-
trieved from the serial EEPROM and displayed.

The 25LC640 serial EEPROM has additional capabilities that are not covered
here, such as being able to write protect blocks of internal memory; see the
datasheet [13] for details.

Sample Question: How long does it take to transfer the data required for a page write
to the 25LC640 serial EEPROM assuming an FOSC = 40 MHz and a conservative 20
instruction overhead for every byte written over the SPI interface? Choose the highest
SCK frequency possible for the EEPROM that still meets the 25LC640 maximum SCK
specification of 3 MHz@ 5 V, industrial temperature range (do not use Timer2 to
generate the SCK).

Answer: An SCK of FOSC/16 gives 2.5 MHz, which is less than the 3 MHz
maximum for SCK. For FOSC = 40 MHz, each instruction takes 4/40 MHz
= 0.1 μs. A SCK bit time is 1/2.5 MHz = 0.4 μs. The bytes sent are the
byte write command, MSB EEPROM address, LSB EEPROM address, and 32
data bytes for a total of 35 bytes. Total bit times are 35*8 = 280 bit times.
The estimated time for the data transfer is:

35 bytes * 20 instructions * instruction time + 280 bits * SCK bit time
35 * 20 * 0.1 μs + 280 * 0.4 μs = 182 μs.
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 Pressed reset

 } Reading
Memory
Contents
after write

 } Writing
strings
to memory

 1st 32 bytes

 2nd 32 bytes

 3rd 32 bytes

 1st 32 bytes

 2nd 32 bytes

 3rd 32 bytes

FIGURE 11.17 Console output from testing code of 
Figure 11.16.



11.6 THE I2C BUS

The Inter IC (I2C) bus [14] was introduced by Philips Semiconductor in the early
1980s and it has since become a de facto standard serial bus. The term bus in this
context is a formal designation and is different from the previous casual usage of
“bus” to describe groups of parallel wires. In this context, a bus is a communication
channel in which there is one transmitter and multiple receivers. All receivers see
data that is transmitted over the communication channel. Each receiver decodes
transmitted messages and uses an address within the message to determine if it is
the target of the message. The receiver that is the message target then replies back
to the message transmitter over the same communication channel. Figure 11.18
gives two examples of bus communication channels. Figure 11.18a shows how nor-
mal conversation among a group of friends is essentially bus-based communica-
tion, as the transmitter uses the name of the person as the address when sending a
message across the communication channel, which is air. The person who is ad-
dressed by name then responds to the transmitter. Figure 11.18b illustrates how In-
ternet addresses are used on an Ethernet network for computer communication.
An Ethernet network is a bus, as all computers monitor traffic on the network and
only respond to those data packets whose header addresses match their assigned In-
ternet address.
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(a) Transmitter Receivers

Joe

Tom

Bob

Comm
Channel
(Air)

Transmitter Receivers

Joe

Tom

Bob

Comm
Channel
(Air)

Yo, Bob!

Bill

Not for 
me...

Not for 
me...

Wassup, Bill?
Bill

the address
the address
matches, so this receiver responds

192.168.0.1

Comm
Channel
(Ethernet)

192.168.0.5

192.168.0.2

192.168.0.3

192.168.0.1

Comm
Channel
(Ethernet)

192.168.0.5

192.168.0.2

192.168.0.3

192.168.0.3,
0x2AF4,0x43AB!

192.168.0.3 != 
 192.168.0.5

192.168.0.3 != 
 192.168.0.2

192.168.0.3 ==
192.168.0.3,
I will respond.

(b) Transmitter Receivers Transmitter Receivers

the address

the address
matches, so this receiver responds

FIGURE 11.18 Two examples of bus communication.
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Figure 11.19 shows an I2C bus, which consists of a data line (SCL) and a clock
line (SDA) used to implement half-duplex communication. Observe that the de-
vices connected to the I2C bus do not have chip select signals like SPI-based pe-
ripherals. Instead, each device has a 7-bit address whose upper 4 bits (mmmm) are
device specific and encoded within the device. The next 3 bits of the 7-bit address
are typically personalized by external pins that are connected to either Vdd or
ground to provide logic 1 or logic 0, respectively. The address is always sent as the
first byte of an I2C bus transaction, which is initiated by the bus master. The least
significant bit of the address byte indicates the direction of the transfer. A “0” is a
write operation (transfer from master to slave), while a “1” is a read (transfer from
slave to master). Each I2C peripheral device decodes the address byte to determine
if it is the target of the transmission, removing the need for individual chip select
lines. Adding another I2C device to the bus does not require using an additional
port on the PIC, which is a distinct advantage over SPI-based peripherals. Like the
SPI protocol, the PIC can act as either a slave or master on the I2C bus; the exam-
ples in this book always use the PIC as the sole I2C bus master. The pullup resistors
on the SCL/SDA lines are needed because these drivers are open-drain in order to
provide multi-master capability. In a multi-master bus, any device can act as a bus
master. This requires an arbitration mechanism that decides which device controls
the bus in the case of simultaneous attempts to access the bus (see Chapter 15, “Be-
yond the PIC18Fxx2,” for a discussion of I2C bus arbitration). The most recent ver-
sion of the I2C specification has support for a 10-bit address that is transmitted in
the first 2 bytes of a transaction. The I2C peripherals used within this book’s exam-
ples use 7-bit addresses. 

External Connections
personalize address

PIC

SCL

SDA

I2C Peripheral
(address = 0b mmmm A2 A1 A0 R/W#)

SCL

SDA

A2

A0

A1 }
I2C Peripheral

SCL

SDA

A2

A0

A1

I2C Peripheral

SCL

SDA

A2

A0

A1

?

?

?

?

?

?

 10 kΩ

SCL: Clock
SDA: Data
Both SCL, SDA
are bidirectional

Encoded within device
device specific ‘0’ Master to Slave

‘1’ Slave to Master

 10 kΩ

FIGURE 11.19 The I2C bus.



Figure 11.20 shows the details of an I2C bus transfer. The idle condition is when
both SDA and SCL lines are high prior to the beginning of a bus transfer. 

The master always provides the SCL signal and initiates an I2C transaction.
The start condition, a high-to-low transition on SDA while SCL is high, signals the
beginning of an I2C data transfer. The first byte after a start condition is always the
address byte used to select a particular I2C peripheral. Multiple bytes can be sent
within an I2C transaction with each byte sent MSb first. SDA data is stable while
SCL is high and changes while SCL is low. Each byte transmission ends with a 9th bit
time in which the transmitter stops driving the SDA line so that the receiver can ac-
knowledge the byte transmission by pulling the SDA line low. If the receiver does
not drive SDA low, the SDA pullup resistor keeps SDA high and the transmitter
reads a “1” for the acknowledge bit instead of a “0”. A “1” acknowledgment bit is
called a not-acknowledge, or a NAK, while a “0” acknowledgment bit is called an
ACK. Typically, the transmitter will interpret this as an error condition and abort
the transfer. There are multiple reasons why a receiver may not acknowledge a byte
transmission; if this is the address byte, a coding mistake could result in the wrong
address being used, or perhaps the receiver cannot accept new data or has experi-
enced an internal failure. In any case, the acknowledge bit provides feedback to the
transmitter on whether a byte has been received. The acknowledgment bit is
nonoptional for normal transfers; each byte transmission includes an acknowledg-
ment bit. The master provides the acknowledgment bit in the case where a slave
sends a byte to the master for a read operation. After an acknowledgment bit, a
slave can hold the SCL line low, which forces the master into a wait condition until
the slave releases the SCL line. In this way, the slave can provide flow control on a
byte-by-byte basis; this is the only time that the slave may drive the SCL line. The
stop condition, defined as a low-to-high SDA transition while SCL is high, ends an
I2C transaction and frees the bus, allowing it to be driven by another bus master.
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 B7  B5  B4  B2  B1SDA

SCL

 B6  B3  B0

Idle: SDA high, SCL high

Start: SDA high to low, SCL high

Byte transmitted MSb to LSb

Data Stable

Ack: Acknowledgement by 
receiver that byte arrived

SDA driven by Transmitter SDA driven by 
Receiver

Stop: SDA low to high, SCL high

Data allowed to change

1 2 3 4 5 6 7 8 9

FIGURE 11.20 I2C data transfer.
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After the stop condition, both SCL and SDA are undriven and thus pulled high by
the pullup resistors. A repeated start condition is when another start is sent within
a transaction; this ends the current transaction and begins a new transaction, thus
allowing the current bus master to start a new transaction without relinquishing
control of the bus. More details on special transactions such as CBUS transfers in which
acknowledgment bits are not provided are found in the I2C bus specification [14].

11.7  I2C ON THE PIC18FXX2

Table 11.4 gives the control bits associated with the PIC18 I2C Master Mode (SSPM
bits are “1000”), which provides for one bus master (the PIC18) and uses MSSP
hardware for generating bit sequencing. 

TABLE 11.4 Control Registers/Bits for I2C Master Mode Configuration

Name SFR(bit) Comment

SSPEN SSPCON1[5] Must be “1” to enable SCL, SDA pins.

SSPM SSPCON1[3:0] “1000”, I2C Master mode.

WCOL SSPCON1[7] Master Transmit: “0” no collision; “1” indicates a write 
attempted when I2C conditions not valid for transfer, 
must be cleared in software.

SSPOV SSPCON1[6] Master Receive: “0” no overflow; “1” indicates a byte is 
received while the SSPBUF is still holding the previous 
byte (must be cleared in software).

ACKSTAT SSPCON2[6] “1” acknowledge received from slave, “0” no 
acknowledge received from slave.

ACKDT SSPCON2[5] Acknowledge bit sent back by master after receive
from

slave; default is “0”.

ACKEN SSPCON2[4] Set to “1” to begin acknowledge sequence, automatically 
cleared when completed.

RCEN SSPCON2[3] Set to “1” to enable receive in I2C master mode, 
automatically cleared when 8 bits are received.

PEN SSPCON2[2] Set to “1” to initiate STOP condition, automatically 
cleared when completed.

RSEN SSPCON2[1] Set to “1” to initiate a repeated START condition, 
automatically cleared when completed.
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Table 11.5 gives the actions that can be performed in the I2C Master Mode con-
figuration. A complete I2C transaction is built by sequencing through a combination
of the actions in Table 11.5. The actions cannot be queued; in other words, transmit
data cannot be written to the SSPBUF register until the start condition has completed.

Action Description

Perform Start Condition Set SEN bit, wait for it to be reset by hardware 
completion.

Perform Repeated Start Set RSEN bit, wait for it to be reset by hardware
Condition completion.

Perform Stop Condition Set PEN bit, wait for it to be reset by hardware 
completion.

Perform an ACK/NAK Copy acknowledge value (0 or 1) to ACKDT bit, set 
ACKEN and wait it for to be reset by hardware 
completion.

Transmit Data Copy data to SSPBUF; SSPIF bit is set when transmission 
complete and acknowledgment received.

Receive Data Configure the I2C port to receive data by setting the 
RCEN bit; the BF bit is set when data is received.

TABLE 11.5 Available Actions in I2C Master Mode Configuration

SEN SSPCON2[0] Set to “1” to initiate a START condition, automatically 
cleared when completed.

R/W# SSPSTAT[2] “1” when transmit in progress, “0” otherwise.

If this bit OR’ed with SEN, RSEN, PEN, RCEN, ACKEN is 
“0”, the MSSP is idle.

BF SSPSTAT[0] In receive mode, “1” when SSPBUF is full, “0” otherwise. 
In transmit mode, “1” when transmit is in progress (does 
not include ACK receipt), “0” otherwise.

SSPIF PIR1[3] Set to “1” after 8-bit transmission plus acknowledgment 
receipt is complete.

TRISC3 TRISC[3] Must be “1” so that RC3/SCK/CSL pin is an input to allow 
open-drain drive by MSSP module.

TRISC4 TRISC[4] Must be “1” so that RC4/SDI/SDA pin is an input to allow 
open-drain drive by MSSP module. 
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All of the actions of Table 11.5 involve waiting for status bits to be reset, indi-
cating operation completion. The C code functions presented in this chapter that
implement these actions rely on the watchdog timer to escape any infinite wait
loops due to protocol or hardware failure. Furthermore, status information is
tracked via a persistent variable so that when a WDT expiration occurs, the func-
tion that caused the problem is reported. This is defensive programming and pro-
vides a method for debugging I2C interface problems.

Figure 11.21 shows this strategy used in implementing the start condition via
the C function i2c_start(). The #define statements give the possible values for the

#define I2C_IDLE_ERR      1
#define I2C_START_ERR     2
#define I2C_RSTART_ERR    3
#define I2C_STOP_ERR      4
#define I2C_GET_ERR       5
#define I2C_PUT_ERR       6
#define I2C_MISSACK_ERR   7
#define I2C_ACK_ERR       8
#define I2C_NAK_ERR       9
// error variable for acknowledge
persistent char i2c_errstat;

i2c_idle(){ // wait for idle condition
  unsigned char byte1;
  unsigned char byte2;
  asm("clrwdt");
  i2c_errstat = I2C_IDLE_ERR;
  do {
      // byte1 has R/W bit.
      byte1 = SSPSTAT & 0x04;
      byte2 = SSPCON2 & 0x1F;
    }while (byte1 | byte2);
  asm("clrwdt");
  i2c_errstat = 0;
}

i2c_start(){
  i2c_idle();
  i2c_errstat = I2C_START_ERR;
  SEN = 1;   // initiate start
  while (SEN);// wait until start finished
  asm("clrwdt");
  i2c_errstat = 0;
}

void i2c_print_err(){
  pcrlf();  printf("I2C bus error is  ");
  switch (i2c_errstat) {
  case 0: printf("None");break;
  case I2C_IDLE_ERR : printf("Idle");break;
  case I2C_START_ERR : printf("Start");break;
  case I2C_STOP_ERR  : printf("Stop");break;
  case I2C_GET_ERR   : printf("Get");break;
  case I2C_PUT_ERR   : printf("Put");break;
  case I2C_MISSACK_ERR  : printf("Missing Ack");break;
  case I2C_ACK_ERR   : printf("Ack");break;
  case I2C_NAK_ERR   : printf("Nak");break;
  default: printf("Unknown");
  }pcrlf();
}

Status codes for tracking I2C bus
actions}
Variable for tracking I2C function calls

Remember this function for error tracking

}

I2C interface is idle if R/W#,
SEN, RSEN, PEN, RCEN, and ACKEN
bits are all clear.}

Do START condition. If WDT 
expires, track error with i2c_errstat.

}Utility function
for printing
i2c_errstat value
in case of error.

Clear variable used for tracking function calls.

FIGURE 11.21 i2c_idle(), i2c_start(), i2c_print_err() functions
(see CD-ROM file ./code/common/i2cmsu.c).ON THE CD



persistent char i2c_errstat variable used for error tracking. Recall that the per-
sistent modifier protects the variable from being touched by the initialization run-
time C code, so this variable can track actions across processor resets. The
i2c_idle() function waits until the I2C port is idle and then returns. The call to
i2c_idle() by i2c_start() is not strictly necessary in a single master system, but is
included here for completeness purposes; the i2c_idle() calls used in the following
functions can be removed if performance is an issue. Within i2c_start(), the state-
ment i2c_errstat = I2C_START_ERR records the current function being executed for
error tracking purposes. The start condition is initiated by the statement SEN = 1;
the while(SEN){} loop waits for the MSSP hardware to reset this bit indicating start
condition completion. If the watchdog timer expires during this time, the main()
code that detects the timeout can use the utility function i2c_print_err() to print
the i2c_errstat value to help track the source of the timeout.

Figure 11.22 shows the functions i2c_rstart() (repeated start condition),
i2c_stop() (stop condition), and i2c_ack(unsigned char ackbit) (perform ac-
knowledge with value ackbit). These functions use the i2c_errstat variable in the
same manner as the i2c_start() function. The ackbit parameter of i2c_ack() is
written to the ACKDT bit to specify the acknowledge bit value (0 = ACK, 1 =
NAK).

Figure 11.23 shows functions for performing single-byte transfers in I2C mas-
ter mode. The i2c_put(unsigned char byte) function transmits byte over the I2C
port; transmission is triggered by the statement SSPBUF = byte. The
while(!SSPIF){} loop exits when the transmission and acknowledgment from the
slave is complete. The ACKSTAT bit contains the value of the received acknowl-
edgment. The expected value is typically “0” for normal operation; this function
performs a software reset via asm(“reset”) and sets the error status with i2c_err-
stat = I2C_MISSACK_ERR if a “1” (NAK) is received. It is expected that the main()
code will detect this software reset condition and use i2c_print_err() to display an
appropriate error message.

The i2c_put_noerr(unsigned char byte) also transmits byte over the I2C port,
but it returns the value of the ACKSTAT bit instead of performing error checking.
In some cases, the NAK condition is returned intentionally by an I2C slave to indi-
cate a not ready condition; this function is provided for use in those situations. The
master must know a priori when it is valid for a slave device to return a NAK con-
dition. The i2cput_byte() function waits for an idle condition before calling
i2c_put().
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The i2c_get(unsigned char ackbit) function receives a byte from the I2C port
and sends an acknowledgment with value ackbit. The RCEN (receive enable) bit is
used to initiate the receive condition; the RCEN bit is reset and the BF flag (buffer
full) is set when SSPBUF contains new data. The BF bit is cleared upon reading the
SSPBUF register. The i2cget_byte() function waits for an idle condition before
calling i2c_get().

The SSPADD register within the MSSP subsystem sets the bit rate of the I2C
port as given by Equation 11.2.

(11.2)

Listing 11.1 gives the function used in these examples to initialize the I2C port
to Master mode. The bitrate parameter is written to the SSPADD register to set the
SCL clock frequency, and the RC3/SCK/SCL and RC4/SDI/SDA pins are config-
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i2c_rstart(){// repeated start
  i2c_idle();
  i2c_errstat = I2C_RSTART_ERR;
  RSEN = 1;   // initiate start
  // wait until start finished
  while (RSEN);
  asm("clrwdt");
  i2c_errstat = 0;
}

i2c_stop() {
  i2c_idle();
  i2c_errstat = I2C_STOP_ERR;
  PEN=1;     // initiate stop, PEN=1
  //wait until stop finished
  while (PEN);
  asm("clrwdt");
  i2c_errstat = 0;
}

i2c_ack(unsigned char ackbit){
  // send acknowledge
  asm("clrwdt");
  ACKDT = ackbit;
  if (ackbit)   i2c_errstat = I2C_NAK_ERR;
  else i2c_errstat = I2C_ACK_ERR;
  //initiate acknowlege cycle
  ACKEN = 1;
  // wait until acknowledge cycle finished
  while(ACKEN);
  asm("clrwdt");
  i2c_errstat = 0;
}

Performed Repeated Start Condition}
Perform Stop Condition

}
ACK bit value, “0” is an acknowledge,
“1” is a not-acknowledge

}
Initiatiate Acknowledgement,
wait for completion

FIGURE 11.22 i2c_rstart(), i2c_stop(), i2c_ack() functions  (see CD-
ROM file ./code/common/i2cmsu.c).ON THE CD

BR = 
FOSC

(4 * (SSPADD 1))+



ured as inputs. The i2c_init() function completes the list of support functions
used in the examples of this book for performing I2C transfers on the PIC18F242. 
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unsigned char i2c_put(unsigned char byte ) {
  i2c_errstat = I2C_PUT_ERR;
  SSPIF = 0;     //clear interrupt flag
  SSPBUF = byte; // write byte
  while(!SSPIF); // wait for finish an ack
  i2c_errstat = 0;
  asm("clrwdt");
  if (ACKSTAT) {
    //no acknowledge returned, so reset
    i2c_errstat = I2C_MISSACK_ERR;
    asm("reset");
  }
  return(0);
}

unsigned char i2c_put_noerr(unsigned char byte ) {
  i2c_errstat = I2C_PUT_ERR;
  SSPIF = 0;     //clear interrupt flag
  SSPBUF = byte; // write byte
  while(!SSPIF); // wait for finish an ack
  i2c_errstat = 0;
  asm("clrwdt");
  if (ACKSTAT) return(1);
   return(0);
}

unsigned char i2c_putbyte(unsigned char byte) {
  i2c_idle();
  return(i2c_put(byte));
}

unsigned char i2c_get(unsigned char ackbit) {
  unsigned char byte;

  i2c_errstat = I2C_GET_ERR;
  RCEN = 1;  //initiate read event
  while(RCEN); // wait until finished
  asm("clrwdt");
  while (!BF); //also check buffer full
  asm("clrwdt");
  byte = SSPBUF;  // read data
  i2c_errstat = 0;
  i2c_ack(ackbit);
  return(byte);
}

unsigned char i2c_getbyte(unsigned char ackbit) {
  i2c_idle();
  return(i2c_get(ackbit));
}

Inititiate transmit by writing byte to 
SSPBUF register.
SSPIF set when transmit is complete.}

Same as i2c_put() but do not
do software reset on NAK, instead
return the value of the acknowledgement
bit.

} Check for idle condition
before sending byte.

Configure for reception and wait for
byte to be received.

} If returned ACK bit is “1”, set error
variable and do software reset.

}

}
} Read byte from SSPBUF and send

acknowledgement

} Check for idle condition
before initiating receive.

FIGURE 11.23 Functions for performing single-byte I2C transmit/receive
(see CD-ROM file ./code/common/i2cmsu.c).ON THE CD
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LISTING 11.1 C function for initializing I2C Master mode (see CD-ROM file
./code/common/i2cmsu.c).

i2c_init(char bitrate){

// enable I2C Master Mode

SSPM3 = 1; SSPM2 = 0;SSPM1 = 0; SSPM0 = 0;

SSPADD = bitrate;       // set bus clk

SSPEN = 1;

bitset(TRISC,3);

bitset(TRISC,4);        // SDA, SCL pins are inputs

SSPIF = 0;              // clear SPIF bit

i2c_errstat = 0;        // clear error status

}

Figure 11.24(a) shows how the functions i2c_start(), i2c_put(), and
i2c_stop() are used to write 2 bytes of data to an I2C slave device. 

The i2c_start() function call begins the transaction, followed by an
i2c_put(addr) that sends the address of the slave. The bitclr(addr,0) statement be-
fore the i2c_put(addr) ensures that the R/W# bit (LSb of the address) is cleared to
“0”, indicating a write operation (master transfers data to slave). The next two
i2c_put() function calls send two data bytes to the slave. The transaction is ended
by an i2c_stop() function call. Figure 11.24(b) shows how the functions

 ACK sent by slave, 
read by i2c_put()

i2c_start()

(a) Write two bytes to slave

 data1 addr 0S  data2 P

bitclr(addr,0);
i2c_put(addr);

 R/W#=0
(write)

A A A

i2c_put(data1); i2c_put(data2);

 ACK sent by PIC18 
to slave

i2c_start()

(b) Read two bytes from slave

 data1 addr 1S  data2 P

bitset(addr,0);
i2c_put(addr);

 R/W#=1
(read)

A A N

data1 = i2c_get(0); data2 = i2c_get(1);

i2c_stop()

 ACK bit value

Data returned by 
slave

i2c_stop()Data sent by 
PIC18

Send NAK on
last byte

FIGURE 11.24 Using the support functions to implement I2C transfers.



i2c_start(), i2c_put(), i2c_get(), and i2c_stop() are used to read two data bytes
from an I2C slave device. The i2c_start() function call begins the data transfer, fol-
lowed by an i2c_put(addr) that sends the address of the slave. The bitset(addr,0)
statement before the i2c_put(addr) ensures that the R/W# bit (LSb of the address)
is set to “1”, indicating a read operation (slave transfers data to master). The next
two i2c_get() function calls read two data bytes from the slave. The “0” parameter
used in the first i2c_get(0) function call is the acknowledge bit value sent by the
PIC18 to the slave after the byte is read from the slave. This value is “0” (an ACK)
for all bytes read from the slave except for the last byte, in which a “1” (a NAK) is
sent by the master to tell the slave that it should not start another data transfer. The
transaction is ended by an i2c_stop() function call.

Sample Question: Assume an I2C device requires a command byte written to it to tell it
what internal register to return on the next read transaction. Write a sequence of
function calls using the functions discussed in this section to accomplish this action.
Assume the variables dev_addr, cmd, and data are used for the device address,
command byte, and returned data byte, respectively. Assume the device requires an ACK
bit value of “1” to halt the read transaction.

Answer: We need a write transaction followed by a read transaction as shown
in Listing 11.2. 

LISTING 11.2 Sample question solution.

i2c_start();

bitclr(dev_addr,0)        // the LSb must be 0 for a write transaction

i2c_put(dev_addr);        // send the I2C device address

i2c_put(cmd);             // send command byte

i2c_rstart();             // start new transaction

bitset(dev_addr,1)        // the LSb must be 1 for a read transaction

i2c_put(dev_addr);        // send the I2C device address

data = i2c_get(1);        // get data, send ACK of ‘1’ to halt read

i2c_stop();               // stop the transaction

Observe that the LSb of the device address is forced to be a “0” in the write trans-
action, and a “1” in the read transaction. Function calls of i2c_start()/i2c_stop()
could be used to replace the i2c_rstart() function call; in a multiple bus master sit-
uation, this gives other bus masters a chance to control the bus.

Sample Question: Assuming FOSC = 29.4912 MHz, what SSPADD value is required for
an I2C bus rate of 100 kHz?

Answer: Equation 11.2 can be solved for SSPADD as SSPADD =
[FOSC/(4*BR)] – 1. Thus, SSPADD = [29.4912E6/(4*100e3)] – 1 = 72.7 = ~73.
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11.8 THE 24LC515 SERIAL EEPROM

The 24LC515 512K serial EEPROM has an internal organization of 64K x 8 and
uses an I2C port for communication. Figure 11.25 shows a PIC18 to 24LC515 in-
terface using the I2C port. The write protect (WP) pin on the 24LC515 can be used
to disable writes to the device; it can be left open or tied to Vss to enable writes. The
A2 input is an unused input that must be tied high for the device to function cor-
rectly. The A1, A0 inputs are used to personalize the device address by connecting
them to either Vdd or ground. This allows up to four 24LC515 devices to exist on
the same I2C bus. 

Figure 11.26 shows the address byte format for the 24LC515. The upper 4 bits
are fixed at “1010”. The 64K x 8 organization of the 24LC515 means that ad-
dresses are 16 bits with a range 0x0000 to 0xFFFF. However, the internal organiza-
tion of the 64 x 8 memory is split into two 32K memory blocks, each with its own
internal 15-bit address counter. The B (block select) bit of the address byte deter-
mines whether the current operation is to the low memory block (0x0000 through
0x7FFF) or high memory block (0x8000 through 0xFFFF). The least significant bit
of the address byte is the R/W# bit as with all I2C address bytes. 

Figure 11.27 shows the write operation for the 24LC515. The I2C address byte
is followed by the high and low address bytes of the starting location for the write.
The most significant bit of the high address byte is a don’t care as the block select
bit within the I2C address byte determines which memory block is being written;
these 15 address bits are written to the internal address counter for the 32K block
selected by the block select bit of the address byte. The internal page size of the
24LC515 is 64 bytes, so up to 64 bytes can be written in one write operation. Page
wrapping occurs in the same way as discussed in Figure 11.12 for the 25LC640 se-
rial EEPROM, except the starting page boundary is when the lower 6 bits of the ad-
dress are all zeros and the ending page boundary has the lower 6 bits as all ones.
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Connect A1, A0 to either 
Vdd or Vss to personalize
address

PIC

SCL

SDA

SCL

SDA

WP

A0

A1 }

Write protect disabled if low
or left open (internal pulldown)

A2 must be high
for device to function

Vss

Vdd A2

24LC515 Serial EEPROM

Vdd

 10 kΩ  10 kΩ

FIGURE 11.25 PIC18 to 24LC515 I2C interface.



When doing multiple byte writes, the best practice is to write a complete page at
one time and force the starting address to begin on a page address.

The worst-case write completion time is 5 ms. However, the end-of-write con-
dition can be polled by sending the write command and checking the ACK bit sta-
tus as shown in Figure 11.28. If the acknowledgment bit returns as “1” (a NAK), a
write is still in progress. Once the acknowledge bit returns as “0”, the next opera-
tion can be started. It is more efficient to poll for end-of-write than to place a delay
of 5 ms after each write operation.
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Address byte format for 24LC515 serial EEPROM

7

1 0 1 0 B A1 A0 R/W#

6 5 4 3 2 1 0

B : Memory block select, if “0” then operation is to low memory block (0x0000-0x7FFF),
if “1” then operation is to high memory block (0x8000-0xFFFF)

A1, A0: Used to personalized address, up to four LC515 EEPROMs can be on bus.

R/W#:  “1” if read operation, “0” if write operation  

Addressing Examples:

A1 A0 B R/W# Address Operation 
0 0xA0 Write to low block 0 
1 0xA1 Read from low block 
0 0xA8 Write to high block 

0 0 
1 

1 0xA9 Read from high block 
0 0xA2 Write to low block 

0 
1 0xA3 Read from low block 
0 0xAA Write to high block 

0 1 
1 

1 0xAB Read from high block 
0 0xA4 Write to low block 

0 
1 0xA5 Read from low block 
0 0xAC Write to high block 

1 0 
1 

1 0xAD Read from high block 
0 0xA6 Write to low block 

0 
1 0xA7 Read from low block 
0 0xAE Write to high block 

1 1 
1 

1 0xAF Read from high block 

FIGURE 11.26 Address byte format for the 24LC515.

MSb of address high byte is a don’t care

 I2C addr 0S A Addr (hi) A Addr (lo) PA  Wdata A

Memory address
high byte

Memory address
low byte

Write
data

Write Operation

~~

 Wdata A}
1 to 64 bytes

Write
data

FIGURE 11.27 Write operation for the 24LC515.



Figure 11.29 shows read operation sequencing for the 24LC515. A sequential
read (Figure 11.29a) returns the memory contents pointed to by the internal ad-
dress counter of the 24LC515. Each data byte returned by the 24LC515 increments
the internal address counter for the selected block. An acknowledgment bit of “0”
returned by the PIC18 causes the 24LC515 to output another data byte. An ac-
knowledgment bit of “1” returned by the PIC18 causes the 24LC515 to release the
SDA line and to stop sending data. A sequential read can access the contents of one
entire 32K memory block, either high or low, as determined by the block select bit
sent in the I2C address byte at the beginning of the read transaction. When the in-
ternal address counter reaches the end of a 32K block (either 0x7FFF or 0xFFFF),
it wraps around to the beginning of the block.

Figure 11.29(b) shows how to use the write command to set the internal ad-
dress counter before beginning a sequential read. Sending a repeated start condi-
tion after the EEPROM address bytes halts the write command. Only the internal
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Send write command to poll for end-of-write

 I2C addr 0S AP

ACK returns as “1”
(NAK) if write is in progress

N  I2C addrS PN

~~ ~~

 I2C addrS P

ACK returns as “0”
when write is not in progress 

0 0

FIGURE 11.28 Polling for end-of-write.

Use write operation to set internal address
counter. Repeated Start condition begins
new transaction.

 I2C addr 0S A Addr (hi) A Addr (lo) PA  Rdata A

Memory address
high byte

Repeated Start
Condition

Read
data

(b) Random Read

~~

 Rdata}
Any number of bytes

Read
data

R}  I2C addr 1 A

P Rdata A

Read
data

(a) Sequential Read

~~

 Rdata N}
Any number of bytes

S I2C addr 1 A

R/W# = 1,
Read operation

 Rdata A

ACK=0 continues read,
next byte output by
24LC515.

 Rdata A

ACK=1 (NAK) ends read,
24LC515 halts data output

N

FIGURE 11.29 Read operations for the 24LC515.



address counter is affected by the write operation; an internal write to memory con-
tents is not started. A repeated start condition holds SCL low while SDA is high for
one-half of an I2C bit time, then brings SCL high for one-half of an I2C bit time
while SDA is high, and then pulls SDA low while SCL is high to signal the start of a
transaction. To send a repeated start condition, the i2c_rstart() function is used
instead of the i2c_start() function.

The i2c_memwrite() function in Figure 11.30 implements the write operation of
Figure 11.27. The 64 bytes pointed to by the buf parameter are written beginning at
memory address addr, with parameter i2caddr containing the I2C address of the
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#include  <pic18.h>
#include "config.h"
#include "serial.c"
#include "serio.c"
#include "delay.h"
#include "i2cmsu.c"

#define EEPROM 0xA0
#define BLKSIZE 64

//write a block
i2c_memwrite(char i2caddr,
unsigned int addr, char *buf){

  unsigned char addr_lo, addr_hi;
  char k,ack;

  addr_lo = addr & 0x00FF;
  addr_hi = (addr >> 8);

  if (addr & 0x8000) {
    // if MSB set , set block select bit
    i2caddr = i2caddr | 0x08;
  }
  bitclr(i2caddr,0);    //R/W# = 0;
  // check if last write complete
  do {
    i2c_start();
    ack = i2c_put_noerr(i2caddr);
    i2c_stop();
  } while(ack);

  // now do page write
  i2c_start();
  i2c_put(i2caddr);  // send write command
  i2c_put(addr_hi); // send high address byte
  i2c_put(addr_lo); // send low address byte
  for (k=0;k<BLKSIZE;k++) {
    i2c_put(buf[k]);   // send data
  }
  i2c_stop();
}

I2C utility functions

}

I2C EEPROM address with A1=0, A0=0, block select =0

I2C EEEPROM page size

high mem block?

Block Select = 1 

Send addr high i2c_put()

yes

ACK?

i2c_start()

Send write cmd
ack=i2c_put_noerr() 

“1”, write
in progress “0”, write

finished

i2c_stop()

i2c_start()

Send write cmd i2c_put()

Send addr low i2c_put()

Send data i2c_put()

64 bytes?

i2c_stop()

Exit

Write in
progress
polling

no

no

yes

FIGURE 11.30 C function for a page write to the 24LC515 (see CD-ROM file
./code/common/i2c_memutil.c).ON THE CD



EEPROM. The block select bit of i2caddr is set to “1” (high block) if the addr value
has its MSb set, indicating that it is within the upper memory block of 0x8000-
0xFFFF. A do-while{} loop checks for a write-in-progress by sending the write
command and checking the returned acknowledgment status; the loop is exited
when the acknowledgment bit returns as “0”. The page write is then performed by
sending the write command, the high and low bytes of the address, and the 64
bytes pointed to by the buf parameter. The previously defined i2c_start(),
i2c_put_noerr(), i2c_put(), and i2c_stop() functions are used to implement the
I2C bus operations.

Figure 11.31 contains the i2c_memread() function that reads 64 bytes from the
EEPROM. This function has the same parameters as i2c_memwrite() and also has
the same initial code for setting the block select bit of i2caddr and polling for write-
in-progress. After this is completed, the internal address counter is set by sending
the write command followed by the high and low address bytes. The i2c_rstart()
function is then used to perform the repeated start condition, which halts the write
operation and starts a new transaction. The read command is sent and the 64 bytes
are read from the EEPROM. An acknowledgment bit of “0” is sent for each byte ex-
cept for the last byte for which an acknowledgment bit of “1” is sent to halt EEP-
ROM data output. An i2c_stop() ends the transaction and the function exits.

The main() code that uses the i2c_memread() and i2c_memwrite() functions for
testing reads and writes of the serial EEPROM is shown in Figure 11.32. The user is
first prompted to enter either read or write mode. In write mode, the user enters
64-byte strings that are written to the EEPROM using i2c_memwrite(). Each string
is written twice in succession to test the write-in-progress polling of
i2c_memwrite(). In read mode, each key press reads 64 bytes from the EEPROM
using i2c_memread() and the resulting string read from the serial EEPROM is
printed to the console. 

Figure 11.33 shows console output from a test of the Figure 11.32 code. Two
64-byte strings are entered, which means the first four pages of the EEPROM are
written as each string is written twice. The read test reads back the first four pages
of the EEPROM. The console output shows the expected string values.
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i2c_memread(char i2caddr,
unsigned int addr, char *buf){

  unsigned char addr_lo, addr_hi;
  char k,ack;

  addr_lo = addr & 0x00FF;
  addr_hi = (addr >> 8);

  if (addr & 0x8000) {
    // if MSB set , set block select bit
    i2caddr = i2caddr | 0x08;
  }
  bitclr(i2caddr,0);    //R/W# = 0;
  // check if last write complete
  // write command will NAK if not complete
  do {
    i2c_start();
    ack = i2c_put_noerr(i2caddr);
    i2c_stop();
  } while(ack);

  //set address counter
  i2c_start();
  i2c_put(i2caddr);  // send command
  i2c_put(addr_hi); // send high address byte
  i2c_put(addr_lo); // send low address byte
  bitset(i2caddr,0);    //R/W# = 1;
  i2c_rstart();    // repeated start
  i2c_put(i2caddr);  // send command
  for (k=0;k<BLKSIZE;k++) {
    if (k== 63) {
      // get last byte, do NAK
      buf[k] = i2c_get(1);
      i2c_stop();
    } else
      // get data, do ACK
      buf[k] = i2c_get(0);
  }
}

}

high mem block?

Block Select = 1 

Send addr high i2c_put()

yes

ACK?

i2c_start() 

Send write cmd
ack=i2c_put_noerr() 

“1”, write
in progress “0”, write

finished

i2c_stop()

i2c_start()

Send write cmd i2c_put() 

Send addr low i2c_put()

Read data
ack = 0 
i2c_get(0)

k = 63?

i2c_stop()

Exit

Write in
progress
polling

i2c_rstart() 

k = 0 

Read data
ack = 1 
i2c_get(1)

k++;

k < 64?

no

no

yes, last byte

no

yes

Send read cmd i2c_put() 

FIGURE 11.31 C function for sequential read from the 24LC515 (see CD-ROM file
./code/common/i2c_memutil.c).ON THE CD
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FIGURE 11.32 main() for testing I2C EEPROM read/writes.

char membuf[BLKSIZE];
unsigned int memaddr;

main(void){
  unsigned char mode,i;
  // 19200 in HSPLL mode, crystal = 7.3728 MHz
  serial_init(95,1); 

  if (!RI) {
    RI = 1;
    printf("Software reset!");pcrlf();
    if (i2c_errstat) i2c_print_err();
  }
  if (!TO) {
    printf("Watchdog timer reset has occurred.\n");
    pcrlf();
    if (i2c_errstat) i2c_print_err();
  }

  i2c_init(73);

  pcrlf();  printf("I2C Mem Test Started");  pcrlf();
  SWDTEN = 1;  // enable watchdog timer
  memaddr = 0;
  printf ("Enter 'w' for write mode, anything else reads: ");
  mode = getche(); pcrlf();

  while(1) {
    if (mode == 'w') {
      printf("Enter %d chars.",BLKSIZE);pcrlf();
      for(i = 0;i< BLKSIZE;i++) {
        membuf[i] = getche();
      }
      pcrlf();printf("Doing Write");pcrlf();
      // write same string twice to 
      //check Write Busy polling
      i2c_memwrite(EEPROM,memaddr,membuf); 
      memaddr = memaddr +BLKSIZE;
      i2c_memwrite(EEPROM,memaddr,membuf);
      memaddr = memaddr +BLKSIZE;
    } else {
 // read 64 characters
      i2c_memread(EEPROM,memaddr,membuf); 
      for(i = 0;i< BLKSIZE;i++) putch(membuf[i]);
      pcrlf();
      printf("Any key continues read...");pcrlf();
      getch();
      memaddr = memaddr + BLKSIZE;
    }
  }
}

Software Reset, check
if I2C function call
was in progress}

Initialize I2C port, bus speed is
 ~100 kHz @ FOSC=29.4912 MHz

Input 64 character string
from console, write to 
EEPROM twice to check
functionality of 
write-in-progess status
check.

} Watchdog Timer Reset, 
check if I2C function call
was in progress

}

Storage for test strings

} Read 64 characters
from EEPROM
and print to console

Initialize Serial Port

ON THE CD



Sample Question: Write a sequence of function calls using the functions of Section 11.7
that will return the byte from location 0x80F0 within the 24LC515 Serial EEPROM.
Assume A1 is tied low and A0 is tied high on the EEPROM. Write the byte that is read
from the EEPROM into the data_byte variable.

Answer: Two transactions are needed: a write transaction to send the address,
and a read transaction to return the data byte. The required function calls are
shown in Listing 11.3.

LISTING 11.3 Sample question solution.

i2c_start();

i2c_put(0xAA);           // address byte, write command, high block

i2c_put(0x80);           // high byte of memory address

i2c_put(0xF0);           //low byte of memory address

i2c_rstart();

i2c_put(0xAB);           // address byte, read command, high block

data_byte = i2c_get(1);  // read byte, ack of ‘1’ to stop read

i2c_stop();

The address byte of 0xAA in the write transaction is 0b10101010. Bit3 is the
block select bit and is a “1” because the address 0x80F0 is in the upper 32K
memory block. Bit2 and Bit1 correspond to the A1 and A0 pins, respectively.
Bit0 (the LSb) is a “0” because this is a write transaction, which is required to
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}
Two strings entered; each string saved twice to EEPROM

Reset Pressed

Strings read back from EEPROM

FIGURE 11.33 Console output from testing I2C EEPROM read/writes.



set the internal address register. The address byte 0xAB of the second trans-
action has the LSb as “1” since it is a read transaction.

11.9 DOUBLE BUFFERING FOR INTERRUPT-DRIVEN WRITES

The previous examples that performed writes to SPI and I2C serial EEPROMs
prompted the user to enter a string that was stored in a buffer, wrote that buffer to
the serial EEPROM, and then prompted the user for another string. However, how
would data that is arriving in a continuous stream be handled? Figure 11.34 shows
the problem with using only one buffer to handle streaming input data. Once the
buffer is full, a page write must be done to EEPROM to save the buffer contents.
However, new data is continuously arriving; if the current buffer is used to save the
incoming data, the old data is overwritten.

In Figure 11.35 it is seen that the solution to this problem involves using two
buffers, named buffer0 and buffer1. Once buffer0 is filled with input data, it is
swapped with buffer1 and emptied (written to EEPROM), with buffer1 used to
store input data during the EEPROM write operation. After buffer1 becomes full,
it is swapped with the now empty buffer0 and the process is repeated. The ISR cap-
tures incoming bytes while the foreground code writes the full buffer to EEPROM.
This works as long as the buffer used to capture incoming data does not fill before
the EEPROM write is finished; recall that in a streaming data application the out-
going bandwidth must exceed the incoming bandwidth or no amount of buffering
will prevent eventual data loss due to buffer overflow. The incoming data must ar-
rive by a different communication channel than that used to save the data; in this
example, data arrives via the asynchronous serial port and is written to the EEP-
ROM using the I2C port.
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FIGURE 11.34 Using one buffer to capture streaming data.



Figure 11.36 shows the ISR flowchart for capturing streaming data. Two
buffers, buffer0 and buffer1, are used to store data, with the active_buffer flag de-
termining the buffer currently used for input data. A character arrival at the asyn-
chronous serial port triggers an interrupt, which causes the character to be stored
in either buffer0 or buffer1 as determined by active_buffer. A buffer becomes full
after 64 bytes because that is the page size of the I2C serial EEPROM. The write_flag
is a semaphore that is set once the buffer becomes full; this notifies main()(the fore-
ground code) that the current active buffer must be written to EEPROM.
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FIGURE 11.36 ISR flowchart for capturing streaming data.
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Figure 11.37 shows the streaming write loop in main() that writes the stream-
ing input data to EEPROM. The loop waits until write_flag is set, indicating that
the current active buffer is full. It then changes the active buffer by toggling the ac-
tive_buffer flag from 0 to 1 or 1 to 0 so that the ISR will now save data to the empty
buffer. This is equivalent to swapping the full bucket with the empty bucket in Fig-
ure 11.35. Once the active_buffer flag is toggled, the full buffer is written to EEP-
ROM, the write_flag semaphore is cleared, and the EEPROM address is
incremented by 64. How do we know if the incoming data rate is not exceeding the
outgoing data rate? If the write_flag is already set when the code loops back to the
top of the while(1){} loop after writing the full buffer to EEPROM, buffer overflow
has occurred. If overflow occurs, either the incoming data rate must be reduced or
the outgoing data rate must be increased. Lowering the baud rate of the asynchro-
nous serial port will reduce the incoming data rate. A new EEPROM with either a
faster write time or larger internal page buffer will increase the outgoing data band-
width. The C code implementation for Figures 11.36 and 11.37 is left as a suggested
laboratory exercise in Appendix E, “Suggested Laboratory Exercises.”

SUMMARY

Synchronous IO is available on the PIC18 via the USART or MSSP subsystems. All
modes provide separate clock and data signals. The USART synchronous IO is a
half-duplex channel that provides valid data on the falling clock edge. The MSSP
subsystem supports both SPI and I2C interfaces. The SPI mode is a full-duplex

Active buffer = 1

Active Buffer?

Streaming write loop
in main()

0

Active buffer = 0

Page write buf0 Page write buf1

Write Flag = 0
address = address + 64

1

Write flag is set by 
ISR when buffer is
fullWrite Flag?

0

1

Point ISR to 
empty buffer

Write full buffer
to EEPROM

FIGURE 11.37 main() flowchart for capturing streaming data.



channel in which configuration bits CKE, CKP, and SMP offer different combina-
tions of clock polarity and active clock edge for serial data IO. The SPI mode re-
quires that a separate parallel port signal be used as a chip select for each external
SPI peripheral. The I2C bus is a half-duplex channel that is a true bus in that an ini-
tial address byte is used to select the active device for a transaction. This offers an
advantage over the SPI port in that new devices can be added to the I2C bus with no
additional control signals required. Serial EEPROMs offer nonvolatile external
storage and support writing a page of data at a time by use of an internal write
buffer to optimize write operations, which require a significant amount of time to
complete. A double buffer scheme is required for capturing streaming input data as
one buffer is emptied as the other buffer is used to hold incoming data.

REVIEW PROBLEMS

Some of the following problems refer to device datasheets found at www.maxim-
ic.com, www.microchip.com, www.semiconductors.philips.com, www.intersil.com, and
www.atmel.com. For the I2C questions, use the i2c_start(), i2c_rstart(),
i2c_stop(), i2c_put(char byte), char i2c_get(char ackbit) functions discussed in
the chapter.

Answer the following questions about the Maxim MAX5439, a digital poten-
tiometer with an SPI port.

1. Determine the correct settings for the PIC18 CKE and CKP configuration
bits for interfacing to this device. 

2. How many wiper positions does this digital potentiometer support?
3. Is there a method for determining the current wiper register contents? If

yes, how is this done?

Answer the following questions about the Maxim MAX5408, a digital poten-
tiometer with an SPI port.

4. Determine the correct settings for the PIC18 CKE and CKP configuration
bits for interfacing to this device.

5. How many wiper positions does this digital potentiometer support? 
6. Is there a method for determining the current wiper register contents? If

yes, how is this done?
7. This potentiometer has a zero-crossing detection feature. What does this

mode do and why is it included?
8. What is the maximum clock frequency supported for the SPI port?
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Answer the following questions about the Atmel AT25256A, a serial EEPROM
with an SPI port.

9. What is the organization of this device and total bit capacity?
10. Determine the correct settings for the PIC18 CKE and CKP configuration

bits for interfacing to this device.
11. What is the maximum clock frequency supported for the SPI port?
12. What is the page buffer size?
13. How is a write-in-progress determined?

Answer the following questions about the Intersil X9221A, a digital poten-
tiometer with an I2C port. Assume the A3, A2, A1, A0 pins are tied high.

14. How many wiper positions does this digital potentiometer support?
15. Write a sequence of I2C function calls that will set the wiper to a particular

position.
16. Write a sequence of I2C function calls that will read the current wiper po-

sition.
17. What is the maximum clock frequency supported for the I2C port?

Answer the following questions about the Philips PCF8598C-2, a serial EEP-
ROM with an I2C port.

18. What is the organization of this device and total bit capacity?
19. What is the maximum clock frequency supported for the I2C port?
20. What is the page buffer size?
21. How is a write-in-progress determined?
22. How long does a typical page write take?

Answer the following questions.

23. Compute the approximate amount of time it takes to transfer the data re-
quired for a page write to the Microchip 24LC515 serial EEPROM using a
400 kHz I2C clock rate and FOSC = 20 MHz. Assume the start and stop
conditions each require one I2C bit time, and 20 instruction cycles of over-
head for each byte sent over the I2C bus. 

24. Using the assumptions of the previous problem, what is the approximate
maximum baud rate that can be sustained on the serial port without over-
flow in the continuous data streaming application of Section 11.9? Assume
that there are five stop bit times between each data arrival on the asyn-
chronous serial port.
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25. Assuming FOSC = 30 MHz, what SSPADD value is required for an I2C
bus rate of 400 kHz?

26. Devise a scheme for measuring how long a typical self-timed write on the
24LC515 serial EEPROM actually takes. Determine if the typical write time
is dependent upon the number of bytes that is actually written.
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Data Conversion 12

T
his chapter discusses a few of the many different analog-to-digital converter
(ADC), digital-to-analog converter (DAC) architectures, and the advantages
and disadvantages of each. The PIC18’s successive approximation ADC and

a serial DAC are covered and example applications are explained.

12.1 LEARNING OBJECTIVES

After reading this chapter, you will be able to:

Select the appropriate ADC and DAC architecture based on the application re-
quirements.

In This Chapter

Data Conversion Basics
Analog-to-Digital Conversion
PIC18Fxx2 Analog-to-Digital Converter
Digital-to-Analog Conversion
Digital-to-Analog Converter Example: The MAXIM 518

By J.W. Bruce



Implement a simple data acquisition system using the PIC18’s analog to 
digital converter.
Construct a parallel R-2R resistor ladder flash DAC using the PIC18.
Implement a PIC18 to I2C serial DAC interface.
Construct a simple three-function waveform generator with the PIC18.

12.2 DATA CONVERSION BASICS

As predicted by Moore’s Law in 1964 [1], digital computing power has exponen-
tially increased at ever smaller, incremental costs. For example, as we’ve seen in the
previous chapters, the PIC18 has the capability of replacing several chips. With this
increase of computing power, many applications usually accomplished with analog
circuitry have found a new lease on life in the digital realm. However, the real world
still is and will always continue to be a fundamentally analog place. To bring the
digital processing of the PIC18 and its benefits to bear on real-world applications,
the analog signal of interest must be translated into a format the PIC18 can under-
stand. This is the function of the analog-to-digital converter (ADC). After process-
ing by the PIC18, the resulting digital stream of information must be returned to its
analog form by a digital-to-analog converter (DAC). Analog once again, the infor-
mation may be “consumed” by the human senses, most often sight or hearing. An
illustration of this information flow is shown in Figure 12.1.

ADCs and DACs are ubiquitous in computing systems. Many electronic prod-
ucts, including compact disc players, camcorders, digital cellular phones, modems,
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computer sound cards, computer graphics adapters, and high-definition televi-
sions contain one or more data converters. Because ADCs are so useful and re-
quired by so many small microprocessor applications, microprocessor architects
often include an ADC as a built-in peripheral, and the Microchip PIC18 designers
did just that.

From a programmer’s viewpoint, the ADCs and DACs in Figure 12.1 can be re-
garded as black boxes. That is, an ADC accepts an input of some analog quantity,
typically voltage, and provides an n-bit digital code output every fs seconds that rep-
resents that analog input. The number fs is said to be the ADC’s sampling frequency.
The black box DAC accepts an n-bit digital word input every fs seconds and gener-
ates an equivalent analog output, usually voltage. The number fs is the DAC’s sam-
ple frequency. For many purposes, this is a sufficient interpretation of data
converters. However, an understanding of how the data conversion is done will
help you understand why there are limitations on ADC and DAC operation, and
should help you in selecting data converters for the application at hand.

12.3 ANALOG-TO-DIGITAL CONVERSION

The methods by which a digital code is generated within an ADC are diverse. A de-
tailed discussion would fill several books (a few references on ADCs have been pro-
vided in the bibliography [34–37]). While ADCs can have almost any analog
quantity (current, charge, voltage, temperature, acoustical pressure, etc.) as an
input, the most common ADCs convert an analog voltage into a digital number.
Usually, systems that are converting a wide variety of quantities first convert those
signals into voltages, and then use a voltage-mode ADC to convert the value into a
digital number. The digital number that an ADC generates can be in any encoding
system, but is most typically represented in unsigned or signed binary.

ADCs and their capabilities are described by a bewildering number of parame-
ters. A full discussion of ADC parameters is more appropriate with a more ad-
vanced electronics background, and the interested reader is encouraged to explore
the data conversion references in Appendix H, “References.” However, some basic
descriptive parameters for ADCs must be understood to select and use them properly.

The speed of an ADC is measured as the minimum sampling period Tmin; the
shortest time required to convert an input voltage to a digital number. Minimum
sampling period is equivalently reported as the maximum sampling frequency, the
maximum number of samples that the ADC can convert in one second. The max-
imum sampling frequency fmax is found by fmax = 1/Tmin. Of course, a faster ADC
gives us a more accurate temporal picture of what the analog voltage input is doing,
but this knowledge requires that our microprocessor must operate on and/or store
more data.
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An ADC’s resolution is the smallest change in its analog input that is detectable
at its output, usually a change of ±1 in the output number. In other words, resolu-
tion represents the change in ADC input that corresponds to a 1 LSb change in out-
put. ADC precision is the number of levels that the ADC can distinguish.
Sometimes, ADC precision is quoted by the number of binary bits required to en-
code the number of levels. The ADC range is the total span over which inputs can
be converted accurately. Quite often, the range extremes, VREF+ and VREF- in the case
of voltage conversion, are provided as ADC inputs.

Sample Question: How many bits of precision would an ADC require to distinguish 1 ?V
(one microvolt = 1.0e-6) differences over a range 0–2 V?

Answer:

An ADC would need 21 bits of output (221 = 2,097,152) to encode these re-
quired 2,000,000 levels.

Sample Question: What is the range and resolution of an 8-bit ADC with VREF+=10 V and
VREF = 10 V?

Answer:

Sample Question: What is the maximum sampling frequency for the 8-bit ADC in the
preceding question if the minimum sampling period is 2.5 ?s?

Answer:

Sample Question: If the ADC is operating at maximum speed, how much storage is
required to store one second of ADC output? One year’s worth?

Answer:

Thus, we would need approximately 117 disk drives, each with 100 GB (~1011

bytes, 1 GB = 230 bytes) of capacity to store a year’s worth of data from our ADC.
That is a lot of storage space!

Most ADCs have uniform stepsizes, the difference between the minimum and
maximum voltages that correspond to the same output code. If stepsize is uniform
or constant over the ADC range, the stepsize is equal to the resolution. (There are
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some specialty ADCs with nonuniform stepsizes; for example, some audio ADCs
have stepsizes that change logarithmically over their range to match the response of
the human ear.) Using our black box view of ADCs, an n-bit ADC with uniform
stepsizes divides its range into 2n equal segments. The ADC output is simply the
number of the segment in which the ADC input lies. Mathematically, the ADC dig-
ital output at sample time k (x[k]) is given in Equation 12.1.

(12.1)

In Equation 12.1, T is the ADC sampling period, x(kT) is the input voltage Vin
at time kT, n is the number of output bits, and  is a function that converts its argu-
ment to an integer, typically by truncation or rounding. Because information is lost
due to rounding or truncation in, analog-to-digital conversion always introduces
some error. The difference between the actual ADC input value and the value im-
plied by the ADC’s digital output is called quantization error, which can be made
smaller by increasing the ADC’s precision. 

Sample Question: Assuming our example 8-bit ADC in the prior examples performs
conversion by rounding, what is the ADC output code for –7.25 V?  2.0 V?

Answer:

The basic building block in nearly all ADCs is the voltage comparator. Figure
12.2 shows a voltage comparator circuit symbol. The circuitry inside a comparator
can be quite complex, so we will use the comparator in Figure 12.2 as a black box. 
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If the positive input terminal voltage V+ is greater than the negative input ter-
minal voltage V , the comparator output is the comparator’s positive power sup-
ply voltage Vp. If V+ is less than V , the comparator’s output is the negative supply
voltage Vm. Therefore, we see that if Vp = Vdd and Vm = 0, the comparator in
Figure 12.2 will generate a digital signal that can communicate with digital logic,
like that in microprocessors. Because of this behavior, the voltage comparator is
sometimes called a 1-bit ADC. By changing the comparator’s input voltages V+ and
V and using numerous comparators in different ways, an analog voltage can be
compared to reference voltages and a digital number representation formed. There
are many different algorithms, circuits, and configurations by which this can be
done. In this section, we introduce three popular voltage-mode ADC architectures
in use today: the counter ramp ADC, the successive approximation ADC, and the
flash ADC.

Counter Ramp ADC

One of the simplest of the ADC architectures is the counter ramp ADC. The struc-
ture of the counter-ramp ADC is shown in Figure 12.3. At the beginning of the con-
version, the digital counter is reset to zero. This drives the analog output of the
internal DAC to zero volts. The counter is then incremented, which causes the ana-
log output of the DAC to increase in a stair-step fashion. When the counter has
been clocked to a point where the DAC analog output is at a higher potential than
the input voltage, Vin, the counter is stopped. At this time, the counter contains the
digital code equivalent to the analog input voltage. This is shown graphically in Fig-
ure 12.3. After the digital value has been determined, it may be transmitted from
the counter in parallel or shifted out serially via a shift register.

voltage
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counter and
control logic

n

serial
output

parallel
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(a) Structure (b) Representative conversion cycle

FIGURE 12.3 Counter ramp ADC.
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Counter ramp ADCs are not very efficient. Consider the n-bit counter ramp
ADC. Since the input may be equal to the full-scale analog reference voltage, the
counter must count through all 2n possible digital codes before the comparator
stops the counter. In effect, the counter-ramp ADC performs an exhaustive search
to find the nearest digital representation of the input voltage. This search will take
up to 2n clock pulses. Therefore, the n-bit counter-ramp ADC sampling at fs sam-
ples per second must run the internal counter at 2nfs operations per second. For a
large n, the internal counter clock and circuitry must be much faster than the sam-
pling frequency. At high sampling rates with practical word sizes, the required in-
ternal circuit clock frequency becomes prohibitive. Because most signal processing
applications require uniformly sampled data values, the counter ramp ADC allo-
cates 2n clock cycles, the worst case, for every conversion regardless of the result.
Therefore, counter ramp ADCs find use only in the slowest applications, usually
with small to moderate output word lengths.

Sample Question: Describe the conversion process for a 4-bit counter ramp ADC with
VREF = 0 V, VREF+ = 4 V, and Vin = 3.14159 V.

Answer: The ADC’s range is 4 V. The ADC resolution is 4 V/16=0.25 V.
Therefore, each 1 LSb increase in output corresponds to an increase in 0.25 V
of input. When the conversion process begins, the counter is reset to 0b0000
and the ADC input voltage Vin is compared with the VDAC voltage of 0 V.
Since Vin > 0 V, the counter increases by 1 LSb and the input voltage is
compared with the VDAC voltage of 0.25 V. This comparison causes another
increment in the counter. The counter continues increasing, with 0.25 V
added to the VDAC voltage each step, until the VDAC voltage is greater than
3.14159 V. The first counter value that generates such a voltage is 0b1101,
which produces  VDAC = 13/16 * 4 V, or VDAC = 3.25 V. This counter state
occurs at the 14th cycle. The code that is output from the counter ramp ADC
is one less than this value, created by decrementing the counter to 0b1100,
corresponding to VDAC = 12/16 * 4 V = 3.0 V. If the counter ramp input
voltage were very close to VREF+, it would require 16 cycles to generate the
maximum output code of 0b1111 (when the code reaches the maximum
value of 0b1111 the conversion is halted, since incrementing the counter fur-
ther will cause it wrap to 0b0000). Since the input voltage is not known, our
4-bit counter ramp ADC must anticipate a 16-cycle conversion time.

Successive Approximation ADC

Like the counter ramp ADC, the successive approximation ADC converts the ana-
log voltage present on its input to a digital code. However, the successive approxi-
mation ADC performs the conversion in a more efficient way—a binary search.
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This makes the successive approximation ADC much faster than a counter ramp
ADC at a cost of increased complexity for control logic.

Consider the block diagram of an n-bit successive approximation ADC as given
in Figure 12.4. At the sample time, the ADC sets the MSb in the Successive Ap-
proximation Register (SAR) to “1”. All the remaining lower bits are reset to “0”. This
digital “guess” is converted back to an analog value and is compared with the input. 

Therefore, the SAR contains a digital code representative of mid-scale
(0b100…0). The DAC produces a corresponding mid-scale analog output, which is
halfway between the minimum (VREF-) and maximum voltage (VREF+) that could be
presented at the ADC input. If the input is at a higher potential than the feedback
analog representation of the “guess” (Vin > VDAC), the MSb is left set to “1”. If the
input is at a lower potential than the feedback analog value, which is the case of Vin

< VDAC, the MSb is reset to “0”. In this step, the successive approximation ADC is
determining the proper state of the MSb; in other words, whether the analog input
value lies in the upper (MSb = 1) or lower (MSb = 0) half of the ADC’s range.

Now, the entire procedure is repeated for the second most significant bit. While
the MSb is unchanged from the first approximation, the second MSb is set with the
remaining lower bits reset. This digital code, an improved “guess,” is converted into
an analog value (VDAC) and presented to the comparator. At this instant, the SAR
value is either (0b1100…0) or (0b0100..0), depending on the outcome of the first
approximation. If the analog input is at a higher potential than the feedback “guess”
voltage, the second MSb is left at “1”. If not, the second MSb is reset to “0”. At the
conclusion of this second approximation cycle, the two most significant bits in the
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register determine whether the ADC input is located in the highest (0b11), next-to-
highest (0b10), next-to-lowest (0b01), or lowest (0b00) fourth of the ADC’s range.

Approximation cycles continue in this manner for each of the remaining lower
order bits until all n bits have been examined. At the conclusion of each cycle, the
SAR digital code is converted back to an analog voltage and compared against the
input voltage. In this way, each approximation halves the difference between the
ADC’s input and the analog representation of the contents of the SAR. This is
shown graphically in Figure 12.4.

Transmission of the digital code from the ADC may be done in two ways: seri-
ally or parallel. Each bit of the digital output code may be output from the ADC the
instant it is computed. This particular flavor of successive approximation ADC is
also known as the serial ADC. The digital code in the SAR may be stored for paral-
lel transmission upon completion of the sample conversion, or transmitted serially
at a later time using some defined network protocol like I2C or SPI. Nonetheless,
when the time arises to convert the next sample, the contents of the SAR are reset
and the entire procedure is repeated for the new analog voltage present on the
input pin of the ADC.

A disadvantage of the successive approximation ADCs is the many internal op-
erations that must occur for a single sample to be converted. In the n-bit converter,
n approximations and comparisons must be performed in each sampling period.
Therefore, an n-bit successive approximation ADC running at a sampling fre-
quency of fs samples per second must run its internal circuit at a rate of nfs opera-
tions per second. However, this is much slower and cheaper to build than the
required rate of the counter ramp ADC, especially for a large n. For a given sam-
pling rate, the successive approximation ADC can convert with greater resolution
than the counter ramp ADC. The successive approximation ADC iteratively cuts
the voltage range in half as it searches for the digital representation of the input
voltage. This binary search is more efficient and faster than the exhaustive search of
the counter ramp ADC, but it also gives the successive approximation ADC a more
complex architecture. 

Sample Question: Describe the conversion process for a 4-bit successive approximation
ADC with VREF = 0 V, VREF+ = 4 V, and Vin = 3.14159 V.

Answer: The ADC’s range is 4 V. The ADC resolution is 4 V/16 = 0.25 V.
Therefore, each 1 LSb increase in output corresponds to an increase in 0.25 V
of input. When the conversion process begins, the SAR is set to 0b1000 and
the ADC input voltage Vin is compared with the midrange voltage 2.0 V (8/16
* 4 V). Since Vin > 2 V, the control logic leaves the MSb of the SAR set and
sets the second MSb of the SAR. The SAR contents are now 0b1100, which
represents the voltage 12/16 * 4 V, or 3.0 V. Because Vin > 3.0 V, the 
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second MSb of the SAR is left set. The control logic sets the third MSb of the
SAR, now 0b1110. The SAR contents cause the DAC to create a voltage of
14/16*4 V, or 3.5 V. Because Vin < 3.5 V, the control logic clears the third
MSb in the SAR and sets the SAR’s LSb. The SAR contents on the fourth cycle
are 0b1101, which corresponds to a comparison voltage of 13/16*4, or 3.25
V. The comparator determines Vin < 3.25 V, so the LSb is cleared. The 4-bit
digital result 0b1100 is computed in four cycles.

Flash ADC

The counter ramp ADC determines the output by examining each quantization
level (2n maximum operations), while the successive approximation ADC examines
each bit (n operations). However, the flash ADC generates all of the output bits in
one operation and thus has a speed advantage over the previous two architectures.
This speed does come with a drawback—complexity. The flash ADC distributes the
sampling process across the entire circuit. This requires much more circuitry as a
result. The structure of a flash ADC circuit is shown in Figure 12.5.

380 Microprocessors

R

Vref

R

R

R

R

R

R

R

th
er

m
om

et
er

 to
 b

in
ar

y 
en

co
de

r 
lo

gi
c

3

Vin

V7 = 7/8 Vref

V6 = 6/8 Vref

V5 = 5/8 Vref

V4 = 4/8 Vref

V3 = 3/8 Vref

V2 = 2/8 Vref

V1 = 1/8 Vref

T7

T6

T5

T4

T3

T2

T1

X[2:0]

FIGURE 12.5 Resistor string flash ADC 
architecture.



An n-bit flash ADC contains 2n resistors, 2n-1 comparators and digital encoder
logic. Referring to Figure 12.5, the string of resistors from the reference voltage to
ground constructs a voltage divider. Assuming that all 2n voltage divider resistors
have the same resistance, the divider generates 2n analog voltages between ground
and the reference voltage. These analog voltages correspond to the points on the
ADC transfer curve at which there is no quantization error. These analog voltages
are the ones that the output codes of the ADC represent in digital form. Each of 2n

voltage divider levels is the reference voltage input for their respective comparators.
The comparators’ other input is the flash ADC’s input voltage, Vin. The output of
the comparators is a thermometer code of the input voltage, Vin. It is named this be-
cause of its resemblance to a mercury thermometer. 

Consider the case when Vj+1 Vin Vj. The outputs of the comparators, Tj, Tj-1,
…, T1, T0, will be “1”, while the outputs, Tj+1, Tj+2, …, T2

n
-1, will be “0”. Therefore,

the outputs of the comparators will rise and fall with the input voltage, Vin. In sim-
ilar fashion, the mercury level in a thermometer tracks the temperature.

Obviously, the large number of bits in the thermometer code is not an efficient
representation of the value. It is the function of the encoder to “compact” the in-
formation to an efficient representation. The encoder logic accepts the 2n bits of the
thermometer code and outputs the n-bit binary number corresponding to the
number of “1”s in the thermometer code. This may be done a number of ways. The
logic may be designed to “look” for the most significant bit in the thermometer
code and output the binary number corresponding to that input line, much in the
same way as a demultiplexer. However, this method is sensitive to errors in the
comparators’ thermometer code called sparkles. In ideal operation, the thermome-
ter code consists of consecutive “1”s in the lower comparator outputs from T1 to Tj.
For all comparators from Tj+1 to T2

n
-1, the outputs are “0”. A comparator output,

which is erroneous and causes a departure from this pattern, is called a sparkle. De-
pending on the method of thermometer-binary encoding, sparkles may lead to
gross errors in the output digital code of the ADC. To exacerbate matters, high-
speed timing uncertainties may cause multiple sparkles to appear throughout the
thermometer code. Various circuit techniques may be applied to suppress the ef-
fects of sparkles, such as comparing neighboring bits in the thermometer code,
using Gray codes or thermometer code bit summing.

Despite these drawbacks, flash ADCs are extremely attractive because of their
high speed. Since all output bits are determined at the same time, a flash ADC with
a sampling rate of fs samples per second runs at fs operations per second. Thus, flash
ADCs only need more circuitry to increase the output code word size. However, the
number of comparators and resistors will double for each additional bit of output.
Furthermore, the complexity of the thermometer-to-binary encoder logic also in-
creases with the number of output bits. Because of their fast operation, flash ADCs
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are typically used in high-speed, small word length applications, such as digital
video, radar, and digital test and measurement equipment.

Sample Question: Describe the conversion process for a 4-bit resistor string flash ADC
with VREF = 0 V, VREF+ = 4 V, and Vin = 3.14159 V.

Answer: The ADC’s range is 4 V. The ADC resolution is 4 V/16 = 0.25 V.
Therefore, the 16 resistor string reference voltages are 0.25 V, 0.50 V, 0.75
V, …, 3.25 V, 3.5 V, and 3.75 V. Each of the 15 reference voltages is com-
pared with Vin simultaneously. The lower 12 comparator outputs (up to and
including the comparator with the 3.0 V reference voltage) are “1”, and the
upper three comparator outputs (comparators with 3.25 V, 3.5 V and 3.75
V references) are “0”. The thermometer to binary encoder will represent the
thermometer code with 12 ones by 0b1100. The flash ADC results are avail-
able in one cycle, the time for the comparator output to become stable plus
the encoder delay.

12.4 PIC18FXX2 ANALOG-TO-DIGITAL CONVERTER

ADCs are used in so many small microprocessors and embedded systems that they
are often included as a built-in peripheral. Microchip made just such a decision
with the PIC 18Fxx2 microprocessors. The PIC18Fxx2 includes a multiple-channel
10-bit successive approximation ADC. The number of channels depends on the de-
vice and package chosen by the designer. For example, the PIC18F442 and
PIC18F452 are available in 40- and 44-pin packages and support eight different
input channels to the 10-bit ADC. The PIC18F242 and PIC18F252 are only avail-
able in 28-pin packages. With such a limited number of package pins, the ’2x2 de-
vices only support five different input channels to the internal 10-bit ADC. Other
PIC18 devices provide 5–16 input channels to the ADC. We will look at the differ-
ence between PIC devices in Chapter 15, “Beyond the PIC18Fxx2.” The required
differences in using the PIC18’s internal ADC between the different devices are
usually minor and well documented in the datasheets. The remainder of this sec-
tion focuses on the PIC18F242 device and its five ADC channels.

Just like the other PIC18 peripherals (USART, interrupt, SPI) that were previ-
ously covered, the PIC18’s internal ADC is controlled by a number of dedicated
configuration, enable, and flag register bits. Also, the external input connections to
the ADC are restricted to specific pins—specifically, the PORTA pins on the
PIC18F2x2 devices. Different PIC18 devices have the same basic ADC operation;
they only differ in the number of analog input channels available for conversion.
Figure 12.6 shows a simplified block diagram of the PIC18 ADC system. 
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The PIC18F2x2 devices support analog input channels AN0-AN4 on package pins
RA0-RA3 and RA5, respectively.

PIC18F242 ADC Configuration

The PIC18F242 does not require us to use all five analog input channels. In fact, we
can use any number, from zero to all, of the ADC channels. The number of ADC
channels to use is selected in the first ADC control register ADCON1. In Chapter
8, “The PIC18Fxx2: System Startup and Parallel Port IO,” we saw that the statement
ADCON1 = 0x06 configured PORTA for digital operation. The lower half of the
ADCON1 register, bits PCFG[3:0] (ADCON1[3:0]), determine how many ADC
and digital channels are available on PORTA of ’2x2 devices. Figure 12.7 shows the
PIC18F242 ADC configurations for each combination of PCFG[3:0] in ADCON1.

ADCON1 also selects the ADC reference voltage sources, VREF- and VREF+.
These reference voltages specify the bounds between which the ADC will expect the
analog input voltage to appear. The PIC18 ADC divides the range (VREF+ VREF-)
into 210 = 1024 levels. The ADC output is represented as a 10-bit number in the
register pair ADRESH:ADRESL. For example, a value of 0b1110 for the lower 4 bits
of ADCON1 configures AN0 as an analog input, the remaining analog input pins
as digital IO, and use Vdd/Vss as VREF+/VREF-. In this mode, the upper ADC refer-
ence voltage VREF+ is Vdd, the PIC18’s main power supply voltage, and the lower
ADC reference voltage VREF- is Vss (also called GND), the PIC18’s main ground
voltage. If the application specifies that the ADC analog input value is guaranteed
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approximation
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Vref+
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 Figure redrawn by author from PIC18Fxx2
 datasheet (DS39564B),  Microchip Technology Inc. 

FIGURE 12.6 PIC18 ADC block diagram.1

1 Figure 12.6 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.



to lie in a smaller voltage range, these lower and upper voltage references can be
provided to the PIC18. In this way, each of the 1024 possible ADC results will cor-
respond to a more accurate voltage. As an example, a value of 0b1111 for the lower
4 bits of ADCON1 configures AN0 as an analog input, AN3/AN2 as VREF+/VREF-,
and AN1/AN4 as digital IO. 

It is extremely important to mention at this point that any ADC channel or
ADC voltage reference that is enabled should have its corresponding port direction
(TRISA) bit set. This configures the package pin to be an input. If this bit is cleared
(output mode), the PIC18 ADC will attempt to use the driven pin voltage (Vol or
Voh in the datasheet) as the ADC input or ADC voltage reference. This is seldom
desired or useful.

The result of the ADC conversion is 10 bits and is found in the register pair
ADRESH:ADRESL that is 16 bits. The ADFM bit (ADCON1[7]) allows the pro-
grammer to determine the justification of the 10-bit ADC result in the 16-bit vir-
tual register ADRESH:ADRESL. If ADFM is “1”, the ADC conversion result is right
justified (the most significant six bits of ADRESH are cleared). If ADFM is “0”, the
ADC result is left justified in ADRESH:ADRESL (the least significant 6 bits of
ADRESL are cleared).

While the ADCON1 bits PCFG3:PCFG0 allow the PIC18 to have multiple
channels of ADC enabled, the PIC18 can only convert one channel at a time. The
ADC channel to be converted by the ADC is selected by the CHS2:CHS0 bits
(ADCON0[5:3]). The three CHS2:CHS0 bits are the binary representation for the
currently selected ADC channel.

Because the voltages on two different ADC input pins can be drastically differ-
ent, we must give the PIC ADC circuit time to adjust and acclimate to the new volt-
age before starting a conversion. The PIC ADC input is a sample and hold circuit
that steadies the voltage during the successive approximation conversion process.
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PCFG[3:0] AN4 AN3 AN2 AN1 AN0 VREF+ VREF-

00x0  A A A A A Vdd Vss

00x1  A VREF+ A A A AN3 Vss

0100  D A D A A Vdd Vss

0101  D VREF+ D A A AN3 Vss

011x  D D D D D --- ---

1x00  A VREF+ VREF- A A AN3 AN2

1001  A A A A A Vdd Vss

1010  A VREF+ A A A AN3 Vss

1011  A VREF+ VREF- A A AN3 AN2

1101  D VREF+ VREF- A A AN3 AN2

1110  D D D D A Vdd Vss

1111  D VREF+ VREF- D A AN3 AN2

Bits PCFG[3:0] are in
register ADCON1[3:0].

Values shown are for
the PIC18F2x2.

A = analog input (to ADC)
D = digital IO (according
to status of TRISA register)

FIGURE 12.7 PIC18 ADC port configuration control bits.



That sample and hold circuit has an input capacitance that must charge up to the
same voltage as the active ADC input pin, and this takes some time. The exact time
depends on the impedance of the device generating the voltage for the ADC to
convert, the temperature, and the PIC’s Vdd. The PIC18FXX2 datasheet gives exact
formulas to compute the minimum time required to acquire the new voltage on an
ADC channel change. With typical circuits and devices, 20 μs is usually sufficient.
It is very important to give the PIC ADC time to acclimate to the new ADC input
voltage. If at least 20 μs does not elapse between changing the active ADC channel
and starting the ADC conversion, the ADC results may not be accurate.

ADCON0 also contains another very important ADC configuration bit, ADON
(ADCON0[0]). When ADON = 1, the entire ADC module is enabled, powered up,
and consuming power. When ADON = 0, the ADC module is disabled and does not
consume power. If the ADC module is not being used, the ADC should be turned
off via ADON = 0, which is the setting after reset.

Since the PIC18 ADC uses a successive approximation ADC architecture to
generate the 10-bit result, it is a reasonable guess that the conversion will take at
least 10 clock cycles. The PIC18Fxx2 datasheet specifies that the ADC requires
12TAD for accurate conversion results, where TAD is at least 1.6 μs. The PIC18 uses
an extra TAD period to set up the ADC before conversion and an extra TAD period
to copy the result to ADRESH:ADRESL after conversion. To guarantee that TAD is
greater that 1.6 μs, the PIC18 provides seven options for selecting the ADC con-
version clock. The ADC conversion clock is selected by the 3-bit field
ADCS2:ADCS0 (ADCON1[6]:ADCCON0[7:6]) split over the ADC configuration
registers ADCON0 and ADCON1. Figure 12.8 shows the ADC conversion clock se-
lect bit options. When ADCS2:ADCS0 is 0x3 or 0x7, the ADC hardware uses an in-
ternal RC oscillator to control the conversion. This internal RC oscillator is
guaranteed to have a period from 2–6 μs. The other six options allow the ADC to
be controlled by a divided FOSC clock. The ADCS2:ADCS0 field allows for ADC
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ADCON1[6]  ADCON0[7:6]
ADCS2      ADCS[1:0]  A/D Clock
0      00   FOSC/2
0      01   FOSC/8
0      10   FOSC/32
x      11   FADC RC (internal ADC oscillator)
1      00   FOSC/4
1      01   FOSC/16
1      10   FOSC/64

FIGURE 12.8 PIC18 ADC conversion clock select bits.
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clock frequencies between FOSC/2 and FOSC/64. If the ADC is controlled by a 
divided FOSC clock, the divider must be selected such that TAD is greater than 1.6
μs, or ADC conversion results will not be accurate. The PIC18 ADC can perform an
A/D conversion while the PIC is in sleep mode. However, sleep mode ADC opera-
tion requires the ADC conversion clock be generated by the ADC internal oscilla-
tor since the main PIC FOSC clock is not running.

The last PIC ADC option to configure before we can use the ADC is the ADC
interrupt sources. The PIC ADC can generate an interrupt when the 10-bit con-
version is complete. To enable the PIC ADC interrupts, we must first clear the
ADIF (ADC interrupt flag, PIR1[6]) to prevent a spurious interrupt request when
we enable interrupts. The ADC interrupt priority level is determined by the state of
the ADIP bit (ADC interrupt priority bit, IPR1[6])—set for high priority, clear for
low priority bit. Next, we need to set the ADIE bit (ADC interrupt enable, PIE1[6])
to make the ADC an interrupt source. The ADC interrupt is globally enabled by the
collective states of the IPEN, GIE/GIEH, and PEIE/GIEL bits. (Refer back to Chap-
ter 10, “Interrupts and a First Look at Timers,” for a review on the operation of
these three important enable bits.) The bits that configure the PIC18’s internal
ADC are summarized in Figure 12.9.

FIGURE 12.9 Summary of PIC18 ADC configuration registers.

ADON  ADCON0[0]   0 = ADC is powered off
      1 = ADC is powered up
GO/DONE# ADCON0[2]   0 = A/D conversion not in progress
      1 = conversion in progress
        (set this bit to start ADC conversion)
CHS[2:0] ADCON0[5:3]   ADC channel select bits
        000 = AN0
        001 = AN1
        010 = AN2
        011 = AN3
        100 = AN4
ADCS[2:0] ADCON1[6]:ADCON0[7:6] ADC conversion clock select bits
        (selects clock source for ADC
         successive approximation cycles)
PCFG[3:0] ADCON1[3:0]   ADC port configuration control bits
        (selects number of analog channels and
         ADC references)
ADFM  ADCON1[7]   0 = left justified in ADRESH:ADRESL
      1 = right justified in ADRESH:ADRESL
ADIE  PIE1[6]   ADC interrupt enable
ADIP  IPR1[6]   ADC interrupt priority select
ADIF  PIR1[6]   ADC interrupt interrupt flag

Name SFR (bit) Comments



PIC18 ADC Operation

After the ADC channel, reference voltages, conversion clock, and interrupt enable
have been properly configured, the PIC18 ADC is ready to convert the analog volt-
age on the PIC’s package pin into a 10-bit unsigned binary number. The conversion
process is started by setting the GO/DONE# bit (ADCON0[2]). This bit also serves
as the ADC conversion complete flag; the GO/DONE# bit will remain high until the
ADC is finished with its conversion cycle. After starting an ADC conversion, the
PIC can directly poll the GO/DONE# bit until it clears. When the GO/DONE# bit
is cleared, the 10-bit value in the register pair ADRESH:ADRESL represents the
voltage on the ADC input pin as an unsigned binary number.

Another way to determine when the ADC conversion is complete is to use the
ADC interrupts. This method allows the PIC to continue with other processing
until the ADC conversion is finished and an interrupt is automatically generated.
While the ISR is servicing the ADC interrupt request, the ISR must clear the ADIF
bit and copy the ADC results from ADRESH:ADRESL for use by the ISR or some
other part of the program.

If the next ADC conversion is to be done on another input channel, the new
ADC channel must be selected by the CHS2:CHS0 bits. If the next conversion is to
be done on the same channel, the CHS2:CHS0 bits do not need to be modified. Re-
gardless of the method of determining when the ADC is finished with its conver-
sion and which ADC channel is being used in the next conversion, setting the
GO/DONE# bit starts another conversion cycle.

A potentiometer, often called a pot, is a variable resistor and is one of the sim-
plest ways to generate various analog voltages. A potentiometer usually has three
terminals. Between two terminals is the potentiometer’s full resistance, typically a
round number like 1 k , 10 k , or 50 k . The potentiometer’s third terminal is
connected to the pot’s wiper. The resistance between the wiper terminal and the
other pot terminals changes as you turn the pot’s knob. Potentiometers are often
used as an input on a device’s front panel when there is a need to allow the user to
enter a fine-grain adjustable value. Figure 12.10 shows how the PIC18 can be con-
nected to two potentiometers. The two capacitors connected to the pot wiper ter-
minals are not required, but are helpful in reducing noise and for providing a more
stable voltage at the PIC ADC input pins.

Figure 12.10 also shows segments of code that are used to read the voltage from
both potentiometers and display the digital code and voltages on the screen via the
serial interface. The code required for the serial interface (getch() and printf()) is
found in Chapter 9, “Asynchronous Serial IO,” and is not reproduced here. Upon
entering main(), the first two C lines configure the PIC ADC. Setting the ADON bit
in ADCON0 turns on the ADC. The combined ADCS2:ADCS0 bits in the
ADCON0 and ADCON1 registers configure the ADC to use the internal ADC 

Data Conversion 387



388 Microprocessors

oscillator. Clearing ADFM in ADCON1 configures the ADC to return the result left
justified in ADRESH:ADRESL. The 4-bit field PCFG3:PCFG0 in ADCON1 is
0b0100 to select three ADC channels (on AN0, AN1, and AN3) using Vdd and Vss
as reference voltages. It should be noted here that this code relies on the power-on
reset condition of the TRISA register. (Any pin that is used for an ADC input must
be configured to be an input in the corresponding port direction register.) After
configuring the serial port, the program enters an infinite loop where each keypress
initiates a read of ADC channels AN0 and AN1. The results are printed to the
screen as a decimal number and the corresponding voltage.

// use ADC to convert channel denoted by c and returns full 10 bit result
// NOTE: Assumes ADC is already on and proper ADC clk is selected
int ReadAdcChannel(unsigned char c) {
    unsigned char temp;

    temp = ADCON0 & 0xC1; // get current ADCON0 (clearing CHS2:CHS0)
    ADCON0 = temp | ((c & 0x7)<<3);  // select the desired ADC channel
    DelayUs(20);              // wait 20 us for ADC to get ready
    GODONE = 1;               // start ADC conversion,
    while(GODONE);            //   then wait for ADC to finish
    if ( ADFM )
      return ((ADRESH << 8) | ADRESL;
    else
      return ((ADRESH << 2) | (ADRESL>>6) );
} // end ReadAdcChannel

void main(void) {
   int adc0, adc1;
   double va0, va1;

   ADCON0 = 0xC1;      // turn on ADC and use internal ADC clk
   ADCON1 = 0x04;      // int.ADC clk, l.justify, AN0+AN1+AN3, Vref=Vdd
   serial_init(95,1);  // 19200 in HSPLL mode, crystal=7.3728 MHz
   printf("Hit any key to read ADCs...");  pcrlf();
   while(1) {
      getch();                   // wait for user to press any key
      adc0 = ReadAdcChannel(0);  // get AN0 value and
      va0 = 5.0*adc0/1024;       //   convert into voltage
      adc1 = ReadAdcChannel(1);  // get AN1 value and
      va1 = 5.0*adc1/1024;       //   convert into voltage
      // give user feedback about results
      printf("AN0=%4d (%1.3fV)  AN1=%4d (%1.3fV)",adc0,va0,adc1,va1);
      pcrlf();
      } // end while
} // end main()

 Vdd

 Vss

 PIC18F242

 RA0/AN0

 RA1/AN1

 0.1μF

10 kΩ
pot

10 kΩ
pot

Optional capacitors reduce noise on ADC channels

Assumes Vdd=5V

Returns correct ADC result in int
data type regardless of ADFM value}

Compile code with “-lf” option because of double in printf
statement.  Normal include files are not shown.

FIGURE 12.10 PIC18 ADC converting two channels.
ON THE CD



Sample Question: What is the smallest voltage that the PIC circuit in Figure 12.10 can
resolve?

Answer: The code in Figure 12.10 initializes the PCFG[3:0] bits to 0b0100,
which configures the PIC ADC to have three ADC channels AN3, AN1, and
AN0 and VREF+ = Vdd and VREF = Vss. If the PIC power supply Vdd = 5
V, the PIC ADC’s resolution is

The ADC conversion process is controlled and started in the ReadAdcChan-
nel(n) routine. This routine expects the desired ADC channel as its input. First, the
ADCON0 register is read into a temporary variable while clearing the channel se-
lect bit field (CHS2:CHS0). The new ADC channel is OR-ed into the temporary
variable and written to ADCON0. The preceding step is careful not to disturb any
other bits that may have been set or cleared by other routines. After the new ADC
channel is selected, the PIC must wait at least 20 μs for the new input voltage to ap-
pear and settle on the internal comparator. This is required because any change in
the ADC channel is very likely to correspond to a change in voltage, and the ADC
input holding capacitor requires time to acquire the new charge and voltage. The
PIC datasheet provide more details, but suffice it to say that any ADC will require
some time to settle when switching channels. Setting the GO/DONE# bit (GODONE =

1) in ADCON0 starts the conversion process on the new voltage. The GO/DONE#
bit also serves as a flag and remains high until the ADC is done. When GO/DONE#
is cleared , the 10-bit ADC result is read into a 16-bit int data type and returned to
the caller. Of course, the function ReadAdcChannel() could be modified to return ei-
ther left- or right-justified ADC results, but the function in Figure 12.10 is more
general with little performance and space penalty.

Figure 12.11 shows a sample of the terminal output when using the circuit and
code in Figure 12.10. Your results will be different because it is unlikely that you can
mimic exactly the pot positions used to create Figure 12.11. Try connecting a digi-
tal voltmeter to the RA0/AN0 and RA1/AN1 pins on the PIC. The voltmeter read-
ings will not match those computed by the PIC exactly. The voltages should be
close, but will differ due to noise on the ADC lines and reference voltage differences
in the voltmeter and PIC’s ADC. 

Note the changes in the ADC results on the last few readings in Figure 12.11.
These reading were taken without adjusting the potentiometer settings. Recall that
the ADC step size is very small, approximately 5 mV. The difference in readings is
likely due to noise and dynamic comparator bias in the PIC ADC. It is very easy for
these types of errors to be larger than 5 mV; therefore, ADC results are rarely “con-
stant” when the step sizes are so small. Finally, the 10-bit ADC result is typically too
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fine for use with many lower cost potentiometers. The low-cost pots, especially the
“one-turn” pots, cannot generate voltages accurately enough for 10-bit conversion.
The upper 8 bits (ADRESH when ADFM = 0 for right justification) of the ADC
result is usually sufficient for these potentiometers.

The code in Figure 12.10 polled the ADC’s status bit via the statement
while(GODONE){} to wait on the ADC to complete the conversion. This method,
while effective, is inefficient. A more efficient use of the processor’s power is to be
doing computations while the ADC is converting the channel. The code in Figure
12.12 uses the ADC circuit in Figure 12.10 and produces output similar to Figure
12.11. The major difference is that the main() routine can do useful work while the
ADC conversion process is ongoing because an interrupt is used for returning 
the ADC value. If the portion of main() after the call to StartAdcCycle() is complex, the
ADC result is ready for use when the main() reaches the printf() statement. While
this example is a bit contrived, ADC completion interrupts are powerful when used
in concert with timers. We will explore how timers and data converters work to-
gether later in this chapter and also in Chapter 14, “Capstone: Audio Sampling,
Monitoring System, and Autonomous Robot,” which contains an example of using
the PIC18 ADC and timers to sample voice input.
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turn AN1 pot while pressing a key}
turn AN0 pot while pressing a key}
turn AN1 pot while pressing a key}
pressing a key repeatedly without
turning potentiometers}

FIGURE 12.11 Sample terminal output for ADC example.



12.5 DIGITAL-TO-ANALOG CONVERSION

Just as there are many different ways to convert an analog quantity to a digital code
in an ADC, designers have invented many ingenious methods to convert a digital
code back into an analog signal in DACs. Since DACs perform the complementary
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#define ADC_AN0  0
#define ADC_AN1  1
#define ADC_IDLE 255
volatile unsigned char AdcState;
volatile int  adc0, adc1;

void interrupt pic_isr(void) {
  unsigned char temp;
  if (ADIF) {
    ADIF = 0;
    switch (AdcState) {
      case ADC_AN0:
        adc0 = (ADRESH << 8) | ADRESL; // get AN0 result from ADC
        temp = ADCON0 & 0xC1; // clear bits except ADCS1:ASCS0 and ADON
        ADCON0 = temp | 0x08; // select AN1 on RA1 (for next ADC op)
        AdcState = ADC_IDLE;  // goto IDLE state so main() will continue
        break;
      case ADC_AN1:
        adc1 = (ADRESH << 8) | ADRESL;  // get AN1 result from ADC
        temp = ADCON0 & 0xC1; // clear bits except ADCS1:ASCS0 and ADON
        ADCON0 = temp;        // select AN0 on RA0 (for next ADC op)
        AdcState = ADC_IDLE;  // goto IDLE state so main() will continue
        break;
     } // end switch
  } // end if
} // end pic_isr()
void StartAdcCycle(unsigned char c) {
  AdcState = c; GODONE = 1;
} // end StartAdcCycle()

void main(void) {
  double va0, va1;
  ADCON0 = 0xC1;          // turn on ADC and use internal ADC clk
  ADCON1 = 0x84;          // int.ADC clk, R.justify, AN0+AN1+AN3, Vref=Vdd
  serial_init(95,1);      // 19200 in HSPLL mode, crystal=7.3728 MHz
  AdcState = ADC_IDLE;
  IPEN = 0; ADIE = 1; PEIE = 1; GIE = 1;
  printf("Hit any key to read ADCs...");  pcrlf();
  while(1) {
   c = getch();
   StartAdcCycle(ADC_AN0);
   printf("AN0=");
   while (AdcState != ADC_IDLE);
   va0 = 5.0 * adc0/1024;
   StartAdcCycle(ADC_AN1);
   printf("%4d (%1.3fV) and AN1=",adc0,va0);
   while (AdcState != ADC_IDLE);
   va1 = 5.0 * adc1/1024;
   printf("%4d (%1.3fV)",adc1,va1);  pcrlf();
  } // end while
} // end main()

Wait here until user presses a key

Kick off AN0 conversion and start printing to screen

Wait here until ADC finishes (just in case)

Use ADC  result and start ADC again
ADC works while results print to screen

}

}
Wait here until ADC finishes (just in case)

finish printing and wait for next key}

enable ADC interrupts

Compile code with “-lf” option because of double in printf
statement.  Normal include statements not shown.

Set AdcState to signal to main() that
the ADC is in use, then start the ADC
conversion process
}

Check if ADC completion interrupt is the reason we’re here.
If so, clear the flag, and check the software state to see which
ADC has just finished its conversion.

}

used by main() and pic_isr, so make global
and denote as volatile}

FIGURE 12.12 ADC example using ADC completion interrupts.
ON THE CD



operation of ADCs, these two data converters have much in common. Like ADCs,
the digital codes accepted by DACs follow many different coding schemes, although
unsigned and signed binary representations are the most popular. Furthermore,
digital codes are provided to the DAC via many different communication proto-
cols—fully parallel, serially via nibble-wide parallel transfers, and bit serial, includ-
ing I2C, SPI, and many others. Also like ADCs, DACs exist that create different
analog quantities for their output, but the most common is the voltage output
DAC.

Like the ADCs, DACs are also characterized by a huge number of parameters.
Many of the DAC parameters have the same names as the ADC parameters. How-
ever, the DAC parameters have a slightly different meaning as the two devices per-
form complimentary functions. A DAC’s precision is the number of output levels
that the DAC can create. Like the ADC, DAC precision is represented as the num-
ber of output levels or the number of bits required to encode the number of output
levels. DAC resolution is the smallest distinguishable change in the output, and rep-
resents the change in output from a ±1 LSb change in DAC input. The DAC range
is the total span over which DAC outputs can occur. DAC range can be computed
through the DAC’s reference inputs; for example, range = (VREF+ VREF-) for a
voltage DAC. Obviously, the DAC has digital inputs so it must have a digital clock
input to signal when the input sample data is valid. The time between each DAC
conversion is the DAC’s period, and is almost always the same as the ADC’s sample
period. Assuming that our DAC in Figure 12.1 is an n-bit voltage output DAC with
reference voltages VREF+ and VREF-, the DAC output y(t) is shown in Equation 12.2.

(12.2)

Although most DACs strive to create the input-output characteristic of Equa-
tion 12.2, the methods by which they achieve these results and the circuits they use
vary widely. Each approach has advantages and disadvantages. You are encouraged
to read about some of the other DAC architectures such as interpolating, charge
sharing, current steering, and delta-sigma DACs. In this chapter, we will examine a
DAC popular in small microprocessor applications: the flash DAC. A second DAC
architecture, called a pulse-width modulation (PWM) DAC, is covered in Chapter
13 in conjunction with the timer discussion.
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Sample Question: What is the voltage represented by an ideal 4-bit DAC with input 0xC
and VREF = 0 V and VREF+ = 4 V?

Answer: The DAC has a precision of 24 = 16 levels, and a range of (4 V 0
V) = 4 V. The DAC input 0xC, or 12, will generate an output voltage of

Compare the reconstructed DAC result here with the ADC examples earlier in
this chapter. The ADC input voltage 3.14159 V is converted to a 4-bit digital value
0xC. A 4-bit DAC using the same reference voltages converts the digital sample
back into the voltage 3.0 V. The difference between the two voltages (e.g., 0.14159
V) is the quantization error. If we need voltage measurements that are more accu-
rate, we would need to use an ADC and DAC with more precision.

Flash DACs

A flash digital-to-analog converter, sometimes called a parallel DAC, is character-
ized by its capability to generate an output within a single clock cycle. The speed of
a flash DAC is achieved by the parallel generation of a set of fixed references. The
set of references is complete;  they are capable of constructing all of the possible
DAC output values. Thus, any desired voltage output can be created nearly in-
stantly, making flash DACs very fast. There are many different ways to go about
creating these reference voltages and this gives rise to different flash DAC architec-
tures. We will examine two closely related flash DACs: the resistor string and resis-
tor ladder flash DACs. 

Resistor String Flash DACs

Resistor string digital-to-analog converters use a resistor voltage divider network,
connected between two reference voltages, to generate a complete set of output
voltages. Each voltage divider tap in the resistor string corresponds to a DAC input
code. An n-bit resistor string flash DAC uses at least 2n resistors. Some designs use
additional resistors to create more accurate reference voltages, or voltages that cor-
respond to rounded rather than truncated code values. Switches, controlled by the
DAC’s digital input, select the appropriate reference voltage to connect to the DAC
output.

Resistor string DACs are available with many different input code word
lengths. As an example, let’s consider a 3-bit resistor string flash DAC architecture
like the one in Figure 12.13. The resistor string divides the DAC reference voltage,
VREF , into 23 = 8 equally spaced voltages, V0, V1, … , V7. The DAC architecture in
Figure 2(a) uses 23 = 8 switches to connect the appropriate voltage to the DAC
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output, Vo. The switch control signals, S0, S1, … , S7 are generated by a 3:8 decoder,
which is not shown in Figure 12.13. As the number of bits in the DAC’s input code
increases, more and more switches are connected to the DAC’s output Vo. This in-
creases the capacitance at the DAC output node, making the DAC slower and lim-
iting its maximum operating frequency. 

An alternative resistor string DAC architecture in Figure 12.13(b) arranges the
switches into a binary tree structure. This architecture does not need the dedicated
3:8 decoder. Decoding is inherent in the binary tree arrangement of the switches
that are controlled by the DAC’s digital input code bits, X0, X1, X2, and their com-
plements, ~X0, ~X1, ~X2. Furthermore, parasitic capacitance at the DAC output is
reduced and operating speeds increased since the output is connected to fewer
switches than the DAC in Figure 12.13(a).

A major disadvantage of both resistor string flash DACs in Figure 12.11 is the
stringent voltage string resistor matching requirements. Since the DAC voltage di-
vision determines output voltages, each resistor must be almost perfect or every ref-
erence voltage will be incorrect. The number of resistors needed for larger DACs
(e.g., eight or more bits), and the limitations of VLSI fabrication technology make
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FIGURE 12.13 Resistor string flash DAC architecture.



it difficult to create so many accurate and small resistors at an affordable price. An-
other disadvantage of the DACs in Figure 12.13 is their inability to drive a load
without a buffer. If the DAC’s load, which can be modeled as a resistor, draws
much current, a current divider circuit is created. The DAC load will siphon cur-
rent out of the voltage divider string and cause the voltages below the connection
point to become inaccurate. The voltage follower shown in Figure 12.13(a) creates
a copy of Vo at Vf without drawing much current from the resistor string (a voltage
follower would also be used with the architecture of Figure 12.13(b). Yet another
disadvantage is power consumption. Since current is always flowing through the
voltage divider, power is constantly being dissipated. Although the resistor value, R,
can be increased to reduce power losses, larger resistors occupy more chip area. 

In spite of these disadvantages, resistor string DACs are attractive because they
guarantee monotonicity—the property that an increase in the DAC digital input
code causes an increase in the DAC’s analog output. Finally, the resistor string
DACs in Figure 12.13 can be very fast because of the parallel nature of their design.
Conversion speed is limited by the decoder speed (if present), switch speeds, and
settling time and slew rate of any output amplifiers. Therefore, resistor string DACs
are used in many high bandwidth applications such as digital video, RADAR, and
communications.

R-2R Resistor Ladder Flash DAC

Another DAC related to the resistor string flash DAC is the R-2R resistor ladder
flash DAC. The R-2R resistor ladder DAC also uses voltage division to generate the
DAC’s output voltage, but does so in a clever way that uses many fewer resistors
than the resistor string DAC. Instead of generating all possible voltage outputs, the
resistor ladder DAC effectively rearranges its voltage divider network based on the
DAC’s digital input code. An n-bit R-2R resistor ladder flash DAC uses at least 2n
resistors and n switches. You can see that the resistor ladder DAC uses a much
smaller number of components than the same size resistor string flash DAC, espe-
cially as the DAC input code word length n gets large. The DAC’s digital input code
bits control switches that make connections between resistors and virtually re-
arrange the resistor ladder network to form the DAC’s output voltage. The R-2R re-
sistor ladder flash DAC is especially well suited for use with a small microprocessor
like the PIC18.

Just like all of the data converters that we have already examined, the resistor
ladder DAC comes in many different word lengths. For discussion, let’s look at the
4-bit R-2R resistor ladder DAC in Figure 12.14. This resistor ladder DAC uses four
switches, three resistors of R ohms, and five resistors of 2R ohms. The four switches
connect the appropriate power supply voltage to the 2R resistors. 
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The high supply voltage Vdd is connected to each 2R resistor if the corre-
sponding digital input code bit, X0, X1, X2, or X3, is “1”. Otherwise, if the digital
input code bit is “0”, the lower supply voltage, usually ground, is connected to the
appropriate 2R resistor. While not obvious right now, the switch states will create
an output voltage that is proportional to the digital input code. Like the resistor
string DACs in Figure 12.13, the resistor ladder DAC in Figure 12.14 usually re-
quires a voltage follower to prevent excessive current siphoning from the ladder
that would cause voltage output errors.

To see how the resistor ladder DAC works, let’s consider a few examples. Con-
sider the case when the 4-bit input code X3 X2 X1 X0 is 0b0000. Since all four input
bits are “0”, each 2R resistor is connected to the lower supply voltage—ground in
this example. The resistor ladder in Figure 12.15a has been redrawn to emphasize
this fact. Obviously, the output voltage Vo must be 0 V since there is no other volt-
age source in the circuit.

Now, consider the case when the input code is 0b1000 (8). Figure 12.15(b)
shows the equivalent circuit when the input is 0b1000. Applying voltage division re-
peatedly, it is found that Vo is VREF/2. When the input code is 0b0001 (1) in Figure
12.15c, repeated application of voltage division gives Vo = VREF/16. When the
input code is 0b0010 (2) as shown in Figure 12.15d, we see that Vo = VREF/8. Since
the R-2R resistor ladder DAC uses only linear resistors, the superposition theory ap-
plies. Superposition says that we can find a system’s response to several inputs by
simply adding up the individual output responses to each input acting alone.
Therefore, if the R-2R resistor ladder DAC in Figure 12.14 has more than one
switch connected to VREF, we can find Vo by summing the appropriate individual
responses in Figure 12.15. For example, if the input code is 0b1001, the resistor lad-
der output voltage Vo is the sum of the responses at Vo for the two individual cases
when the sources act alone. So, we find that Vo =VREF/2 + VREF/16 = 9 VREF/16.
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FIGURE 12.14 R-2R resistor ladder flash DAC architecture.



To generalize this result to an n-bit resistor ladder DAC, we find that for a digital
input code of X, the resistor ladder output voltage Vo is (X/2n) VREF, which is the
desired result. The resistor ladder DAC generates an output voltage that is linearly
proportional to the digital input code.

The resistor ladder DAC circuit in Figure 12.14 is actually much simpler to put
into practice than it first appears. Switches and voltage supplies are not really
needed because the PIC18 conveniently provides these in the form of IO port pins.
When the PIC18 is driving a “1” from one of its IO pins, it is connecting that pin
to the PIC18’s internal Vdd. When the PIC18 is pulling down, or driving, its IO pin
to “0”, the PIC18 is really connecting that IO pin to its internal ground. Therefore,
the PIC18 IO pins can be used to replace the switches, Vdd, and ground connec-
tions in Figure 12.14. Therefore, the PIC18 can very easily build an 8-bit R-2R 
resistor ladder flash DAC with 16 resistors as shown in Figure 12.16. Simply 
writing the digital code X to PORTB will create the voltage (X/256)Vdd at Vo. The
resulting voltage is based on Vdd because the PIC18’s Vdd is our resistor ladder
DAC’s VREF. Of course, other PIC18 IO ports can be used instead of PORTB, and
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the DAC input word can be shorter or longer depending on the application. But be-
ware: whenever you split the DAC input word across several IO ports, it will take
several PIC18 instruction cycles to update the entire DAC value. During this time,
the DAC output voltage will likely be grossly incorrect.

#include <pic18.h>
volatile unsigned char    iper, iamp;
unsigned char   idx;
const  unsigned char sinetbl[] = {127,133,139,146,152,158,164,170,176,181, \
  187,192,198,203,208,212,217,221,225,229,233,236,239,242,244,247,249,250, \
  252,253,253,254,254,254,253,253,252,250,249,247,244,242,239,236,233,229, \
  225,221,217,212,208,203,198,192,187,181,176,170,164,158,152,146,139,133, \
  127,121,115,108,102,96,90,84,78,73,67,62,56,51,46,42,37,33,29,25,21,18, \
  15,12,10,7,5,4,2,1,1,0,0,0,1,1,2,4,5,7,10,12,15,18,21,25,29,33,37,42,46, \
  51,56,62,67,73,78,84,90,96,102,108,115,121 };

void interrupt pic_isr(void) {
  unsigned char temp;
   if (TMR2IF) {
    temp = sinetbl[idx]; // get sine fcn value
    temp >>= iamp;       // reduce amplitude based on AN1 input
    PORTB = temp;        // write new DAC value
    TMR2IF = 0;          // clear IRQ flag
    PR2 = 250-iper;      // change TMR2 period based on AN0 input
    idx++; idx &= 0x7F;  // fix ptr for next update; verify in range
  } // end if
} // end pic_isr

void main(void) {
  int temp;
  TRISB = 0;                      // make PORTB digital outputs
  ADCON0 = 0xC1;  ADCON1 = 0x04;  // ADON,int.ADC clk,AN0+AN1+AN3,Vref=Vdd
  idx = 0; iper = 0; iamp = 0;
  PR2 = 250;  T2CON = 0x04;  TMR2IF = 0;
  IPEN = 0; TMR2IE = 1; PEIE = 1; GIE = 1;
  while(1) {
    temp = ReadAdcChannel(0);
    iper = temp>>3;
    DelayMs(50);
    temp = ReadAdcChannel(1);
    iamp = temp>>8;
    DelayMs(50);
  } // end while
} // end main()

Read AN0 pot; scale to 0-127 range for use as itmr
Wait 50 ms since user interface need not be fast.}
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FIGURE 12.16 Eight-bit R-2R resistor ladder DAC using PIC18’s IO port B. 
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If our DAC’s load is purely capacitive or has a very large resistance, the circuit
in Figure 12.16 works very well. However, the current flowing through the resistor
ladder network is crucial to forming the voltage at Vo. Therefore, the R-2R resistor
ladder DAC cannot be loaded by any circuit element that draws appreciable cur-
rent. If a current drawing load is connected, the load will siphon current out of the
resistor ladder and cause distortion at Vo. To prevent excessive current draw, we
simply attach a voltage follower at Vo, just like the resistor string flash DAC in Fig-
ure 12.14. Furthermore, capacitance can be added to the voltage follower’s feedback
path to create an active low-pass filter to smooth out the jagged stair-step pattern
visible at Vo. The low-pass filter at a DAC’s output is sometimes called a recon-
struction filter by digital signal processing experts.

Figure 12.16 lists code that creates a simple sinusoid function generator with
the PIC18. The potentiometers on AN0 and AN1 control the sinusoid’s frequency
and amplitude, respectively. The PIC’s internal ADC reads the voltage provided by
each pot every 100 ms. The relatively slow update is fine for this kind of user in-
terface function. In operation, the PIC seems to respond instantly to the changes in
potentiometer settings. The code in Figure 12.16 uses Timer2 to create periodic 
interrupts so that the R-2R resistor ladder DAC on PORTB can be written with 
uniform periods between updates. At each Timer2 interrupt, the ISR gets a value
from the sine lookup table. The sine data can be easily replaced with other values so
that the PIC can create any arbitrary waveform like sawtooth and chirp signals. In
fact, the lookup table can easily be changed to represent a single cycle of a saxo-
phone recording making the PIC a simple music synthesizer. The lookup table
sinetbl in Figure 12.16 contains 128 entries. The number of values can be increased
to give the waveform more detail. The const modifier for sinetbl tells the compiler
that this array contains constant data (the array values are not changed), and thus
this data is stored in program memory instead of data memory. This is useful, es-
pecially for large lookup tables, which may not fit in data memory. During each ISR
call, the lookup table value is read into a temporary variable, right shifted based on
the value in iamp for amplitude scaling, and then written to PORTB to update the
waveform via the R-2R DAC. Then, the Timer2 period register PR2 is updated with
a new period based on iper. Larger values of iper reduce the timer’s period. Finally,
the ISR clears the Timer2 interrupt flag and updates the lookup table pointer for the
next call.

During program initialization in Figure 12.16, the Timer2 period is set to 251
instruction cycles (PR2+1 = 250+1 = 251) with 1:1 for prescaler and postscaler
values. The value iper in the program can be any integer value between 0 and 127.
With FOSC = 29.4912 MHz (crystal of 7.3728 MHz and HSPLL option), this
configuration generates a Timer2 interrupt every 34 μs as shown in Equation 12.3.

(12.3)
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When iper = 127 (PR2 = 250 127 = 123), the Timer2 interrupt occurs
every 16.8 μs. Since the lookup table must be accessed 128 times to create a full pe-
riod of the sine waveform, the PIC will generate sinusoids with periods between
2.15 ms (Equation 12.4) and 4.35 ms (Equation 12.5).

(12.4)

(12.5)

Therefore, the circuit in Figure 12.16 generates sinusoids with frequencies be-
tween 230 Hz and 465 Hz with waveform amplitudes of Vdd, Vdd/2, Vdd/4, and
Vdd/8 Figure 12.17 shows the signals from PORTB and the DAC’s Vo from the cir-
cuit in Figure 12.16.

12.6 DIGITAL-TO-ANALOG CONVERTER EXAMPLE:
THE MAXIM 518

DACs can be constructed with any of the architectures introduced in the previous
section and numerous other architectures not discussed in this book. DAC archi-
tecture selection is usually application specific. When choosing an external DAC,
several options should be considered; for example,  number and value of external
reference voltages, word length, number of channels, input communication
scheme, and chip package type are just a few. Many of these parameters are 
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FIGURE 12.17 Output of 8-bit R-2R resistor ladder DAC.
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interrelated. If a single channel 24-bit DAC with parallel inputs is chosen, the DAC
package will have at least 28 pins: 1 pin each for Vdd, Vss, Vo, 24 pins for input
data, and 1 pin for input latch or clock. If the DAC supports external reference volt-
ages for the analog output or multiple output channels, the number of package pins
rises quickly.

Parallel port IO pins are usually a microprocessor’s most limited and expensive
resource since a chip package with a few more pins is far more expensive than the
corresponding increase in silicon area costs to support those extra pins. Because
parallel IO pins are so precious, many common external components choose to use
pin-saving schemes for communication like the synchronous serial IO interfaces
SPI and I2C introduced in Chapter 11. In this section, we introduce the Maxim In-
tegrated Products MAX518, a dual 8-bit DAC with an I2C bus interface. With this
chip, we combine our newfound knowledge of I2C and DACs together to create a
PIC circuit with two input ADC channels and three output DAC channels. We use
this circuit to build a simple three-function waveform generator with control of the
frequency and amplitude of the waveforms. The generated waveforms are sinusoid,
square wave, and sawtooth.

The Maxim Integrated Products MAX518 is a dual 8-bit DAC with an I2C bus
interface. Figure 12.18 shows the MAX518 package pin diagram and lists the
MAX518 I2C address and command byte formats. The MAX518 external pins AD0
and AD1 determine the device’s I2C address. The remaining five most significant
device address bits are set internally to 0b01011. Recall from Chapter 11, “Syn-
chronous Serial IO,” that the LSb of the I2C address is the R/W# bit. The I2C mas-
ter can only write to the MAX518, so the LSb of the I2C address is always “0”. After
the I2C master sends a valid MAX518 address, the MAX518 expects at least one
command byte and a data byte.
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RST: Reset bit.  RST=1 resets all DAC registers
PD: Power down bit.  PD=0 normal DAC operation and output
 PD=1 puts MAX518 into shutdown mode (DAC outputs float)
 draws maximum of 20μA supply current
DAC: DAC input register select bit.
 DAC=0 DAC0 latches following data byte
 DAC=1 DAC1 latches following date byte
x: don’t care
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FIGURE 12.18 MAX518 pin diagram and I2C information.
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Figure 12.18 shows the format of the MAX518 command byte. The LSb of the
command byte determines the DAC that latches the data byte that follows the com-
mand byte. The MAX518 DAC output voltage VDAC0 or VDAC1 changes upon the I2C
stop condition. Since the MAX518 is a dual DAC, both DACs can be set in one I2C
transaction composed of the following I2C transfers: start condition, I2C device ad-
dress, command byte, data byte, command byte, data byte, stop condition. In this
case, both DAC outputs change simultaneously upon the I2C stop condition.

Figure 12.19 shows the circuit used to generate the three waveforms. The R-2R
DAC resistor ladder flash DAC connected to PORTB is the same circuit as shown
in Figure 12.16. The code to operate the three-function waveform generator is
shown in Figure 12.20. Much of the code to support the R-2R DAC in Figure 12.20
is the same as the code in Figure 12.16. The 10 k potentiometer circuit in Figure
12.19 is the same as Figure 12.16. New in Figure 12.19 is the MAX518 dual 8-bit
DAC with I2C interface that is connected to the PIC18 via the I2C bus on RC3/SCL
and RC4/SDA pins.

The program begins in main()by initializing the direction of the IO ports as
needed for the R-2R DAC, the A/D converters, and the I2C bus. The I2C functions
introduced in Chapter 11 are used again and the I2C USART is initialized with
i2c_init(14), which in conjunction with the 7.3728 MHz crystal and HSPLL op-
tion yields a 500 kps I2C data rate. This data rate exceeds the design specification
of the MAX518 DAC. The MAX518 is limited to a maximum 400 kbps data rate.
It is not recommended that you design products outside of the manufacturer’s
specifications. In the MAX518 chips tested in our labs, the higher data rate was 
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handled with no problem. The higher I2C data allows us to generate our sampled
waveforms at higher frequencies.
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#include <pic18.h>
#include "i2cmsu.c"

volatile unsigned char    itmr, iamp, doAdc;
unsigned char    idx, cnt;

void interrupt pic_isr(void) {
  unsigned char temp0, temp1;

  if (TMR2IF) {
    TMR2IF = 0;
    temp0 = sinetbl[idx];
    temp0 >>= iamp;
    PORTB = temp0;
    if (idx & 0x40)
      temp0=(0xFF>>iamp);
    else
      temp0=0;
    temp1 = idx<<1;
    temp1>>=iamp;
    WriteMAX518(temp0,temp1);
    idx++; idx+=itmr; idx&=0x7F;
    if (++cnt == 0) doAdc=1;
  } // end if
} // end pic_isr

void WriteMAX518(unsigned char c0, unsigned char c1) {
  i2c_start(); i2c_put(0x58); i2c_put(0x00); i2c_put(c0);
  i2c_put(0x01); i2c_put(c1); i2c_stop();
} // end WriteMAX518

void main(void) {
  int  temp;

  ADCON0=0xC1; ADCON1=0x84;    // int. ADC clk, AN0+AN1+AN3, Vref=Vdd
  idx=0; cnt=0; itmr=0; iamp=0; doAdc=0;
  i2c_init(14);
  PR2 = 245;
  T2CON = 0x24;
  TMR2IF = 0; IPEN = 0; TMR2IE = 1; PEIE = 1; GIE = 1;
  while(1) {
    doAdc=0;
    while (doAdc==0);
    temp = ReadAdcChannel(0);
    itmr = temp>>5;
    doAdc=0;
    while (doAdc==0);
    temp = ReadAdcChannel(1);
    iamp = temp>>8;
  } // end while
} // end main()

sinetbl[] is same lookup table used in Figure 12.
reduce amplitude by right shifting; send to R-2R DAC}

send square and sawtooth wave data to DACs

generate sawtooth from idx2
reduce amplitude by right shifting based on iamp}

Read the AN0 ADC every 512 TMR2 interrupts
Divide AN0 value by 32 to make 0 <= itmr <= 31}

generate 0 or 255 square wave based on idx2
reduce amplitude by right shifting based on iamp}

signal main() that it is time to read ADCs

update ptr for next sample; simulate faster
waveforms by increasing ptr by itmr}

send c0 and c1 to
MAX518’s DAC0 and
DAC1 via I2C}

Read the AN1 ADC every 512 TMR2 interrupts
Divide AN1 value by 128 to make 0 <= iamp <= 7}

500 Kbps datarate on I2C bus (may not work for all MAX518s)
set TMR2 to overflow every (245+1)*5=1230 instruction cycles (~6000 Hz)}

see I2C routines and synchronous serial IO in Chapter 11

FIGURE 12.20 Three-function waveform generator code.
ON THE CD



After the I2C bus is initialized via the SPCON1 configuration register to be the
I2C master, the Timer2 periodic interrupt is configured by setting PR2 = 245, the
Timer2 prescaler to 1, and the postscaler to 1:5. With the HSPLL option and a
7.3728 MHz crystal, this produces a sample frequency of 5994 Hz (period is ~167
μs). At this point, it should be mentioned that the code in Figure 12.16 and Figure
12.20 both use Timer2 interrupts. However, the systems use Timer2 very differ-
ently. In Figure 12.16, the period pot adjusts the PR2 register at every Timer2 over-
flow. In this way, the period of Timer2 is reduced based on the analog voltage on
AN0. While this generates a very smooth waveform, the system in Figure 12.16 is
somewhat unusual in that the waveform samples are produced with a time-varying
sampling interval. Most sampled data systems assume and operate with a uniform
time period between sample values that does not change over time. This is precisely
the approach taken by the circuit in Figure 12.19 and code in Figure 12.20. In this
case, Figure 12.20 uses a sample rate of approximately 6 kHz, and this sampling
frequency remains constant regardless of the desired output waveform frequency.
To get the appearance of variable frequency waveforms, the Timer2 interrupt ser-
vice routines must “skip” through the waveform data tables by varying amounts de-
pending on the frequency pot voltage present on AN0.

Upon the periodic Timer2 interrupt, the PIC “services” the three DACs and
prepares for the next sample generation. Examine the Timer2 service routine in
Figure 12.20. The variable temp0 is loaded with the needed value from the sinusoid
lookup table via the lookup table pointer idx. The sinusoid value is right shifted (di-
vided) by iamp if necessary. The value in iamp depends on the pot on AN0, as we
shall soon see. The amplitude-adjusted sinusoid value is written to PORTB, and the
R-2R generates the corresponding analog voltage. Next, the Timer2 ISR computes
the square wave output value. If the lookup table pointer idx has its 7th bit set, the
waveform is in its upper half of its period. If the lookup table pointer idx has its 7th

bit cleared, the waveform is in the lower half-period. Using this test, the Timer2 ISR
creates a full-scale square wave output with a sample values 0xFF and 0x00. Like the
sinusoid waveform, the variable iamp is used to reduce the amplitude of the square
wave sample value. Finally, the lookup table pointer idx itself is used as the saw-
tooth waveform data. Just like the sine and square waveforms, the sawtooth wave
value is reduced by iamp too. The square wave and sawtooth waveform data values
are sent to the MAX518 via the WriteMAX518() function. At this point in the Timer2
ISR, the waveform table pointer idx is updated in anticipation of the next sample
instant, by incrementing idx to the next table value and possibly adding another
variable increment based on the potentiometer connected to AN1.  The counter cnt
is used to set the doAdc flag every 256 Timer2 interrupts, regardless of the DAC
waveform outputs and their frequency. The doAdc flag alerts the code in main() to
sample the potentiometers on AN0 and AN1. 
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In Chapter 11, we saw that each I2C transfer requires that the I2C slave device
address be transmitted after the start bit. Referring to the MAX518 datasheet and
Figure 12.19 where the MAX518 address lines are grounded, it can be seen that the
I2C address of our MAX518 is 0x58. After our MAX518 sees its address on the I2C
bus, it acknowledges the I2C master (the PIC18), and waits for the command byte.
The MAX518 data sheet specifies that the command byte “0x00” signals the
MAX518 that data is about to be written to the DAC0 data register. Similarly, the
command byte “0x01” signals the MAX518 that data is about to be written to the
DAC1 data register. After the MAX518 command byte is written, the appropriate
DAC data is sent over the I2C bus. The MAX518 supports writing both DAC data
registers in a single I2C transfer of 5 bytes: I2C address, command to write one
DAC, the DAC data, command to write the other DAC, DAC data. An operation of
this form updates both MAX518 DACs simultaneously when the master sends the
I2C stop condition. This I2C sequence has been combined into one function
WriteMAX518(c1,c2). This function requires arguments of the two unsigned bytes
containing the DAC0 and DAC1 data. Figure 12.21 shows three complete I2C trans-
actions near the end of the idx period. Note how the DAC output does not change
until the PIC issues the I2C stop. Using the 500 kbps I2C data rate specified in Fig-
ure 12.20 and the circuit in Figure 12.19, we measured that a WriteMAX518(c1,c2)
transfer requires approximately 125 μs. 

The main() in Figure 12.20 is slightly different from the example given in Fig-
ure 12.16. The main is still the familiar infinite loop. However, instead of reading
the two ADC channels after 50 ms delays, the main() in Figure 12.20 reads each
ADC only when doADC flag is 1. The doADC flag is set in the Timer2 ISR as discussed
earlier. The result is right shifted to reduce the value of the result and places it in an
appropriate range for iamp and iper. With a Timer2 interrupt period of 167 μs and
two ADC channels, the amplitude pot and the period pot will each be sampled
every 512 Timer2 interrupts (512*167 μs = 85.5 ms) since the doAdc flag is
checked twice within the while(1){} loop, once for each pot. This means that the
pots are sampled at a much slower rate than the DAC generation of waveform 
samples. This is sufficient, as the human-machine interface changes relatively
slowly. Even at this low sampling frequency (11.7 Hz), the user interface feels very
responsive.



SUMMARY

With the ever-dropping cost of microprocessors, we are embedding digital com-
puters into nearly every conceivable application. However, these digital computers
must ultimately communicate with the “real world,” which is an analog environ-
ment. Data conversion with ADCs and DACs is done in nearly every microproces-
sor system that interfaces with other systems, especially other systems that involve
people. The data conversion devices are so useful that many embedded micro-
processors include built-in ADCs and/or DACs. An ADC gives the microprocessor
the capability to understand and operate on analog values generated by people, sen-
sors, or other systems. A DAC allows microprocessors to use its digital processing
to create or re-create analog values that people, sensors, or other systems can un-
derstand. Even if a microprocessor does not have a built-in or suitable ADC or
DAC, an external data converter can be acquired and connected to the micro-
processor via a direct parallel connection, an address/data bus, or a serial commu-
nications scheme. 
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FIGURE 12.21 Three-function waveform generator operation.



REVIEW PROBLEMS

1. How many bits are required to represent a waveform in 4000 discrete 
levels?

2. How many different input voltages could you detect with a 24-bit ADC?
3. An audio CD can contain 80 minutes of stereo (two independent) audio

tracks. Each track is sampled with 16-bit samples at 44.1 kHz. How much
audio information, in bytes, is stored on an audio CD?

4. What is the data throughput (in MB/sec) of the audio CD in Problem 3 (in
this context, 1 MB/sec = 106 B/sec)?

5. Still and movie images are often represented by an 8-bit value for each
color component, red, green, and blue. How many different colors can be
encoded?

6. An HDTV screen contains 1920x1080 pixels, with each RGB component
represented by 8 bits of precision. Motion playback is 30 frames per sec-
ond. How much storage is required to store the average two-hour movie?
What is the data throughput during HDTV playback?

7. Assume a 4-bit successive approximation A/D with VREF+ = 4 V and VREF-

= 0 V. Trace the steps for producing a 4-bit output code if the input volt-
age is 1.8 V.

8. For an 8-bit flash ADC, how many comparators are needed? How many re-
sistors are needed?

9. A 3-bit flash A/D has seven comparators, and each comparator output can
be either 0 or 1. Assume a Vref+ = 4 V, Vref = Vss. What is the 7-bit out-
put of these comparators if the input voltage is 2.7 V? Give the 7-bit value
in binary, with the LSb the comparator output with the smallest reference
input and the MSb the comparator with the highest reference input.

10. How many clock cycles would you expect a 12-bit successive approxima-
tion A/D to require for a conversion?

11. The Vdd power supply is usually not used as a reference voltage for preci-
sion A/D measurements, as it varies with current load and temperature.
The National Semiconductor LM4040AIZ is a component that provides a
stable 4.096 V voltage reference with an accuracy of ±0.1 %. What voltage
values does this ±0.1 % correspond to? How does this voltage translate
into a percentage of 1 LSb of the 10-bit value produced by the PIC18 using
the LM4040AIZ as a VREF+ value (assume VREF = 0 V)?

12. For the PIC18, assume an FOSC of 40 MHz. Using Figure 12.8, what
FOSC configurations cannot be used because they violate the minimum
A/D clock period of 1.6 μs?
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13. An 8-bit ADC has a lower reference voltage of 0 V and an upper reference
voltage of 5 V. What output code corresponds to 0.449 V?  To 3.91 V?  

14. Repeat the previous problem for a 10-bit A/D and an upper reference volt-
age of 4.096 V.

15. An 8-bit DAC has a lower reference voltage of 0 V and an upper reference
voltage of 5 V. What is the output voltage for codes of  0x7F? 0x4B? 0xCB?

16. Repeat the previous problem for a 10-bit DAC and an upper reference
voltage of 4.096 V.

17. What is the principle advantage of a flash ADC architecture over a succes-
sive approximation ADC architecture? What is the principle disadvantage?

18. The Maxim Integrated Products MAX517 is similar to the MAX518 intro-
duced in this chapter, except that the MAX517 generates only one analog
output voltage. The MAX517 package pinout is identical to the MAX518
except that the MAX517 has a DAC voltage reference input instead of the
MAX518 OUT1 pin. In fact, the MAX517 DAC allows the DAC reference
voltage to change. This kind of DAC is called a “multiplying” DAC because
it appears to multiply the DAC reference voltage by the fraction repre-
sented by the DAC digital input code. Use an 8-bit MAX517 and a R-2R re-
sistor ladder DAC to construct a system to recreate the results in Figure
12.17, but do not truncate the sine waveform samples.

19. The National Semiconductor LM34 is a precision Fahrenheit temperature
sensor. The LM34 produces an output voltage that is linear and equal to 10
mV/ºF. The LM34 is accurate up to 300ºF. If your PIC18 is using internal
ADC references and Vdd = 5 V, determine the precision in ºF of your mea-
surements.

20. Write a function that reads the LM34 on an arbitrary PIC18 ADC channel
and returns the temperature to the calling routine in a double data type.

21. How many bits of resolution are required for an ADC to measure the
LM34 temperature between 0ºF and 120ºF with a precision of 0.25ºF?

22. The LM34 is very useful for measuring ambient room temperatures. How-
ever, its 10 mV/ºF scale means that the most common room temperatures
correspond to low voltages assuming an ADC Vref = 5 V. Design a single
circuit using the PIC18’s internal ADC and a R-2R resistor ladder DAC
that can measure ambient room temperatures between (i) 0ºF and 120ºF
with a precision of 0.25ºF, (ii) 0ºF and 90ºF with a precision of 0.2ºF, (iii)
0ºF and 60ºF with a precision of 0.15ºF, and (iv) 0ºF and 30ºF with a pre-
cision of 0.10ºF.

23. Write C code that will configure the PIC18 ADC module for left justifica-
tion, AN2, AN1 as analog inputs, AN3 as VREF+, and Vss as VREF–. Use
the internal FOSC clock, and configure the A/D clock such that it meets the
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minimum clock period constraint of 1.6 μs assuming FOSC = 12 MHz
(use the fastest internal clock choice that meets this constraint).

24. Write a function called char analog_sum() that performs a conversion on
two analog inputs (AN2, AN1) and returns the sum of these values as a
char value. Do not let the sum exceed 255 (0xFF) (Hint: You will need to
use an unsigned int variable to hold the sum, and then clip this to 255).
When changing A/D channels, use the DelayUs() function to delay 20 μs to
give the A/D input a chance to settle. Since you don’t know how often this
function will be called, use this delay before starting each conversion.
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Timers13

U
se of the Timer2 subsystem for periodic interrupt generation was previ-
ously discussed in Chapters 10 and 12. However, this only scratches the sur-
face of the capabilities and application of the PIC18 timer subsystems. This

chapter discusses the use of PIC18 timers for time measurement, waveform gener-
ation, and pulse width modulation. Example applications include biphase wave-
form decoding for infrared reception and DC motor control.

13.1 LEARNING OBJECTIVES

After reading this chapter, you will be able to:

Discuss the specifics of the Timer0, Timer1, Timer2, and Timer3 subsystems.

In This Chapter

The Timer0 Subsystem
The Timer1 and Timer3 Subsystems
Pulse Width Measurement Using Capture Mode
Timer1/Timer3 Compare Mode
Using Capture Mode for Infrared Decoding
Timer2 and Pulse Width Modulation
Using Capture Mode for Frequency Measurement



Use the capture subsystem to perform precise time measurements of external
events.
Use the PIC18 timer subsystem to decode an infrared receiver’s output signal
that is either space-width encoded or biphase encoded.
Use the pulse width modulation capability of the PIC18 timer subsystem to
generate square waves with varying duty cycles and periods, which can be used
to control the brightness of an external LED or the speed of a DC motor via
pulse width modulation.
Implement a real-time clock using a 32.768 kHz clock source and the PIC18
timer subsystem.

13.2 THE TIMER0 SUBSYSTEM

The Timer0 subsystem seen in Figure 13.1 can function as either an 8-bit or 16-bit
counter/timer as selected by the T08BIT (T0CON[6]) configuration bit. The timer
clock source is selected by the T0CS (T0CON[5]) configuration bit; clearing this bit
selects the internal instruction cycle clock with frequency of FOSC/4. 

Setting T0CS selects the external T0CKI pin as the Timer0 clock source with the
T0SE (T0CON[4]) configuration bit selecting rising or falling edge triggering. A
prescaler can be optionally selected using the PSA (T0CON[3]) configuration bit.
The prescalar has eight values ranging from 256:1 down to 2:1 that is configured via
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FIGURE 13.1 Timer0 subsystem in 16-bit mode.1

1 Figure 13.1 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.



the T0PS2:T0PS0 bits (T0CON[2:0]). The TMR0ON (T0CON[7]) bit is used to
turn Timer0 on or off. Table 13.1 summarizes the configuration bits of the Timer0
control register (T0CON).

The interrupt flag TMR0IF is set when the counter rolls over, which is 0xFF to
0x00 in 8-bit mode or 0xFFFF to 0x0000 in 16-bit mode. When in 16-bit mode, the
TMR0H register is a buffer register for the upper byte of the timer. A read from
TMR0L triggers a copy operation from the upper byte of Timer0 to the TMR0H
register, thus capturing the complete 16-bit timer value. If a buffer register was not
used, a situation could arise in which the timer may be incremented between a read
of the lower byte and a read of the upper byte, possibly causing a change in the
upper byte value and thus producing an invalid 16-bit result. Similarly, a write to
TMR0L triggers a copy operation from the TMR0H to the upper byte of the Timer0
register, thus updating all 16 bits of the Timer0 register simultaneously. This means
that any read operation should read TMR0L first, then TMR0H, while a write op-
eration should write TMR0H first, then write TMR0L. Reading TMR0H first then
TMR0L returns the TMR0H value at the time of the previous TMR0L read, thus re-
turning an incorrect 16-bit value.

C Code Operations on 16-Bit Registers

Listing 13.1 shows options for reading/writing Timer0 in 16-bit mode using C code.
The unsigned int tmr0_tics variable is used to write to Timer0, or as storage for the

Timers 413

Name SFR(bit) Comment

TMR0ON T0CON[7] If “1”, Timer0 on; if “0”, Timer0 off.

T08BIT T0CON[6] If “1”, 8-bit mode; if “0”, 16-bit mode.

T0CS T0CON[5] If “1”, Timer0 clock source is T0CKI pin.

If “0”, Timer0 clock source is instruction cycle clock.

T0SE T0CON[4] If “1”, falling edge triggered on T0CKI.

If “0”, rising edge triggered on T0CKI.

PSA T0CON[3] If “1”, bypass the prescaler; if “0”, use the prescaler.

T0PS2:0 T0CON[2:0] Set prescaler value as:

111 = 1:256; 110 = 1:128; 101 = 1:64; 100 = 1:32

011 = 1:16; 010 = 1:8; 001 = 1:4; 000: 1:2

TABLE 13.1 Bit Definitions for Timer0 Control Register T0CON



Timer0 value. The TMR0 label used on line 2 is defined as an unsigned int at loca-
tion 0xFD6 (TMR0L) by the pic18xx2.h header included during the compilation
process. The TMR0L, TMR0H registers are arranged in little-endian order in mem-
ory (locations 0xFD6, 0xFD7) and the PICC-18 compiler uses little-endian order
for extended precision data types. Thus, the assignment tmr0_tics = TMR0 of line 2
causes the compiler to assign TMR0L to the LSB of tmr0_tics, and TMR0H to the
MSB of tmr0_tics, with the read of TMR0L occurring first. This is what is needed,
because in 16-bit mode a read of TMR0L triggers a copy of the upper byte of
Timer1 into the TMR0H register as discussed earlier. Line 3 shows how a char *ptr
variable can be used to copy the TMR0L, TMR0H values to the LSB, MSB of
tmr0_tics as ptr is initialized to point to tmr0_tics in line 1. Line 4 shows a read of
Timer0 in the incorrect order of TMR0H first, followed by TMR0L. The TMR0H
read returns an old value of the upper byte of Timer1 that was copied at the last ac-
cess of TMR0L. 

LISTING 13.1 Reading/writing TMR0 using C code.

unsigned int tmr0_tics;

char *ptr;

(1) ptr = (char *) &tmr0_tics;       // ptr points to LSB of tmr0_tics

(2) tmr0_tics = TMR0;                // this works for read

(3) *ptr = TMR0L; *(ptr+1) = TMR0H;  // also works for read

(4) *(ptr+1) = TMR0H, *ptr = TMR0L;  // wrong order for read

(5) TMR0 = tmr0_tics;                // wrong order for write

(6) TMR0H = *(ptr+1); TMR0L= *ptr;   // correct order for write

(7) TMR0H = (tmr0_tics)>>8; TMR0L= (tmr0_tics & 0xFF);  //ok as well

Be careful—when writing Timer0 if the assignment TMR0 = tmr0_tics is made
as in line 5, the TMR0L is written first followed by TMR0H. This is the wrong
order; the write to TMR0L triggers the copy of the TMR0H value to the 16-bit timer
register, so the value written to TMR0H does not actually get copied to the register.
For a write, the individual TMR0L, TMR0H registers must be used as shown in line
6, with TMR0H written first followed by a write to TMR0L. Line 7 also writes the
Timer0 bytes in the correct order, as the statement TMR0H = tmr0_tics>>8 copies the
MSB of tmr0_tics to TMR0H. The PICC-18 compiler does not implement the right
shift operations; instead, the compiler recognizes that this is simply a transfer of the
tmr0_tics MSB to location TMR0H and generates the appropriate code. 

In general, any PIC18 register pair that consists of high/low bytes is arranged in
little-endian order in memory and the methods of Listing 13.1 can be used to access
them. The 16-bit timers, Timer1 and Timer3, have constraints similar to Timer0
access and are discussed later in this chapter. Two other 16-bit registers covered in
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this chapter are CCP1 (CCP1H:CCP1L) and CCP2 (CCP2H:CCP2L), which do
not have any byte ordering constraints on their access.

Pulse Width Measurement

A fundamental timer application is time measurement between two external
events. In the digital world, an external event is either a rising or falling edge on an
input pin. The time between two edges of the same type (falling-to-falling edge or
rising-to-rising edge) is the period of a square wave, while the time between a ris-
ing-to-falling edge and falling-to-rising edge is high pulse width or low pulse width,
respectively. The basics of event measurement are explored using the setup of Fig-
ure 13.2, in which the goal is to measure the low pulse width produced by activat-
ing a momentary switch.

In this section, the RB0/INT0 input and the Timer0 subsystem is used for pulse
width measurement using the steps shown in Table 13.2.

There are several weaknesses to this proposed scheme as will be discussed
shortly. Equation 13.1 shows how to convert the Timer0 value (TMR0) to elapsed
time, where TOSC is the internal clock period (1/FOSC) and TMR0PRE is the
prescaler value. 

Pulse Width = TMR0 * TOSC * 4 * TMR0PRE                     (13.1)

What are the pulse widths, minimum and maximum, that can be measured as
predicted by Equation 13.1? As an example, assume FOSC = 40 MHz (TOSC = 25
ns), 16-bit mode, and TMR0PRE = 1. The minimum pulse width is 1* 25 ns * 4 *

PIC

Pulse Width
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Input
Switch

3. On rising edge interrupt, turn off
Timer0; convert the Timer0 value to the
elasped time from falling edge to 
rising edge.

RB0/INT0

1. Clear Timer0 to start, configure INT0
for falling edge interrupt.
2. On falling edge INT0 interrupt,
turn on Timer0. Configure INT0 for
rising edge interrupt.

Problems: Elapsed timer tics from interrupt to ISR code are
not counted, and overflow of Timer0 is not handled.

Timer0 clocked
by FOSC/4

 10 kΩ

FIGURE 13.2 Pulse width measurement.



1 = 100 ns, while the maximum pulse width is 65535* 25 ns * 4 * 1 =
6,553,500 ns (~ 6.6 ms). The maximum counter value used is 65535, as this
scheme does not handle the case of Timer0 overflow. Can the minimum pulse
width of 100 ns (one instruction cycle) actually be measured using this scheme?
The answer is an emphatic no, as the interrupt latency and ISR code execution that
changes the interrupt mode of INT0 from falling to rising edge triggered requires
several instruction cycles, by which time the rising edge of the pulse has already oc-
curred. Assuming 16-bit mode and TMR0PRE = 256, the minimum pulse width is
1* 25 ns * 4 * 256 = 25,600 ns (25.6 μs), and the maximum pulse width is
65535* 25 ns * 4 * 256 ~ 1.68 s. Observe that increasing the prescaler value
extends the maximum pulse width time at the cost of reduced precision in pulse
width measurement. To extend the maximum pulse width time without sacrificing
precision, timer overflow must be handled, which is discussed in Section 13.4. One
other weakness of this scheme is accuracy. The time from the falling edge to the
timer being turned on by the ISR is not counted as part of the pulse width, while
any timer tics that elapse from the rising edge to the timer being read by the ISR is
erroneously added to the pulse width. 

Do these problems preclude this method from being used for pulse width mea-
surement? The answer depends on the accuracy required by the application. This
method is suitable for the application of Figure 13.2, which is measuring the pulse
width of a human-activated pushbutton switch. However, if precise time measure-
ment of a high-frequency square wave (in the tens to hundreds kHz range) is nec-
essary, a different method must be used as discussed in Section 13.4. For any time
measurement scheme, it is important that the limitations be known so that their
impact can be analyzed in the context of a proposed application.

The C code of Figure 13.3 implements the pulse width measurement scheme of
Figure 13.2. The #define TMR0TIC 1.0/(FOSCQ/4.0)*PRESCALE statement assigns
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Steps

1. Configure INT0 to generate an interrupt on a falling edge. Configure Timer0 to 
be clocked by the internal clock and clear Timer0.

2. If the interrupt service routine is triggered by an INT0 falling edge, start Timer0 
and reconfigure INT0 to be rising edge triggered.

3. If the interrupt service routine is triggered by a rising edge, turn off Timer1 and 
copy the Timer1 value, which represents the elapsed time from the falling edge 
to the rising edge.

TABLE 13.2 Pulse Width Measurement Steps Using Timer0



TMR0TIC the value of one Timer0 tic in seconds; this is used in main() to convert the
Timer0 value to microseconds. A prescale value of 128 is used in this example. 

The timer_isr() ISR in Figure 13.3 implements steps 2 and 3 of Table 13.2.
Within the ISR, the int tmr0_tics variable is used to store the Timer0 value at step
3. The assignment tmr0_tics = TMR0 after the rising edge occurs copies the 16-bit
timer value TMR0H:TMR0L to the tmr0_tics variable in the correct order of
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#define FOSCQ 29491200
#define PRESCALE 128.0
#define TMR0TIC 1.0/(FOSCQ/4.0)*PRESCALE

unsigned int tmr0_tics, msec;
double pulse_width_float;
unsigned long pulse_width;
volatile unsigned char capture_flag;

void interrupt timer_isr(void){
  if (INT0IF) {
    if (!INTEDG0) {
      //seen falling edge, start timer1, change active edge
      TMR0ON = 1; INTEDG0 = 1;  // rising edge interrupt
    } else {
      TMR0ON = 0; // turn off timer
      //read timer0 as 16-bit value
      tmr0_tics = TMR0;
      INT0IE = 0; //disable RB0 Interrupt
      capture_flag = 1;
    }
    INT0IF = 0;
  }
}
main(void){
  serial_init(95,1); // 19200 in HSPLL mode, crystal = 7.3728 MHz
  // init timer0
  T08BIT = 0; // 16-bit mode
  T0CS = 0;   // internal clock
  PSA = 0;    // use prescaler
  T0PS2 = 1;T0PS1 = 1;T0PS0 = 0; // prescaler = 128
  TRISB0= 1;  // RB0 is input
  IPEN = 0; PEIE = 1;  GIE = 1; // enable interrupts
  pcrlf();printf("(Timer0 version) Ready for button mashing!");pcrlf();
  while(1){
    capture_flag = 0;
    TMR0H = 0; // clear timer0, write low byte last
    TMR0L = 0;
    INTEDG0 = 0; // falling edge
    INT0IF = 0;  INT0IE = 1; //RB0 Interrupt
    while(!capture_flag); // wait for capture
    // compute time in microseconds
    pulse_width_float = TMR0TIC * tmr0_tics * 1.0e6;
    msec = (unsigned int)(pulse_width_float/1000.0); //milliseconds
    pulse_width = (long)pulse_width_float;
    //printf ("Switch pressed, timer ticks: %u, pwidth: %lu (us)",
    //      tmr0_tics,pulse_width);   // use with full compiler
    printf ("Switch pressed, timer ticks: %u, pwidth: %u (ms)",
            tmr0_tics,msec);   // use with demo compiler
    pcrlf();
  }
}

Init Timer0, use 
128 prescale

Falling edge,
start timer

}

Wait for pulse width
to be captured by ISR

} Convert Timer0 tics
to microseconds

}

one TMR0 tic in seconds as float

}
Rising edge, stop timer,
read timer value.
TMR0 is declared as an unsigned int
in the pic18xx2.h header file,
so the compiler generates code
that accesses TMR0L first, then 
TMR0H because they are arranged
in little-endian order in memory.

Print pulse width result as Timer0 ticks and milliseconds.
Note: Demo compiler does not support long, float printf formats.

FIGURE 13.3 Code for pulse width measurement using Timer0.
ON THE CD



TMR0L first, then TMR0H as discussed earlier. The capture_flag variable is used
as a semaphore to main() to indicate that a pulse width value has been captured. In
this particular case, the INT0IE bit could have been used as the semaphore (capture
is complete when INT0IE is cleared by the ISR), but the capture_flag variable was
used for clarity purposes.

In main(), Timer0 is configured for 16-bit mode, clocked by the internal clock,
and a prescale value of 128. In the while(1){} loop, the INT0 interrupt is config-
ured for falling edge triggered and then enabled. The while(!capture_flag){} state-
ment waits for the ISR to capture a pulse width that is stored as Timer0 tics in the
tmr0_tics variable. The statement pulse_width_float = TMR0TIC * tmr0_tics *
1.0E6 converts the Timer0 value stored in tmr0_tics to microseconds as a floating-
point number. The assignment of this calculation to a variable of type double is nec-
essary if the compiler is to use floating-point operations for the calculation. The
assignment pulse_width = (long) pulse_width_float converts to this a long inte-
ger (32-bit), as we are not interested in any fractions less than a microsecond. At
this point, the Timer0 value (tmr0_tics) and the pulse width in milliseconds are
printed to the console. Figure 13.4 shows several tests of the pulse width measure-
ment code in Figure 13.3.

Sample Question: Timer0 is useful for generating periodic interrupts with a large period
because of its 16-bit operation and the flexible prescaler (maximum value of 1:256).
Assuming a 10 MHz FOSC and use of the internal clock, what configuration produces an
interrupt with approximately a one-second period?

Answer: With no prescaler, each Timer0 tic is 4/(10 MHz) = 0.4 μs. In 16-
bit mode, the rollover period is 0.4 μs *65536 = 26,214.4 μs. The needed
prescale value for a one-second interrupt period is 1 s/ 26,214.4 μs ~38.
The closest prescaler match is 32, which produces an interrupt with a period
of 26,214.4 μs * 32 ~ 0.84 s.

418 Microprocessors

FIGURE 13.4 Console output of pulse width measurement using Timer0.



Timers 419

13.3 THE TIMER1 AND TIMER3 SUBSYSTEMS

The Timer1 and Timer3 subsystems are 16-bit timers with nearly identical capabil-
ities, and as such this book uses Timer1 to illustrate the common features of the two
timers. The reader is referred to the PIC18 datasheet for Timer3 details. Figure 13.5
shows the Timer1 subsystem configured for 16-bit read/write mode, in which a 16-
bit write is triggered by a write to TMR1L and a 16-bit read is triggered by a read of
TMR1L. This is the same as the 16-bit update mode used by Timer0. 

Two capabilities of Timer1/Timer3 set them apart from the Timer0 subsystem;
the first is the oscillator circuit that enables generation of an external clock via a
crystal. The second feature is the interaction of Timer1/Timer3 with the
capture/compare subsystem, which is discussed in Section 13.4. The T1OSCEN
(T1CON[3]) bit enables the oscillator circuit; if an external clock source is used in-
stead of a crystal, this bit must be cleared. The TMR1CS (T1CON[1]) bit selects the
Timer1 clock source as either the external clock or the internal instruction cycle
clock. The prescaler is set by the T1CKPS1:T1CKP0 (T11CON[5:4]) bits and has
values of 1, 2, 4, and 8. The T1SYNC# (T1CON[2]) bit allows the counter to func-
tion as an asynchronous (external clock not synchronized to internal clocks) or
synchronous counter (external clock synchronized to internal clock). The asyn-
chronous mode is useful for waking the processor from sleep mode on a TMR1IF
interrupt when using an external clock source for Timer1. The CCP
(Capture/Compare/PWM) special event trigger can be used to clear the counter,
and is discussed in Section 13.5. The TMR1IF interrupt flag is set on timer rollover

1
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 Figure redrawn by author from PIC18Fxx2
 datasheet (DS39564B),  Microchip Technology Inc. 

det

FIGURE 13.5 Timer1 subsystem in 16-bit read/write mode.2

2 Figure 13.5 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.



from 0xFFFF to 0x0000. Table 13.3 summarizes the Timer1 configuration bits con-
tained in the T1CON register. 

Why is a second oscillator circuit included for Timer1/Timer3? One common
use of this capability is to provide a clock/calendar function by use of a 32.768 kHz
crystal or external clock source. Observe that 32768 Hz is a power of two (32768 =
215); this means that when the 16-bit Timer1 rolls over from 0xFFFF to 0x0000 the
elapsed time is 216 clock tics, or 216/(215 Hz) = 2 seconds. Figure 13.6 shows C
code that uses Timer1 and an external 32.768 kHz clock to implement simple time
keeping of seconds, minutes, and hours. 
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Name SFR(bit) Comment

RD16 T1CON[7] If “1”, read/write operation is one 16-bit operation.

If “0”; read/write operation is two 8-bit operations.

(For the PICC-18 compiler, use symbol T1RD16 or 
RD16 for Timer1, T3RD16 for Timer3.)

N/A T1CON[6] Unimplemented.

T1CKPS1:0 T1CON[5:4] Set prescaler value as:

11 = 1:8; 10 = 1:4; 01 = 1:2; 00 = 1:1

T1OSCEN T1CON[3] If “1”, oscillator is enabled; if “0” oscillator is shut off.

T1SYNC T1CON[2] If “1”, asynchronous mode (ext. clock 
unsynchronized).

If “0”, synchronous mode (ext. clock synchronized).

This bit is ignored if TMR1CS = 0.

TMR1CS T1CON[1] If “1”, use the external clock input; if “0”, use the 
internal instruction cycle clock.

TMR1ON T1CON[0] If “1”, Timer0 on; if “0”, Timer0 off.

TABLE 13.3 Bit Definitions for Timer1 Control Register T1CON



The ISR is triggered every two seconds by the TMR1IF flag, which then updates
the secs, mins, and hours variables. The external clock is provided by the Dallas
Semiconductor DS32KHz temperature compensated crystal oscillator [16]; using
an external clock source such as this is only necessary if long-term, accurate time-
keeping is needed with minimum variation due to temperature. Alternatively, the
clock can be generated by connecting a 32768 Hz crystal/capacitor network across
the T13CKI, T1OSCI pins. A shortcoming of the code of Figure 13.6 is that the secs
variable is only updated every two seconds. Section 13.5 illustrates an alternate method
using the capture/compare module that updates the secs variable every second.
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// does simple timekeeping, assumes 32.768KHz ext. clk
volatile unsigned char hours, mins, secs,old_secs;
void interrupt timer_isr(void){
  if (TMR1IF) {
    TMR1IF = 0;
    secs = secs + 2;  // seconds
    if (secs == 60) {
      mins++;
      secs = 0;
      if (mins == 60) {
        mins = 0;
        hours++;
        if (hours == 24) hours = 0;
      }
    }
  }
}
main(void){
  // 19200 in HSPLL mode, crystal = 7.3728 MHz
  serial_init(95,1);
  // initialize timer 1
  // prescale by 1
  T1CKPS1 = 0; T1CKPS0 = 0;
  T1OSCEN = 0;  // disable the oscillator
  TMR1CS = 1;  //use external clock
  T1SYNC = 0;  // sync extern clock
  // set T1CKI/RC0 as input
  bitset(TRISC,0);

  pcrlf();
  printf("(2 sec version) Enter hours, mins, secs: ");
  scanf("%d %d %d", &hours, &mins, &secs);
  TMR1IF = 0;   // clear timer 1 interrupt flag
  TMR1IE = 1;   // allow timer 1 interrupts
  TMR1ON = 1;   // enable timer 1
  IPEN = 0;  // priorities disabled
  PEIE = 1;  GIE = 1;

  while(1) {
    while(secs == old_secs);
    old_secs = secs;
    pcrlf();printf(" %d:%d:%d",hours,mins,secs);
  }
}

Initialize timer1}
}Input initial values

for min,hour,sec

Enable timer1 
interrupt}

} With 32768 Hz ext. clock, interrupt
occurs every 2 seconds on overflow
of 16-bit timer1.

Wait for time to change

}Print time

Program output updated every
two seconds.

DS32KHz

Temp. Compensated
Crystal Oscillator

PIC18

T13CKIOUT

32768 Hz

FIGURE 13.6 Simple timekeeping using Timer1.
ON THE CD
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13.4 PULSE WIDTH MEASUREMENT USING CAPTURE MODE

The pulse width measurement scheme of Section 13.2 has an accuracy shortcom-
ing in that time between a falling edge occurrence and the Timer0 being turned on
is not counted as part of the pulse width. Another accuracy problem is that any
timer tics that elapse between a rising edge occurrence and Timer0 being read is in-
correctly counted as part of the pulse width. The capture subsystem solves these
problems by causing an automatic transfer of the timer register contents to a cap-
ture register on occurrence of an event. Figure 13.7 shows the capture subsystem,
which consists of two 16-bit registers named CCPR1 and CCPR2 that can capture
either the Timer1 or Timer3 values. When the CCPx pin is configured as an input,
the capture system can be configured to trigger on either a rising edge or falling
input edge. If the CCPx pin is configured as an output, a write to the port triggers
a capture. 

The CCP1CON/CCP2CON registers configure the capture modes for the
CCP1/CCP2 pins, respectively. Both registers function in the same manner; Table
13.4 gives the bit definitions for the CCP1CON register. The compare and PWM
functions are discussed later in this chapter.
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FIGURE 13.7 Timer1/Timer3 capture.3

3 Figure 13.7 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.
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Figure 13.8 shows the new pulse width measurement scheme using Timer1
and capture mode. Initially, the capture mode is programmed for a falling edge on
the CCP1 pin; once this occurs, the captured Timer1 value in the CCP1RH,
CCP1RL register pair is saved and the capture mode is changed to a rising edge.
After a new timer value is captured by a rising edge on pin CCP1, the difference be-
tween the rising edge timer value and the falling edge timer value represents the pulse
width. Because the timer value is captured immediately by the event occurrence,
there are no “missing” timer tics as occurred with the method used in Section 13.2.

Name SFR(bit) Comment

N/A CCP1CON[7:6] Unimplemented

DC1B1:0 CCP1CON[5:4] Lower 2 bits of 10-bit PWM duty cycle

CCP1M3:0 CCP1CON[3:0] Mode select bits:

0000 = CCP1 module disabled

0001 = Reserved

0010 = Compare mode, toggle output on match, 
set CCP1IF bit

0011 = Reserved

0100 = Capture mode, every falling edge

0101 = Capture mode, every rising edge

0110 = Capture mode, every 4th rising edge

0111 = Capture mode, every 16th rising edge

1000 = Compare mode, initialize CCP1 low, on 
compare force CCP1 pin high (set CCP1IF bit)

1001 = Compare mode, initialize CCP1 high, on 
compare force CCP1 pin low (set CCP1IF bit)

1010 = Compare mode, generate software 
interrupt on compare match (set CCP1IF bit, 
CCP1 pin unaffected)

1011 = Compare mode, trigger special event 
which clears TMR1 register pair (set CCP1IF bit). 
For CCP2CON, the special event also triggers an 
ADC conversion if the ADC is enabled.

11xx = PWM mode

TABLE 13.4 Bit Definitions for CCP1CON Register
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One significant difference between this scheme and the previous scheme is that
the timer is always in operation; it is not started and then stopped as was done in
Section 13.2. This means that the elapsed timer tics between the two captured timer
values must be computed, and that timer overflow can occur between the two cap-
ture events because of the free-running nature of the timer. Figure 13.9a shows the
case where timer overflow does not occur; the capture A value represents the falling
edge timer value and the capture B value the rising edge timer value. The pulse
width in timer tics is TimerDelta = B A because timer overflow has not oc-
curred. Figure 13.9b shows the case when the timer overflows and the pulse width
in timer tics is computed as TimerDelta = (#oflows-1) * 216 + (0 A) + B. The
#oflows variable counts the number of times the timer overflows, while the 0–A
delta value is the number of timer tics to the first overflow. A long variable type (4
bytes) must be used to store this result since the result can be greater than 16 bits.
A value of 1 is subtracted from the #oflows variable because the last overflow is ac-
counted for by the deltaB value.

Figure 13.10 shows the interrupt service routine for computing the pulse width
using Timer1 and the CCPR1H, CCPR1L capture registers. 

The unsigned char tmr1_ov variable is used to track Timer1 overflows; it is ini-
tialized to zero when a falling edge is captured so that the no overflow case is indi-
cated by a zero value. The tmr1_ov variable is incremented on each TMR1IF
interrupt, which occurs when Timer1 rolls over from 0xFFFF to 0x0000. A CCP1IF
interrupt indicates that a capture event has occurred. The 16-bit capture value in
CCPR1H:CCPR1L is copied to the unsigned int this_capture variable by the
this_capture = CCPR1 statement, as the CCPR1 label is defined as an unsigned int
starting at location CCPR1L in the pic18xx2.h header file. A falling edge capture sig-
nals the start of the measurement, so the this_capture value is saved to the
last_capture variable, the tmr1_ov variable is reset to zero, and the capture mode

PIC

Pulse Width

 Vdd

Input
Switch

Pulse Width Measurement
 1. Capture TMR1 value on falling edge (Tf)
 2. Capture TMR1 value on rising edge (Tr)
 3. Pulse width is elapsed tics from Tf to Tr

RC2/CCP1

 10 kΩ

FIGURE 13.8 Pulse width measurement using Timer1 and capture mode.



is reconfigured to a rising edge capture. On a rising edge capture, if the tmr1_ov is
zero, no overflow has occurred and the elapsed timer tics is computed as: 

delta = this_capture – last capture

If tmr1_ov is nonzero, timer overflow has occurred and the pulse width is com-
puted as per Figure 13.9b:

delta = ((tmr1_ov-1) << 16) + (0 – last_capture) + this_capture

The capture_flag semaphore is set on the rising edge capture to signal main()
that the pulse width capture is complete. 

The main() code for pulse width measurement using Timer1 and capture mode
is shown in Figure 13.11. Because the CCP1 input is shared with the RC2 port, the
RC2 port must be configured as an input for CCP1 capture mode. Timer1 is con-
figured to use the internal clock and a prescale value of 2. The prescale value was ar-
bitrarily chosen for this example, as no particular precision or maximum pulse
width times are stated. The while(1){} main loop first configures the CCP1 capture
module for falling edge triggering and waits via the while(!capture_flag){} loop
for the ISR to signal that the pulse width capture is complete. After the
capture_flag is set, the delta value containing the elapsed timer tics that represent
the pulse width is converted to milliseconds and is printed to the console.
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falling edge

Second 
Capture (B)
rising edge

0xFFFF

(a) No overflow case
TimerDelta = B - A

} delta
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(b) Overflow case 
TimerDelta = (#oflows-1)* 65536 + deltaA + deltaB
                   =  (#oflows -1) << 16 + (0 - A) + B

} deltaB

{deltaA

FIGURE 13.9 Computing the elapsed timer tics between two events.



Figure 13.12 shows the console output for tests of the pulse width measurement
code of Figures 13.10 and 13.11.
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volatile unsigned int last_capture;
volatile unsigned int this_capture;
// this must be long
volatile unsigned long delta;
// timer 1 overflow cnt
volatile unsigned char tmr1_ov;
volatile unsigned char capture_flag;

timer_isr(void){
 if (TMR1IF) {
  tmr1_ov++;  // increment timer1 overflow
  TMR1IF = 0;
 }
 if (CCP1IF) {
  // read CCPR1 as a 16-bit value
  this_capture = CCPR1;
  if (!bittst(CCP1CON,0)) {
   //falling edge
   last_capture = this_capture;
   tmr1_ov = 0;  // clear overflow count
   CCP1CON = 0x0; // turn off when change
   CCP1CON = 0x5; // capture rising edge
  } else {
   if (!tmr1_ov) {
    // no overflow at all
    delta = this_capture - last_capture ;
   }
   else {
    // compute delta time
    delta = tmr1_ov-1;
    delta = (delta << 16);
    last_capture = 0 - last_capture;
    delta = delta + last_capture;
    delta = delta + this_capture;
   }
   // disable timer1 interrupt 
   TMR1ON = 0; TMR1IE = 0; TMR1IF = 0;
   capture_flag = 1;
  }
  //clear capture interrupt flag
  CCP1IF = 0;
 }
}

TMR1 Interrupt?

increment overflow tmr1_ov++
Clear TMR1IF 

yes

no

CCP1 Interrupt?

Clear TMR1IF,
this_capture= CCP1H:CCP1L 

yes, edge
occurred

no

rising edge?
yeslast_capture =

     this_capture
clear overflow,
reset to rising
edge capture

exit

exit

no, save falling
edge time

tmr1 oflow?

delta = 
last_capture -
     this_capture

exit

no

delta = 
(tmr1_ov-1) <<16 +
  (0 - last_capture) +
  this_capture

 disable Timer1 interrupts,
  capture_flag = 1 

Semaphore to main() to indicate
that pulse width capture is complete

compute
elasped
time

yes

FIGURE 13.10 ISR for pulse width measurement using Timer1 and capture mode.
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#define FOSCQ 29491200
#define PRESCALE 2.0
#define TMR1TIC 1.0/(FOSCQ/4.0)*PRESCALE
double pulse_width_float;
unsigned long pulse_width;
unsigned int msec;
int *ptr;

main(void){
  serial_init(95,1); // 19200 in HSPLL mode, crystal = 7.3728 MHz
  // initialize timer 1
  T1CKPS1 = 0;  T1CKPS0 = 1; // prescale by 2
  T1OSCEN = 0;  // disable the oscillator
  T1SYNC = 0; TMR1CS = 0;  //use internal clock FOSC/4
  bitset(TRISC,2); // set CCP1 as input
  // enable interrupts
  IPEN = 0;  PEIE = 1;   GIE = 1;
  ptr = (int *) &delta;  //for printf of long type
  pcrlf();printf("(Timer1 version) Ready for button mashing!");pcrlf();
  while(1) {
    // configure capture
    CCP1IE = 0;   // disable when changing modes
    CCP1CON = 0x0; // turnoff before changing
    CCP1CON = 0x4; // capture every falling edge
    CCP1IF = 0; // clear CCP1IF interupt flag
    CCP1IE = 1;   // enable capture interrupt
    TMR1IF = 0;   // clear timer 1 interrupt flag
    TMR1IE = 1;   // allow timer 1 interrupts
    TMR1ON = 1;   // enable timer 1
    // wait for falling edge
    capture_flag = 0;
    while(!capture_flag);
    pulse_width_float = (delta * TMR1TIC)*1.0e6; //microseconds
    pulse_width = (long) pulse_width_float;
    msec = (unsigned int) (pulse_width_float/1000.0); //milliseconds
    //  printf ("Switch pressed, timer ticks:%lu , pwidth: %lu (us)",
    //    delta, pulse_width);  // use with full compiler
    printf ("Switch pressed, timer ticks:0x%x%x, pwidth: %u (ms)",
        *(ptr+1), *ptr,msec);  // use with demo compiler
    pcrlf();
  }
}

Turn on the timer
and enable the timer1
interrupt

Capture falling  edge, enable
CCP1 interrupt

Wait for ISR to complete
capture of pulse width

}
}
}

Print pulse width result as Timer1 ticks (hex) and milliseconds.
Note: Demo compiler does not support long, float printf formats.

} Configure Timer1

Configure CCP1/RC2 as input
for capture

FIGURE 13.11 main() for pulse width measurement using Timer1 and 
capture mode (see CD-ROM file ./code/chap13/F_13_10_swdetov.c).ON THE CD

FIGURE 13.12 Console output for pulse width measurement using Timer1 and 
capture mode.



Sample Question: If the CCP2 input is used in Figure 13.8 instead of CCP1, what changes
are required to the code of Figures 13.10 and 13.11 to use the CCPR2 register instead of
the CCPR1 register?

Answer: In the ISR of Figure 13.10, CCP1IF is replaced by CCP2IF,
CCP1CON by CCP2CON, CCPR1L by CCPR2L, and CCPR1H is replaced by
CCPR2H. In the main() code of Figure 13.11, the same replacements are made
in addition to replacing CCP1IE with CCP2IE. The CCP2 input is unusual in
that for the PIC18F242, it is either shared with the RC1/T1OSI/CCP2 pin
(default setting) or the RB3/CCP2 pin based upon a program memory con-
figuration bit. This provides an option for using the CCP2 input via the
RB3/CCCP2 pin if the oscillator circuit for Timer1/Timer3 is being used. Ei-
ther RC1 or RB3 must be configured as an input when using the CCP2 input
capture.

13.5 TIMER1/TIMER3 COMPARE MODE

Compare mode operation is shown in Figure 13.13. Compare mode compares the
contents of Timer1 or Timer3 against the contents of the CCPR1 or CCPR2 regis-
ters as selected by the T3CCP2 (T3CON[6]) and T3CCP1 (T3CON[3]) configura-
tion bits, triggering an action on a successful match of the timer and compare value.
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 Figure redrawn by author from PIC18Fxx2
 datasheet (DS39564B),  Microchip Technology Inc. 

FIGURE 13.13 Timer1/Timer3 compare mode operation.4

4 Figure 13.13 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.



The CCPxCON[3:0] configuration bits (Table 13.4) select one of five possible ac-
tions in compare mode: 

1. Trigger a special event on match (CCPxCON[3:0] = 1011).
2. Initialize the CCPx pin low and then force the CCPx pin high on match

(CCPxCON[3:0] = 1000).
3. Initialize the CCPx pin high and then force the CCPx pin low on match

(CCPxCON[3:0] = 1001).
4. Toggle the CCPx pin on match (CCPxCON[3:0] = 0010).
5. Generate a software reset on match (CCPxCON[3:0] = 1010). A software

reset means that the CCPxIF flag is set on match, and an interrupt gener-
ated if it is enabled, but the status of the external CCPx pin is unchanged.

For any of these actions, the appropriate CCP1IF/CCP2IF interrupt flag is set.
The special event trigger clears Timer1 or Timer3, whichever one was used for the
match. Additionally, the special event trigger for CCP2 starts an ADC conversion
by setting the GO/DONE# bit (ADCON[2]). 

Periodic Interrupt Generation Using Compare Mode

One use of the compare mode register CCPRx is to act as an interrupt interval con-
trol register with a timer base of either Timer1 or Timer3. Recall that in the simple
timekeeping code of Figure 13.6, an interrupt was generated every two seconds as
Timer1 rolled over from 0xFFFF to 0x0000 because it was clocked by an external
32.768 kHz clock. This caused the secs variable to be updated by the ISR every two
seconds. To update the secs variable every second, the CCPR1 register is loaded
with 0x8000 and the special event trigger used to reset Timer1 on match. Figure
13.14 shows the required modifications to the code of Figure 13.6 for using com-
pare mode. Observe that the CCP1IF flag instead of the TMR1IF flag now triggers
the ISR and the secs variable is incremented by one instead of by two. 

Square Wave Generation Using Compare Mode

Another use of the compare mode registers CCPRx is to act as a period control reg-
ister for square wave generation by toggling the state of the CCPx pin on each
match of CCPRx and either Timer1 or Timer3. This creates a square wave with a
50% duty cycle; whose period is twice that of the CCPRx register value as seen by
Equation 13.2.

SquareWave Period = 2* CCPRx * TMR1/3_CLKPERIOD (13.2)
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Figure 13.15 shows two approaches for the ISR code that generates a square
wave using the toggle capability of compare mode. Both ISRs assume the CCPR1
register contains the match value and that the CCP1 pin has been configured to
toggle on match of Timer1. In Figure 13.15a, the ISR clears the Timer1 value on in-
terrupt by writing a 0x00 to both TMR1H and TMR1L. While this does generate a
square wave, its period is slightly larger than that predicted by Equation 13.2 be-
cause of the Timer1 tics that elapse between the CCPR1/Timer1 match and the
clearing of Timer1 within the ISR.
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// does simple timekeeping, assumes 32.768KHz ext. clk
volatile unsigned char hours, mins, secs,old_secs;
// interrupted every second
void interrupt timer_isr(void){
  if (CCP1IF) {
    CCP1IF = 0;
    secs = secs + 1;  // seconds
    if (secs == 60) {
      mins++; secs = 0;
      if (mins == 60) {
        hours++; mins = 0;
        if (hours == 24) hours = 0;
      }
    }
  }
}
main(void){
  // 19200 in HSPLL mode, crystal = 7.3728 MHz
  serial_init(95,1); 
  // initialize timer 1
  // prescale by 1
  T1CKPS1 = 0;  T1CKPS0 = 0;
  T1OSCEN = 0;  // disable the oscillator
  TMR1CS = 1;  //use external clock
  T1SYNC = 0;  // sync extern clock
  // set T1CKI/RC0 as input
  bitset(TRISC,0);

  // initialize CCPR1 for compare
  CCPR1H = 0x80;  CCPR1L = 0x00;
  CCP1CON = 0x0B; // special event trigger

  pcrlf();
  printf("(1 sec version) Enter hours, mins, secs: ");
  scanf("%d %d %d", &hours, &mins, &secs);
  CCP1IF = 0;   // clear CCP1IF interupt flag
  CCP1IE = 1;   // capture interrupt enable
  TMR1ON = 1;   // enable timer 1
  IPEN = 0;  PEIE = 1;  GIE = 1;
  old_secs = secs;
  while(1) {
    while(secs == old_secs);
    old_secs = secs;
    pcrlf();printf(" %d:%d:%d",hours,mins,secs);
  }
}

Initialize timer1}

} Input initial values
for min,hour,sec

Enable CCP1IF
interrupt}

} With 32768 Hz ext. clock and interrrupt
occuring after match of CCPR1 which
contains 0x8000 (32768), the interrupt
period is 1 second.

Wait for time to change

}Print time

CCP1IF now triggers interrupt

}

Program output updated every
second.

Load CCPR with 0x8000, configure
for special event trigger (clears
timer1 on match)

DS32KHz

Temp. Compensated
Crystal Oscillator

PIC18

T13CKIOUT

32768 Hz

FIGURE 13.14 Simple timekeeping using Timer1 and compare mode.
ON THE CD
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A better method is shown in Figure 13.15b in which the CCPR1 compare reg-
ister is incremented each time by a fixed amount (HPERIOD) to generate a new match
value that is stored in the unsigned int match variable. Because Timer1 is never al-
tered, there are no missing timer tics that can cause the generated square wave pe-
riod to differ from the predicted square wave period. This assumes that HPRERIOD is
large enough so that the new CCPR1 value can be written before Timer1 reaches the
match value. Figure 13.16 shows the main() code that is paired with the ISR of Fig-
ure 13.15b for generating a square wave on the CCP1 pin output using Timer1 and
CCPR1. Once all of the configuration is done for Timer1, the CCP1 pin, and the
CCPR1 compare mode, the while(1){} loop of main() has nothing to do, as the
compare mode logic and the ISR do all of the work of square wave generation.
Equation 13.3 calculates the expected square wave period for the configuration
shown in main() (FOSC = 29.4912 MHz, Timer1 prescale of 1, and 2*match pe-
riod, where the match period is 256 Timer1 tics).

SquareWave Period = 2* 256 * 1/(29.4912 MHz/4) = 69.4 μs (13.3)

// uses Timer1, compare & toggle mode
// to generate sq wave
void interrupt timer_isr(void){
  if (CCP1IF) {
    // clear timer 1 to reset match
    // write TMR1L byte last!
    // triggers 16-bit write
    TMR1H = 0;
    TMR1L = 0;
    CCP1IF = 0;
  }
}

(a) Clearing Timer1 in ISR during square wave generation

}
If want to clear timer1 while using
output toggle mode, then must
manually write zero to the register.
Write low byte last to trigger
writes of both bytes.

PROBLEM!!!  Depending on the timer1
clock frequency, several timer1 tics will have
 elasped before the timer can be cleared,  
affecting the square wave frequency.

// uses Timer1, compare & toggle mode
unsigned int match;
// uses Timer1, compare & toggle 
// mode to generate sq wave
void interrupt timer_isr(void){
  if (CCP1IF) {
    // don't clear timer1,
    // change compare register
    match = match + HPERIOD;
    CCPR1H = match >> 8;
    CCPR1L = match & 0xFF;
    CCP1IF = 0;
  }
}

} Instead of clearing timer1, increment the
compare register by the half period value.

When writing the new compare value,
must be careful to not generate a false
match, so write the MSByte first.

(b) Incrementing CCPR1H/CCPR1L in ISR during square wave generation

FIGURE 13.15 Two approaches for square wave generation using compare 
mode.ON THE CD



This period is obtained by the code of Figure 13.15b and Figure 13.16 on the
PIC18F242 reference system. However, a period of 73 μs is generated when the ISR
code of Figure 13.15a is used, because of the delay in clearing the Timer1 register in
the ISR after the occurrence of a match between Timer1 and CCPR1.

Sample Question: The code of Figure 13.15b is careful to write the MSByte first,
followed by a write of the LSByte to the CCPR1 register to avoid a “false match.” Give
an example where reversing the order of the writes may provide a false match.

Answer: Assume the CCPR1, Timer1 match occurred for a value of 0x10A0
and that the next CCPR2 match value is computed as 0x20B5. During the ex-
ecution of the ISR, Timer1 continues incrementing. Thus, Timer1 is some-
where between the last match value 0x10A and the next match value of
0x20B5. If the LSByte of the CCPR2 register is written first, CCPR2 becomes
0x10B5 for the period of time between the write of the LSByte and the write
of the MSByte. This could generate a match with the Timer1 value, toggling
the CCP1 output prematurely. Writing the MSByte of CCPR1 first avoids this
false match possibility assuming that there is at least a 256 Timer1 tic differ-
ence between the old and new CCPR1 values.

432 Microprocessors

// half period in timer tics
#define HPERIOD 0x0100

main(void){
  serial_init(95,1); // init serial port, 19200 BR
  // initialize timer 1
  T1CKPS1 = 0; T1CKPS0 = 0; // prescale by 1
  // use internal clock
  T1OSCEN = 0; TMR1CS = 0; T1SYNC = 0;
  T1RD16 = 1;    // 16 bit r/w to timer1
  bitclr(TRISC,2); // set RC2/CCP1 as output
  // initialize CCPR1 for compare
  match = HPERIOD;
  CCPR1H = (HPERIOD >> 8);
  CCPR1L = (0xFF & HPERIOD);
  CCP1CON = 0x02; // toggle mode
  // capture interrupt enable
  CCP1IF = 0; CCP1IE = 1;
  TMR1ON = 1; // enable timer 1
  IPEN = 0; PEIE = 1;  GIE = 1;
  printf("Configured!");pcrlf();
  while(1); // interrupt does all work
}

}

Enable CCP1IF interrupt}
} ISR and capture mode logic does all 

of the work of square wave generation

Load CCPR with match value, and 
configure for output toggle.

Configure timer1,
use internal clock
of FOSC/4, prescale = 1

Number of Timer1 tics for half period

}

FIGURE 13.16 main() code for square wave generation using compare 
mode (see CD-ROM file ./code/chap13/F_13_15b_tmr1sqwave_good.c).ON THE CD



13.6 USING CAPTURE MODE FOR INFRARED DECODING

Infrared (IR) transmit and receive is a common method for wireless communica-
tion. Remote controls for televisions, VCRs, DVD players, and satellite receivers all
use IR communication. IR light is just below visible light in terms of frequency
within the electromagnetic spectrum. A simple scheme for IR transmit and receive
is shown in Figure 13.17, in which an IR LED is turned on or off by a switch. The IR
receiver is a PIN diode whose resistance varies based upon the amount of IR received,
causing the output voltage to vary in the presence or absence of IR transmission.

Because ambient light contains an IR component, the output of the IR detec-
tor is nonzero even when no IR is being transmitted. The input to the comparator
is the output of the IR detector, which is compared against a reference voltage
whose value should be between the voltage output of the IR receiver in the absence
or presence of IR transmission as shown in waveform (a) of Figure 13.17. When
Vin > Vref, the output of the comparator is Vdd indicating an active IR transmis-
sion. When Vin < Vref, the output of the comparator is 0 V indicating no IR
transmission. The problem with the scheme of Figure 13.17 is that a change in am-
bient lighting (perhaps a move from indoor lighting to outside sunshine) will
change the quiescent output of the IR receiver, causing Vin either to be always
above Vref (waveform (b) of Figure 13.17) or always below Vref. 

Figure 13.18 shows an IR transmit/receive scheme that is not affected by ambi-
ent lighting conditions. To transmit IR, the switch is rapidly opened and closed to
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Non-zero input due to ambient
light
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(a)

(b)

PIN Diode

FIGURE 13.17 IR transmit/receive, no modulation.
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produce a modulated IR signal. A capacitor is used on the input of the comparator
to block the DC component (nonchanging component) of the IR detector output
due to ambient lighting conditions. 

The voltage component that passes through the capacitor to the comparator
input is the component that is changing due to the modulated IR input. This means
that Vin is no longer affected by ambient light; the voltage seen on the capacitor
output is dependent upon the frequency at which the switch is open and closed and
the transmission length of one IR bit time. Typical modulation frequencies in com-
mercial transmitters/receivers range from 36 kHz to 42 kHz with transmission bit
times in the hundreds of microseconds. Commercial IR receivers such as the
NJL30H/V00A (NJR Corporation) or GP1UM2xx (SHARP Microelectronics) in-
tegrate the IR detection diode with the electronics necessary to produce a clean dig-
ital output in the presence or absence of IR transmission. Figure 13.19 shows a
sample block diagram for an integrated IR receiver with three pins: Vdd, ground,
and Vout. The output is high in the absence of IR transmission and pulled low
when a modulated IR signal is received. 

Typical IR data links for remote control of home electronic systems are sim-
plex, low-speed serial communication channels. Even though the NRZ (non-re-
turn-to-zero) encoding used for RS-232 serial data could be used for IR
transmission, two other schemes known as space-width encoding and biphase en-
coding are commonly used for these applications. Figure 13.20a illustrates space-
width encoding that encodes ones and zeros as different period lengths with
different duty cycles. Typical period lengths are in the hundreds of microseconds
with period length and duty cycle varying by manufacturer. 

Vdd

IR
Emitter

+
-Vref

Vdd

Vout
Vin > Vref, Vout = Vdd
(IR present)

Vin < Vref, Vout = 0 V
(IR absent)

Vin

Vref

IR on

IR offV
ol

ta
ge

Time

Vin

Capacitor blocks DC voltage
due to ambient light. Vin voltage
only depends on how fast the
switch is open/closed at the 
transmitter.

Switch opening/closing

Switch opened/closed
at a fixed frequency
(36 kHz to 42 kHz typ.)

IR on

PIN Diode

FIGURE 13.18 IR transmit/receive with modulation.



Figure 13.20b shows a serial data transmission using space-width encoding in
which the first bit is a start pulse, followed by space-width encoded “1”s and “0”s.
A “0” has a period of 2T units with a 50% cycle, and a “1” has a period of 3T units
and a 33% duty cycle (the duty cycles and periods were arbitrarily chosen). Decod-
ing this serial waveform is done by measuring the time between successive falling
edges to distinguish between “1”s and “0”s. It is not necessary to determine the duty
cycle, as “1” and “0” have distinct periods. Most space-width encoding schemes use
a start pulse with a period significantly longer than a “1” or “0”. The periods of the
start, “1”, “0” bits; the number of bits sent in a transmission, and their meanings in
terms of commands for the target devices are all manufacturer specific.

Figure 13.21a shows biphase encoding, which is another encoding form some-
times used with IR transmissions. In biphase encoding, each bit period is the same
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Filter

Vdd
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FIGURE 13.19 Integrated IR receiver.

3T period is a 1

Periods, duty cycles vary 
by manufacturer

(a) Space-Width Encoding, 1 and 0 distinguished by period length

Only have to detect each falling edge to decode waveform

2T 1T
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1T 1T

0
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complete cycle, has
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MSb LSb

(b) Space-width encoding example, value is 0xC9. Can send multiple bytes in one transmission.

FIGURE 13.20 Space-width encoding.



width with “1”s and “0”s distinguished by a high-to-low transition and a low-to-
high transition, respectively, in the middle of the bit period. 

Figure 13.21b shows a serial data transmission using biphase encoding. Ob-
serve that the start pulse is only one-half of a bit period. One method of decoding
biphase waveforms is to measure the time between both rising and falling edge
transitions. If the time between two edges is one bit period, this indicates that the
current bit is the complement of the previous bit. If the time between two edges is
one-half period and this is the last half of the bit period, then this bit is the same as
the previous bit. 

Figure 13.22 shows the ISR code for biphase signal decoding as produced by an
IR universal remote control. The ISR measures the time between each successive
edge on the CCP1 input pin using Timer1 and CCPR1 capture registers, with the
pulse width in Timer1 tics stored in the unsigned long delta variable. This is very
similar to the pulse width measurement code previously seen in Figure 13.10. On
each edge arrival, the pulse width is computed, the active edge is toggled from 
rising-to-falling or falling-to-rising, the edge_capture variable is set to indicate an
edge arrival, and the function do_ircap() is called to determine if a “1” or “0” bit
has been received. The do_ircap() function is also called when Timer1 overflows.
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(b) Biphase encoding example, value is 0xCB. Can send multiple bytes in one transmission.

Start Pulse,
1/2 bit period

MSb LSb

1

1 1 1 1 10 0 0

High to Low 
transition in middle
of bit period is a 1

0
Low to High
transition in middle
of bit period is a 0

If time between
edges is 1 period,
the bit value has
changed!

If time between
edges is 1 period,
the bit value has
changed!

If time between
edges is 1/2 period,
the bit value remains
the same

Bit period varies by manufacturer, Philips uses ~1800 μs.

Must detect each edge transition to decode waveform

(a) Biphase encoding, 1 and 0 distinguished by transition in middle of bit period

FIGURE 13.21 Biphase encoding.



The real work of decoding the received biphase data is done by the do_ircap()
function shown in Figure 13.23. The #define BITCHANGE 10000 statement defines
the number of Timer1 tics used to distinguish a measured pulse width between a
half-period and a full period. The reference PIC18 system has a FOSC = 29.4912
MHz and is used to measure a biphase waveform with a bit period of 1800 μs.
Using a Timer1 prescaler value of 1, the Timer1 clock period is computed as
[1/(29.4912E6/4)]*Timer1_prescale = [1/(29.4912E6/4)]*1 = 0.136 μs. Thus,

Timers 437

volatile unsigned int last_capture, this_capture;
volatile unsigned long delta;
volatile unsigned char tmr1_ov;  // timer 1 overflow cnt

#define MAXBYTES 8
volatile unsigned char cbuff[MAXBYTES];
volatile unsigned char bitcount, bytecount,bit_edge;
volatile unsigned char state,edge_capture,current_bit;
volatile unsigned char this_byte;

#define IDLE_TIME    4
#define BITCHANGE   10000
#define IDLE         0
#define START_PULSE  1
#define BIT_CAPTURE  2
#define IO_FINISH    3

void interrupt timer_isr(void){
  if (TMR1IF) {
    tmr1_ov++;  // increment timer1 overflow
  }
  if (CCP1IF) {
    // read CCPR1 as 16-bit value
    this_capture = CCPR1;
    if (!tmr1_ov) {
      // no overflow at all
      delta = this_capture - last_capture ;
    } else {
      delta = tmr1_ov-1;
      delta = (delta << 16);
      last_capture = 0 - last_capture;
      delta = delta + last_capture;
      delta = delta + this_capture;
    }
    last_capture = this_capture;
    tmr1_ov = 0;  // clear timer 1 overflow count
    if (bittst(CCP1CON,0))  {
      CCP1CON = 0x0; //reset first
      CCP1CON = 0x4; //falling edge
    }
    else {
      CCP1CON = 0x0; //reset first
      CCP1CON = 0x5; // rising edge
    }
    edge_capture = 1;
  }
  do_ircap();
}

Compute number of 
Timer1 tics between last
active edge and current
active edge. 
Store this value in
variable delta.}

} Reconfigure CCP1 to toggle
active edge from falling edge
to active edge or vice versa.
Do this so can trigger on every
edge.

Call function that decodes captured edges

} State definitions for do_ircap() function

# of Timer1 tics to detect change from 0 to 1 or
vice versa

FIGURE 13.22 ISR for pulse-width measurement of biphase 
waveform (see CD-ROM file ./code/chap13/F_13_24_irdet_biphase.c).ON THE CD



438 Microprocessors

one period = 1800 us/ 0.136 us ~ 13235 Timer1 tics and one-half period is 6618
Timer1 tics, so 10000 is comfortably between these two values. A Timer1 overflow
with a prescale value of 1 and a FOSC = 29.4912 MHz has an overflow period of
approximately 8.9 ms.

// decode IR biphase
void do_ircap(){
 TMR1IF = 0; CCP1IF = 0;
 switch (state) {
  case IDLE:
   // wait for line to become idle
   if (tmr1_ov > IDLE_TIME){
    tmr1_ov = 0;
    state = START_PULSE;
    edge_capture = 0;
   }
  break;
  case START_PULSE:
   if (edge_capture) { // wait for edge
    edge_capture = 0;
    bit_edge = 0;
    state = BIT_CAPTURE;
   }
  break;
  case BIT_CAPTURE:
   // wait for edge or idle condition
   if (tmr1_ov > 1) { // finished
    // disable capture,timer1 interrupts
    CCP1IE = 0; TMR1IE = 0; TMR1ON = 0;
    state = IO_FINISH;
   } else if (edge_capture) {
    edge_capture = 0;
    //accumulating bits, MSB to LSB
    if ((delta > BITCHANGE) || bit_edge) {
     if (delta > BITCHANGE) {
      // toggle current bit if wide pulse
      current_bit = ~current_bit;
     }
     if (current_bit) bitset(this_byte,0);
      bitcount++;
      bit_edge = 0; // next edge is not a bit
      if (bitcount == 8) {
       bitcount = 0;
       cbuff[bytecount] = this_byte;
       bytecount++;
       this_byte = 0;
      } else{
       this_byte = this_byte << 1;
      }
     } else if (!bit_edge)
                 bit_edge = 1;
    }
   break;
  }//end switch
}// end do_ircap()

 idle wait expired?

reset overflow count,
state = START_PULSE 

yes

no
exit

IDLE

START_PULSE

exit

 falling edge?exit

bit changed, 
toggle bit value

bit_edge = 0 (next edge
is not a bit edge),
state = BIT_CAPTURE 

exit

BIT_CAPTURE

 oflow > 1?
yes

receive done,
state=IO_FINISH

exit  edge capture?

Called for both timer1 and 
edge capture interrupts

 pulse width >
   half period?

 bit edge?

exit

toggle bit
edge, next
edge is a bit

no

  8 bits?

Save byte,
bitcount = 0

bitcount++

exit

no

save bit value

yes
no

no

no

yes
yes

yes
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yes

Wait IDLE_TIME tmr1
overflows after last txfr

Wait for start pulse

Capture bits

FIGURE 13.23 Function do_ircap() for decoding biphase serial data (see 
CD-ROM file ./code/chap13/F_13_24_irdet_biphase.c).ON THE CD



The do_ircap() function uses a finite state machine approach with states of
IDLE, START_PULSE, BIT_CAPTURE, and IO_FINISH. The initial state of IDLE
waits for the tmr1_ov variable to become greater than IDLE_TIME (= 4), indicating
that no edges have been received for approximately 36 ms. This is done to ensure
that the state machine for IR reception is started when the input is idle. After the
idle condition is detected, the state is changed to START_PULSE. In state
START_PULSE, once an edge arrives indicating the arrival of the start pulse, the
state is changed to BIT_CAPTURE and the bit_edge variable is changed to 0. If the
bit_edge variable is 0, this means the next edge is expected to occur at the beginning
of a bit period and is not a “1” or “0” bit transition edge. If the bit_edge variable is
1, this means the next edge is expected to occur in the middle of a bit period, indi-
cating that a “1” or “0” has been received. 

The BIT_CAPTURE state does the work of decoding “1”s and “0”s after the
start pulse has been detected. Received bits are assumed to arrive MSb first and are
stored in the unsigned char this_byte variable. The bitcount variable is used to
keep track of the number of bits that have arrived; once 8 bits have been received
the this_byte variable is written to the cbuff array. The bytecount variable tracks
the number of bytes that have arrived. Within the BIT_CAPTURE state, if the over-
flow count is greater than one, this indicates the end of this transmission as no
edges have arrived within one Timer1 overflow period so the next state is set to
IO_FINISH, which is a semaphore to main() that indicates the receive has finished.
If timer overflow is less than one but no edge capture has occurred, the state is ex-
ited (recall that do_ircap() is also called when a Timer1 overflow occurs). If an edge
capture has occurred and the pulse width is greater than BITCHANGE Timer1
tics, this indicates that a data bit has been received and that it is the complement of
the previous bit. The current_bit variable tracks the value of the last received bit so
this value is complemented and is saved as the current bit value. If the pulse width
is less than BITCHANGE Timer1 tics, a half-period pulse width has arrived; if the
bit_edge variable is set, this indicates that this edge is a bit transition, so the cur-
rent_bit variable is saved as the received bit value. If the bit_edge variable is
cleared, it is set, as the next arrival edge is expected to be a bit transition edge. 

Figure 13.24 shows the main() code for decoding biphase serial data. Timer1 is
configured for internal clock operation and a prescale of 1. The reset_ir() function
(called by main() before the while(1){} loop is entered) configures the CCP1 cap-
ture input for falling edge triggering to capture the leading edge of the start pulse,
resets the variables used by do_ircap(), and enables the Timer1 and CCP1 inter-
rupts. The current_bit value is set to nonzero, as the biphase protocol that this
code was tested with always sent a “1” bit as the first data bit. 
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The while(1){} loop waits for capture to be completed by the ISR via the
while(state!=IO_FINISH){} statement. After this loop is exited, the variables used
by the do_ircap() function are copied to temporary variables so that the IR capture
can be re-enabled by a call to reset_ir() before the captured values are printed to
the console. The t_this_byte value is padded with zeros and stored in the tbuff
array if less than 8 bits were received for the last byte. At this point, the received byte
values in the tbuff array are printed to the console.

reset_ir() {
 state = IDLE;    // look for idle
 CCP1CON = 0;  // turn off when changing modes
 CCP1CON = 0x4; // capture every falling edge
 current_bit = ~(0);
 bitcount = 0; bytecount = 0;
 tmr1_ov = 0;  // clear timer 1 overflow count
 last_capture = 0;
 // enable capture and timer1 interrupts
 CCP1IF = 0; CCP1IE = 1;
 TMR1IF = 0; TMR1IE = 1; TMR1ON = 1;
}

unsigned char i, t_bytecount, t_bitcount, t_this_byte, cnt, tbuff[MAXBYTES];
main(void){
  serial_init(95,1); // 19200 in HSPLL mode, crystal = 7.3728 MHz
  // initialize timer 1, prescale by 1, internal clock
  T1CKPS1 = 0; T1CKPS0 = 0; T1OSCEN = 0; TMR1CS = 0;
  bitset(TRISC,2);// set CCP1 as input
  IPEN = 0; PEIE = 1;  GIE = 1;
  cnt = 0;
  reset_ir();
  pcrlf(); printf("Ready for capture\n");  pcrlf();
  while(1) {
    // wait for IR data to arrive
    while (state != IO_FINISH);
    // copy interrupt data to safe place
    t_bytecount = bytecount;
    t_bitcount = bitcount;
    t_this_byte = this_byte;
    for (i = 0;i < t_bytecount;i++) {
      tbuff[i] = cbuff[i];cbuff[i] = 0;
    }
    reset_ir();
    // print out last captured data
    if (t_bitcount != 0) {
      // adjust last byte assuming input bits are zero
      for (i=t_bitcount; i < 7; i++) 
           t_this_byte = t_this_byte << 1;
      tbuff[t_bytecount] = t_this_byte;
      t_bytecount++;
    }
    printf("(%d): Received %d bytes, %d bits.",
           cnt,t_bytecount, t_bitcount); pcrlf();
    for (i = 0;i < t_bytecount;i++) {
    printf("  Byte RX: %x", tbuff[i]);pcrlf();
    }
    cnt++;
  }
}

Wait for ISR to capture
transmission

Capture falling
edge for start pulse

Enable timer1 and
CCP1 interrupts

}

}

} Adjust if
partial byte
received

} Print captured bytes

}

Reset variables used by
do_ircap() to capture data}

Timer1 configured
for prescale = 1

}
Copy variables used by do_ircap()
to safe place so that IR capture
interrupt can be re-enabled

Re-enable IR capture

FIGURE 13.24 main() for decoding biphase serial data.
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Figure 13.25 shows the console output when testing the biphase decode appli-
cation using a universal remote control programmed for a Philips VCR. Each trans-
mission sent two duplicate transmissions of 14 bits for a keypress on the universal
remote control; only the first 14-bit transmission is shown.

The biphase decode application does not understand the meanings of the bits
and simply accumulates them into bytes as they arrive. The bottom waveform
shows the meaning of the bits in Philips RC5 format. The first bit is a start bit and
is always “1”. The next bit is a toggle bit that is complemented on each keypress but
remains the same if the button is held down, which causes the code to be repeatedly
transmitted. The next 5 bits are an address field that specifies the type of device such
as TV, VCR, SAT, and so forth. The last 6 bits is a command; observe that when a
numeric button 0–9 is pressed, this contains the value of the numeric button.

Timers 441

0xCB 0xA8  (for last byte, only 5
 bits received, last 3 bits assumed 0)

1 1 0 0 1 0 1 1 1 0 1 0 1

1 0 0 0 1 0 1 0 0 0 0 1 1

0x8A 0x18  (for last byte, only 5 
bits received, last 3 bits assumed 0)

Start 
Pulse

1800 μs

MSb LSb MSb

MSb LSb MSb

From Universal remote, Philips VCR,
‘play’ button.

From Universal remote, Philips VCR,
‘3’ button

1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Philips RC5 Format: 5-bit address (MSb first)

Start 
Pulse

Start bit,
always “1”

Toggle bit,
toggles each key press

6-bit command (MSb first)

FIGURE 13.25 Console output for decoding biphase 
serial data.



442 Microprocessors

13.7 TIMER2 AND PULSE WIDTH MODULATION

Pulse width modulation (PWM) is a technique that varies the duty cycle of a square
wave in order to vary the average current delivered to an external device. PWM ca-
pability is provided through the use of Timer2 and the CCPR1 registers as shown
in Figure 13.26. 

The PR2 register sets the period of the generated square wave, while the
CCPR1H register provides the duty cycle. A match of the PR2 register and TMR2
value sets the CCP1 pin high, clears the TMR2 register, and transfers the CCPR1L
value to CCPR1H to fix the duty cycle. A match of TMR2 with CCPR2H resets the
CCP1 pin, thus terminating the high portion of the square wave. Both PR2 and the
duty cycle are extended to 10 bits of precision; the PR2 register by using the 2-bit
internal Q clock or 2 bits of the prescaler and the duty cycle by using the
CCP1CON[5:4] bits as the lower 2 bits of the 10-bit duty cycle value. Equation 13.3
gives the period of the resulting square wave, while Equation 13.4 gives the duty
cycle as a time value.

PWM Period = (PR2+ 1) * 4 * TOSC * TMR2_PRE (13.3)

PWM Duty Cycle = (CCPR1L:CCP1CON[5:4])*TOSC*TMR2_PRE (13.4)

If the lower 2 bits of the 10-bit duty are cleared (CCP1CON[5:4] = 00), the
duty cycle as a percentage of the resulting square wave is given by Equation 13.5.

RC2/CCP1 
pin

Q

S

RComparator

TRISC[2]
Output enable

CCP1CON[5:4]

CCPR1H

CCPR1L

TMR2 (note)

Comparator

PR2

Clear Timer, set CCP1 pin, and
latch Duty Cycle

LOAD

CLR

Note: 8-bit timer is concatenated with 2-bit internal Q clock or
2 bits of the prescaler to create 10-bit time-base

Duty 
Cycle

Period

TMR2 = PR2

TMR2 = CCPR1H

TMR2 = PR2

 Figure redrawn by author from PIC18Fxx2

 datasheet (DS39564B),  Microchip Technology Inc. 

FIGURE 13.26 PWM operation.5

5 Figure 13.26 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.
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(13.5)

If CCPR1L is greater than PR2, the SR latch of Figure 13.26 is never reset, as
Timer2 is always reset before it can become equal to CCPR1H causing the CCP1
pin to remain high (100% duty cycle). A CCPR1L value of zero is a special condi-
tion that causes the CCP1 pin to always remain low (0% duty cycle). If PR2 is the
maximum value of 255, a 100% duty cycle cannot be achieved.

A PWM Example

Figure 13.27 shows how PWM can be used to control the brightness of an LED. The
main() code configures the CCP1 pin for PWM mode and initially sets the duty
cycle to 50% by setting the PR2 register to 255 and CCPR1L to 128 (bits
CCP1CON[5:4] are cleared). The while(1){} loop prompts the user to enter the
CCPR1L value, which is then written to CCPR1L, updating the duty cycle. The
graph illustrates how the LED current varies linearly with duty cycle; a low duty
cycle dims the LED since it decreases average current, while a high duty cycle
brightens the LED as average current is increased.

Figure 13.28 shows PWM control of a small DC motor such as that found in
hobbyist robotic kits. The gate of the MOSFET is controlled by the PWM signal; the
MOSFET is turned on when the PWM signal is high, thus modulating the current
flow through the motor. 

The motor speed is proportional to the PWM duty cycle. The diode, known as
a snubber diode, is optional for small motors. The diode protects against voltage
spikes that are induced if the motor continues to spin due to inertia after the MOS-
FET is turned off. The switches control the rotation direction of the DC motor. Low
resistance analog switches such as the single-pole, double throw (SPDT) PI5A319
from Pericom [17] or the CD4053B triple two-channel analog multiplexer [18]
from Texas Instruments provide a method for direction control using a parallel IO
line from the PIC18. 

Sample Question: Assume a FOSC of 10 MHz. Give the PR2 and prescale values for the
PWM mode that generates a square wave with a 75% duty cycle and a period of 6 kHz
on the CCP1 output pin. Use the prescale value that gives the largest PR2 value. Only
give the upper 8-bit value for the duty cycle register (CCPR1). Write code for main()
that configures the PIC18 for this mode and ends with a while(1){} empty loop since
the PWM hardware does all of the work of generating the square wave.

Answer: From Equation 13.3, Timer2 PWM period = (PR2+1) * (4/FOSC)
* PRE   (recall that the postscaler is NOT used for PWM period). Then:
(1/6 kHz) = (PR2+1) *(4/10 MHz) * PRE 
PR2 = [(10 MHz/4) / (6 KHZ * PRE) ] – 1

% PWM Duty Cycle = 
CCPR1L

(PR2 1)
100%

+
× ( )



For PRE = 1, PR2 = 416 ( > 255, so too large). For PRE = 4, PR2 = 103.
For PRE = 16, PR2 = 25, so use PRE = 4, PR2 = 103. 
For a 75% duty cycle, CCPR1 = 0.75 *(PR2+1) = 0.75*104 = 78. 
Code to configure the PIC18 for this mode of operation is show in Listing 13.2.
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FIGURE 13.27 PWM control of an LED.
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LISTING 13.2 Configuring for PWM mode.

main(){

T2CKPS1 = 0;  T2CKPS0 = 1; // pre scale of 4

// configure PWM

PR2 = 103;            // set PR2 to max value

CCPR1L = 78;

//clear lower 2 bits of duty cycle

bitclr(CCP1CON, 5);

bitclr(CCP1CON, 4);

bitclr(TRISC,2);      // set CCP1 output

// Set PWM Mode

bitset(CCP1CON, 3); bitset(CCP1CON, 2);

TMR2ON = 1;

while(1);             // infinite loop, PWM hardware does all work

}

A PWM DAC

(Warning: This section assumes some reader knowledge of time domain and fre-
quency domain characteristics of RC circuits; you may want to skip this section if
you do not have this background.)

One other common application of PWM is as a “poor man’s digital-to-analog
converter” in which the PWM signal is applied to a series resistor/capacitor 
network to produce a DC voltage that is proportional to the PWM duty cycle. This
is illustrated in Figure 13.29. The operational amplifier is needed to provide current
drive for whatever load is being driven by this voltage, as any current drained from
the capacitor affects the voltage value. In this configuration, the operational 
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 PIC

RC2/CCP1
Analog switches (i.e. PI5A319AP-ND 
SPDT) for direction control

Power 
MOSFET

 5 V

 DC Motor

RB?

Motor speed is
proportional to 
the duty cycle

FIGURE 13.28 PWM control of a DC motor.
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amplifier provides a gain of 1 (unity gain, voltage follower configuration), with the
input current into the plus (“+”) terminal being negligible. 

The RC series network forms a low-pass filter that is driven by the PWM signal.
The low-pass filter removes most of the high frequency content of the PWM signal
(e.g., the switching component), leaving only the DC, or average value behind. The
average value at the low-pass filter output is the desired DAC output. Figure 13.29c
shows the PIC generating a PWM signal with a 50% duty cycle; the PWM signal is
high 50% of the time. The RC filter removes the high frequency components and
thus Vc=Vout=Vref/2. Figure 13.29d shows a result with a 12.5% duty cycle PWM
signal where Vc=Vout=Vref/8. The voltage ripple in Figure 13.29b is the high fre-
quency content of the PWM signal that has been attenuated by the low-pass filter.

Let’s examine the passive RC low-pass filter in Figure 13.29a. The filter’s cutoff
frequency in radians/sec is 0 = 1/(RC). The filter’s natural cutoff frequency in
Hertz is f0 = 0/(2 ). Beyond the cutoff frequency, the filter attenuates the PWM
signal frequencies at 20 dB/decade. Therefore, we can expect the PWM signal com-
ponents at 10*f0 to be approximately 20 dB below those components at f0, and sig-
nal components at 100*f0 to be attenuated 20 dB below those at 10*f0 and 40 dB
below those at f0. With this information, we can see that if the PWM frequency is
well beyond the low-pass filter’s cutoff frequency, the switching (high frequency)

 PIC

RC2/CCP1

(a) PWM duty cycle controls Vc

 R  C
 +
 -  Vout

C
ap
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r 
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 }
 Time
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 Vc proporitional to duty cycle

 } (b) Voltage ripple set by RC time constant

Unity-gain Operational Amplifier (opamp)
provides drive

 }
 Time

 Vout = Vc
   = Vref/2

 Vref
PWM
signal

PWM period

 }
 Time

 Vout = Vc
   = Vref/8

 Vref
PWM
signal

PWM period

(c) 50% duty cycle (d) 12.5% duty cycle

FIGURE 13.29 PWM to control RC voltage.



components will be greatly attenuated leaving behind only the PWM’s low fre-
quency components near DC. This filtering gives us the desired result, as a signal’s
DC component is equivalent to its average value.

Selection of the exact RC filter values is application specific, but some general
rules of thumb can be helpful in getting started. The RC filter’s cutoff frequency
needs to be sufficiently high so that the highest frequencies from the DAC are not
attenuated. Try using f0 equal to 5–10 times the PWM DACs sampling frequency.
The PWM frequency should be far into the low-pass filter’s stop band. PWM fre-
quencies should be at least 100 times the low-pass filter cutoff so that PWM switch-
ing signal components are reduced by 40 dB or more. The PWM frequency can be
reduced if the low-pass filter has strong attenuation. Multiple RC low-pass filter
sections can be cascaded so that each section provides 20 dB/decade attenuation.

If the PWM DAC is only to supply a fixed reference voltage, the previous rec-
ommendations can be relaxed, with the principle goal to a produce a reference
voltage that meets some maximum voltage ripple specification. Equation 13.6 gives
an approximate value for the RC time constant given a power supply voltage (Vdd),
desired ripple, and PWM period. Equation 13.6 assumes that the RC time constant
is at least 10 times greater than the period of the PWM duty cycle. 

(13.6)

For example, if Vdd = 5 V, PWM period = 0.5 ms (2 kHz), and ripple =
0.1 V, RC is computed as 0.009 s. An RC time constant of 0.009 can be approxi-
mated by using common R, C component values of R = 10 K , C = 1.0 μF for
an RC time constant of 0.01 s. 

LCD displays that require positive and negative bias voltages outside of the
supply rails often use a PWM signal driving a charge pump circuit to produce these
voltages. This is similar to what is done internally by the MAX202/MAX232 RS232
driver chip (Chapter 9, “Asynchronous Serial IO”) to produce ±10 V from a 5 V
supply.

13.8 USING CAPTURE MODE FOR FREQUENCY MEASUREMENT

The last example of this chapter uses the PWM module to generate a square wave
and the capture mode to measure its period. The timer base for capture mode is
Timer1 clocked by the internal instruction clock. The capture mode prescaler is set
to perform captures every 16th rising edge. If the square wave frequency is steady
during the measurement period, using the prescaler means that the one instruction
cycle uncertainty in the time measurement is spread over 16 periods instead of
only one period as shown in Figure 13.30.
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RC = 
Vdd * PWM period * 0.37

ripple



Figure 13.31 shows the ISR code for square wave period measurement. This is
similar to the pulse width measurement code of Figure 13.10 except the active edge
is not changed and the current edge capture time (this_capture) is saved as the last
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Error of 1 Tcyc averaged over 16 clock cycles

~~

~~ ~~

}
Timer clock (assume Tcyc clock)

(b) Capture every 16th rising edgeCapture Capture

Error of 1 Tcyc for period measurement

~~} Timer clock (assume Tcyc clock)

(a) Capture every rising edge
Capture Capture

FIGURE 13.30 Using the capture mode prescaler to reduce 
measurement error.

volatile unsigned int last_capture, this_capture;
volatile unsigned long delta;  // this must be long
volatile unsigned char tmr1_ov;  // timer 1 overflow cnt
volatile unsigned char capture_flag;

void interrupt timer_isr(void){
  if (TMR1IF) {
    tmr1_ov++;  // increment timer1 overflow
    TMR1IF = 0;
  }
  if (CCP2IF) {
    CCP2IF = 0;   //    CCP2IF = 0; clear capture interrupt flag
    this_capture = CCPR2; // read CCPR2 as 16-bit value
    if (!tmr1_ov) {
      // no overflow at all
      delta = this_capture - last_capture ;
    }
    else {
      delta = tmr1_ov-1;
      delta = (delta << 16);
      last_capture = 0 - last_capture; 
      delta = delta + last_capture;
      delta = delta + this_capture;
    }
    last_capture = this_capture;
    tmr1_ov = 0;
    capture_flag++;
  }
}

Capture time is Timer1 tics between
every 16th rising edge.

~~

Because this is continuous capture, last_capture
is set equal to this_capture before exit.

FIGURE 13.31 ISR code for square wave period measurement (see 
CD-ROM file ./code/chap13/F_13_32_sqwavemeas.c).ON THE CD



edge capture time (last_capture) because the period is continuously being measured.
The delta variable is set equal to the elapsed Timer1 tics between edge captures.

Figure 13.32 gives the main() code for the square wave period measurement.
Timer1 is configured for a prescale of one and internal clock operation. 
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#define FOSCQ 29491200
#define TMR1PRE 1.0
#define TMR1TIC 1.0/(FOSCQ/4.0)*TMR1PRE
#define TMR2PRE 4.0

double period_float;
unsigned int meas_period,exp_period;
int pr2_val;

main(void){
  serial_init(95,1); // 19200 in HSPLL mode, crystal = 7.3728 MHz
  // initialize timer 1
  T1CKPS1 = 0;  T1CKPS0 = 0;// prescale by 1
  T1OSCEN = 0;  // disable the oscillator
  TMR1CS = 0;  //use internal clock FOSC/4
  T1SYNC = 0;
  bitset(TRISC,1);// configure CCP2 as input
  // configure capture
  CCP2CON = 0x07; // capture every 16th edge
  CCP2IF = 0; // clear CCP2IF interupt flag
  CCP2IE = 1;   // enable capture interrupt
  // turn on timer1
  TMR1IF = 0; TMR1IE = 1; TMR1ON = 1;   // enable timer 1
  tmr1_ov = 0;
  pcrlf();printf("Enter PR2 Value: ");
  scanf("%d",&pr2_val); pcrlf();
  period_float =  ((pr2_val+1)*4*TMR2PRE*1.0e9)/FOSCQ;
  exp_period = (unsigned int) period_float;
  bitclr(TRISC,2);// set CCP1 as OUTPUT for pwm
  // configure timer2
  T2CKPS1=0;T2CKPS0=1;   // prescale of 4
  // set up PWM
  PR2 = pr2_val;   // set period
  CCPR1L = (pr2_val >> 1); // 50% duty cycle
  DC1B1=0; DC1B0=0;
  CCP1M3 = 1;CCP1M2 = 1;// PWM Mode
  TMR2ON=1;
  printf("Squarewave Measure Enabled"); pcrlf();
  IPEN = 0; PEIE = 1;  GIE = 1;  // enable interrupts
 while(1) {
    capture_flag = 0;
    while(!capture_flag); // wait for capture
    delta_old = delta >> 4;  // divide by 16 for true freq
    period_float = (delta_old * TMR1TIC)*1.0e9;
    meas_period = (unsigned int) period_float;
    printf ("Expected period: %u (ns), Measured period: %u (ns)",
            exp_period,meas_period);
    pcrlf();
    printf("Hit a key to continue.");pcrlf();
    getch();
  }
}

} Configure Timer1

} Configure CCP2 for rising
edge capture, every 16th edge

RC1/CCP2

RC2/CCP1

PIC18

Squarewave  generated
by Timer2, PWM

} Configure Timer2
for PWM

Enter PR2 value

} Compute expected
period in nanoseconds

}
Wait for capture,
compute measured
value. Divide count by 
16 because capture
prescaler is 16

Print measured and
expected period values

FIGURE 13.32 main() code for square wave period measurement.
ON THE CD



The capture mode is configured for every 16th edge using CCPR2 as the capture
register because the CCPR1 capture register is used for PWM operation. The user
is prompted to enter the PR2 value used to set the PWM period. The expected pe-
riod is computed in nanoseconds by the statements:

period_float = ((pr2_val +1)*4 * TMR2PRE*1.0e6)/FOSCQ; 

exp_period = (unsigned int) period_float;

where pr2_val is the PR2 register value and TMR2PRE is the Timer2 prescale value.
Timer2 is configured for prescale by 4 and the PWM mode configured for a 50%
duty cycle. The while(1){} loop waits for an edge capture as indicated by a nonzero
value in the capture_flag semaphore. The delta value that contains the elapsed
timer tics between 16 rising edges is divided by 16 by the statement delta_old =

delta >> 4 to get the period of one cycle. The measured period value is then com-
puted in nanoseconds by the statements:

period_float = (delta_old*4*TMR1PRE*1.0e6)/FOSCQ;

meas_period = (unsigned int) period_float;

where TMR1PRE is the Timer1 prescale value. The expected and measured period
values are then printed. Figure 13.33 shows the console output of the square wave
measurement code for three different PR2 values. The expected measurement error
of one instruction cycle over 16 input waveform cycles is computed for an instruc-
tion cycle time of FOSC=29.4912/4 MHz (period = 135.6 ns) as 135.6 ns/16 =
8.5 ns. The close agreement between expected and measured values of Figure 13.33
is to be expected since Timer1 and Timer2 are both clocked by the instruction cycle
clock. The measurement error will only be apparent when measuring the frequency
of an external clock source that is not synchronized to the internal clock. 
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Pressed Reset

Pressed Reset

FIGURE 13.33 Console output for square wave period measurement.



SUMMARY

Table 13.5 gives a summary of the PIC18 timers. A partial list of timer uses include
real-time clocks, periodic interrupt generation, time measurement of external or
internal events, and waveform generation.

The internal instruction clock that has frequency FOSC/4 can be used as the
clock source for all timers. Additionally, an external clock on the T0CKI pin can
function as the clock source for Timer0. The clock source for Timer1 and Timer3
can be an external clock on the T1CKI pin or a crystal connected across the
T1OSO/T1OSI pins. A precision real-time clock can be implemented by using an
external 32.768 kHz clock source with a 16-bit timer; each timer rollover occurs at
two-second intervals. The Capture/Compare/PWM module has internal
CCPR1/CCPR2 registers (16 bits) and the PR2 register. The Capture module inter-
acts with Timer1/Timer3 to provide time measurement between external events.
This capability was used to decode biphase-encoded IR signals generated by a uni-
versal remote control. Biphase encoding uses a falling edge in the center of a bit pe-
riod to signal a “1” and a rising edge to signal a “0”. Space width encoding is an
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Timer Size Prescaler Postscaler Ext. Clock? Special Features

Timer0 8 or 16 256, 128, 64, No Yes None
bits 32, 16, 8, 4, 2; 

can be disabled

Timer1 16 bits 8, 4, 2, 1 No Yes, also Use with capture
ext.  crystal module for event

measurement; use 
with compare module 
for waveform 
generation or period 
control.

Timer3 16 bits 8, 4, 2, 1 No Yes, also Same as Timer1; can 
ext. crystal also trigger A/D 

conversion on 
compare match.

Timer2 8 bits 16, 4, 1 1:1, 1:2, No Used as timebase for 
1:3, 1:4, ... PWM via the PR2,
1:16 CCPR1 registers.

TABLE 13.5 PIC18 Timer Summary



alternate encoding method that uses different period widths to distinguish “1”s
and “0”s. The Compare module interacts with Timer1/Timer3 and is useful for
square wave generation, as the external pins CCP1 or CCP2 can be toggled on each
successful match of a compare register with its associated timer register. Pulse
width modulation (PWM) is a technique that varies the duty cycle of a square wave
to modulate the current delivered to an external device. Applications for PWM in-
clude DC motor control and a simple digital-to-analog converter built from an RC
network and a unity-gain operational amplifier. The PWM module of the PIC18
uses Timer2 as the time base, with the PR2 register providing the period and the
CCPR1L register controlling the duty cycle.

REVIEW PROBLEMS

1. Given a 40 MHz FOSC and a prescale value of 2, what is the interrupt in-
terval in microseconds for each rollover of Timer1?

2. Given a 12 MHZ FOSC, it is desired to generate a periodic interrupt as
close as possible to 1 ms using Timer0. Give the prescale value and mode
(8-bit or 16-bit) as well as the actual interrupt period obtained.

3. Given a 20 MHz FOSC, what is the longest period interrupt that can be
generated using Timer0?

4. Given a 15 MHz FOSC and a prescale value of 8, how many Timer1 tics
equals to 20 ms?

5. Given a 30 MHz FOSC and a prescale value of 8, how many Timer1 tics
equals to 5 ms?

6. Given the code of Figure 13.10, an FOSC of 40 MHz, and a prescale of 2,
what is the longest pulse width that can be measured?

7. Why is the statement delta = delta << 16 used in the code of Figure 13.10?
Give an alternate method of implementing this using a pointer. (Hint: See
Listing 13.1.)

8. Using the approach of Figure 13.15b, generate a square wave of frequency
8 kHz with duty cycle of 50% assuming a 40 MHz FOSC.

9. Using the approach of Figure 13.15b, generate a square wave of frequency
2 kHz with duty cycle of 25% assuming a 25 MHz FOSC. (Hint: To gen-
erate a square wave with a duty cycle other than 50%, you will need two
different values to add to the CCP1R register, one for the high pulse width
and one for the low pulse width.)

10. Draw a biphase encoded waveform for the 8-bit value 0x3B (MSb first).
11. Draw a biphase encoded waveform for the 8-bit value 0x45 (MSb first).
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12. Draw a space-width encoded waveform for the 8-bit value 0x3B (MSb
first). Assume that a “0” has a 25% duty cycle, a “1” has a 50% duty cycle,
and that a start bit is a 50% duty cycle with a period of approximately 3x
that of the “1”, “0” period.

13. Draw a space-width encoded waveform for the 8-bit value 0x45 (MSb
first). Assume that a “0” has a 25% duty cycle, a “1” has a 50% duty cycle,
and that a start bit is a 50% duty cycle with a period of approximately 3x
that of the “1”, “0” period. A “0” is 2x the period of a “1.”

14. Describe in general the changes that would have to be made to the code of
Figure 13.23 to decode space-width encoded data.

15. Give Timer2 prescale, PR2, and CCPR1 values that will generate a 3 kHz
square wave with a duty cycle of 30% assuming a 20 MHz FOSC using the
PWM module.

16. Assume PWM mode, if PR2 is 0xA0 and CCPR1 is 0x30, what is the duty
cycle of the square wave?

17. Write C code that will count the number of falling edges of an input wave-
form and print the result using the Capture/Compare/Module. Assume
the serial port and TIMER1 have already been configured in some manner.
Your code has to configure the CCP1 module, and enable both TIMER1
and CCP1 interrupts. Prompt the user to press any key. After the first
falling edge is detected, begin counting falling edges. If no falling edges
occur for > 50 Timer1 interrupts, assume the input is idle, and print out a
message that contains the number of falling edges that occurred. Use an int
variable to hold the number of falling edges. Your code must have a clearly
identified interrupt service routine; assume any code outside of the ISR is
in main().

18. Assume Timer1 has been programmed to generate a periodic interrupt.
Write C code that configures Timer2 for prescale by 4 and the PWM mod-
ule for a maximum period square wave with a 50% duty cycle. On each
Timer1 interrupt, change the duty cycle in the following sequence: 60%,
70%, 80%, 90%, 100%, 0%, 10%, 20%, 30%, 40%, 50% (repeat).

19. Assume that you need two manually generated PWM signals on pins RB3
and RB4. Using Timer3, CCP2 compare mode, and a 20 MHz FOSC, gen-
erate a periodic interrupt at a frequency of 10 kHz. Using this interrupt,
generate square waves on pins RB3 and RB4 with a frequency of 1 kHz (10
Timer3 interrupt periods). Define two variables dc_rb3 and dc_rb4 that
allow the duty cycle of each square wave to be set to one of 11 values (0%,
10%, 20% ... up to 100%).

20. Assume an FOSC of 40 MHz. With a prescale of 16 for the CCP1 input,
what is the expected percent error in measuring the frequency of a 75 kHz
square wave input using capture mode?
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Capstone: Audio Sampling,
Monitoring System, and
Autonomous Robot

14

T
his chapter presents three capstone projects that combine various hardware
topics from the previous chapters. The projects are a digital recorder that can
store audio input and play it back; a monitoring system with a real-time

clock, motion sensor, and temperature sensor; and a three-wheeled robot that can
be remotely controlled via a universal remote control or function autonomously
using an IR proximity sensor to avoid obstacles. Functions for writing to the PIC18
Flash program memory and Data EEPROM as well as an interface to a DS1621 Dig-
ital Thermometer are presented on a just-in-time basis to support these capstone
projects.

In This Chapter

Design of an Audio Record/Playback System
Implementation of an Audio Record/Playback System
Design of a Home Monitoring System
The DS1621 Digital Thermometer
Using the Nonvolatile Storage on the PIC18Fxx2
Implementation of a Home Monitoring System
Design and Implementation of an Autonomous Robot



14.1 LEARNING OBJECTIVES

After reading this chapter, you will be able to:

Design a system that can sample an audio signal, store it to a serial EEPROM,
and then play it back. 
Design a monitoring system with a real-time clock, motion sensor, and tem-
perature sensor.
Use the DS1612 I2C temperature sensor with the PIC18 for monitoring tem-
perature.
Use the PIC18 internal Data EEPROM or Flash program memory for storing
nonvolatile data.
Design and build an autonomous wheeled robot with an IR interface using a
PIC18 for control functions.

14.2 DESIGN OF AN AUDIO RECORD/PLAYBACK SYSTEM

The first project is a PIC18 system for capturing audio data for later playback. The
simplest form of audio sampling uses a fixed sampling period and stores uncom-
pressed digital data to a memory device as shown in Figure 14.1. A key parameter
in audio recorders is the sampling period, which is the time between conversions of
the incoming audio to digital data. The sampling period is fixed, and the sampling
period used for playback must be the same as that used for record to faithfully repro-
duce the sampled audio. The inverse of the sampling period is the sampling frequency.
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Analog-to
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Converter

Audio in 0x8A, 0x9C,
0x73, ....

Digital Data 
Stream

Non-volatile
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Digital-to
Analog 
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Audio out 0x8A, 0x9C,
0x73, ....

Digital Data 
Stream

Non-volatile
Memory Playback Mode

FIGURE 14.1 Basic audio record/playback concept.



The quality of the audio playback improves as the sampling frequency is in-
creased at the cost of increased memory requirements for audio storage. Audio is
usually divided into two categories: music and speech. For music, sampling fre-
quencies range from approximately 14 kHz up to 48 kHz. A sampling frequency
of 8 kHz is considered adequate for speech data and is commonly used in voice
recorders. A sampling frequency of 8 kHz has a sampling period of 125 μs.
Assuming 8-bit data, a 64K byte EEPROM can store 64 * 1024 * 125 μs =
8.192 s of speech. 

For this design, our target is voice sampling at 8 kHz. The 24LC515 serial EEP-
ROM is used for audio data storage, as we have previous experience in using that
device for storing streaming input data from the serial port. The PIC18 ADC is used
for conversion during record, and the MAX 517 DAC is used for data conversion
during playback. The MAX 517 is the same as the MAX 518 discussed in Chapter
12, “Data Conversion,” except that it has only one internal DAC instead of two.
During audio recording, the incoming digitized audio data is a continual data
stream. This problem was first examined in Chapter 11, “Synchronous Serial IO,”
for streaming data from the asynchronous serial port. In Section 11.9, an interrupt-
driven double-buffered approach was used in which one buffer was designated as
the active buffer to hold incoming data while the contents of the second buffer was
emptied; in other words, stored to EEPROM. Once a buffer became full, the roles
of the two buffers were swapped with the empty buffer becoming the buffer used
for incoming data and the full buffer becoming the buffer whose contents are writ-
ten to EEPROM. This same approach is used to handle the incoming audio data.
We must ensure that the data rate of the outgoing data channel (EEPROM band-
width) is greater than the data rate of the incoming data channel (audio data sam-
pled at 8000 bytes/sec) as shown in Equation 14.1. Another way to state this
constraint is shown in Equation 14.2, in which the time for 64 audio samples must
be greater than the time it takes to store 64 bytes in a block write to the serial EEP-
ROM. If this is not true, buffer overflow will occur.

EEPROM Bandwidth (outgoing) > Audio Bandwidth (incoming) (14.1)

Time for sampling 64 bytes > EEPROM write time + I2C transmit time (14.2)

Equations 14.3 through 14.5 show the calculation of the left and right quanti-
ties of Equation 14.2 assuming an I2C bus frequency of 400 kHz ( 1 bit time =
1/400 kHz). 

125 μs * 64 bytes > 5 ms (write time) + (64 bytes*9 +start+stop) * 1 bit time (14.3)

8 ms > 5 ms + (578)* (1/400 kHz) (14.4)
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8 ms > 6.4 ms (14.5)

Recall that each I2C transmission is 9 bit times because of the acknowledge bit;
hence the 64*9 value in Equation 14.3. The 5 ms constant is the worst-case write
completion time for the 24LC515 serial EEPROM. The right-hand side of Equation
14.2 ignores the software loop overhead of sending the data bytes to the MSSP sub-
system for I2C transmission. Equations 14.6 and 14.7 add a conservative estimate of
20 instruction cycles (1 instruction cycle ~ 0.135 μs @ FOSC = 29.4912 MHz) per
byte. For a sampling period of 8 kHz, the constraint expressed by Equation 14.2 is
satisfied as shown by Equation 14.7.

8 ms > 6.4 ms + 64 bytes * 20 instr. cycles * 0.135 μs (14.6)

8 ms > ~ 6.6 ms (14.7)

For playback, an 8-bit data sample has to be read from the serial EEPROM and
written to the MAX 517 DAC in 125 μs if a playback rate of 8 kHz is to be
achieved. Equations 14.8 through 14.11 calculate the approximate I2C bus rate to
support an 8 kHz playback. Each EEPROM read requires an address byte sent to
the EEPROM and the returned data byte from the EEPROM, while each DAC up-
date requires an address byte, command byte, and data byte. 

Serial EEPROM read + DAC update < 125 μs (14.8)

[(2 * 9 + start + stop) + (3 * 9 + start + stop)] * bit time < 125 μs (14.9)

[ 20 + 29] * bit time < 125 μs (14.10)

bit time <  2.55 μs I2C frequency >  ~390 kHz (14.11)

The calculated I2C frequency of 390 kHz is somewhat optimistic, as no soft-
ware overhead is included. Equations 14.12 through 14.14 calculate the needed I2C
bus frequency using the previous assumption of 20 instruction cycles per byte.

[20 + 29] * bit time + 5 bytes * 20 instr. cycles * 0.135 μs < 125 μs (14.12)

49 * bit time < 111.5 μs (14.13)

bit time < 2.28 μs I2C frequency > ~440 kHz (14.14)
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The required I2C bus frequency of 440 kHz is above the maximum 400 kHz
I2C bus speed specified in the datasheets for the 24LC515 serial EEPROM and MAX
517 DAC. While it is usually possible to clock components faster than their
datasheet specification in a laboratory environment, one would never design a
product that depended on component over-clocking. As such, we will settle for a 6
kHz sample and playback rate using the 24LC515 serial EEPROM and MAX 517
DAC. If you build the implementation presented in the next section, you are en-
couraged to attempt an 8 kHz record/playback rate by over-clocking the I2C bus to
the 24LC515/MAX 517 components.

14.3 IMPLEMENTATION OF AN AUDIO 
RECORD/PLAYBACK SYSTEM

Figure 14.2 gives the schematic for the audio record and playback implementation.
An audio mono mini-jack (Digi-Key PN# CP-2506) is used to interface the PIC18
reference board to a personal computer that provides audio during record or to
powered speakers during playback.

The LM386 audio amplifier [19] provides a fixed gain of 20 in the minimal-
external component configuration shown in Figure 14.2. The audio amplifier is

 Maxim 517 DAC

OUT0

SDA

SCL

Vref

AD1

AD0

SCL

 PIC18

SDA

RB4

Ay

A

Ay (A=1) or 
Ax (A=0)

Ax (u.c.)

CD4053BE1 Analog Switch

 -
 +

 10 kΩ

 10 kΩ

AN0

 LM386 Audio Amp

To powered speaker
during playback

From PC audio
jack during record

 I2C Bus

5 V

SCL

SDA

WP

A0

A1

Vss

A2

5 V
 24LC515
Serial EEPROM

The LM386 audio amp has a fixed gain of 20.

During record, the PIC18 ADC converts audio to digital
form that is stored in the serial EEPROM. 

During playback, digital audio is retrieved from the 
serial EEPROM and converted by the MAX 517 DAC
to analog voltages that drive an external powered speaker.

audio mono
mini-jack
(Digi-Key
CP-2506)

Ax selected during record
Ay selected during playback

5 V
5 V

1Tie INH, VSS, VEE pins
to ground.

FIGURE 14.2 Audio record/playback schematic.
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needed, as the output signal provided by the audio output jack of a personal com-
puter typically has a peak-to-peak range of only a couple of hundred millivolts.
During recording of the audio signal, the combination of the fixed 20x gain of the
LM386 and the volume control on the PC provides the means for controlling the
input signal magnitude to the PIC18 ADC. The LM386 also biases its output swing
about Vdd/2, a nice feature that provides maximum data resolution when sampled
by the PIC18 ADC when the reference voltages are configured as Vref+ = Vdd,
Vref = Vss.

The CD4053B triple two-channel analog multiplexer [18] from Texas Instru-
ments is used to implement a switch controlled by the RB4 output of the PIC18.
During record, RB4 is low, which disconnects the MAX517 DAC output from the
mini-jack. RB4 is high during playback allowing the MAX517 DAC output to drive
the mini-jack connector. During playback, external powered speakers with volume
control can be used for amplifying the output signal, or the mini-jack output can
be connected to the audio input of a PC.

Table 14.1 gives the PIC18 resources used for the audio record/playback appli-
cation. Timer2 is used to generate the periodic interrupt that sets the sampling rate
for playback and record. The PIC18 ADC with a reference voltage of Vdd is used to
sample the audio signal during record mode. The I2C bus is used to communicate
with the serial EEPROM for storing the sampled audio, which is converted back to
analog form by the MAX517 DAC during playback. The asynchronous serial port
is used to communicate with the user during application execution to prompt the
user for operating mode choice.

PIC18 Resource Comment

Timer 2 Timer2 interrupt period sets sample rate during playback and 
record.

ADC (pin AN0) Used to sample audio signal during record mode. Vref+ is 
Vdd; Vref is Vss.

MSSP Module (I2C Used to communicate with the 24LC515 serial EEPROM 
Master mode), during record and playback, and with the MAX517 DAC pins
SDA/SCL during playback.

USART Asynchronous serial port used for PIC18 programming via a 
bootloader. During application execution, the serial port is 
connected to a terminal application on the PC and is used to 
prompt the user for operating mode choice.

TABLE 14.1 PIC18 Resources Used for Audio Record/Playback Application
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Audio Application ISR and Configuration

Figure 14.3 shows the ISR code for the audio record/playback application. The ISR
is triggered by a periodic Timer2 interrupt with an interval that is equal to the sam-
pling period. During playback (playback_mode variable is nonzero), the only func-
tion of the ISR is to set the interrupt_flag semaphore indicating that an interrupt
has occurred. 

On each Timer2 interrupt during audio recording (record_mode variable is
nonzero), the upper 8 bits of the ADC is stored in either the buf_1 or buf_2 buffer
as determined by the buf_flag variable, and a new A/D conversion is started. Once
64 bytes have been sampled, the interrupt_flag semaphore is set to notify the fore-
ground code that a buffer is full and that a write to serial EEPROM is required. The
buf_flag is toggled to swap the buffers so that an empty buffer is used for storing
sampled audio data while the full buffer is written to EEPROM.

volatile unsigned char bufptr, interrupt_flag;
volatile unsigned char buf_flag;
volatile unsigned char record_mode, playback_mode;
bdata volatile unsigned char buf_1[64], buf_2[64];

void interrupt
timer_isr(void){

 if (TMR2IF) {
  //clear timer interrupt flag
  TMR2IF=0;
  if (record_mode) {
   //read A/D register, save in buffer
   if (!buf_flag) buf_2[bufptr] = ADRESH;
   else buf_1[bufptr] = ADRESH;
   GODONE = 1; // start new conversion
   bufptr++;
   if (bufptr == 64) {
    bufptr = 0;
    interrupt_flag = 1;
    // toggle buffer flag
    buf_flag = ~buf_flag; 
  }
 }
  if (playback_mode) {
  interrupt_flag = 1;
  }
 }// end if (TIMR2IF)
} // end timer_isr

TMR2 Interrupt?
yes

no

exit
reset TMR2 int. flag

Record?

buf flag?
save A/D
value in
buf_1

save A/D
value in
buf_2

bufptr++

64 bytes?
exit

bufptr = 0,
interrupt_flag = 1,
toggle buf_flag to
swap buffers

exit

playback?

exit
interrupt_flag = 1

exit

no

yes

yes

no

0non-zero

Start new
A/D conv.

For record, interrupt_flag
synchronizes A/D to sampling
period.

For playback, interrupt_flag
synchronizes DAC to sampling
period.

no

yes

FIGURE 14.3 ISR for audio record/playback application (see CD-ROM file 
./code/chap14/F_14_4_audio.c).ON THE CD
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Figure 14.4 gives the C code for main() of the audio record/playback applica-
tion. Pin RB4 is configured as an output initially low (MAX 517 is not driving the
mini-jack), the I2C interface for a bus speed of approximately 400 kHz, and Timer2
for an interrupt rate of 6 kHz assuming FOSC = 29.4912 MHz. 

#define EEPROM 0xA0     // I2C EEPROM, write lower blk
#define EEPROMR 0xA1    // I2C EEPROM, read lower blk
#define EEPROMW_HB 0xA8 // I2C EEPROM, write upper blk
#define EEPROMR_HB 0xA9 // I2C EEPROM, read upper blk
#define DAC 0x58        // I2C DAC 01011000

main(){
 TRISB4 = 0; RB4=0; // RB4 output, low
 //ADC clk = Fsoc/32, channel 0, right justify
 ADCON0 = 0x80; ADCON1 = 0x0E; ADON = 1;
 serial_init(95,1); // 19200 in HSPLL mode, crystal = 7.3728 MHz
 if (!TO || !RI) {
  if (!RI) { RI=1; printf("Software reset has occurred, press reset.\n");}
   else { //watchdog timeout, disable timer
     SWDTEN=0;printf("Watchdog timer reset has occurred, press reset.\n");}
  pcrlf();
  if (i2c_errstat) i2c_print_err();
  asm("sleep");
 }
 pcrlf (); SWDTEN = 1;  // enable watchdog timer
 // enable I2C, about 400kHz, if HSPLL mode, crys. = 7.3728 MHz
 i2c_init(17);
 // config timer 2, post scale of 1, prescale of 16, PR2 =76
 TOUTPS3 = 0; TOUTPS2 = 0; TOUTPS1 = 0;  TOUTPS0 = 0;
 T2CKPS1 = 1; // pre scale of 16
 PR2 = 76;    // 6 kHz 
 printf("Enter 'r'(record), 'p'(playback), 'c'(calibrate), 'e'(examine): ");
 inchar=getch();
 if (inchar == 'c') {
  while(1) {
   GODONE = 1;
   while (GODONE);  // wait for end of conversion
   adc_value = ADRESH;  // upper 8-bits
   printf("%x",adc_value); pcrlf();
  }
 }
 if (inchar == 'e') {
  addr = 0;
  while(1) {
   i2c_memread(EEPROM,addr,buf_1); // do read
   for(i = 0;i< 64;i++) printf("%x ",buf_1[i]); pcrlf();
   printf("Any key continues read...");pcrlf();
   getch();
   addr = addr+64;
  }
 } 
 if (inchar == 'r') do_record();
 if (inchar == 'p') do_playback();
 SWDTEN = 0;  // disable watchdog timer
 asm("sleep");
} // end main

I2C address/cmd 
defines for 
EEPROM and DAC}

}
RB4 as output for playback/record
control on analog switch

}

ADC config}

I2C config

} Timer2 periodic interrupt
at 6 kHz

Prompt user for operation mode

} Calibration test, continually
read A/D value and print to 
console to test if  audio 
input is working

} Examine EEPROM
contents, use this to
verify that data is being
stored to EEPROM

Record Audio
Playback Audio

FIGURE 14.4 main() for audio record/playback application.
ON THE CD
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The user is prompted for one of four operating modes: record, playback, cali-
bration, or examine. Calibration and examine are debug modes. The calibration
mode continually reads the upper 8 bits of the ADC and prints the result to the con-
sole; this should be used while the audio input is applied to determine if the ADC
sampled values are demonstrating enough swing about the 0x80 midpoint. If the
ADC sampled values are only slightly varying about the 0x80 midpoint, the PC vol-
ume control should be adjusted upward to provide more amplitude swing for the
audio signal. The examine mode reads the contents of the EEPROM and prints the
results in hex to the console. This mode is useful to determine if values are actually
being stored to the serial EEPROM during record mode.

Record Mode

Figure 14.5 gives the do_record() function of the audio record/playback applica-
tion. Initialization code sets the record_mode variable, starts an A/D conversion,
enables the Timer2 interrupt, and turns on Timer2. 

do_record(){
 addr = 0; buf_flag = 0;
 pcrlf ();
 printf("Capturing 64K of audio from ADC");
 pcrlf ();
 record_mode = 1; //
 GODONE = 1; // start new conversion
 // enable TMR2 interrupt
 TMR2IF = 0; TMR2IE = 1;
 IPEN = 0; PEIE = 1;  GIE = 1;
 TMR2ON = 1; // start timer 2 //
 do {
  if (interrupt_flag) putch('!');
  while (!interrupt_flag) {
   asm("clrwdt");
  };  // wait for block write
  // do block write //
  interrupt_flag = 0;
  if  (buf_flag)
   i2c_memwrite(EEPROM,addr,buf_2);
  else
   i2c_memwrite(EEPROM,addr,buf_1);
  addr = addr + 64;
  putch('*');
  // exit when addr wraps to zero
 }while(addr);
 printf("64K Capture complete. ");
 printf("Press reset to continue.");
 pcrlf ();
}

Clear addr counter (addr = 0)
Clear buffer flag (buf_flag=0)
Set record flag (record_mode=1)
Start new A/D conversion
Enable Timer2 interrupt

print ‘!’
too slow!

wait for Tmr2 int.

intrpt flag = 0

buf_flag?

save buf_2
to EEPROM

save buf_1
to EEPROM

addr = addr + 64

addr ?
non-zero
not finished         zero, 

64K audio 
data saved exit

1

0

1

0

intrpt flag?

intrpt flag?

1 0

FIGURE 14.5 do_record() for audio record/playback application (see 
CD-ROM file ./code/chap14/F_14_4_audio.c).ON THE CD
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The addr variable is used to track the address for the EEPROM writes; this is
initialized to zero. The buf_flag variable, which specifies the buffer used by the ISR
for storing sampled audio data, is also cleared to zero. The do-while() loop waits
for the interrupt_flag semaphore to be set by the ISR indicating that a buffer is
full. The interrupt_flag semaphore is then cleared and the full buffer written to
EEPROM using the i2c_memwrite() function previously discussed in Chapter 11.
The addr variable is incremented by the page size of 64 and the loop continues while
the addr variable is nonzero. Because the addr variable is an unsigned int, it is a 16-
bit value and wraps to 0x0000 once 1024 pages (64 Kbytes = 216 = 64*1024) are
written, which is the capacity of the EEPROM. At the top of the do-while() loop,
the interrupt_flag is checked to see if it is nonzero. If this occurs, this indicates that
the ISR has already filled another buffer and that the write operation to the serial
EEPROM is not keeping up with the sampling rate, causing a “!” character to be
written to the serial port as an error indicator.

Playback Mode

Figure 14.6 shows the do_playback() function for the audio record/playback appli-
cation. Initialization code initializes the addr variable used to track the address for
the EEPROM writes to zero, the record_mode variable to nonzero, and the RB4 out-
put to high to allow the MAX 517 DAC output to drive the mini-jack. 

The EEPROM is read in a sequential manner, so the two address counters for
the low and high blocks of the 24LC515 are initialized to zero by sending the write
command with a value of zero, and then aborting the operation. The block select bit
is set in the second write command to select the upper block. The DAC output is
initialized to zero, Timer2 interrupts enabled, and Timer2 turned on before the
playback loop is entered. The do_while(1){} playback loop is an infinite loop that
reads a byte from the EEPROM via a sequential read and then sends this byte to the
MAX 517 DAC. When reading the byte from the EEPROM, the addr variable is
checked to see if the read command should be from the lower block (addr <
0x8000) or upper block (addr >= 0x8000). The byte read from the EEPROM is
not written to the MAX 517 DAC until the interrupt_flag semaphore is set by the
ISR, indicating that a sample period has elapsed. After the byte is written to the
DAC, the addr variable is incremented before returning to the top of the loop. As
in the do_record() function, the interrupt_flag variable is checked to see if it is set
before the synchronizing while(!interrupt_flag) wait loop; if it is set prior to
reaching the synchronizing wait, this means that the loop is not keeping pace with
the sample rate and a “!” character is printed as an error condition. 

Note the dotted box in Figure 14.6. You will probably find it necessary to opti-
mize this code by flattening the subroutine calls to remove the call/return and pa-
rameter passing overhead to reach a 6 kHz (or beyond!) playback rate. Flattening



a subroutine call means to copy the code that implements the subroutine directly
into the loop and remove any parameter passing. This is a good example for illus-
trating when optimized code structuring is required to meet a performance target.
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FIGURE 14.6 do_playback() for audio record/playback application (see 
CD-ROM file ./code/chap14/F_14_4_audio.c).

do_playback() {
 // playback approach
 // step thru EEEPROM sequentially
 addr = 0;
 playback_mode = 1;
 RB4 = 1;  // set switch for playback
 pcrlf (); printf("Doing Playback"); 
 pcrlf ();
 // clear both internal addr cntrs.
 i2c_start();
 i2c_put(EEPROM); // write cmd, low blk
 i2c_put(0); // send high address byte
 i2c_put(0); // send low address byte
 i2c_stop(); // send stop
 // clear upper block address counter
 i2c_start();
 i2c_put(EEPROMW_HB); //block select = 1
 i2c_put(0); // send high address byte
 i2c_put(0); // send low address byte
 i2c_stop(); // send stop
 // initialize DAC to output zero
 i2c_start(); i2c_put(DAC); 
 i2c_put(0x00); i2c_put(0x00);
 i2c_stop();
 // enable interrupts
 IPEN = 0; TMR2IF = 0; TMR2IE = 1; 
 PEIE = 1;   GIE = 1;
 TMR2ON = 1 ; // start tmr2
 interrupt_flag = 0;  //clear semaphore
 do {
  i2c_start();
  // read byte
  if (addr & 0x8000) i2c_put(EEPROMR_HB);
  else i2c_put(EEPROMR);
  inchar=i2c_get(1);   //NAK
  i2c_stop();
  // if int flag is set, 
  //we not keeping up with sample rate!!!
  if (interrupt_flag) putch('!');
  // wait for interrupt
  while (!interrupt_flag);
  interrupt_flag = 0;
  i2c_start();   // send to DAC
  i2c_put(DAC);
  i2c_put(0x00);
  i2c_put(inchar);
  i2c_stop();
  addr = addr+1;
  asm("clrwdt");
 }while(1); //continual loop
}

Clear addr counter (addr = 0)
Set record flag (playback_mode=1)
MAX517 to drive mini-jack (RB4=1)

print ‘!’
too slow!

wait for Tmr2 int.

intrpt flag = 0

1

0

1

0

intrpt flag?

intrpt flag?

Clear lower addr cntr in EEPROM 
(i2c_start, i2c_put(EEPROM), 
i2c_put(0), i2c_put(0), i2c_stop)

Clear upper addr cntr in EEPROM 
(i2c_start, i2c_put(EEPROM_WHB), 
i2c_put(0), i2c_put(0), i2c_stop)

Enable Tmr2 interrupt, turn on Tmr2

inchar=i2c_get(1)
i2c_stop()

Send byte to MAX517 DAC
i2c_start(), i2c_put(DAC),
i2c_put(0), i2c_put(inchar), 
i2c_stop()

addr = addr +1

i2c_start()

addr < 0x8000?

i2c_put(EEPROMR)

i2c_put(EEPROMR_HB) }Read
byte
from
EEPROM

yes, read
lower blk

no, read
upper blk

flatten this code to
remove subroutine
overhead, in order
to improve efficiency for a higher sampling rate.

ON THE CD
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14.4 DESIGN OF A HOME MONITORING SYSTEM

The second project of this chapter is a PIC18-based monitoring system whose basic
concept is shown in Figure 14.7. 

System features are:

6 V to 9 V battery operation
Real-time clock 
Temperature sensor
Motion Sensor
Audible alarm when motion sensor is enabled and motion detected
LCD display for clock, temperature, status information
Nonvolatile storage of alarm enable/disable times

A schematic of the monitoring system is shown in Figure 14.8. The real-time
clock is implemented using an external 32.768 kHz clock source and Timer1 as dis-
cussed in Chapter 13, “Timers.” 

A passive infrared motion detector [20] from HVW Technologies outputs a
high true pulse that is approximately one second in duration when motion is de-
tected; this is connected to input RB0 that is configured to generate an interrupt on
a rising edge input. The DS1621 Digital Thermometer [21] is used for temperature
sensing; this is discussed in detail in the next section. A MAX 667 voltage regulator
[22] is used instead of the 7805 found on the PIC18 reference board as an example
of an alternate voltage regulator IC. The MAX 667 has a shutdown input (SHDN)
that can be used to turn off the +5 V output, but this capability is not required in
this design and the SHDN pin is grounded for normal operation (see problem #7
at the end of this chapter for a push-to-turn-on application of the SHDN input).

Monitoring
System

Motion Sensor

0F

Temperature
SensorVI

IIIIX
XII

Real Time
Clock

Audible Alarm

FIGURE 14.7 Monitoring system concept.



An 8x2 LCD module [23] from Optrex (DMC-50448) is used for display purposes
due to its small size (40.0 x 35.4 x 8.2 mm) and the limited display requirements of
this application. A small speaker is used with the CCP1 PWM output to generate an
audible alarm if motion is detected; start and stop times can be entered to define
when the audible alarm is active. 

Figure 14.9 shows the LCD screen formats for the various display modes. The
default display (Figure 14.9a) shows the time in 24-hour mode on line 1, the tem-
perature on line 2, and an “M” in the lower left corner if motion is detected. 

Two push buttons, left (L) and right (R), are used to change display modes. In
the default display, the R button toggles between Fahrenheit and Celsius tempera-
ture display, while the L button cycles through the other display modes. These dis-
play modes are set time (Figure 14.9b), set alarm start time (Figure 14.9b), and set
alarm stop time (Figure 14.9b). The alarm start and stop times define the time pe-
riod when the audible alarm is enabled on motion detection. From any of these
three modes, an R button press/release enters a screen that allows the user to mod-
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FIGURE 14.8 Monitoring system schematic.



ify the selected time. Each of these screens functions in the same manner; an R but-
ton press/release cycles the cursor through the hour, minutes, and seconds fields. In
each field, a rotary encoder input is used to increment or decrement the selected
field value. From any of the time modification screens (c, e, or g), an L button
press/release returns to the previous screen.
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FIGURE 14.9 LCD screen formats.



14.5 THE DS1621 DIGITAL THERMOMETER

The DS1621 Digital Thermometer has an I2C interface and produces a 9-bit tem-
perature value in Celsius using a 9.1 fixed-point, two’s complement format (the
least significant bit provides half-degree precision, see Chapter 7, “Advanced 
Assembly Language: Higher Math,” for a discussion of fixed-point integers). The
temperature range that can be measured by the DS1621 is +125 C to 55 C. Pins
A2, A1, and A0 on the DS1621 customize the I2C address byte as is typical with I2C
devices. The DS1621 contains two 9-bit internal registers, TH and TL, which can be
loaded with temperature values for thermostat control. The TOUT pin is a ther-
mostat output that is asserted when the temperature exceeds or equals TH, and is
reset when the temperature falls below or equals TL. This functionality is not used
in this application and thus the TOUT pin is left unconnected in Figure 14.8. 

Figure 14.10 shows the I2C transactions for the DS1621. Write transactions
send an address byte, command byte, and either zero (Figure 14.10a), one (Figure
14.10b), or two (Figure 14.10c) data bytes. No data bytes are sent for standalone
commands, while one data byte is sent for an 8-bit write and two data bytes for a
16-bit write. An example of a standalone command is the Start Convert command
(command byte = 0xEE) that starts a temperature conversion. An 8-bit write
transaction is used to modify the configuration register, discussed later in this sec-
tion. The TH and TL registers are written via a 16-bit write, which sends the most
significant byte first, followed by the least significant byte. The two bytes specifying
the 9-bit temperature value are left justified as shown in Figure 14.10. The MSByte
contains bits T[8:1] of the 9-bit temperature value, while the LSByte bit 7 specifies
bit T[0] of the temperature with the remaining bits cleared. The example temper-
ature value in Figure 14.10 of 27.5°C is converted to its 9.1 fixed-point, two’s
complement format by converting 27.5 to its binary value and subtracting from
zero as shown in Equation 14.15 (the 9-bit value 0b111001001 is sign extended as
0xFC9 in hex).

27.5 = 0 (27.5) = 0b00000000.0 0b00011011.1 = 0b111001001 = 0xFC9 (14.15)

Read transactions start with a write transaction that sends the address and com-
mand byte. The write transaction is terminated by a repeated start condition fol-
lowed by the address byte with the R/W# bit high. The DS1621 then transfers to the
I2C bus master either one (Figure 14.10d) data byte for an 8-bit register read, or two
(Figure 14.10e) data bytes for a 16-bit register read. The I2C bus master halts the
read by providing a NAK after the last data byte followed by a stop condition. An
example of an 8-bit read transaction is Access Config (command byte = 0xAC),
which returns the value of the configuration register. A 16-bit read transaction is
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used to read the contents of registers that are greater than 8 bits in length; the MS-
Byte is transferred first followed by the LSByte.

Figure 14.11 shows bit definitions for the DS1621 configuration register. The
DONE flag is used for polling the DS1621 to determine if a temperature conversion
is in progress. 
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FIGURE 14.10 DS1621 I2C command format.
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The THF (Temperature High Flag) and TLF (Temperature Low Flag) bits are
set when the temperature exceeds or is equal to the values stored in the TH and TL
registers, respectively. The TH and TL register values are stored in on-chip non-
volatile memory, and the NVB (Nonvolatile Memory Busy Flag) bit can be polled
to determine if a write to nonvolatile memory is in progress. A write to nonvolatile
memory on the DS1621 can take up to 10 ms. The POL (Output polarity) bit con-
trols the polarity of the TOUT output. The 1SHOT mode bit controls whether the
DS1621 continuously performs conversions (1SHOT = “1”) or only performs a
conversion upon receiving a Start Convert command.

Table 14.2 gives the command set of the DS1621. The Read Slope and Read
Counter commands read the contents of internal registers used for temperature

FIGURE 14.11 DS1621 configuration register.

Command CMD Byte Comment

Read Temperature 0xAA 16-bit read returns the temperature value

Start Convert 0xEE Standalone command to start a conversion

Stop Convert 0x22 Standalone command to halt conversion in 
continuous mode

Access TH 0xA1 16-bit read or 16-bit write to TH

Access TL 0xA2 16-bit read or 16-bit write to TL

Access Config 0xAC 8-bit read or 8-bit write to CONFIG

Read Counter 0xA8 8-bit read returns the counter register value

Read Slope 0xA9 8-bit read returns the read slope register value

TABLE 14.2 DS1621 Command Set



conversion; these commands are typically not needed in normal operation and the
reader is referred to the datasheet [21] for details on their functionality. 

Figure 14.12 shows functions that implement a subset of the DS1621 I2C trans-
actions. The ds1621_send0() and ds1621send1() functions perform the standalone
command and 8-bit write transactions, respectively. 

The ds1621_read1() and ds1621_read2() functions perform the 8-bit read and
16-bit read transactions, respectively. The char *ptr parameter of the
ds1621_read2() function is assumed to point to an int variable; the two returned
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#define TEMPSENSE         0x90
#define ACCESS_CONFIG     0xAC
#define START_CONVERT     0xEE
#define READ_TEMP         0xAA

void ds1621_send0(unsigned char cmd){
  i2c_start();
  i2c_put(TEMPSENSE);
  i2c_put(cmd);
  i2c_stop();
}

void ds1621_send1(unsigned char cmd,unsigned char data){
  i2c_start();
  i2c_put(TEMPSENSE);
  i2c_put(cmd);
  i2c_put(data);
  i2c_stop();
}

unsigned char ds1621_read1(unsigned char cmd){
  unsigned char c;
  i2c_start();
  i2c_put(TEMPSENSE);
  i2c_put(cmd);
  i2c_rstart();
  i2c_put(TEMPSENSE | 0x01);
  c = i2c_get(1);  // NAK read
  i2c_stop();
  return(c);
}

void ds1621_read2(unsigned char cmd, unsigned char *ptr){
  i2c_start();
  i2c_put(TEMPSENSE);
  i2c_put(cmd);
  i2c_rstart();
  i2c_put(TEMPSENSE | 0x01);
  *(ptr+1) = i2c_get(0);  // get MSB, ack
  *(ptr) = i2c_get(1);  // get LSB, nak
  i2c_stop();
}

} DS1621 Command subset used by
monitoring application

} 8-bit write transaction

} Standalone command write transaction
(no data byte)

} 8-bit read transaction

} 16-bit read transaction,
the *ptr variable is assumed to point
to an int variable; the two returned 
bytes from the DS1621 are stored in
the int variable in little endian order.

FIGURE 14.12 C code for DS1621 I2C transactions (see CD-ROM file 
./code/chap14/temp_module.c).ON THE CD



bytes from the DS1621 are stored in little endian order into the memory space ref-
erenced by ptr.

A test program that uses the functions of Figure 14.12 for DS1621 temperature
conversion is shown in Figure 14.13. The program configures the DS1621 for one
shot mode via the statement: 

ds1621_send1(ACCESS_CONFIG,0x01)

This is an 8-bit write transaction that sets the 1SHOT bit of the CONFIG reg-
ister. The while(1){} loop then starts a conversion by the standalone command
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main(void){
 unsigned char mode;
 signed int temp2;
 signed int temp_c, temp_f;

 serial_init(95,1); // 19200 in HSPLL mode, crystal = 7.3728 MHz
 if (!RI) {
   RI = 1;
   printf("Software reset!");pcrlf();
   if (i2c_errstat) i2c_print_err();
 }
 if (!TO) {
  printf("Watchdog timer reset has occurred.\n"); pcrlf();
  if (i2c_errstat) i2c_print_err();
 }
 i2c_init(73); // ~100 kHz @ FOSC = 29.4912 MHz
 pcrlf();  printf("Temp Sensor Test Started");  pcrlf();
 SWDTEN = 1;  // enable watchdog timer
 // set one shot mode
 ds1621_send1(ACCESS_CONFIG,0x01);
 while(1) {
  // start conversion
  ds1621_send0(START_CONVERT);
  //wait for end
  do{
   mode = ds1621_read1(ACCESS_CONFIG);
  } while(!bittst(mode,7));
  ds1621_read2(READ_TEMP,(char *)&temp2);
  temp_c = (temp2 >> 8);
  temp_f = (temp_c*9)/5 + 32;

  pcrlf();
  printf("Temp read: %x (16 bits), %d (C), %d (F)",
   temp2,temp_c,temp_f);
  // wait for key input for next conv.
  getch();
 }
}

set one shot mode

} Wait for conversion to end by
polling DONE bit in config register

}

start conversion

Read temperature value
Convert left justified 9-bit value to
8-bit integer (drop fractional part), and
convert to Fahrenheit

Print hex temperature as
16-bit value and also as 
decimal Celsius and 
Fahrenheit

Initial reading
Touch with finger
Applied cold source
Applied cold source
Cold source removed,
recovering to room temp.

}
Temperature value is a signed quantity. The signed 
qualifer is only used for emphasis, it is the
default qualifier for type int

}

FIGURE 14.13 Test program for the DS1621 C functions.



ds1621_send0(START_CONVERT). A do-while{} loop then polls the DONE bit of the
CONFIG register via the 8-bit read transaction ds1621_read1(ACCESS_CONFIG); the
do-while{} loop is exited when the DONE bit returns as “1” indicating a finished
conversion. Using a 16-bit read transaction returns the 9-bit temperature value:

ds1621_send2(READ_TEMP,(char *) &temp2)

Observe that (char *)&temp2 passes the address of the temp2 variable as the
pointer value required by the ds1621_send2() function. This value is then shifted
right by 8 positions to convert the 9.1 fixed-point, left justified value to an 8-bit in-
teger representing a signed Celsius temperature stored in temp_c. This drops the
half-degree fractional portion of the temperature. After converting the Celsius
value to a Fahrenheit value stored in temp_f, the raw 16-bit temperature value temp2
is printed in hex along with the integer Celsius and Fahrenheit values. Sample out-
put from the test program in shown in Figure 14.13 at the end of the listing with the
temperature returned by the DS1621 varying as heat and cold sources are applied.

14.6 USING THE NONVOLATILE STORAGE ON THE PIC18FXX2

The monitoring system has start and stop times for enabling the audible alarm that
sounds when motion is detected. These start and stop times should be stored in
nonvolatile memory so a user does not have to reenter them each time power is cy-
cled. The 24LC515 I2C EEPROM could be used for this nonvolatile storage, but this
is inefficient as only a few bytes of storage are required. There are two choices of on-
chip nonvolatile storage for the PIC18: Flash program memory and Data EEP-
ROM. The term “Flash memory” or just “Flash” is used from this point on as a
shortened reference to Flash program memory. Table 14.3 compares and contrasts
these two types of nonvolatile storage.

Both the Flash and Data EEPROM can be written under program control. The
Flash memory holds the program code, but any unused space can also be used for
data storage. Obviously, the Flash memory is the only choice if the nonvolatile
storage requirements exceed the 256 bytes of the Data EEPROM. The Data EEP-
ROM can be written a byte at a time, and performs an erase/write cycle so no ex-
plicit erase operation is needed. The Flash memory must be erased before written,
with erasure limited to exactly 64 bytes at a time when done under program con-
trol. Also, the minimum write size for Flash memory is 8 bytes. The Data EEPROM
has been optimized for a high number of writes with a minimum cell endurance of
100K writes, 10X more than the Flash cell endurance. The Data EEPROM has a re-
fresh cycle requirement in that if a cell has not been written to after a total of 1 M
writes to other locations, a refresh cycle has to be done (see the PIC18F242 data
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sheet for details). For this reason, if you have a mixture of frequently and infre-
quently updated locations, the infrequently updated data should be stored in the
Flash program memory. Both the Flash and data EEPROM memory use the
EECON1 and EECON2 registers to perform writes. The EECON2 register is not an
actual register and is only used in the write sequence. The bit definitions for the
EECON1 register are given in Table 14.4.

The EEPGD (EECON1[7]) bit controls whether the Flash or EEPROM mem-
ory is being accessed. The CFGS (EECON1[6]) bit allows programming of the con-
figuration registers (briefly discussed in Chapter 8, “The PIC18Fxx2: System
Startup and Parallel Port IO”), which reside in Flash program memory beginning
at location 0x300000. See Appendix A, “PIC18Fxx2 Architecture, Instruction Set,
Register Summary,” for listing of these registers and bit definitions, and the
PIC18F242 datasheet for complete information. The FREE (EECON[4]) bit must
be set to a “1” when erasing Flash memory. The WRERR (EECON[3]) is a status bit
that can be checked to determine if a write completed normally. The WEN
(EECON[2]) bit must be a “1” to enable writes to either Flash or Data EEPROM.
Setting the WR (EECON[1]) bit begins a write operation to either the Flash or

Specification Flash Program Memory Data EEPROM

Size (bytes) 8192 (18F242/442) 256
16384 (18F252/452)

Minimum write size 8 bytes 1 byte

Minimum erase size 64 bytes N/A, uses erase before 
write

Cell Endurance 10K writes 100K writes (minimum)
(minimum)

Refresh Cycle N/A 1 M writes total 
(minimum)

Typical write time 2 ms 4 ms (erase before write)

Address Register/Data Reg TBLPTR{L/H/U}/ EEADR/EEDATA
(internal)

Control Registers EECON1/EECON2 EECON1/EECON2

Interrupt Driven Write? No, CPU halts during Yes (EEIF bit)
write/erase

Typical write time 2 ms 4 ms (erase before write)

TABLE 14.3 Flash Program Memory versus Data EEPROM on the PIC18Fxx2
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Data EEPROM; it is cleared automatically after the write is complete. The RD
(EECON[0]) bit is only used with the Data EEPROM and performs a read cycle
when set; it is cleared automatically after the read cycle is complete.

Data EEPROM Read/Write

Figure 14.14 gives C functions for noninterrupt driven Data EEPROM read and
write. The eedata_readbyte() function reads a byte from Data EEPROM location
addr. For a read or write, the EEADR register contains the Data EEPROM location
being accessed. The RD bit is set to “1” to perform the read, and then the EEDATA
register value is returned. The eedata_writebyte() function writes byte to Data
EEPROM location addr. The WREN (write enable) bit is set to enable writes, inter-
rupts are disabled, the sequence 0x55, 0xAA is written to EECON2 followed by set-
ting the WR bit to begin the write. This exact sequence must be followed for the
write operation to be started. These stringent requirements are intended to reduce
the probability of a spurious write to Data EEPROM. Interrupts are re-enabled as
the write operation can take up to 4 ms, and interrupt service does not disturb the
write operation as long as another write is not attempted until the current write is
finished. After triggering the write, the function waits for the WR bit to be cleared
indicating that the write is complete. Before returning, the EEIF flag is cleared (set
when write completed) and the WREN bit is cleared. The EEIF flag can be used to
generate an interrupt and the write of several bytes to EEPROM handled on an 
interrupt-driven basis. In this case, the read function would be changed to check a

Name Bit Comment

EEPGD [7] “1” to access Flash, “0” to access data EEPROM.

CFGS [6] “1” to access configuration memory, “0” for FLASH/EEPROM.

n/a [5] Unimplemented.

FREE [4] “1” to enable erase during FLASH write, “0” for write only.

WRERR [3] “1” if write operation terminated prematurely, “0” write 
terminated normally.

WREN [2] “1” enables write, “0” write protects Flash/EEPROM.

WR [1] “1” initiates write operation of Flash/EEPROM, cleared to “0” by 
hardware on write completion.

RD [0] “1” performs a EEPROM read, which takes one cycle and places 
data in the EEDATA register; RD cleared to “0” automatically 
afterwards.

TABLE 14.4 EECON1 Register
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semaphore that indicates whether a block of EEPROM data had finished updating
or not. The eedata_writestring() function uses the eedata_writebyte() function
to write a string contained in char *s to location addr. Each byte is verified after
write by using eedata_readbyte(); if any byte fails to verify the write is terminated
and the function returns “1”. If all bytes verify, the function returns a “0”. The
ee_readstr function reads a string containing a maximum of max characters from
location addr in Data EEPROM into the char *s buffer.

unsigned char eedata_readbyte(unsigned char addr){
  EEADR = addr;  EEPGD = 0;  CFGS = 0;
  RD = 1;
  return(EEDATA);
}
void eedata_writebyte(unsigned char addr, unsigned char byte){
  char istat;
  EEADR = addr;  EEDATA = byte;
  EEPGD = 0;  CFGS = 0; WREN = 1;
  istat = GIE;
  GIE = 0;
  EECON2 = 0x55; EECON2 = 0xAA;
  WR=1;
  GIE = istat;
  // wait for write to complete
  while (WR) ;
  EEIF = 0; WREN = 0;
}
//Write string to DATA EEPROM
char eedata_writestr(unsigned char *s, unsigned char addr){
  char c;
  while(*s) {
    eedata_writebyte(addr,*s);
    // verify
    c = eedata_readbyte(addr);
    if (c != *s) return(1);
    addr++; s++;
  }
  // write end of string
  eedata_writebyte(addr,*s);
  c = eedata_readbyte(addr);
  if (c != *s) return(1);
  return(0);
}
//Read string from DATA EEPROM
unsigned char eedata_readstr(unsigned char *s, 
 unsigned char addr, unsigned char max){
  unsigned char c,cnt;
  cnt = 0;
  do {
    c = eedata_readbyte(addr); addr++;
    *s = c;
    s++; cnt++;
  }while((c) && (cnt < (max-1)));
  // last byte non-zero, terminate this string
  if (c) *s = 0;
  return(addr);
}

} Read one byte from location addr
in Data EEPROM.  

}
Write byte to location addr in data EEPROM.
Write is non-interrupt driven; waits for write
to complete.

The sequence ‘0x55’, ‘0xAA’ written to 
EECON2 is necessary to enable the write.

The WR bit is cleared when the write
operation is complete. Clear EEIF flag, WREN
before exit.

} Write string *s to location addr in data EEPROM.

Verify each byte after write by reading it back
and doing a compare.

Return a ‘0’ on sucessfully writing all bytes, 
return a ‘1’ if any byte fails verification.

} Read string from location addr in 
Data EEPROM, store in *s.  

Read at most max characters.

FIGURE 14.14 C functions for Data EEPROM read/write (see CD-ROM file 
./code/chap14/ee_module.c).ON THE CD



Figure 14.15 shows a program that tests the Data EEPROM read/write func-
tions of Figure 14.14. The while(1){} loop in main() prompts the user for read or
write mode; in write mode, a string is read from the serial port and written to Data
EEPROM. After each write, the addr variable is incremented by the number of
bytes written. In read mode, the first string is read from Data EEPROM starting at
location 0. After the read, the addr variable is set to the new value returned by ee-
data_readstr(), where addr is incremented by the number of bytes read from the
EEPROM. Sample console output is given at the end of the main() code listing.

Flash Program Memory Read/Write

Figure 14.16 gives C functions for reading a byte and reading a string from Flash
memory. The flash_readbyte() function reads a byte from location addr in Flash
memory. The TBLPTR register (originally discussed in Chapter 6, “Subroutines
and Pointers”) is a 21-bit register used for pointing into Flash program memory.
The statement TBLPTR = (far unsigned char *) addr copies the addr parameter
containing the target Flash memory location into the TBLPTR register. The far
qualifier on the unsigned char * data type indicates that this pointer is referencing
Flash memory space and thus is 3 bytes long. The assignment causes the compiler
to generate code that copies the lower 3 bytes of addr into the TBLPTRL, TBLP-
TRH, TBLPTRU registers, respectively (note the little endian order). The inline as-
sembly statement asm(“TBLRD*+”) does a table read with post increment,
transferring the byte referenced by TBLPTR into the TABLAT register, which is re-
turned as the byte read from Flash memory. The flash_readstr() function reads a
string containing a maximum of max characters from location addr in Flash mem-
ory into the char *s buffer.

Figure 14.17 shows C functions for Flash memory erase and write. The
do_flash_erase() function erases a block of 64 bytes beginning at location addr,
where addr is assumed to be aligned on a 64-byte boundary (this is not necessary,
but unexpected results will occur due to the lower 6 bits of addr being ignored dur-
ing the erase). 

The FREE bit is set to 1 to indicate that this is an erase operation and not a write
operation. The erase operation is started by the assignment WR = 1; the CPU
stalls for the duration of the erase operation since instructions cannot be fetched
when an erase or write to Flash memory is being performed. Observe that inter-
rupts are disabled for the duration of the write by clearing GIE. The flash_write-
buf() function writes 64 bytes contained in buffer *buf to location addr in Flash
memory. An erase operation is performed first using do_flash_erase(addr), and
then the 64 bytes are written in groups of eight to Flash memory, as the minimum
write operation is 8 bytes. The 8 bytes to be written are stored in an eight-location
holding register, which is addressed by the lower 3 bits of the TBLPTR register. A
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preincrement table write instruction, asm(“TBLWT+*”), is used so that when the
eighth byte is written, the TBLPTR register is still pointing to the same 64-byte
boundary in Flash memory as when the first byte was written. The addr variable is
decremented (addr--) before the write loop is entered because of the preincrement
table write. After the eighth byte of a group is written, the Flash write operation is
performed in the same manner as in do_flash_erase() function, except that the
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unsigned char eedata_readbyte(unsigned char addr){
  unsigned char c,istat;
#define BUFSIZE 64
unsigned char buf[BUFSIZE];
main(void){
  unsigned char c, cnt, addr,mode, *s;
  serial_init(95,1); // 19200 in HSPLL mode, crystal = 7.3728 MHz
  addr = 0;
  pcrlf();
  printf("PIC18 On-board EEPROM R/W Test");
  pcrlf();
  while(1){
    pcrlf();
    printf("Enter 'w' for write mode, else read: ");
    c=getche();  pcrlf();
    if (c != mode) addr=0; //reset address
    mode = c;
    if (mode == 'w') {
      printf("Enter string, %d chars max: ",BUFSIZE);
      pcrlf();
      s = buf; cnt = 0;
      do { // get a string
        c = getche();
        if (c != 0x0D) {
          *s = c; s++; cnt++;
        }
      }while(c != 0x0D);
      *s = 0; s++;cnt++;
      pcrlf();
      if (eedata_writestr(buf,addr)) {
        printf("Write unsuccessful!"); pcrlf();
      }
      addr = addr + cnt;
    } else {
      // read a string from EEPROM
      addr = eedata_readstr(buf,addr,BUFSIZE);
      printf("String read: %s",buf);
      pcrlf();
    }
  }
}

}

Read string from serial
port, write to Data EEPROM
using ee_writestr}

Prompt user to choose
read or write mode.

 First string written.

 Second string written.

 } Both strings read back
 from Data EEPROM.

Read string from Data EEPROM
using ee_readstr

}

 Console output from test

FIGURE 14.15 Test of Data EEPROM read/write.ON THE CD
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FREE bit is cleared indicating a write operation. The 64 bytes are verified after the
write is completed by using the flash_readbyte() function; if any byte fails verifi-
cation, a “1” is returned; else, a “0” is returned.

Figure 14.18 shows a program that tests the Flash memory read and write func-
tions. The while(1){} loop in main() prompts the user for either write, test, or read
mode. In write mode, a string is captured from the serial port and written to Flash
memory at location 0x3F80 using the flash_writebuf() function (location 0x3F80
is at the end of the Flash memory on the PIC18F242). In read mode, the data at
Flash location 0x3F80 is read using the flash_readstr() function and displayed on
the console. The test mode reads the const char test_string[] from Flash memory
using flash_readstr() and displays it on the console. The const (constant data)
modifier for test_string[] tells the compiler that this data should reside in pro-
gram memory and not be copied to the file register memory. Sample console out-
put is given at the end of the main() code listing.

unsigned char flash_readbyte(long addr){
  TBLPTR = (far unsigned char *)addr;
  asm("TBLRD*+");
  return(TABLAT);
}

long flash_readstr(unsigned char *s, long addr, unsigned char max){
  unsigned char c,cnt;
  cnt = 0;
  do {
    c = flash_readbyte(addr);
    addr++;
    *s = c;
    s++; cnt++;
  }while((c) && (cnt < (max-1)));
  // last byte non-zero, 
  // terminate this string
  if (c) *s = 0;
  return(addr);
}

} Read one byte from location addr
in Flash memory.  
Note the use of the long type for addr

} Read string from location addr in 
Flash EEPROM, store in *s.  

Read at most max characters.

FIGURE 14.16 C functions for Flash memory read (see CD-ROM file
./code/chap14/flash_module.c).ON THE CD
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do_flash_erase(long addr){
 char istat;
 TBLPTR = (far unsigned char *)addr;
 EEPGD=1;FREE=1;WREN=1;CFGS=0;
 istat = GIE; GIE = 0;
 EECON2 = 0x55; EECON2 = 0xAA;
 WR = 1; // CPU stalls
 asm("NOP");
 GIE = istat; FREE=0;WREN=0;
}

// write 64 bytes , assumes 'addr' is on 64 byte boundary!
char flash_writebuf(long addr, char *buf){
 char i, j,istat, *s;

 do_flash_erase(addr);
 // before write, decrement address
 addr--;
 TBLPTR = (far unsigned char *)addr;
 i = 0; j= 0;  s = buf;
 while (i < 64) {
  TABLAT=*s;
  asm("TBLWT+*");
  j++;i++;s++;
  if (j == 8) {
   // 8 bytes written to internal buff, do write
   EEPGD=1;FREE=0;WREN=1;CFGS=0;
   istat = GIE;
   GIE = 0;
   EECON2 = 0x55; EECON2 = 0xAA;
   WR = 1; // CPU stalls
   asm("NOP");
   GIE = istat;
   WREN = 0;
   j = 0;
  }
 }
// verify contents written correctly
 i = 0;s = buf;
 addr++;  // get back to start
 while(i < 64) {
  j = flash_readbyte(addr);
  if (j != *s) return(1);
  i++;s++;addr++;
 }
 return(0);
}

}Do erase operation in Flash memory at
location addr which is assume to start
on 64-byte boundary.

}
Write 64 bytes in *buf to location
addr in Flash

Do erase first

Decrement address before start
so that first table write triggers
new 8-byte row boundary in
holding register.

Write 64 bytes in eight groups
of eight bytes.

Each group of 8 bytes fills up
the internal holding registers,
which then must be written using
a Flash write operation.

}
Verify that 64 bytes were correctly written
by reading back the 64 bytes and comparing
against *buf contents.

Return “1” if any byte fails to verify.

Return “0” on successful verification.

FIGURE 14.17 C functions for Flash memory erase and write (see CD-ROM file 
./code/chap14/flash_module.c).ON THE CD
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#define BUFSIZE 64
unsigned char buf[BUFSIZE];
#define FLASH_BUF 0x3F80 // flash address
const char test_string[]="Test of 'const' string in program memory";
long flash_ptr;

main(void){
 unsigned char c, mode, *s;
 serial_init(95,1); // 19200 in HSPLL mode, crystal = 7.3728 MHz
 pcrlf(); printf("PIC18 On-board FLASH R/W Test");  pcrlf();
 flash_ptr = FLASH_BUF;
 while(1){
  pcrlf(); printf("'w' (write),'t' (read const. string), 'r'(read): ");
  c=getche(); pcrlf(); mode = c;
  if (mode == 'w') {
   flash_ptr = FLASH_BUF;
   printf("Enter string, %d chars max: ",BUFSIZE);pcrlf();
   s = buf;
   do { // get a string
    c = getche();
    if (c != 0x0D) {*s = c; s++;}
   }while(c != 0x0D);
   *s = 0; s++; pcrlf();
   if (flash_writebuf(flash_ptr,buf)) {
    printf("Write unsuccessful!"); pcrlf();
   }
  }
  else if (mode == 't' || mode == 'r'){
   if (mode == 't') flash_ptr = (long) &test_string[0];
    else flash_ptr = FLASH_BUF;
   // read from flash memory
   flash_readstr(buf,flash_ptr,BUFSIZE);
   printf("String read: %s",buf);
   pcrlf();
  }
 }
}

}

Target address in Flash to
store data

const string read}
} string write

} string read

} string write

} string read

Prompt user for mode

Read string from serial port,
write to Flash memory using
flash_writebuf

}
Use either FLASH_BUF
or test_string[] as starting
address for flash read

} Read from Flash using flash_readstr,
print to console

FIGURE 14.18 Test of Flash memory read and write.
ON THE CD



14.7 IMPLEMENTATION OF A HOME MONITORING SYSTEM

At this point, the mechanisms for implementing the temperature sensing and non-
volatile data storage capabilities required by the home monitoring system have
been discussed. We can now move to the next step, which is the code implementation.
Table 14.5 shows the PIC18F242 resources used by the home monitoring application.
Most of the PIC18 subsystems are involved except for Timer0 and the A/D converter.

The home monitoring system is the most complex application presented in this
book and is covered in a top-down manner starting with the main() code flowchart
in Figure 14.19. This implements the four top-level displays shown in Figure 14.9a,
b, d, and f. 
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PIC18 Resource Comment

RB2 Left pushbutton input, falling edge triggered interrupt.

RB1 Right pushbutton input, falling edge triggered interrupt.

RB0 Motion sensor input, rising edge triggered interrupt.

RB7, RB6 Rotary encoder input, periodically sampled.

RA[3:0], RA4, RB[5:4] LCD interface.

Timer1 Used to implement time-of-day clock, T13CKI input driven 
by external 32.768 kHz clock. Generates an interrupt every 
two seconds on Timer1 rollover.

Timer3 Used for debouncing pushbutton inputs and sampling 
rotary encoder inputs, configured to generate a periodic 
interrupt of approximately 9 ms.

Timer2/PWM/CCP1 Timer2 and PWM used for generating square wave that 
output drives an external speaker for the audible alarm.

MSSP Module Used to communicate with the DS1621 Digital 
(I2C Master mode), Thermometer.
pins SDA/SCL

Data EEPROM Used to store Start and Stop monitoring times.

USART Asynchronous serial port used for PIC18 programming via a 
bootloader. Not used during the application execution.

TABLE 14.5 PIC18 Resources Used for Home Monitoring Application



The left button cycles through the four top-level modes of display time, set
time, set alarm start time, and set alarm stop time. The primary mode is the display
time mode, and in this loop the system is woken every two seconds by Timer1
wrapping from 0xFFFF to 0x0000, at which point the display is updated with the
current time and temperature. The system is also woken on any pushbutton or mo-
tion sensor activity. The other three modes are used for altering the time of day,
alarm start time, or alarm stop time via the pushbuttons and rotary encoder.

Figure 14.20 gives a summary of the primary variables and functions in the
home monitoring application. Previously covered functions such as those used for
the LCD or DS1621 are not listed. The user should refer to Figure 14.20 when read-
ing code that follows in the remainder of this section.

484 Microprocessors

mode =
DISPLAY_TIME? L butn?

Toggle Celsius/
Faren. Temp. Dsply

Time 
Changed?

Sleep until Timer1
interrupt (2 sec)

mode =SET_TIME

Do IO Port configuration, subsystem configuration, 
read start/stop times from EEPROM via do_config()

Update Time
via do_settime()

R butn?

Update Time,
Temp display via
update_lcd_time()

mode =
SET_TIME? L butn?

mode =SET_START

R butn?

yes yes yes

yes yes yes

yes
no

no

no

no

no

no

Update Start time
via do_settime()

mode =
SET_START? L butn?

mode =SET_STOP

R butn?
yes yes yes

nono

Update Stop time
via do_settime()

L butn?

mode =DISPLAY_TIME

R butn?
yes yes yes

nono

no, mode
is SET_STOP

no

FIGURE 14.19 main() flowchart for home monitoring application.



Figure 14.21 shows a portion of main() for the home monitoring application;
the DISPLAY_TIME mode contained in the top level while(1){} loop is shown in
its entirety. The left_button and right_button variables are semaphores that are set
by the ISR if these buttons are pushed. Within the while(mode==DISPLAY_TIME){}
loop, any button activity cancels an audible alarm if it’s sounding by setting the
PWM duty cycle to zero (CCPR1L = 0x00). Also, the alarm_count variable is zeroed;
this is used to implement a delay of ALARM_DELAY seconds before the audible
alarm is re-activated once a button has been pushed. If the time has changed
(old_sec != sec), the LCD display is updated via the update_lcd_time() function.
The motion variable is a semaphore that is set by the ISR if motion is detected; the
audible alarm is turned on if the current time (cur_time) is within the
alarm_start/alarm_stopwindow. At the end of the while(mode==DISPLAY_TIME){} loop,
the processor sleeps if no audible alarm is sounding and no debouncing of pushbutton
or rotary inputs is in progress. The processor is awakened on the next Timer1 interrupt.

Figure 14.22 gives the remainder of main() and contains the code that imple-
ments the set time, set alarm start time, and set alarm stop time modes. In each
mode, a left button activation advances to the next mode, while a right button ac-
tivation enters the time modification mode. Each mode has a set of three variables
that define the time to be modified: hour/min/sec for the set time mode,
hour1/min1/sec1 for the set alarm start time mode, and hour2/min2/sec2 for the set
alarm stop time mode. In each case, the appropriate three-variable set that defines
the time to be modified is copied to the temporary variables t_hour/t_min/t_sec,
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Variable(s) Comment 

left_button,right_button semaphores for left, right button pushes 

left_debounce,right_debounce Left, Right button debounce counters 

motion semaphore for motion detection 

hour, min, sec time-of-day in hours, minutes, seconds 

cur_time time-of-day in seconds 

hour1, min1, sec1 alarm start time in hours, minutes, seconds 

hour2, min2, sec2 alarm stop time in hours, minutes, seconds 

alarm_start, alarm_stop alarm star/stopt time in seconds 

t_hour, t_min, t_sec variables adjusted by do_settime() function 

raw_temp, temp_c, temp_f 16-bit raw temperature, Celsius temperature, 
Fahrenheit temperature 

temp_mode when “0” display Fahrenheit, when “1” display 
Celsius 

int0_last, int1_last last sampled values of rotary encoder inputs 

int0_cnt, int1_cnt debounce counters for rotary encoder inputs 

rotcount, last_rotcount Counter values updated when rotary encoder changes 
in update_rotary_state() 

rotmin, rotmax rotcount is clipped to these values in 
update_rotary_state() 

state, last_state tracks state of rotary encoder 

rotdir indicates direction of rotary encoder turn 

mode current display mode in primary IO loop of main(). 

Functions Comment 

do_config() Do IO Port, Subsystem configuration 

update_lcd_time() Update LCD time/temperature display 

do_settime() Perform user modification of either time-of-day, 
alarm start time, or alarm stop time 

update_rotary_encoder() Read rotary encoder inputs and update state 

do_debounce() Called by Timer3 ISR to debounce pushbutton and 
rotary encoder inputs 

read_start_stop() Read alarm start/stop times from EEPROM 

save_start_stop() Save alarm start/stop time to EEPROM 

new_choice() Display new menu choice on LCD 

update_lcd_time1() Write a time value to LCD on specified line 

FIGURE 14.20 Variables and subroutines 
summary of the home monitoring application.



and the do_settime() function is called to perform the actual time modification. On
return, the t_hour/t_min/t_sec values are copied back to the appropriate three-
variable set. For the set alarm start time and set alarm stop time modes, the values are
saved back to data EEPROM after returning from do_settime().
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#define DISPLAY_TIME 0
#define SET_TIME     1
#define SET_START    2
#define SET_STOP     3

main(void){
 char unsigned mode;
 do_config(); //configure subsystems
 mode = DISPLAY_TIME; temp_mode = 0; old_sec = sec;
 while(1) {
  switch (mode) {
   case DISPLAY_TIME:
    while(mode==DISPLAY_TIME) {
     if (left_button) {
      CCPR1L = 0x00; // turn off alarm
      alarm_count = 0; // clear alarm delay
      left_button = 0; //clear flag
      mode = SET_TIME;
     }
     if (right_button) {
      CCPR1L = 0x00; // turn off alarm
      alarm_count = 0;
      right_button = 0; //clear flag
      temp_mode = ~temp_mode;
      }
     if (old_sec != sec) {
      old_sec = sec;
      if (alarm_count <= ALARM_DELAY)
            alarm_count = alarm_count+2;
      update_lcd_time();
      if (motion) {
       // see if should turn on alarm
       motion = 0; INT0IF = 0; INT0IE = 1;
       if (alarm_count > ALARM_DELAY) {
        if ((cur_time > alarm_start) && 
            (cur_time < alarm_stop)) {
         CCPR1L = 0x30; // turn on alarm
        }
       } // end if alarm_count > alarm_display
      } // end if (motion)
     }//end if (old_sec != sec)
     GIE = 0;
     if (INT1IE && INT2IE &&
        !int0_cnt && !int1_cnt && !CCPR1L) {
       // no debouncing or alarm so sleep, 
       // wake on timer1 rollover every 2 sec
         asm("sleep");
     }
     GIE = 1;
    }//end while(
    break;

Default mode is to display
time and temperature

Right button pushed, so turn
off alarm, toggle temperature
display mode (Farenheit ? Celsius)

}
Left button pushed, so turn
off alarm by setting duty cycle
to zero, clear semaphore,
set new mode to SET_TIME

}States definitions for state machine IO in primary
input loop

}

} Seconds has changed, so update
LCD display, increment alarm delay
counter

}

Motion detected, if alarm delay
has expired and alarm is enabled
then sound audible alarm by
setting duty cycle to non-zero

Go to sleep if not debouncing
pushbutton or rotary inputs and
alarm is silent.

Will wake on next rollover of 
Timer1 (every 2 seconds)

}

FIGURE 14.21 main() part I of home monitoring application.
ON THE CD



Figure 14.23 shows the do_config() function called by main() to perform the
port IO and subsystem configuration to match the resource usage of Table 14.5.
Observe that a DS1621 temperature conversion is started and polled until complete
so that a valid temperature will be ready when displayed by update_lcd_time().
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  case SET_TIME:
      new_choice(stime_msg);
      while(mode==SET_TIME) {
        if (left_button) {left_button = 0; mode = SET_START;}
        if (right_button) {
          right_button = 0;
          GIE=0;t_hour=hour;t_min=min;t_sec=sec; GIE=1;
          do_settime();
          GIE=0; hour=t_hour;min=t_min;sec=t_sec;
          cur_time = hour*60+min*60+sec;
          GIE=1;
          new_choice(stime_msg);
        }
      } break;
    case SET_START:
      t_hour=hour1;t_min=min1;t_sec=sec1;
      new_choice(mon1_msg);update_lcd_time1(0xC0);
      while(mode==SET_START) {
        if (left_button) {left_button = 0; mode = SET_STOP;}
        if (right_button) {
          right_button = 0;
          GIE=0;t_hour=hour1;t_min=min1;t_sec=sec1; GIE=1;
          do_settime();
          GIE=0;hour1=t_hour;min1=t_min;sec1=t_sec; GIE=1;
          save_start_stop();// write start/stop to eeprom
          new_choice(mon1_msg);update_lcd_time1(0xC0);
        }
      }break;
   case SET_STOP:
      t_hour=hour2;t_min=min2;t_sec=sec2;
      new_choice(mon2_msg);update_lcd_time1(0xC0);
      while(mode==SET_STOP) {
        if (left_button) {left_button = 0; mode = DISPLAY_TIME;}
        if (right_button) {
          right_button = 0;
          GIE=0;t_hour=hour2;t_min=min2;t_sec=sec2;GIE=1;
          do_settime();
          GIE=0;hour2=t_hour;min2=t_min;sec2=t_sec; GIE=1;
          save_start_stop();
          new_choice(mon2_msg);update_lcd_time1(0xC0);
        }
      }break;
    }//end switch (mode)
  }// end while(1)
}// end main()

Change to next mode on 
left button press

Adjust alarm
start time,
then save to
Data EEPROM

}
Copy hour/min/sec
to temporary variables,
let do_settime()
use rotary encoder
inputs to adjust time

}
Change to next mode on 
left button press

Change to next mode on 
left button press

Adjust alarm
stop time,
then save to
Data EEPROM}

FIGURE 14.22 main() part II of the home monitoring application (see
CD-ROM file ./code/chap14/F_14_21_alarm.c).ON THE CD
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Figure 14.24 shows the do_settime() function that performs the time modifi-
cation for the set time, set alarm start time, and set alarm stop time modes in Figure
14.22. The t_hour, t_min, t_sec variables are displayed on LCD line 1 and the cur-
sor is set to the hours field. In the while(1){} loop, one of the variables t_hour,
t_min, or t_sec is copied to the rotcount variable and the appropriate rotary 
encoder min/max clipping values are set (rot_min/rot_max) based upon the current
LCD cursor position. This is done because the ISR for the rotary encoder modifies
the rotcount variable and clips it to within the range set by rot_min and rot_max.

do_config() {
  char unsigned status;
  RBPU = 0; // enable the weak pullup on port B
  read_start_stop(); // read old alarm values from eeprom
  alarm_start = hour1*60+min1*60+sec1;
  alarm_stop = hour2*60+min2*60+sec2;
  i2c_init(72);// init I2C interface
  ds1621_send1(ACCESS_CONFIG,0x01); // one shot mode
  ds1621_send0(START_CONVERT); // start conversion
  do{ // wait until first conversion is done
    status = ds1621_read1(ACCESS_CONFIG);
  } while(!bittst(status,7));

  // rotary setup
  ROT0_IN;  ROT1_IN;
  int0_last = ROT0;  int1_last = ROT1;
  last_state = 0;
  if (ROT0) bitset(last_state,0);
  if (ROT1) bitset(last_state,1);

  E_OUTPUT;  RS_OUTPUT;  RW_OUTPUT;  ELOW; RSLOW;  RWLOW;
  lcd_init();  update_lcd_time();

  // initialize timer 1, prescale by 1, ext. async. clock
  T1CKPS1 = 0;  T1CKPS0 = 0;  T1OSCEN = 0;   TMR1CS = 1;  T1SYNC = 1;
  bitset(TRISC,0);// set T1CKI/RC0 as input

  // confg. tmr2 for PWM mode, 0% duty cycle,pre=16, CCP1 output
  T2CKPS1 = 1; PR2 = 255; CCPR1L = 0;
  bitclr(CCP1CON, 5);  bitclr(CCP1CON, 4);  bitclr(TRISC,2);
  bitset(CCP1CON, 3);  bitset(CCP1CON, 2);
  TMR2ON = 1;
 // use timer3 for debounce, int. clock
  T3CKPS1 = 0;  T3CKPS0 = 0; TMR3CS = 0;  T3SYNC = 0;
  TMR3IF = 0;  TMR3IE = 1;  TMR3ON = 1;

  // pushbutton input configuration, fall. edge interrupt
  TRISB1 = 1; INT1IF = 0; INTEDG1 = 0;INT1IE = 1;
  TRISB2 = 1; INT2IF = 0; INTEDG2 = 0;INT2IE = 1;
  // motion sensor input, rising edge interrupt
  TRISB0 = 1;  INTEDG0 = 1;  INT0IF=0; INT0IE=1;

  // enable timer 1 and general interrupts
  TMR1IF = 0;  TMR1IE = 1;  TMR1ON = 1;
  IPEN = 0;  PEIE = 1;  GIE = 1;
}

}

Init DS1621 and take
initial temperature
reading

Read start/stop
monitor times from
Data EEPROM

Initialize rotary encoder
inputs and state

}

} LCD interface init

}

}Timer1
init

}Timer2 frequency
is ~ 1800 Hz

}Timer3 init, PRE=1 for
periodic interrupt ~ 9 ms

}Pushbutton input
and motion sensor
input configuration

}Timer1 on and interrupts enabled

FIGURE 14.23 do_config() function (see CD-ROM file 
./code/chap14/F_14_21_alarm.c).ON THE CD



The pushbutton and rotary encoder semaphores are cleared, then interrupts are en-
abled, and the function waits for one of the semaphores to change value. If the
right_button semaphore is set, the LCD cursor is advanced to the next field. If the rot-
count value is changed, rotcount is copied back to the appropriate t_hour, t_min, or
t_sec variable. If the left_button semaphore is set, the do_settime() function is exited. 
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//right button advances cursor, left button exits
void do_settime(){
 char pos;
 GIE=0;
 pos = 0x81; // hours position
 lcd_write(0x0E,0,0,1);  // turn on cursor
 while(1){
  switch (pos) {
   case 0x81: rotcount=t_hour;rot_min=0;rot_max=23;
    break;
   case 0x84: rotcount = t_min;rot_min=0;rot_max=59;
    break;
   case 0x87: rotcount =t_sec;rot_min=0;rot_max=59;
    break;
  }
  update_lcd_time1(0x80);
  lcd_write(pos,0,1,1); //position cursor
  // wait for change of input
  last_rotcount = rotcount;
  right_button=0; left_button=0;
  GIE=1;
  while(!left_button && !right_button
        && (rotcount == last_rotcount));
  GIE=0;
  if (rotcount != last_rotcount){
   // update values
   switch (pos) {
    case 0x81: t_hour=rotcount;break;
    case 0x84: t_min=rotcount;break;
    case 0x87: t_sec=rotcount;break;
   }
  }
  if (right_button) {
   pos = pos+3;
   if (pos == 0x8A) pos = 0x81;
  }
  if (left_button) {
   // turn off cursor
   lcd_write(0x0C,0,0,1); 
   break; // exit loop
  }
 } // end while(1)
 // before returning, clear input flags, restore interrupts
 last_rotcount = rotcount;
 right_button=0;
 left_button=0;
 GIE=1;
}

} Write time value to specified
line, set cursor to hours position

}

}

hours position, copy t_hour
to rotcount for modification

Clear semaphores for button inputs and
rotary encoder inputs}

If rotcount changed, then
update either hours, minutes, or
seconds from rotcount based on
cursor position

R button advances cursor to next field

Clear button and rotary encoder semaphores
before exiting

}minutes position, copy t_min
to rotcount for modification

}seconds position, copy t_sec
to rotcount for modification

Wait for any semaphore to change, ISR
will update rotcount if rotary inputs 
change

}

}

} L button exits time modification loop

}

FIGURE 14.24 do_settime() function (see CD-ROM file 
./code/chap14/F_14_21_alarm.c).ON THE CD
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Figure 14.25 shows some miscellaneous functions that are called by main(),
do_settime(), and do_config(). The update_lcd_time() function is called by the
display time mode to update the LCD with the current time (line 1) and tempera-
ture (line 2). The current temperature is read from the DS1621 and a new conver-
sion is started. After converting the temperature to Fahrenheit, either the Celsius or
Fahrenheit value is displayed based on the temp_mode value. If the motion sema-
phore is set, an “M” is printed in the first character position of line 2. The

#define BUFSIZE 64
char buf[64];

update_lcd_time1(unsigned char pos) {
  lcd_write(pos,0,1,1);  // 1st line
  printf("%02d:%02d:%02d",t_hour,t_min,t_sec);
}

update_lcd_time(){
  unsigned char status, c;
  lcd_write(0x80,0,1,1);  // 1st line
  printf("%02d:%02d:%02d",hour,min,sec);
  lcd_write(0xC0,0,1,1);  // 2nd line
  // check if temp conversion done, if yes, update
  status = ds1621_read1(ACCESS_CONFIG);
  if (bittst(status,7)){
    ds1621_read2(READ_TEMP,(char *)&raw_temp);
    // start new conversion
    ds1621_send0(START_CONVERT);
  }
  if (motion) c = 'M'; else c = ' ';
  temp_c = raw_temp;
  temp_c = temp_c >> 8;
  temp_f = (temp_c*9)/5 + 32;
  if (temp_mode) printf("%c%5d C",c,temp_c);
  else printf("%c%5d F",c,temp_f);
}

const unsigned char stime_msg[]="Set Time";
const unsigned char blank_msg[]="        ";
const unsigned char mon1_msg[]="Mon Strt";
const unsigned char mon2_msg[]="Mon Stop ";

new_choice(const char *s){
  lcd_write(0x80,0,1,1);  // 1st line
  printf("%s",s);
  lcd_write(0xC0,0,1,1);  // 2nd line
  printf("%s",blank_msg);
}

read_start_stop() {
  eedata_readstr(buf,0,BUFSIZE);
  sscanf(buf,"%d %d %d %d %d %d",&hour1,&min1,&sec1,&hour2,&min2,&sec2);
}

save_start_stop() {
  sprintf(buf,"%d %d %d %d %d %d",hour1,min1,sec1,hour2,min2,sec2);
  eedata_writestr(buf,0);
}

} Write time value to specified
LCD line

}Update time on LCD line 1

}

Called during DISPLAY_TIME
mode to display time/temperature

} Update temperature
and motion flag on
LCD line 2

Strings for each mode

} Update LCD display with 
new mode string

Read start, stop times from Data EEPROM

Save start, stop times to Data EEPROM

FIGURE 14.25 Miscellaneous support functions (see CD-ROM file 
./code/chap14/F_14_21_alarm.c).ON THE CD



read_start_stop() function reads the alarm start/stop times from data EEPROM
and is called from within do_config(). The save_start_stop() function writes the
alarm start/stop times to Data EEPROM and is called from within do_settime().
The update_lcd_time1() and new_choice() functions are called from within the pri-
mary IO loop of main() to update the LCD display when modes change.

Figure 14.26 shows the ISR for the home monitoring application. The Timer1
interrupt causes the time of day to be advanced two seconds. The INT1 and INT2
interrupts are used for the pushbutton inputs. These interrupts set their appropri-
ate semaphores and also disable the interrupt until the input is debounced. The
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// variables for ISR and ISR support functions
volatile unsigned char left_button,left_debounce,right_button,right_debounce;
volatile unsigned char motion,alarm_count,hour, min, sec,old_sec;
volatile unsigned char t_hour, t_min, t_sec,hour1, min1, sec1;
volatile unsigned char hour2, min2, sec2, update_flag;
volatile unsigned char int0_cnt,int0_last,int1_cnt,int1_last;
unsigned long alarm_start, alarm_stop, cur_time;
volatile signed int raw_temp, temp_c,temp_f, temp_mode;

void interrupt isr(void){
  if (TMR1IF && TMR1IE) { // time-of-day
    TMR1IF=0; sec = sec + 2; // seconds
    cur_time=cur_time+2;
    if (sec > 59) {
      min++; sec = sec-60;
      if (min == 60) {
        hour++; min = 0;
        if (hour == 24) {
          hour = 0; cur_time = 0;
        }
      }
    }
  }
  if (INT1IF && INT1IE) {// pushbutton detected
    INT1IE = 0;right_button = 1;right_debounce = 0;
  }
 if (INT2IF && INT2IE) {// pushbutton detected
    INT2IE = 0; left_button = 1; left_debounce = 0;
  }
  if (INT0IF && INT0IE) { // motion sensor
    motion = 1; INT0IE = 0;
  }
  if (TMR3IF) {// debouncing timer
    TMR3IF = 0;
    do_debounce();
  }
}

}

} Timer1 rollover,
adjust time of day

Timer3 periodic interrupt, 
do debounce and sample rotary inputs}

Right button pressed,
set semaphore,
clear debounce count 

} Left button pressed,
set semaphore,
clear debounce count 

} Motion detected,
set semaphore

FIGURE 14.26 Interrupt service routine for the home monitoring application (see CD-
ROM file ./code/chap14/F_14_21_alarm.c).ON THE CD



492 Microprocessors

INT0 interrupt sets the motion sensor semaphore (motion) and disables the inter-
rupt; the INT0 interrupt is re-enabled in main() after the semaphore is detected and
cleared. The Timer3 interrupt is configured to generate a periodic interrupt of 9
ms and is used to debounce the pushbutton inputs and sample the rotary encoder
inputs via the do_debounce() function shown in Figure 14.27.

Debouncing of the pushbutton inputs is done in the same manner as in Chap-
ter 10, “Interrupts and a First Look at Timers.” A pushbutton input is considered
debounced if it remains high for DEBOUNCE consecutive Timer3 interrupts, after
which the appropriate interrupt is re-enabled.

Sampling and debouncing of the rotary inputs is performed in the same man-
ner as in Chapter 10. If a rotary encoder input is different from its previous value
for DEBOUNCE consecutive Timer3 interrupts, this is considered a valid change in

do_debounce() {
  //debounce pushbuttons
  if (!right_button && !INT1IE) {
    if (RB1) right_debounce++;
     else right_debounce=0;
    if (right_debounce == DEBOUNCE){
      //re-enable interrupt
      INT1IF=0;INT1IE=1;
    }
  }
  if (!left_button && !INT2IE) {
    if (RB2) left_debounce++;
     else left_debounce=0;
    if (left_debounce == DEBOUNCE){
      //re-enable interrupt
      INT2IF=0;INT2IE=1;
    }
  }
  if (ROT0 != int0_last) {// debounce rotary inputs
    int0_cnt++;
    if (int0_cnt == DEBOUNCE) {
      update_flag = 1; int0_cnt = 0;int0_last = ROT0;
    }
  }
  // reset cnt, if pulse width not long enough
  else if (int0_cnt)  int0_cnt = 0;
  if (ROT1 != int1_last) {
    int1_cnt++;
    if (int1_cnt == DEBOUNCE) {
      update_flag = 1; int1_cnt = 0; int1_last = ROT1;
    }
  }
  // reset cnt, if pulse width not long enough
  else if (int1_cnt)   int1_cnt = 0;
  if (update_flag) {
    // can read the rotary inputs
    update_rotary_state(); update_flag = 0;
  }
}

}

}Debounce right pushbutton, re-enable
interrupt only after button has been
idle high for DEBOUNCE Timer3
interrupt periods

ROT0 input changed,
debounce. If stable
long enough, set
update flag.

}Debounce left pushbutton, re-enable
interrupt only after button has been
idle high for DEBOUNCE Timer3
interrupt periods

} ROT1 input changed,
debounce. If stable
long enough, set
update flag.

} If update_flag is set, then update
rotary encoder state.

FIGURE 14.27 do_debounce() function (see CD-ROM file 
./code/chap14/F_14_21_alarm.c).ON THE CD
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value and the update_rotary_state() function in Figure 14.28 is called. The 
update_rotary_state() has the same basic structure as originally presented in
Chapter 10. The rotcount variable is either incremented or decremented based on
the change in rotary encoder state. Additionally, the rotcount value is clipped to re-
main within the range rot_min to rot_max.

#define ROT1      RB7
#define ROT0      RB6
#define ROT1_IN  TRISB7=1
#define ROT0_IN  TRISB6=1
#define ROT_S0 0
#define ROT_S1 1
#define ROT_S2 2
#define ROT_S3 3
volatile unsigned char state,last_state,rotcount,last_rotcount;
volatile unsigned char rotdir,rot_min,rot_max;
update_rotary_state(){
 state = 0;
 if (ROT0) bitset(state,0);
 if (ROT1) bitset(state,1);
 switch(state) {
  case ROT_S0:
   if (last_state == ROT_S1) {
    rotcount++; rotdir = 1; last_state = state;
   }else if (last_state == ROT_S2) {
    rotcount--;rotdir = 0; last_state = state;
   }break;
  case ROT_S1:
   if (last_state == ROT_S3) {
    rotcount++;rotdir=1; last_state = state;
   }
   else if (last_state == ROT_S0) {
    rotcount--; rotdir=0; last_state = state;
   }break;
  case ROT_S2:
   if (last_state == ROT_S0) {
    rotcount++; rotdir=1;last_state = state;
   }
   else if (last_state == ROT_S3) {
    rotcount--;rotdir=0;last_state = state;
   }break;
  case ROT_S3:
   if (last_state == ROT_S2) {
    rotcount++; rotdir=1;last_state = state;
   }
   else if (last_state == ROT_S1) {
    rotcount--; rotdir=0;last_state = state;
   }break;
  }//end switch
  if (rotdir){// incremented
    if (rotcount == (rot_max+1)) rotcount = rot_min;
  } else {//decremented
    if (!rot_min && (rotcount > rot_max)) 
          rotcount = rot_max;
    else if (rotcount == (rot_min-1)) rotcount = rot_max;
  }
} //end update_rotary_state()

}Increment or decrement
rotcount based on current
state and last state of rotary
encoder.

Set rotdir varible to “1” if
incremented, to “0” if
decremented

} Rotary encoder interface definitions

} Change state based on rotary encoder inputs

}Clip rotcount
to between rot_max
and rot_min.

FIGURE 14.28 update_rotary_state() function (see CD-ROM file 
./code/chap14/rot_module.c).ON THE CD
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Figure 14.29 shows a prototype of the home monitoring application. Wire-
wrap was used with headers to connect to off-board components such as the LCD,
potentiometer, rotary encoder, and so forth. In this prototype, use of the PIC18
sleep functionality in the display time mode reduced average current consumption
from 18 mA to 8 mA.

14.8 DESIGN AND IMPLEMENTATION OF AN 
AUTONOMOUS ROBOT

Small, autonomous robots have become popular as a means for stimulating inter-
est in embedded systems. Many regional IEEE student design contests feature au-
tonomous robots as the design target. Small autonomous robots also make for
good demonstrations to high school students during engineering recruiting drives.
Figure 14.30 gives the schematic of a wheeled robot design that can be manually
driven via an IR remote control or function autonomously using an IR proximity
sensor to detect forward obstructions.

The design assumes a three-wheeled chassis with left and right wheels and a
back pivot wheel. The IR receiver discussed previously in Chapter 13 is used for
sending commands to the robot in manual drive mode. The infrared proximity
sensor in Figure 14.30 outputs a voltage that is ~1 V when no obstruction is pre-

LCD

Alarm
Speaker

Motion
SensorRotary Encoder

DB9

Potentiometer,
LCD Contrast

Power Conn.

PIC18F242

Reset

DS1621

DS32KHZ

MAX667

Speaker
MOSFET

L/RMAX202
On/Off
switch

FIGURE 14.29 Prototype of the home monitoring application.



sent and increases to ~3 V when an obstruction is placed directly in front of it. The
PIC18 ADC is used to sample this sensor input to determine if there is an obstruc-
tion in front of the robot during autonomous drive mode. Pulse width modulation
is used to control the speed of the separate DC motors that drive the left and right
wheels. Individual speed control of each wheel is needed, as a turn is accomplished
by slowing one wheel as the other wheel is kept at the same speed. A left turn is ac-
complished by slowing the left wheel; a right turn by reducing the speed of the right
wheel. The automated PWM mode of the PIC18 cannot be used, as the
Timer2/CCP1 combination only implements a single PWM channel. Instead, man-
ual PWM is implemented on port pins RB6 and RB5 via periodic interrupts. This
approach produces a coarse-grained PWM, but it is sufficient for this application.
The schematic of Figure 14.30 shows the RS232 interface used for programming
mounted on a separate daughter card, as it is not needed during robot operation.
A weak pullup (10K resistor) is needed on the PIC18 RX input to force a “1” (idle
condition) when the MAX202 chip is not driving the RX input, so that the serial
bootloader on the PIC18 that reads the RX port after reset does not see a floating
input. The RS232 daughter card is self-powered through the RS232 port by using
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 (Radio Shack  
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 out
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FIGURE 14.30 Schematic of robot application.



the RTS (request-to-send) handshaking line as a Vdd source. Connector clips are
used to connect the TX, RX, and GND lines of the daughter card to the main board
during programming operation, which can be performed while the main board is
sitting on the robot chassis. A picture of the main board and RS232 daughter card
is shown in Figure 14.31. Small component PC boards from Radio Shack (PNs
#276-168, #276-148) and wire-wrap sockets/interconnect were used for creating the
prototype.

Figure 14.32a shows the prototype board mounted on a three-wheeled chassis
built from a LEGO Mindstorms™ robot kit. The 9 V battery pack within the con-
troller module of the Mindstorms kit is used as the power source for the PIC18
board. Rubber band and cable tie engineering is used to mount the prototype board
on top of the battery pack and to keep the battery pack securely on the chassis. Fig-
ure 14.32b shows a printed circuit board (PCB) implementation of the robot elec-
tronics mounted on the same chassis.

Table 14.6 gives the PIC18 resources used for the robot application. The CCP2
compare mode is used as period control for Timer3 that generates a periodic inter-
rupt used to update the PWM outputs for the two wheels and to sample the ADC
that is connected to the IR proximity sensor output. 

The IR receiver output is decoded using Timer2 and the CCP1 compare mode
for pulse width measurement in exactly the same manner as discussed in Chapter
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Serial link for
programming

IR Proximity
 Sensor

PIC18F242 IR Receiver

Motor Ctrl header7805

PI5A319 Analog 
Switches

7805

MOSFETs for
motor ctrl

MAX202

DB9

FIGURE 14.31 Prototype board for robot application.
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13. The USART is used during programming of the PIC18 via a serial bootloader
and was also useful during debugging of the application.

Figure 14.33 shows the primary variables/functions used for the robot applica-
tion (the variables and functions used in decoding the IR output are not shown, see
Chapter 13). Refer to these variables and functions as the code for the robot appli-
cation is discussed in the remaining figures of this section.

FIGURE 14.32 Robot electronics mounted on a three-wheel chassis.

PIC18 Resource Comment

RB5/RB6 Manual PWM outputs for left/right wheel speed 
control.

RB3/RB4 Direction control for left/right wheels.

Timer3/CCP2 Compare CCP2 is used as a period register for Timer3 to 
generate a periodic interrupt for RB5/RB5 PWM 
control and to sample the IR sensor output.

Timer2/CCP1 Capture Input Used for infrared receiver output decoding.

ADC (AN0) Used to read the IR proximity sensor output.

USART Asynchronous serial port used for PIC18 
programming via a bootloader. Not used during the 
application execution.

TABLE 14.6 PIC18 Resources Used for Robot Application

a)  Wirewrap Prototype b)  PCB version
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Figure 14.34 shows the main() function for the robot application. The initial-
ization code configures the PIC18 subsystems per the usage given in Table 14.6.
Timer3 is configured for a prescale of 2 and uses CCPR2 as a period control regis-
ter; a value of 0x0800 for MATCH_INTERVAL gives a periodic CCP2IF interrupt

Variables for IR capture not shown, see Chapter 13. 

Variable(s) Comment 

dc_left, dc_right duty cycle for left/right wheel PWM 

period_left, period_right period counters for left/right wheel PWM 

adc_val, old_adc_val A/D sampled value 

match CCP2 match value for Timer3 

cur_time time-of-day in seconds 

Functions Comment 
auto_drive() Performs robot automatic drive mode 

manual_drive() Performs robot manual drive mode 

handle_cmd() Executes command received from IR receiver 

phillips_convert() Convert received IR byte to Phillips RC5 format 

all_stop() Slow to a stop 

dir_fwd() Set direction of both wheels to forward 

dir_back() Set direction of both wheels to backward 

do_turn() Execute a turn 

reset_ir() Reset for next IR reception 

do_ircap() Capture bytes from IR receiver 

FIGURE 14.33 Variables/functions for robot application.

main(void){
  //serial_init(95,1); //debug only
  // initialize timer1, prescale by 1, internal clock
  T1CKPS1 = 0;  T1CKPS0 = 0;  T1OSCEN = 0;  TMR1CS = 0;
  bitset(TRISC,2);// set CCP1 as input for IR Capture
  // set up everything for PWM, direction control
  bitclr(TRISB,OP_LEFT);  bitclr(TRISB,OP_RIGHT);
  bitclr(TRISB,OP_RDIR);  bitclr(TRISB,OP_LDIR);
  bitclr(PORTB,OP_LEFT);  bitclr(PORTB,OP_RIGHT);
  bitclr(PORTB,OP_RDIR);  bitclr(PORTB,OP_LDIR);
  // init timer3, prescale by 2, int. clock
  T3CKPS1 = 0; T3CKPS0 = 1; TMR3CS = 0;  T3SYNC = 0;
  // TMR3 with CCP2, TMR1 with CCP1
  T3CCP2=0;T3CCP1=1;
  // setup capture mode, enable capture interrupt
  CCP2CON = 0x02; CCP2IF = 0;  CCP2IE = 1;
  CCPR2H = (MATCH_INTERVAL >> 8);
  CCPR2L = (0xFF & MATCH_INTERVAL);
  TMR3ON = 1;
  // configure A/D for IR sensor, right. just, channel 0
  TRISA = 0xFF;
  ADCON1 = 0x0E;  ADCON0 = 0x80;  ADON = 1;
  IPEN = 0;  PEIE = 1;  GIE = 1;
  while(1) {
    switch (mode) {
      case 0:  manual_drive();
        break;
      case 1:  auto_drive();
        break;
    }
  }
}

Timer1 config

A/D configuration

}
}

}

Timer3 configuration
for use with CCP2
compare mode

} Robot is either in manual or
automatic drive modes

Port direction for wheel
control}

FIGURE 14.34 main() function of the robot application.ON THE CD



of approximately 556 μs using an FOSC = 29.4912 MHz. The while(1){} loop of
main calls either the manual_drive() or auto_drive() functions depending upon the
current mode setting.

Figure 14.35 shows the interrupt service routine that is responsible for updat-
ing the PWM outputs, sampling the ADC input, and decoding the IR receiver
input. The CCP2IF interrupt occurs at 556 μs intervals when the CCPR2 register
value matches the Timer3 value. The match variable is incremented by
MATCH_INTERVAL and this value is written to the CCPR2 register to update it to
the next Timer3 match value. The ADC input is read and a new A/D conversion is

Capstone: Audio Sampling, Monitoring System, and Autonomous Robot 499

#define PWM_MAX 10  // # of timer3 interrupts for one PWM period
#define OP_LEFT 5   // left wheel port bit
#define OP_RIGHT 6  // right wheel port bit
#define OP_LDIR 3   // left wheel direction port bit
#define OP_RDIR 4   // right wheel direction port bit

//Manual PWM control variables
unsigned char dc_left,dc_right, period_left, period_right;

// use timer3, CCPR2 for PWM generation
#define MATCH_INTERVAL 0x0800

unsigned int match;
unsigned char adc_val, old_adc_val;

void interrupt isr(void){
  if (CCP2IF) {
    CCP2IF = 0;
    adc_val = ADRESH;  // get AD value
    GODONE = 1;  // new conversion
    old_adc_val = adc_val;
    // don't clear timer1, change compare register
    match = match + MATCH_INTERVAL;
    CCPR2H = match >> 8;
    CCPR2L = match & 0xFF;
    CCP2IF = 0;
    period_left++;
    if (period_left == PWM_MAX) {
      period_left = 0;
      if (!dc_left) bitclr(PORTB,OP_LEFT);
        else bitset(PORTB,OP_LEFT);
    } 
      else if (period_left == dc_left) {
      bitclr(PORTB,OP_LEFT);
    }
    period_right++;
    if (period_right == PWM_MAX) {
      period_right = 0;
      if (!dc_right) bitclr(PORTB,OP_RIGHT);
        else bitset(PORTB,OP_RIGHT);
    } else if (period_right == dc_right) {
      bitclr(PORTB,OP_RIGHT);
    }
  }

}

Sample ADC to read IR distance sensor

If left wheel high-portion of square 
wave is finished, turn off output port.

}
}

Update left wheel PWM Period.
If at end of period, reset left_period 
variable. If left wheel duty cycle is
zero, turn off output port, else turn it
on to start high portion of square wave.

}

CCPR2 interval has expired, update 
CCPR2 with new value for next match

Not shown: TMR1IF and CCP1IF for handling IR data reception, see Chapter 13

}

} Update right wheel period and
duty cycle in same manner as
left wheel.

FIGURE 14.35 Interrupt service routine for the robot application (see CD-ROM 
file ./code/chap14/F_14_34_robot.c).ON THE CD
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started. The period_left and period_right variables track the period of the square
waves used for PWM of the left/right wheels. When these counter values are equal
to PWM_MAX (a value of 10), the period is finished and these counters are reset.
This gives a square wave period of 5560 μs (a frequency of ~180 Hz). The dc_left
and dc_right variables control the high pulse width of the PWM square waves.
When the period counter is equal to the duty cycle counter (period_left ==

dc_left or period_right == dc_right), the square wave output is set to zero. At the
beginning of a period, the square wave output is set high unless the duty cycle
count is zero. Increasing the high pulse width of the PWM square wave (higher val-
ues of dc_left/dc_right) increases wheel speed. The Timer1 and CCP1 interrupts
for decoding the IR receiver output are not shown, as it is the same code presented
in Chapter 13.

Figure 14.36 shows the functions for performing manual (manual_drive) and
autonomous (auto_drive) operation. The manual_drive() function simply waits
for an IR command and then executes it via the handle_cmd() function. The
auto_drive() function also uses the handle_cmd() function to execute an IR com-
mand if one is received, and moves autonomously in the absence of an IR com-
mand. The robot moves forward until an obstruction is detected by the ADC input
value exceeding BLOCKAGE_THRESHOLD. If obstructed, the robot comes to a
full stop. Then the robot backs up, slowing the left wheel so that the front of the
robot swings to the right. Then the robot moves forward, slowing the right wheel so
that the turn started during the backward movement is continued. After 0.6 seconds
of forward motion, both wheels are set to the same speed to straighten the robot out.

Figure 14.37 shows the handle_cmd() function used in both manual and au-
tonomous modes to execute IR commands. The philips_convert() function called
by handle_cmd() converts the last received byte to Philips RC5 format (see Chapter
13). Because the universal remote control (Radio Shack remote control pro-
grammed with code 333) used to test this robot always sent two duplicate IR se-
quences for each button press, the command is not executed until the current
command matches the last received command indicating the two duplicate com-
mands have been received.

The switch(cmd){} statement within handle_cmd() executes the received IR
command as summarized in Table 14.7. 

Figure 14.38 shows miscellaneous support functions used within the robot ap-
plication. These are fairly simple and are explained by the annotation contained
within the figure.
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#define BLOCKAGE_THRESHOLD 60
#define CLEAR_THRESHOLD 40
#define FWD_SPEED 4
#define BACK_SPEED 8

auto_drive(){
 reset_ir();
 while(mode == AUTO_DRIVE) {
  if (state == IO_FINISH) {
   // if IR arrives, execute it
   handle_cmd();
   reset_ir();
  } else {
   // auto driving
   if (dc_left || dc_right) {// moving....
    if (old_adc_val > BLOCKAGE_THRESHOLD) {
     // STOP!!!!!!
     dc_left = 0; dc_right = 0;
     Delay_tens(3);
    }
   } else {
    // stopped
    if (old_adc_val < CLEAR_THRESHOLD) {
     // go forward again
     dir_fwd(); do_speedup (FWD_SPEED);
    } else {
     // backup, pivot
     dir_back();
     do_speedup (BACK_SPEED);
     Delay_tens(3);
     // slow down on wheel so it pivots
     dc_left = 2;
     Delay_tens(8); dc_left = 0; dc_right = 0;
     Delay_tens(2);
     dir_fwd(); do_turn (BACK_SPEED,2);
     Delay_tens(6);
     dc_left = FWD_SPEED; dc_right = FWD_SPEED;
    }
   }//end if(dc_left...)else{}...
  }//end if(state == IO_FINISH)else{}..
 } //end  while(mode == AUTO_DRIVE)
}// end auto_drive()

manual_drive(){
  while(mode == MAN_DRIVE) {
    reset_ir();
    // wait for IR data to arrive
    while (state != IO_FINISH);
    handle_cmd();
  }
}

Forward motion speed

A/D value of IR sensor input if blockage
A/D value of IR sensor input if no blockage

Backward motion speed

}
While in auto drive, will accept IR commands. 
If an IR command is present, then execute it via 
the handle_cmd() function.

} While moving, stop if blockage
is detected.

} Stopped, but no blockage so start
moving forward again

}
Stopped, and obstruction is
detected.
Backup and slow down left
wheel so that bot turns as
it backs up.
Go forward  but now keep
right wheel slow so that it
keeps turning in same direction.
End pivot by going forward with
both wheels at the same speed.

} Manual drive mode, wait for an IR command
and then execute it via the handle_cmd() function.

FIGURE 14.36 Manual/auto drive functions (see CD-ROM file 
./code/chap14/F_14_34_robot.c).ON THE CD
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handle_cmd(){
  cmd = this_byte;
  philips_convert();
  if (last_cmd != cmd) {last_cmd = cmd;return;}
  last_cmd = 0; cbuff[0] =0 ;  cbuff[1] =0 ;
  switch (cmd) {
  case STOP:
    all_stop();
    break;
  case SPEEDUP:
    if (dc_left < PWM_MAX)dc_left += 2;
    if (dc_right < PWM_MAX)dc_right += 2;
    break;
  case SLOWDOWN:
    if (dc_left) dc_left -= 2;
    if (dc_right)dc_right -= 2;
    break;
  case GOFORWARD:
    bitclr(PORTB,OP_RDIR);
    bitclr(PORTB,OP_LDIR);
    if (dc_left > dc_right) dc_right = dc_left;
    else dc_left = dc_right;
    break;
 case TURNLEFT:
    if (dc_left) dc_left -= 2;
    break;
  case TURNRIGHT:
    if (dc_right) dc_right -= 2;
    break;
  case REVERSE:
    dc_left = 0; dc_right = 0;
    DelayMs(100); DelayMs(100);
    DelayMs(100);  DelayMs(100);
    bitset(PORTB,OP_RDIR);
    bitset(PORTB,OP_LDIR);
    dc_right = FWD_SPEED; dc_left = FWD_SPEED;
    break;
  case SPIN:
    dc_left = 0; dc_right = 0;
    DelayMs(200); DelayMs(200);
    bitset(PORTB,OP_RDIR);
    dc_right = FWD_SPEED;dc_left = FWD_SPEED;
    break;
 case MODESWAP:
    if (mode == AUTO_DRIVE) mode = MAN_DRIVE;
    else mode = AUTO_DRIVE;
    all_stop();
    dir_fwd();
    break;
  }
}

Wait until duplicate cmd
arrives before processing

Convert IR byte to Philips RC5 Format

Slow left wheel

}

}

Increase speed of both wheels by
increasing the duty cycle PWM

} Stop, wait, change motor 
direction switches,
then turn motors back on

Slow right wheel}

} One wheel turns forward,
the other wheel turns backward

} Toggle between manual
and auto drive modes

} Decrease the speed of both wheels
by decreasing the duty cycle PWM

}Set both motor direction switches
to forward, and set the slowest
wheel to the speed of the fastest
wheel

} The all_stop() function does a gradual slow to a stop.

FIGURE 14.37 handle_cmd() function of the robot application (see CD-ROM 
file ./code/chap14/F_14_34_robot.c).ON THE CD
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Univ. Remote
Button Code Function

VCR Stop 0x36 STOP—slow to a stop.

VCR Pause 0x29 SPEEDUP—increment both wheel duty cycle variables 
by 2.

VCR Record 0x37 SLOWDOWN—decrement both wheel duty cycle 
variables by 2.

VCR Play 0x35 FORWARD—set forward direction for both motors, 
and set the slowest wheel speed equal to the highest 
wheel speed.

VCR Rewind 0x32 TURN LEFT—decrement left wheel duty cycle variable 
by 2.

VCR Fast Forward 0x34 TURN RIGHT—decrement right wheel duty cycle 
variable by 2.

VCR numeral 5 0x05 REVERSE—stop, change direction switches on both 
wheels, then accelerate.

VCR numeral 9 0x09 SPIN—stop, set direction switch of left wheel opposite 
of right wheel, then accelerate.

VCR numeral 1 0x01 MODESWAP—toggle between auto/manual drive 
modes.

TABLE 14.7 IR Command Mappings for Robot Control



ON THE CD

SUMMARY

This chapter presented three capstone projects that use the PIC18 hardware fea-
tures covered in Chapters 8 through 13. The audio project is small enough that it
can be performed within an instructional laboratory environment. The home mon-

504 Microprocessors

// on radio shack universal remote code 333 VCR
// 0x0 - 0x9  buttons 0-9.
#define STOP       0x36  // stop (stop)
#define SPEEDUP    0x29  // speedup (pause)
#define SLOWDOWN   0x37  // slowdown (rec)
#define GOFORWARD  0x35  // forward (play)
#define TURNLEFT   0x32  // turn left (rewind)
#define TURNRIGHT  0x34  // turn right (fast fwd)
#define REVERSE    0x05  // reverse (#5)
#define SPIN       0x09  // spin (#9)
#define MODESWAP   0x01  // man/auto tgl (#1)

#define MAN_DRIVE  0x00
#define AUTO_DRIVE 0x01

philips_convert(){
  i = cbuff[0] ; // last full byte
  if (bittst(i,0)) bitset(cmd,6);
  else  bitclr(cmd,6);
  cmd = cmd >> 1;
}
Delay_tens(char k){
  while(k){ DelayMs(100);k--;}
}
all_stop() {
  while(dc_left || dc_right) {
    if (dc_left) dc_left--;
    if (dc_right)dc_right--;
    DelayMs(50);
  }
  Delay_tens(2);
}
dir_fwd() {bitclr(PORTB,OP_RDIR); bitclr(PORTB,OP_LDIR);}
dir_back() {bitset(PORTB,OP_RDIR); bitset(PORTB,OP_LDIR);}

do_speedup (char target) {
  dc_left = 0; dc_right = 0;
  while (dc_left != target) {
   dc_left++;dc_right++;
   DelayMs(75);}
}

do_turn (char ltarg,char rtarg) {
  dc_left = 0;  dc_right = 0;
  while ((dc_left != ltarg) || 
         (dc_right != rtarg)) {
    if (dc_left != ltarg) dc_left++;
    if (dc_right != rtarg) dc_right++;
    DelayMs(75);
  }
}

Philips RC5 command 
codes from Radio Shack
Universal remote control
programmed with VCR
device code of 333

Software delay loop in tenths of seconds

}
}

Convert last byte received from IR 
transmitter to Philips RC5 format

}

Function for slowing to a stop

Change wheel
direction

}

}

}Accelerate to target speed.

}

This gradually sets L/R wheel
speed to match ltarg/rtarg.

FIGURE 14.38 Support functions for robot application (see CD-ROM file 
./code/chap14/F_14_34_robot.c).



itoring and autonomous robot applications both require a considerable time 
investment and are better suited for multi-week project assignments. The home
monitoring application introduced two topics not covered in previous chapters: the
DS1621 Digital Thermometer, and storing data in the on-chip Flash program and
Data EEPROM memories. 

SUGGESTED PROJECT MODIFICATIONS

Instead of review problems, this section contains suggested modifications for the
three capstone projects given in this chapter. 

1. For the audio sampling application, implement a simple compression al-
gorithm in which the difference between successive samples is recorded as
a 4-bit two’s complement value instead of an absolute 8-bit value. This
doubles the amount of audio that can be saved for a particular sampling
frequency at a quality cost. How does the audio quality compare with the
previous method?

2. The I2C bus is the bottleneck for the playback function of the audio sam-
pling application. Replace the MAX517 serial DAC with a parallel DAC
such as the MAX 507. What is the fastest achievable sampling rate now? Is
playback still the limiting factor for sampling rate?

3. For the home monitoring application, use the thermostat function of the
DS1621 and the TOUT output to add a temperature trigger to the moni-
toring system. Modify the code to allow entry of TEMP HIGH and TEMP
LOW values that are written to the DS1621 TH/TL registers. If the TOUT
output is asserted, sound an audible alarm.

4. The code for the home monitoring application sounds an audible alarm if
motion is detected between the alarm start and stop times. The alarm is
only cancelled when a pushbutton is activated. The alarm produces a sig-
nificant current drain on the battery and does not need to be constantly
sounding. Add two user-modifiable times that specify alarm duration and
interval; if motion is detected, the alarm should sound for the specified du-
ration at the indicated interval (e.g., produce an audible alarm for 10 sec-
onds every 2 minutes). The PIC18 should sleep as is currently done if the
alarm is not sounding. These values should be stored in Data EEPROM
and user-modifiable in the same manner as the other times.

5. Modify the robot application so that the VCR numeral #6 causes the robot
to traverse a figure-8 pattern. Test this in a large room without any ob-
structions.

Capstone: Audio Sampling, Monitoring System, and Autonomous Robot 505



6. Buy an off-the-shelf robot from a hobbyist Web site and replace its “brain
board” with a PIC18 board similar to the design presented here. Consider
adding sound to it so that it makes noises as it putters around, perhaps
playing your school’s fight song!

7. For a project that is battery operated such as a robot, implement a push-to-
turn-on mechanism using a MAX667 voltage regulator as shown in Figure
14.39. The SHDN input must be low for the MAX667 to provide 5 V; ac-
tivating the push button switch grounds the SHDN input and provides 5
V to the PIC18. The open-drain output RA4 is then asserted by the PIC18
to keep the SHDN input pulled low. The PIC18 can turn off power to itself
by negating the RA4 output; this would typically be done to prolong bat-
tery life if no activity is detected for some pre-determined time period. If
you are using this mechanism with the serial bootloader, the pushbutton
must be kept activated during the entire programming operation.
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MAX 667 Voltage
Regulator PIC18

Push to
turn on

+9V to
+6V
battery
source

10 kΩ

OUTIN

SET

SHDN
GND

Vdd

N

RA4

“Keep On” control

FIGURE 14.39 Push-to-turn-on power control.
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Beyond the PIC18Fxx215

T
his chapter surveys microcontrollers other than the PIC18Fxx2 from Mi-
crochip and other companies. Advanced interface standards such as the
Controller Area Network (CAN) and the Universal Serial Bus (USB) are

briefly examined, as well as issues concerning external memory interfacing and
multi-master busses.

15.1 LEARNING OBJECTIVES

After reading this chapter, you will be able to:

Discuss the roles of static random access memory (SRAM) and dynamic ran-
dom access memory (DRAM) in microprocessor systems.

In This Chapter

External Memory Interfacing
Other PIC Family Members
Bus Arbitration in I2C
The Controller Area Network (CAN)
The Universal Serial Bus (USB)
A Brief Survey of Non-PIC Microcontrollers
Real Time Operating Systems



Compare and contrast features of other PICmicro family members with the
PIC18Fxx2.
Compare and contrast features of microcontrollers from other semiconductor
manufacturers with the PIC18Fxx2.
Compare and contrast features of the Controller Area Network (CAN) and
Universal Serial Bus (USB) with serial interface standards used by the
PIC18Fxx2.
Discuss bus arbitration for multi-master buses and how bus arbitration is ac-
complished for CAN and I2C busses.
Discuss the basic concepts behind real time operating systems.

15.2 EXTERNAL MEMORY INTERFACING

Our discussion of memory technologies to this point has been limited to the non-
volatile on-chip PIC18Fxx2 Flash program/Data EEPROM memories and off-chip
memory using serial Flash EEPROMs. Two other common memory types are Sta-
tic Random Access Memory (SRAM) and Dynamic Random Access Memory
(DRAM). Both types are volatile and have read/write times that are equal, with
read/write times ranging from a few nanoseconds to a few 10s of nanoseconds.
Note that this is very different from the EEPROM memory covered previously in
which write times are in the millisecond range because of its nonvolatile nature.
SRAM and DRAM memories are polar opposites in terms of application. SRAM is
optimized for speed first and density second, providing high-speed read/write stor-
age capability for small microprocessor (μP) and microcontroller (μC) systems. An
SRAM interface has low complexity, meaning that it connects to a μP/μC with a
minimum of “glue logic”; for example, external logic between the μP/μC and the
memory device. DRAM is optimized for density first and speed second, and is used
as the primary memory for high-performance microprocessor systems such as
those that use Intel® Pentium® and AMD AthlonTM microprocessors. Single-word
accesses to DRAMs are relatively slow; DRAMs are optimized for block transfers in
which groups of bytes are transferred between the DRAM and a microprocessor.
Block transfers are optimized in DRAMs because high-performance microproces-
sors have on-chip high-speed SRAM memory referred to as cache memory that ser-
vices most of the instruction/data fetch needs of the μP. Blocks transfers (transfers
of multiple bytes) between DRAM and the μP are used to fetch large blocks of
closely related instructions/data when needed instructions/data cannot be located
in the on-chip μP cache memory. Both SRAMs and DRAMs have synchronous
versions that add clock signals to their interfaces—SSRAMs are synchronous
SRAMs, while SDRAM, DDR/DDR2-DRAM (double data rate DRAM), and
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RDRAM (Rambus DRAM) are all forms of synchronous DRAM. Asynchronous
DRAM is largely obsolete, as synchronous DRAM provides higher throughput for
block transfers. DRAM interfacing is complex and is handled by chipset logic that
connects high-performance microprocessors to the memory, IO busses, and exter-
nal devices that are common in today’s personal computer platforms. Some high-
performance 32-bit microcontrollers and digital signal processors include on-chip
SDRAM controllers that eliminate glue logic between external SDRAM and the
processor. In this section, we concentrate on asynchronous SRAM, as that is the
most common memory type used for memory expansion in small μP/μC systems.
DRAM interfacing is not discussed further in this book.

Figure 15.1 shows the interface and basic read/write timing of a Cypress Semi-
conductor 8Kx8 SRAM. The chip select signals CE1# and CE2 must be asserted
(CE1# = 0, CE2 = 1) for the device to be active during a read or write. The WE#
input selects whether a read (WE# = 1) or a write (WE# = 0) operation is per-
formed. In a read operation, the SRAM outputs the contents of the location selected
by the 13-bit address input A[12:0] on data pins IO[7:0] if the output enable pin
(OE#) is asserted and the chip is selected. In a write operation, the data pin contents
(IO[7:0]) are written to the location selected by the 13-bit address input A[12:0]
when the write enable input (WE#) is pulsed low and the chip is selected; the input
data is latched by the SRAM on the rising edge of the WE# signal. The timing dia-
grams shown in Figure 15.1 are a subset of the read/write modes and timing para-
meters found in the CY7C186 datasheet [24].
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The CY7C186 can be used to augment the internal 4K data storage of a
PICF18442 as shown in Figure 15.2a. A PIC18F442 has 40 external pins and has D
and E parallel ports in addition to the A, B, and C ports found in the PIC18F242.
In Figure 15.2a, ports A and B are used for address, port D for data, and port C for
the WE# and OE# pins. Performing a read from the CY7C186 involves placing the
address on ports A/B, configuring port D for input, and then asserting the output
enable low (OE#, port RC0) while keeping the write enable (WE#, pin RC1) high.
A write to the CY7C186 is accomplished by placing the address on ports A/B, con-
figuring port D for output, placing the write data on pins D[7:0], and then pulsing
the write enable low (WE#, pin RC1) and keeping the output enable (OE#, port
RC0) high. Observe that both chip enables (CE1#, CE2) of the CY7C186 in Figure
15.2a are always asserted by strapping them to ground and Vdd, respectively.

Figure 15.2b shows how a second CY7C186 is added by using output RC2 to
drive the CE1# input of one SRAM (U0) and the CE2 input of the other SRAM
(U1). This means that the U0 SRAM is selected when RC2 is low, while the U1
SRAM is enabled when RC2 is high. This illustrates the usefulness of multiple chip
select inputs on SRAMs by providing flexibility in designing the enable logic for sys-
tems with multiple SRAM chips.
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 A[7:0]

 Cypress 8Kx8 SRAM (CY7C186)

 IO[7:0]

CE1# CE2
WE#

OE#

 A[12:8]

 RB[7:0]

 RD[7:0]

RC0

RC1

 RA[3:0]

 PIC18F442

Vdd

 A[7:0]

 IO[7:0]

CE2 CE1#

WE#

OE#

 A[12:8]

RC2

 A[7:0]

 Cypress 8Kx8 SRAM (CY7C186)

 IO[7:0]

CE1# CE2
WE#

OE#

 A[12:8]

 RB[7:0]

 RD[7:0]

RC0

RC1

 RA[3:0]

 PIC18F442

Vdd

(a) One external
 8Kx8 SRAM

(b) Two external 
8Kx8 SRAMs

U0 U1

These are opposite in
assertion values; only U0
or U1 will be selected.

FIGURE 15.2 PIC18442 to Cypress CY7C186 8Kx8 SRAM.



An External Memory Bus

The fast read/write cycle times of the CY7C186 are essentially wasted in the system
of Figure 15.2, as it takes several instruction cycles to perform a read or write to the
external memory due to the necessity of manipulating several port registers. The
PIC18Fxx2 family is not designed to implement an external SRAM memory inter-
face in an efficient manner. So, is this the case with all PIC microcontrollers? The
answer is no; several PIC μC family members have an external bus feature that al-
lows efficient and flexible interfacing to external memories with parallel interfaces.
One PIC μC with an external bus interface is the PIC18C801 ROM-less microcon-
troller [25]; it has no on-chip program memory and fetches all instructions from
external memory. It supports 1.5K of internal data memory but can also use its ex-
ternal bus interface for data memory reads/writes to external SRAM using table
read/write instructions. The 18C801 μC comes in either 80- or 84-pin packages and
supports up to 2 MB of external memory.

Figure 15.3 shows an interface between a PIC18C801 and two external memory
devices: an Atmel 128Kx8 EEPROM [27] and a Cypress 128Kx8 SRAM [26]. The
interface shown is the 8-bit de-multiplexed mode in which address and data are
placed on separate pins (address on A[17:16], AD[15:0] and data on D[7:0]). The
BA0 output is the least significant bit of the address. The OE# line is driven low for
data transfer during a read operation; the WRL# is driven low for data transfer dur-
ing a write operation. The ALE (address latch enable) output is used in the multi-
plexed mode in which address and data are sent in different Q clock cycles over
AD[15:0]; this pin is not used in the de-multiplexed mode. Observe that PIC ad-
dress pins {AD[15:0], BA0} form the 17-bit address needed for the 128Kx8 mem-
ory devices (128K = 128*1024 = 27*210 = 217, so a 17-bit address is required).
The PIC address pin A16 drives the CE# input of the EEPROM and the CE2 input
of the SRAM. Hence, the EEPROM is selected for addresses 0x00000–0x1FFFF
while the SRAM is selected for addresses 0x20000–0x3FFFF.

Figure 15.4 shows the external bus operation of the PIC18C801 for opcode
fetch, table read, and table write. The instruction fetch (Figure 15.4a) must read a
16-bit instruction word from external memory in one instruction cycle; it does this
by fetching the most significant byte in Q3 and the least significant byte in Q4 of the
instruction cycle. During these read operations, the external address lines
A16/AD[15:0] contain the program counter bits PC[17:1], while BA0 specifies the
least significant bit of the address. The OE# line is asserted during Q3 and Q4 so
that the external memory drives the data pins D[7:0].
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 CY7C109B 128Kx8 SRAM

 A0

 IO[7:0]

CE#

WE#

OE#

 A[16:1]

 BA0

 D[7:0]

OE#

WRL#

 AD[15:0]

 PIC18C801

 A0

 IO[7:0]

CE2 CE1#

WE#

OE#

 A[16:1]

A16

U0 U1

These are opposite in
assertion values; only U0
or U1 will be selected.

 AT28C010 128Kx8 EEPROM

ALE u.c.

Program Memory (EEPROM): 0x00000 to 0x1FFFF
Data Memory (SRAM): 0x20000 to 0x3FFFF

FIGURE 15.3 PIC18C801 to Atmel 128x8 EEPROM and Cypress CY7C109B 
128Kx8 SRAM.
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 BA0
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(b) Table Read TBLPTR[0]
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 D[7:0]

 D[7:0]

 OE#

 D[7:0]

FIGURE 15.4 PIC18C801 external bus operation.
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For noninstruction fetches, a table read or write is the method by which data
access is accomplished via the external bus. Figure 15.4b shows that during a table
read, the external address lines A16/AD[15:0] contain the TBLPTR register bits
[17:1], while BA0 specifies the least significant bit of the address. The OE# line is as-
serted for both Q3 and Q4 cycles in a table read. In a table write (Figure 15.4b), the
address is presented in the same manner as in a table read, but the WRL# is asserted
during Q3 and Q4 while OE# is negated and the data pins D[7:0] are driven by the
PIC18C801 during the same cycles.

The PIC18C801 also supports an 8-bit multiplexed mode (uses less external
pins than the de-multiplexed mode) and a 16-bit mode (useful for slower mem-
ory); see the datasheet [25] for details.

15.3 OTHER PIC FAMILY MEMBERS

The previous section introduced a new PIC microcontroller, the PIC18C801. Mi-
crochip has several microcontroller families spanning a wide price/performance
range to target as many different applications as possible. Figure 15.5 gives a partial
summary of the PIC microcontroller families offered by Microchip; this list is not
inclusive and some features are truncated for space reasons (see the Microchip
Web site for complete details).

The PIC10 family has only four members (PIC10F200/2/4/6) and is targeted at
the extreme low-end microcontroller market. It comes in either 6-pin (SOT-23) or
8-pin packages (8 PDIP), can be operated by an internal 4 MHz clock or external

Feature PIC10 PIC12 PIC14 PIC16 PIC17 PIC18 dsPIC®
instr. 
width 

12 12,14 14 14 16 16 24 

data width 8 8 8 8 8 8 16 
# of instr. 33 35 35 35 58 76 84 
Pgm. 
Words 

256 to 512 512 to 2K 4K 512 to 8K 4K to 16K 2K to 64K 4K to 48K 

SRAM 
data 
(bytes) 

16 to 24 25 to 128 192 25 to 368 232 to 902 768 to 
3968 

512 to 8K 

Data 
EEPROM 

0 0 to 256 0 0 to 256 0 0 to 1024 1K to 4K 

IO 4 6 20 6 to 36 33 to 66 16 to 72 12 to 68 
Analog Cmprtr. ADC, 

Cmptrtr 
Cmprtr. Cmprtr, 

ADC 
ADC ADC, (2) 

Comprtrs 
ADC 

Interface   I2C I2C, 
USART, 
SPI, low 
speed 
USB, 
LCD 

I2C, 
USART, 
SPI 

I2C, 
USART, 
SPI, CAN, 
LCD 

I2C,  
USART, 
SPI, CAN, 
CODEC 

Timers (1) 8-bit, 
(1)WDT 

(0/1/2) 8-
bit, (0/1) 
16-bit, 
WDT 

(1)8-bit, 
(1) 16-bit, 
WDT 

(0/1/2) 8-
bit, 
(0/1/2)16-
bit, 
WDT 

(2) 8-bit, 
(2)16-bit, 
WDT 

(0-3)8-bit, 
(1-3)16-
bit, 
WDT 

(3-5) 16-
bit, 
WDT 

Max CLK 
(MHz) 

4 20 20 40 33 40 30 

pkg pins 6, 8 8 28 14,18,20, 
28 

40,44,64, 
68,80,84 

28,40,44, 
64,68,80, 
84 

18,28,40, 
44,64,80 

FIGURE 15.5 PIC microcontroller family summary.
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clock source, has an 8-bit timer, a maximum of 4 I/O pins, and a maximum of 512
instruction words and 24 bytes of SRAM. Two family members include an analog
comparator. It is the embodiment of a “tiny” microcontroller and is priced in pro-
portion to its power.

The PIC12 family has 18 members and its differentiator from the PIC10 fam-
ily is an on-chip A/D (4-bit, 8-bit, 10-bit) and more on-chip memory, both pro-
gram and data. 

The PIC14 family has only one member (PIC14000). Its differentiator from
previous lower end families is that it has onboard analog components to create a
slope conversion type A/D converter and an I2C port. It also includes two com-
parators.

The PIC16 family is the most versatile family after the PIC18 line. It has 130+
members, and the PIC16F873 is pin-compatible with the PIC18F242. It supports all
of the same on-chip peripherals that the PIC18 family does, except for the Con-
troller Area Network module (discussed in the next section). One PIC16 family
member even supports a low-speed Universal Serial Bus module. The principle dif-
ferentiator from the PIC16 and the PIC18 family is the instruction set architecture.
The PIC16 does not have OV, N flags and thus signed comparisons, especially
multi-byte comparisons, are cumbersome to implement. The PIC16 does not have
the 8x8 multiply unit or any of the branch instructions; all conditional execution is
implemented using the “test and skip next instruction” approach. Also, the PIC16
implements a maximum of four banks of data memory, each with 128 locations
versus the 16 banks (maximum) of 256 locations support by the PIC18 architec-
ture. The PIC16 does not have a movff instruction that allows a single instruction
transfer between banks; any bank-to-bank transfer on the PIC16 must manipulate
the bank select bits. The PIC16 has only one FSR register instead of the three regis-
ters (FSR0/1/2) implemented in the PIC18, and has none of the post, pre, incre-
ment, decrement addressing modes of the PIC18. The PIC16 also does not have the
table read/write operations. These instruction set differences are summarized in
Table 15.1.

The PIC17 family has only 10 members, with three members at end-of-life at
the time of this writing. This was Microchip’s first high-performance microcon-
troller family, but has been largely supplemented by the PIC18 and dsPIC® fami-
lies. Additional capability over the predecessor PIC16 family was an 8x8 hardware
multiplier, an external memory interface, and new instructions such as table
read/write.

The PIC18 family has 86 family members and is actively growing. Two addi-
tional hardware modules not supported in the PIC18Fxx2 but found in other
PIC18 family members support the Controller Area Network bus, discussed in Sec-
tion 15.5, and the Universal Serial Bus, covered in Section 15.6.



The dsPIC® is optimized for digital signal processing applications; in other
words, for processing streaming data such as digitized audio. The instruction word
width is 24 bits and the internal data path is 16 bits; all other previous PIC family
members have an internal 8-bit data width. The advantage of increasing the inter-
nal data width from 8 bits to 16 bits is obvious; a 16-bit addition on a dsPIC® takes
one instruction cycle instead of two instruction cycles. All internal data registers
and data memory on the dsPIC® are 16 bits wide. DSP applications are computa-
tionally intensive and the dsPIC® arithmetic features have been significantly 
enhanced over previous PIC family members. Arithmetic support includes a hard-
ware signed/unsigned divider capable of 32/16, 16/16 operations (see Chapter 7,
“Advanced Assembly Language: Higher Math”). A separate DSP engine is included
in addition to a 16-bit ALU; the DSP engine has a signed/unsigned 17x17 hardware
multiplier, a 40-bit adder/subtractor with two accumulators and saturation logic
(see Chapter 7), and a barrel shifter for multiple-position shifts in a single instruc-
tion cycle. A multiply-accumulate instruction that performs a multiplication and
then adds the result to an accumulator register is included. DSP instructions use the
DSP engine, while MCU instructions flow through the 16-bit ALU. Branch in-
structions have been enhanced to include signed branches that allow direct com-
parison of signed operands with the branch condition based on combinations of
the OV/N/Z flags. Peripheral enhancements include a Quadrature Encoder Inter-
face (QEI) module that provides hardware support for decoding rotary encoder in-
puts (quadrature inputs). Quadrature encoder logic decodes quadrature inputs and
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Feature PIC16 PIC18

Data Memory 4 banks/128 16 banks/256 
locations each locations each

movff instruction? no yes

conditional execution test/skip next test/skip next instruction, 
instruction flag branches

Hardware Stack 8 levels 31 levels

Flags Z, DC, C N, V, Z, DC, C

Hardware Multiply none 8x8

Table Read Instructions none TBLRD(*/*+/*-/+*)

TBLWT(*/*+/*-/+*)

FSR Registers 1 (FSR/INDF) 3 (FSRx, INDFx, POSTDECx, 
POSTINCx, PREINCx)

TABLE 15.1 Instruction Set Architecture: PIC16 versus PIC18
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provides a direct increment/decrement signal to a 16-bit up/down counter. The
QEI module includes a programmable digital noise filtering feature that does not
update quadrature inputs unless they have been stable for three consecutive clock
cycles. An enhanced PWM module has six PWM channels. Other hardware features
are two USART channels, I2C interface, a 12-bit A/D, SPI interface, a Data Con-
verter Interface (DCI), and a CAN interface. The DCI supports automated syn-
chronous serial transfer to external audio coder/decoders (codecs), ADCs, and
DACs.

15.4 BUS ARBITRATION IN I2C

The previous section mentioned the Controller Area Network (CAN) as another
interface standard supported by PIC microcontrollers. Before examining the CAN
standard, the more general topic of bus arbitration is covered, as it is applicable to
both CAN and the previously discussed I2C bus. In Chapter 12, “Data Conver-
sion,” it was stated that the I2C bus supports multiple bus masters (multi-master);
in other words, any I2C device on the bus can initiate a transaction. However, in our
examples, we always assumed that the PIC was the sole bus master and the PIC ini-
tiated all I2C transactions. If a bus supports multiple bus masters, there must be a
bus arbitration mechanism that decides which device assumes control of the bus
when there are simultaneous attempts by different bus masters to access the bus.

Figure 15.6 shows two common methods of bus arbitration for multi-master
buses. In centralized arbitration (Figure 15.6a) a device wishing to communicate on
the shared bus requests permission to access the bus via a bus request (breq) signal
to an arbiter, which grants the device the bus via the bus grant (bgrant) line. 

 Arbiter

 Bgrant[1]
 Breq[1]

 Bgrant[2]
 Breq[2]

 data

 Bgrant[n]
 Breq[n]

 Bgrant

 Breq

 data
 Bgrant

 Breq

 data
 Bgrant

 Breq

 Dev#1

 Dev#2
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 (a) Centralized Arbitration

Shared
Bus

~~

 data

 Dev#1

 data

 Dev#n

 data

 Dev#2

 data

 Dev#3

 data

 Dev#5

 data

 Dev#4

 (b) Carrier Sense Multiple Access/Collision 
       Detection (CSMA/CD) Arbitration

Shared Bus

FIGURE 15.6 Two methods of bus arbitration.



In the case of simultaneous requests, the arbiter uses a priority scheme to choose
which device is granted bus access. A fixed priority scheme has static priorities as-
signed to each device; device #1 always has the highest priority and device #n the
lowest. A fixed priority scheme can result in one device monopolizing the bus, so a
rotating priority scheme is more common, in which priorities are dynamically ro-
tated among devices in an attempt to provide equal access to the bus. The disad-
vantage with centralized arbitration is that each device on the bus must have its
own pair of bus request/bus grant lines. Centralized arbitration is most common in
backplane busses found within computer systems that have a fixed number of IO
slots, and hence, a fixed number of devices that can be present on the bus.

Figure 15.6b shows an arbitration scheme called Carrier Sense Multiple Ac-
cess/Collision Detection (CSMA/CD), which is useful when it is unknown a priori
the number of devices that will be connected to a bus. In CSMA/CD, a device want-
ing bus access waits until the bus is idle, and then begins transmitting. If multiple
devices transmit, there will be a data collision on the bus. A device must be able to
sense a collision, and then determine independently of the other devices what ac-
tion to take. A transmitter detects a collision by sensing the bus state during trans-
mission; if the bus state does not match what the transmitter is sending, a collision
has occurred. Local area networks based on Ethernet use CSMA/CD; when a colli-
sion occurs all transmitters stop sending data, wait for a random interval (the back-
off interval), and try again. If another collision occurs, the interval wait time is
increased (typically doubled), and another random wait is done. This continues
until a transmitter is successful at gaining access to the bus. While this works, it also
wastes time because of the need for all transmitters to wait for the random interval.

The I2C bus also uses CSMA/CD for arbitration, but resolves conflicts in a
manner different from Ethernet. Figure 15.7 illustrates how arbitration is per-
formed on the I2C bus. Assuming both PICa and PICb begin transmitting at the
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stops transmitting after the first address bit.
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FIGURE 15.7 I2C bus arbitration.
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same time, the first data sent after the start condition is the address byte of the I2C
slave device. Each device also transmits a clock signal over the SCL line in addition
to driving the SDA signal as each device is initiating a transfer. A “0” on the SDA
bus overrides a “1” because of the open-drain output used to drive SDA (and also
SCL). Each device senses the SDA line during transmission; if a device detects that
the SDA state is different from what it has transmitted, the device immediately
ceases transmission, giving up the bus. In this example, PICa is initiating a transfer
to an EEPROM (address 1010????), while PICb is beginning a transfer to a DAC (ad-
dress 0101????). PICa stops transmitting after it sends the first (most significant) bit
of its address because the initial “0” sent by PICb overrides the “1” sent by PICa.
Observe that PICa’s transmission did not disturb PICb’s transmission, so no data
is lost and no time is wasted by the arbitration. What if both PICa and PICb at-
tempt to write to the same device? Because the address bits are the same, the arbi-
tration continues through the data bits, until either some difference is detected or
the transaction completes if both devices send exactly the same data. At this point,
you should now understand the reason for the pullup resistors on the I2C bus; the
drivers for the SDA/SDL lines are open-drain to permit multi-master bus arbitra-
tion by having a “0” state override a “1” state. This conflict resolution in CSMA/CD
is simple and effective, and is used in other CSMA/CD busses as will be seen when
the Controller Area Network is discussed in the next section.

One other method of sharing a bus by multiple devices that can initiate trans-
actions is time domain multiplexing (TDM), which sidesteps the issue of arbitration
by assigning fixed time intervals to devices for bus access. This means that each de-
vice on the bus must keep an accurate track of time in order to track its assigned bus
access slot. While no arbitration is needed in this scheme, it is not an efficient use
of bus bandwidth because if a device has nothing to transfer over the bus during its
assigned time, that bus bandwidth is unused.

15.5 THE CONTROLLER AREA NETWORK (CAN)

The automotive market is important for microcontroller manufacturers, as a typi-
cal car or truck has in the ten’s of microcontrollers within it. The number of mi-
crocontrollers within vehicles keeps increasing as automobiles evolve to mobile
computing platforms that also happen to carry people between locations. An auto-
mobile is a harsh environment from an electrical noise perspective and contains
electrical systems dispersed through the vehicle with communication distances
measured in meters. CAN [28] is a half-duplex serial bus designed as a communi-
cation mechanism for intelligent peripherals within an automotive system. CAN’s
signaling mechanism is designed to combat the inherent electrical noise found
within vehicles. The CAN bus only uses two wires for communication, keeping



electrical cabling size to a minimum, thus making it easier to route within the
crowded compartments of an automobile. CAN is a true bus in the formal sense
like I2C; CAN transactions are visible to all peripherals connected to the bus and
each transaction includes an 11-bit identifier that is used by receivers to filter mes-
sages. The CAN bus is multi-master in that any node on the bus can initiate a trans-
action, with arbitration handled similarly to I2C arbitration.

Figure 15.8 shows a PIC with an internal CAN module connected to a CAN
bus. A CAN bus is implemented as two wires, CANH/CANL, which uses differential
signaling (discussed in Figure 15.9) to form a half-duplex communication channel. 

A transceiver chip like the MCP2551 is required to convert from CAN bus
voltage levels to CMOS logic levels (similar to the MAX232 chip for the RS232
standard). A PIC CAN module has separate transmit (CTX) and receive (CRX)
pins that are multiplexed by the CAN transceiver onto CANH/CANL. The
CANH/CANL wires implement differential signaling; a pair of wires is used to sig-
nal a logic state, either “0” or “1”. To this point, all signaling methods discussed in
this book have been single-ended; one wire is used to signal a logic “0” or “1”. The
disadvantage of differential signaling is that it doubles the number of wires needed
and as such is primarily used for serial transfers. The advantage of differential sig-
naling is common-mode noise rejection as shown in Figure 15.9.
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FIGURE 15.8 PIC/CAN system.



Common-mode noise is noise that is injected equally (or nearly so) onto all
wires within a cable. A CAN bus within an automobile can be relatively lengthy and
has ample opportunity to pick up noise from neighboring cable bundles or from
other nearby systems. Any common-mode noise is rejected at the receiver as the
two input signal voltages are subtracted from each other to form the received volt-
age. Differential signaling is commonly used in external cabling that carries high-
speed signals outside of a computing system. 

Non-return-to-zero (NRZ) asynchronous transmission is used on the
CTX/RTX pins that connect the PIC to the transceiver of Figure 15.8. The differ-
ential signaling method used on the CANH/CANL wire pair is shown in Figure
15.10. A logic “1” is called the recessive state, and is defined as when CANH
CANL < +0.5 V. A logic “0” is called the dominant state, and is defined as when
CANH CANL > 1.5 V. The recessive state (logic “1”) is the bus idle state. The
dominant state (logic “0”) overrides the recessive state (logic “1”); if one transmit-
ter sends a “0” and a second transmitter sends a “1”, the bus will contain a “0” state
(the dominant state). Absolute DC voltage levels can range from –3 V to +32 V,
and CAN transceivers such as the MCP2551 must be able to survive transient volt-
age surges of 150 V to +100 V. Data rates range from 10 Kbs to 1 Mbs with the
maximum data rate limited by the CAN bus length. On a CAN bus, all CAN nodes
must agree on the data rate. The physical signaling shown in Figure 15.10 is not de-
fined by the CAN 2.0 standard [28], but rather by the ISO-11898 specification that
was created to ensure compatibility between CAN nodes in an automotive system.
This means that the CAN protocol can be used with different physical signaling
methods as long as the CAN 2.0 specifications are met.
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Data transmissions are sent in frames, with each frame split into fields, and
with each field containing 1 or more bits as shown in Figure 15.11. There are six dif-
ferent frame types: standard data, extended data, remote, error, overload, and in-
terframe space. A standard data frame is shown in Figure 15.11. The start-of-frame
bit (start bit) is a logic “0” that signals the beginning of a frame. The arbitration
field contains an 11-bit ID and a 12th bit called the RTR bit, which is “0” for a data
frame and “1” for a remote frame. An extended data frame has a longer identifier
than a standard data frame. An identifier is not an address in the I2C sense; it does
not have to uniquely identify either the sender or receiver. All nodes on the CAN
bus receive the message; each node decides whether to act on the message based
upon the value of the identifier and the contents of the message. The CAN module
for PIC microcontrollers contains multiple filter/mask registers that are used to 
determine if a received frame should be accepted or rejected; these filter/mask 
registers use the ID field for accept/reject decisions. Once a frame has been accepted, it is
transferred to an internal message buffer for further processing by the PIC application.

The ID field is used for multi-master arbitration in the same manner as I2C ar-
bitration. A CAN node must wait until the bus is idle before attempting transmis-
sion. Multiple CAN nodes that simultaneously attempt to transmit monitor the
CAN bus as the ID field is sent. A “0” state (dominant) overrides a “1” state (reces-
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sive); a CAN module ceases transmission if it detects a difference between the CAN
bus state and what it has transmitted. Like I2C bus arbitration, this results in no 
lost bus time or in any corrupted messages. The ID field is transmitted most signif-
icant bit to least significant bit so the message with the lowest numerical ID field
wins during arbitration. This assigns a fixed priority to message identifiers. Arbi-
tration is only performed on the ID field and the CAN specification does not define
what occurs if two messages with the same identifier are sent simultaneously. As
such, assignment of message identifiers within a CAN system must be done in such
a way as to guarantee that simultaneous transmission of messages with the same ID
does not occur (the CAN spec does define this case for a collision between a stan-
dard data frame and a remote data frame, but the RTR bit in the arbitration field
determines priority in this case).

One strength of the CAN protocol is error detection. The Cyclic Redundancy
Check (CRC) field is a checksum based on the SOF, arbitration, control, and data
fields that can detect a number of different errors including five randomly distrib-
uted errors, any odd number of errors, and burst errors of less than 15 in length.
The control field includes a message length so every frame received is also checked
for the correct length, and each frame is also acknowledged by the receiver during
the acknowledge field time (similar to the ACK bit in the I2C protocol, except this
is for the entire frame).

Because of the large number of bits sent in one frame, there must be a mecha-
nism that allows the receiver to remain synchronized to the bit stream or else cu-
mulative error between transmitter and receiver clock mismatch will cause
incorrect sampling of the received bits. This is accomplished through a technique
known as bit stuffing, shown in Figure 15.12. Bit stuffing is done by the transmitter
by adding an extra bit that is the complement of the preceding bit if it detects that
5 bits of the same value have been transmitted. This is done to guarantee that every
6-bit interval contains a data transition (a guaranteed transition density), which al-
lows a Phase Locked Loop (PLL) or Digital Phased Locked Loop (DPLL) circuit at
the receiver to synchronize the sampling clock to the bit stream.

The bit stuffing and bit destuffing is invisible to the user and is done automat-
ically by the transmit and receive hardware. Figure 15.12 shows an example where
both a “0” and “1” are added by the bit stuffing logic to the data stream. Observe
that the “1” did not actually have to be added to the bit stream to guarantee a tran-
sition in 6-bit intervals as a “1” was present in the bit stream after the five “0” bits.
However, the bit stuffing logic does not know this and so the “1” bit is stuffed into
the bit stream anyway. Bit destuffing by the receiver is the opposite procedure; if 5
bits of the same value are received, the next bit is assumed to be a stuffed bit and is
removed from the data stream. Bit stuffing is also useful for bit-level error detec-
tion, as a stuck-at-0 or stuck-at-1 failure in the transmitter causes the bit destuffing
logic to detect an error in the received bit stream when the received bit value does
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not match the expected polarity of a stuffed bit. The usage and formatting of the re-
maining frame types of remote frame, error frame, overload frame, and interframe
spacing are not discussed and the reader is referred to the CAN specification [28].

Significant hardware resources are required to implement a CAN interface,
and the CAN modules used by PIC microcontrollers contain a large number of sta-
tus, configuration, and data registers. PIC18 family members with CAN modules
include the PIC18Fxx8 microcontrollers [29]; the user is referred to the datasheet
of this family for more information.

15.6 THE UNIVERSAL SERIAL BUS (USB)

The Universal Serial Bus [30] is a high-speed serial protocol that has largely re-
placed the use of RS232 for serial communication on personal computers. Mi-
crochip provides the USB interface on some PIC18 family members such as the
PIC18F2455/4455, and microcontrollers with USB interfaces are also available from
other semiconductor companies. USB is a complex specification, and a complete
discussion is beyond the scope of this book. USB is briefly summarized here to con-
trast and compare some of its features with the CAN protocol discussed in the pre-
vious section. USB supports data transfer speeds of 1.5 Mb/s (low-speed device), 12
Mb/s (full speed), and 480 Mb/s (high speed). Figure 15.13a shows that the physi-
cal topology of a USB network consists of the host, hubs, and functions. The host ini-
tiates all transactions in USB, as the bus does not support multiple bus masters. All
communication is between the host and functions, which are USB-enabled devices
such as keyboards, mice, speakers, memory cards, and so forth. 

A hub simply provides a connection point to grow the physical topology; a hub
has an upstream port that communicates up the hierarchy to the host and multiple
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FIGURE 15.12 Bit stuffing in CAN.



downstream ports that can either connect to a hub or function. A hub can also split
the network into different speed regions with high-speed transfer upstream (host
side) and either low-speed or full-speed downstream. Logically, each endpoint ap-
pears to be directly connected to the host as shown in Figure 15.13b.

At the physical level, USB and CAN have similarities in that both implement
half-duplex communication using differential signaling, and both use bit stuffing to
maintain synchronization. However, they differ in details relating to signaling lev-
els and data encoding. Figure 15.14 shows the electrical signaling used in USB for
low- and full-speed modes (the electrical signal levels for high-speed mode are sig-
nificantly different and are not discussed). 
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Data is carried by the D+/D signal pair; in low- and full-speed mode a “1” is
signaled when (D+) (D ) > 200 mV and a “0” signaled when (D ) (D+)
> 200 mV. Differential signaling is used in USB for the same reason it is used in
CAN—to make the signaling more resistant to common-mode noise. The USB
cable also carries Vdd and ground, allowing USB devices to maintain a common
ground with the host and to be powered from the cable. The data encoding method
used in USB is called Non Return to Zero Invert (NRZI), a somewhat unfortunate
name as it is not the inverse of NRZ encoding. NRZI encoding changes signal level
anytime a “0” is sent, while a “1” maintains the same signal level. This means that
a string of “0”s causes the line to change with each bit, while a string of “1”s leaves
the line quiescent. Bit stuffing is used in USB to force a guaranteed signal transition
density as is done in CAN signaling; however, the NRZI encoding means that
strings of “1”s trigger the bit stuffing mechanism. A “0” is inserted into the bit-
stream by the transmitter when six consecutive “1” bits are detected. Figure 15.15
shows an example of NRZI encoding and the bit stuffing used within USB.

USB transactions occur in packets, with bytes within packets sent least signifi-
cant bit to most significant bit. Common packet types are token, handshake, and
data packets. Token packets identify the type of transaction, data packets contain
the data being transferred between host and function, and handshake packets are
used for acknowledgment, flow control, and error signaling. There are four types of
USB transactions: bulk, control, interrupt, and isochronous. A bulk transaction trans-
fers data between the host and function with a handshake packet sent for every data
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packet, and also supports flow control and retry. A control transaction is also used
for data transfer and allows transfer of multiple data packets without handshake
packets, thus containing less packet overhead than a bulk transaction. An interrupt
transaction allows for periodic polling of functions via a low overhead transaction.
An isochronous transaction is intended for functions that require a guaranteed
data bandwidth; real-time data delivery, such as audio or video data.

Figure 15.16 shows the formats of common packet types in USB. Every packet
starts with a SYNC field (8 bits for low/full speed, 32 bits for high speed) used to re-
synchronize the receiver to the data stream; the SYNC field contains a high density
of signal transitions for this purpose. The packet identifier (PID) specifies the type
of packet; Figure 15.16 shows only a subset of the available packet types within USB
(not shown are so-called special packets). The address field of the token packet
identifies the source or destination address of the transaction, depending on the
packet identifier. Address 0 is the default address for a new device connection to the
network and is reserved, which means that a USB network can contain 127 exter-
nal functions. The host is responsible for assigning an address (bus enumeration) to
a function when a device is connected to the network; USB devices can be dynam-
ically removed and added to the network. The 4-bit endpoint field specifies a loca-
tion within the function. The CRC field is used for error detection.
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Figure 15.17 shows data transfer from host to function and from function to
host in a bulk transaction. A transfer from function to host consists of an IN token
packet from the host requesting data; the function returns either a DATA0 or
DATA1 data packet that the host acknowledges via an ACK handshake packet. The
DATA0/DATA1 packets are alternated between transactions as a way of synchro-
nizing multiple data transactions. A transfer from host to function consists of an
OUT token packet from the host followed by either a DATA0 or DATA1 packet
that the function acknowledges via an ACK handshake packet.

This discussion is only a brief summary of packet types and USB transactions;
the reader is referred to the USB 2.0 specification [30] for more information. USB
support in microcontrollers requires considerable hardware resources as well as
software support in terms of microcontroller firmware that implements the nu-
ances of the USB protocol. Unlike CAN, most microcontrollers implement the
D+/D– pin interface directly within the microcontroller and do not use an external
transceiver IC to translate between CMOS and USB voltage levels. The PIC18F2455
is one microcontroller currently available from Microchip that implements a USB
interface; other companies with microcontrollers that support USB include Cy-
press Semiconductor, Atmel Corporation, and Intel.

15.7 A BRIEF SURVEY OF NON-PIC MICROCONTROLLERS

The microprocessor, digital signal processor, and microcontroller universe is not
infinite, but is large enough that this section can only provide a cursory look at the
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processor families available from different companies. Figure 15.18 lists some of the
companies and product offerings in the μP/DSP/μC universe. The author makes no
claims as to completeness of this list, as new companies arise each year to add con-
stellations to the μP/DSP/μC universe.

Figure 15.18 splits processors into two categories: high-performance 32-bit and
8/16/32-bit fixed-point. Some of the features listed under the high-performance 32-
bit processor category have not been discussed in this book and may be new to you;
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 High Performance 32-bit 

High Performance 32-bit microprocessors, microcontrollers, and digital
signal processors from: 
Intel (Pentium®/Celeron®/i960®/others),
SUN Microsystems (SPARC®/UltraSPARC®),AMD (Athlon™/others),
Freescale/Motorola (PowerPC®/other families), 
IBM (PowerPC®),  ARM (ARM family CPUs),
Analog Devices (Blackfin®/SHARC®/ADSP), Hitachi (SH families),
Texas  Instruments (multiple families), MIPS Technologies (MIPS® family).

Architecture features include some mixture of:
  On-chip data/instruction caches
  Hardware Floating point
  Pipelined superscalar (multiple instructions per clock)
  Virtual Memory Support (memory management units)

IO features include high speed serial interfaces such
as USB, 10/100 Mb Ethernet, Firewire, etc. but also parallel bus standards
such as PCI.  ‘Glueless’ interfaces to SDRAM/SSRAM are common.

Often available in core form where a customer builds a custom integrated
circuit and includes a 32-bit processor as one of the modules.

Fixed-point 32/16/8-bit 

Of the above companies, Intel (8051/others),  Freescale (68xxx/others),
Hitachi (H8/others), and Texas instruments (multiple families) have fixed point 32/16/8-bit
processor families.

Other companies with 16-bit and/or 8-bit processor families include:
Microchip, Cypress Semiconductor (PSoC microcontroller),
Rabbit Semiconductor (Rabbit 3000®/2000), Atmel (AVR® families), 
Zilog (Z8 families), Ubicom (PIC-compatible processors), 
Parallax (Basic Stamp® Module), STMicroelectronics (STx processor families),
Cygnal (8051),Cyan Technology (eCOG1™ 16-bit family).

FIGURE 15.18 Microprocessor, digital signal processor, microcontroller
universe.



these features are briefly described here. Instruction and data caches were previ-
ously mentioned in Section 15.2 and are on-chip high-speed memories that service
much of the instruction and data needs of the processor. If a processor has instruc-
tion and data caches, it also has external memory, typically SDRAM of some type,
that holds the instruction and data that cannot fit within the cache memories. The
cache controller within the processor is responsible for swapping blocks of instruc-
tions/data to/from external memory and on-chip cache. A processor that is
pipelined means that on average it completes one instruction per clock cycle and
that at any given time it has several instructions within it, each at a different state
of completion. The PIC18 is not a pipelined processor; it takes four clock cycles to
execute one instruction. A pipelined superscalar processor can complete more than
one instruction per clock cycle. Virtual memory means that the processor can exe-
cute programs that are larger than the physical memory of the computer system;
external storage such as a hard disk is used to store instructions and data that will
not fit in physical memory. A memory management unit (MMU) on the processor
is responsible for detecting when an instruction or data access is not in physical
memory; this generates an interrupt that causes the needed instruction/data to be
swapped into physical memory from disk. Modern operating systems such as Win-
dows and Linux require processors that support virtual memory. Floating-point
was discussed in Chapter 7; a hardware floating-point unit executes instructions
that perform floating-point operations. If there is one feature that differentiates a
processor between the high- and low-performance camps it is hardware floating-
point. This is because hardware floating-point implies a 32-bit architecture and
high-performance computation needs, thus necessitating the inclusion of all of the
other features that define “high performance.” Many high-performance proces-
sors are available as “cores.” This means that a company wishing to build an appli-
cation-specific integrated circuit (ASIC) can include the processor as a module
within its integrated circuit and place customized logic around it to address specific
needs. High-performance 32-bit processors are even being included within field
programmable gate arrays (FPGAs) from companies such as Xilinx and Altera.

The low-performance category, designated as fixed-point 32/16/8-bit proces-
sors, is differentiated from the high-performance category by lack of hardware
floating-point support. The Freescale 68XXX family (marketing name
Dragonball™) is an example of an embedded processor core that is 32-bit internal
without hardware floating-point support. This category is dominated by 8-bit
processor families and contains additional companies over those listed in the 32-bit
high-performance category. One popular 8-bit processor is the 8051, originally 
developed by Intel in the 1980s. This processor has been licensed by Intel to several
companies that now make 8051-compatible microcontrollers. The 8-bit processors
from Atmel and Zilog are flash programmable, with family members available in
DIP packages that are suitable for hobbyist prototyping, and feature basically the
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same IO module set as the PIC18/PIC16 processors. The Rabbit 2000/3000 proces-
sors are based on Z80/Z180 architectures (a processor popular in the 1980s), fea-
ture an external memory bus, and are available only in high pin count, surface
mount packages. The Rabbit 2000/3000 does not have on-chip program memory;
development kits with external FLASH EEPROM memory and SRAM are available
from Rabbit Semiconductor. The Basic Stamp® from Parallex is included in this
list due to its popularity with hobbyists. However, a Basic Stamp is actually a
printed circuit board module that contains an 8-bit PIC processor from either Mi-
crochip or Ubicom, a clock source, an in-circuit programming interface, and exe-
cutes a program that interprets programs written in the BASIC programming
language. The Programmable System-on-a-Chip (PSoC) microcontroller from Cy-
press Semiconductor is unique in that in addition to an 8-bit processor core that is
Flash programmable, it contains both analog and digital programmable logic mod-
ules that allows a user to customize on-chip peripherals based on the application.
One interesting aspect of the low-performance processor list is that 8-bit processor
families far outnumber 32/16-bit processor families. This is because the extra per-
formance from a 32/16-bit processor is usually not needed in low-performance
families; if extra performance is needed, simply increasing the clock speed on an 8-
bit processor is usually a good enough solution. 

How does one choose a processor? Of course, application requirements are a
critical driver, but typically many processors are able to perform the same task ad-
equately. From a company viewpoint, processor availability (can the vendor ship
the volume that I need?), reliability, and volume price are critical. From educator
or hobbyist viewpoints, other questions such as those that follow often decide the
processor choice.

Is the processor available in DIP packages so I can prototype with it? If not, are
there development kits available and what do they cost?
Is there a free or inexpensive development system available so I can write and
simulate assembly language programs? 
Is the processor FLASH programmable? How will I program the processor?
Can I do it in-circuit or do I need an external programmer? How expensive is
a programmer?
Is there a C compiler available? How expensive is the C compiler? Is an educa-
tional version of the C compiler available?
Can I purchase processors/programmers in small quantities from a supplier
such as Digi-Key?
Are there sites on the WWW where I can find sample code for common prob-
lems?
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Exploring the μP/DSP/μC universe can be rewarding. It is almost guaranteed
that whatever processor provides your first learning experience in the μP/DSP/μC
universe will not be the only processor you will encounter in your engineer/hob-
byist/scientist career. You will quickly discover that different processor families all
share common themes that allow you to apply previous hard-earned lessons when
exploring the nuances of a new processor family.

15.8 REAL-TIME OPERATING SYSTEMS 

If you peruse enough embedded system sites, you will encounter references to real-
time operating systems (RTOS). What is a RTOS and when is it needed? In a nut-
shell, a RTOS allows a CPU to share its resources between multiple tasks, or threads
of execution. You are probably carrying a device in your purse or pocket that is run-
ning an RTOS if you own a cell phone or PDA. An example of a CPU being shared
between multiple tasks is when your wireless-enabled PDA is downloading e-mail
while you are checking your calendar, updating your address book, or playing a
game. Figure 15.19a shows the execution model that we have used in this book; that
of a main()foreground task with interrupts triggering an ISR background task.

Figure 15.19b illustrates how an RTOS shares the CPU among multiple tasks.
A periodic timer interrupt causes a scheduler task to switch the CPU between dif-
ferent tasks, with each task receiving a slice of the CPU’s time. A task switch involves
saving the context of the task (register contents and other data that defines the
task’s state); a task executes until its allotted time expires or the task suspends itself

Foreground (main{} )
  while(1){

Background 
(ISR{})

(a) Single task with
Foreground/Background

(b) Multiple Tasks

Scheduler Task
idle() Task

Task #1

}
//end while

while(1){

   }
//end while

ISR{}

while(1){

   }
//end while

ISR{}

while(1){

   }
//end while

ISR{}

Task #2 Task #N

Periodic timer
interrupt causes 
scheduler to switch
tasks, timesharing 
the CPU

FIGURE 15.19 Real-time operating system concept.



to wait for an IO event. If all tasks are waiting for an IO event, the idle() task is ex-
ecuted by the scheduler. Tasks can be executed in a round-robin fashion in which
each task receives an equal amount of time, or priorities can be assigned in which
some tasks get a larger slice of the CPU’s time. Tasks can be spawned dynamically
by other tasks via system calls to the scheduler. An RTOS comes at a price; the over-
head of task switching consumes CPU cycles and memory space is required for sav-
ing task context. 

Figure 15.20 illustrates an example where an RTOS may be required for appli-
cation. The code that was written for the home monitoring project in Chapter 14,
“Capstone: Audio Sampling, Monitoring System, and Autonomous Robot,” re-
sembles the while(1){} loop shown in Figure 15.20 where a wait is done on a set of
semaphores that are set by the ISR indicating that one of several IO sources has pro-
duced input. The code then checks the semaphores and processes the data pro-
duced by the IO event.

A problem arises if processing the data from one interrupt source takes so long
that the buffers used for other interrupt sources overflow because they are not
being emptied often enough. This becomes more of a problem if the data sources
are real-time data sources such as audio or video that require servicing at fixed
rates. Hence, a real-time operating system provides the mechanism for sharing the
CPU among the different tasks so each task can fulfill its data processing require-
ments.

An RTOS provides more than just the task switching mechanism. It also pro-
vides library functions for common operations such as dynamic memory manage-
ment, queue creation/management, software timers, and message/semaphore
creation/management for task communication. A RTOS is usually distributed in
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Foreground (main() )
  while(1){

wait until some semaphore is set {};
    
       

     if (semaphore1) {
         do task 1;
     } else if (semaphore2) {
         do task 2;
     } ........
        else if (sempahoreN) {
         do task N;
      }
   }

ISR()sets a semaphore
idle wait

If task 1 takes too long, then the buffers
holding incoming data for remaining
tasks can overflow because they are not
invoked often enough.

This gets worse the longer the list
of semaphores that need to be checked.

FIGURE 15.20 The need for an RTOS.



source form since RTOS companies target many different processor families. Most
commercial RTOS vendors focus on the high-end 32-bit processor market, as that
is where the power of an RTOS is usually needed. However, even 8-bit processors
can benefit from an RTOS if the application is complex enough. An open source
RTOS named FreeRTOS (www.freertos.org) is available and has been ported to both
the Atmel ATmega32 and Microchip PIC18 (requires the Microchip MCC18 C
compiler) processors. The FreeRTOS distribution is one way to get some hands-on
experience with RTOS basics. 

SUMMARY

This chapter presented a brief survey of microprocessor topics outside of the im-
mediate realm of the PIC18xx2 microcontroller family such as external memory in-
terfacing, SRAM/DRAM memory technologies, the CAN and USB interface
standards, the basic motivation behind real-time operating systems, and alternate
microcontroller families available from Microchip and other semiconductor com-
panies. If you are interested in understanding the basic features of high-performance
processors, a computer architecture book such as [5] is appropriate. Delving deeper
into any of the alternate μP/DSP/μC devices listed in Figure 15.18 is as simple as
visiting any of the company Web sites and perusing their application notes, refer-
ence manuals, and datasheets. The CAN and USB specifications are readily avail-
able online and provide additional details on these interfaces. References [32] and
[33] provide more information on real-time operating systems.

As this is the last chapter of the book, a valid question is, “Where do I go from
here?” You could challenge yourself by implementing some of the code examples or
projects in this book on a non-Microchip 8-bit microcontroller; this forces you to
generalize the lessons that you have learned in programming the PIC18Fxx2. As a
step beyond the projects explored in Chapter 14, Internet-enabled embedded sys-
tems are becoming common. One platform for experimenting in this area is TINI®
(Tiny InterNet Interfaces) modules that implement an Ethernet interface, support
programming TINI applications in Java, C, or assembly language, and allow sensor
data read by a TINI board to be retrieved by a Web server over the Internet! More
information on TINI is found in [31]. If most of the material in this book is new to
you, you are only just beginning to explore the μP/DSP/μC universe. It can turn
into a life-long exploration that is both fun and intellectually rewarding—good
luck on your travels!
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SUGGESTED SURVEY TOPICS

Instead of review problems, this section contains additional survey topics over
those discussed in this chapter. In an educational environment, these problems are
best assigned as end-of-course reports.

1. Select a non-Microchip 8-bit processor from the list in Figure 15.18. Visit
the company Web site and download both the reference manual for the
processor architecture and the specific datasheet for a particular family.
Compare and contrast the processor with the PIC18Fxx2 by answering the
following questions:

i. What is the width of the instruction word?
ii. What is the width of the internal data registers?

iii. What is the width of the program counter or instruction 
pointer?

iv. How much on-chip RAM does the processor have?
v. Does the processor have an external bus for accessing pro-

gram or data memory?
vi. Does the processor have signed comparison instructions? If

“yes,” give an example.
vii. Implement the operation i = k + j in the processor’s as-

sembly language where i, k, j are char variables.
viii. Does the processor have special instructions for multiply

and/or divide? If “yes,” give an example.
ix. Does the processor have a fixed-sized or variable sized stack?
x. Does the processor have push/pop instructions for accessing

the stack? If “yes,” give an example.
xi. How is indirect addressing (similar to the FSR/INDF capa-

bility on the PIC18) implemented? Give an example.
xii. How many clock cycles does it take for an addition operation

to complete?
xiii. Give the machine code format for an addition operation.
xiv. What flags are supported in the status register of the proces-

sor?
xv. Does the processor have an instruction that supports a mul-

tiple position shift? If “yes,” give an example.
xvi. What serial standards are supported? Asynchronous? SPI?

I2C? What is the maximum synchronous transfer rate? 
xvii. Does it have an on-chip ADC? If “yes,” how many channels

and what precision?
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xviii. At reset, from what location is the first instruction fetched?
xvix. What location in memory contains the interrupt vector(s)?

Does the processor support multiple interrupt priorities?
xx. What are the minimum and maximum package sizes in

terms of pin counts? For the maximum package size, what is
the parallel port count?

xxi. What is the device’s maximum clock frequency?
xxii. What is the Vdd range supported by the device?

xxiii. How many timers and what sizes are supported?
xxiv. Is PWM supported? If “yes,” how many channels?

2. FireWire (IEEE standard 1394) is another high-speed serial interface stan-
dard. Peruse the Web and answer the following questions. 

i. What are the electrical signaling levels used in FireWire?
ii. How is addressing done?

iii. Does it support multiple bus masters? If “yes,” how is arbi-
tration done? 

iv. Give an example transfer on FireWire and compare it to a 
USB transfer.

3. Pick one of the high-performance 32-bit processors from Figure 15.18 and
answer the same questions of problem #1 in addition to the following:

i. How long does it take to do a single precision floating-point
add? A single precision floating-point divide?

ii. What size on-chip data and instruction caches does it sup-
port?

iii. Does it support a glueless interface to DRAM? If “yes,” what
types of synchronous DRAMs are supported?

iv. Does it have a memory management unit?
v. If it is superscalar, how many instructions per clock can it

typically execute?

4. Do research on the LIN (Local Interconnect Network) bus and answer the
following questions.

i. How many wires does it need?
ii. Classify it as duplex, half-duplex, or simplex.

iii. How is addressing to devices handled?
iv. What are the signaling levels?
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v. Is it synchronous or asynchronous?
vi. What is the maximum transfer speed?

vii. What is the maximum number of devices allowed on the
bus?

5. DDR-DRAM and RDRAM are both dynamic memory devices, but have
significantly different interfaces. Find datasheets on each and answer the
following questions.

i. How do the electrical signaling levels of the two devices 
differ?

ii. What are the clocking requirements of each?
iii. How are chip selects handled for each?
iv. Describe how a block read transfer is accomplished for each 

device.

6. The System Management Bus (SMBus) is a two-wire bus that was derived
from the I2C standard by Intel in 1995. It is currently used in PC mother-
boards and various microcontrollers. Download the SMBus specification
[38] and answer the following questions.

i. Give a couple of key differences between SMBus and I2C. For
the key differences you chose, give the reasoning behind
these changes.

ii. Can you give an advantage of SMBus over the I2C bus? De-
fend your answer.

iii. Are the I2C devices used in the projects of Chapter 14 (the
MAX517 DAC, 24LC515 Serial EEPROM, and the DS1621
Digital Thermometer) compatible with the SMBus? Defend
your answer.
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T
his appendix contains a summary of the PIC18Fxx2 architecture, instruction
set, and registers. The PIC18Fxx2 family contains the PIC18F242,
PIC18F252, PIC18F442, and PIC18F452 members. The PIC18F2x2 archi-

tecture has only three parallel ports because of package pin limitations, while the
PIC18F4x2 architecture has five parallel ports. Figure A.1  shows a block diagram
of the PIC18F2x2 architecture. The machine code and flag settings for each
PIC18Fxx2 instruction are given in Figures A.2, A.3, and A.4. An RTL description
of each instruction is found in Figures A.5 and A.6. The Special Function Register
bit definitions are found in Figures A.7 and A.8. The memory map of the Special
Function Registers is shown in Figure A.9. The program memory configuration
registers are summarized in Figure A.10, with individual bit definitions found in
Figure A.11. 

PIC18Fxx2 Architecture,
Instruction Set, Register
Summary

Appendix

A
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Note 1: Optional multiplexing of CCP2 input/ouput with RB3 is enabled by selection of configuration bit.
2: The high order bits of the Direct Address for the RAM are from the BSR register (except for the MOVFF instruction).
3: Many of the general purpose I/O pins are multiplexed with one or more peripheral module functions. The multiplexing

               combinations are device dependent.
Figure redrawn by author from PIC18Fxx2 datasheet (DS39564B),  Microchip Technology Inc.
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FIGURE A.1 PIC18F2X2 block diagram.1

1 Figure A.1 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.
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FIGURE A.2 Byte-oriented, bit-oriented file register operations.2

2 Figure A.2 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.
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FIGURE A.3 Control operations.3

3 Figure A.3 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.
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FIGURE A.4 Literal, table read/write operations.4

4 Figure A.4 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.
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FIGURE A.5 Instruction set RTL description (part 1).
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FIGURE A.6 Instruction set RTL description (part 2).
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FIGURE A.7 Register file summary (part 1).5

5 Figure A.7 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.
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6 Figure A.8 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No

FIGURE A.8 Register file summary (part 2).6
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FIGURE A.9 Special function register map.7

7 Figure A.9 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.
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FIGURE A.10 Configuration register summary.8

8 Figure A.10 adapted with permission of the copyright owner, Microchip Technology, Incorporated. All rights reserved. No
further reprints or reproductions may be made without Microchip Inc.’s prior written consent.
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FIGURE A.11 Configuration register bit definitions.
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T
his appendix contains a brief introduction to the Microchip MPLAB inte-
grated design environment. The sample program used is the mptst.asm pro-
gram (Listing 3.9) found in the code/labs directory on the companion

CD-ROM. The latest version of MPLAB can be downloaded from the Microchip
Web site (www.microchip.com). Figures B.1, B.2, and B.3 give the most common
MPLAB commands for assembling and simulating the assembly language programs
in this book. Figure B.1 shows how to use the Quickbuild command to assemble an
assembly language source file. Figure B.2 shows how to use the simulator/debugger
within MPLAB. Figure B.3 shows how to use the stopwatch function to measure
code execution. See Appendix C, “HI-TECH PICC-18 C Compiler Demo for the
PIC18F242,” for information on how to build a project that contains multiple
source files within MPLAB.

Microchip MPLAB
Quickstart

Appendix

B

ON THE CD

www.microchip.com
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(a) Use “File ? Open” to browse to mptst.asm file.
This opens a source window that can be used for
editing, tracing execution, or setting breakpoints.

(b) Use “Configure ? Select Device” to
set the device to the PIC18F242

(c) Use “Project ? Quickbuild” to assemble the file. Correct any syntax errors 
as reported in the output window (Hint: correct only the first error, reassemble,
and continue until all errors are fixed). Quickbuild assembles the currently
selected source window.

(d) Use “Debugger ? Select Tool
 ? MPLAB SIM” to set the simulator
option.

(e) Use “View ? Program Memory” to a open window that shows
 machine code.

FIGURE B.1 Using Quickbuild to assemble a file. Screenshots ©2005 Microchip Technology, Inc. 

Reprinted with permission. All rights reserved.
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(f) Use “View ? File Registers” to open a window that shows data memory.
These contents are zero initially.

(g) Use “View ? Watch” to open a window for watching data memory
or special function register values as they change.

Can add special 
function register.
Already added
variable k.

About to
 add
variable j.

(h) Right click in source window to bring up menu that allows a 
breakpoint to be set/cleared at the current cursor location.

Break point has been set.

(i) Use F7 to single step through program; green arrow in source window tracks program
execution.  Use F6 to execute a processor reset.

(j) “Debugger ? Clear Memory  ? All Memory” is useful for returning memory to its
initial state. The program must be recompiled if all memory is cleared.

FIGURE B.2 Using the MPLAB SIM debugger. Screenshots ©2005 Microchip Technology, Inc. 

Reprinted with permission. All rights reserved.
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(k) Use “Debugger ? Stopwatch” to open  the stopwatch window that is
useful for measuring program execution time.

(l) Use “Debugger ? Settings” to open  the settings window that is
used for changing the processor clock speed used by the stopwatch, as
well as other simulator configuration settings.

FIGURE B.3 Using the MPLAB SIM stopwatch. Screenshots ©2005 Microchip Technology, Inc. 

Reprinted with permission. All rights reserved.
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T
his appendix contains a brief introduction to the HI-TECH PICC-18 C com-
piler demo that is found in the hitech subdirectory on this book’s compan-
ion CD-ROM. The PICC-18 C compiler is enabled for 120 days after

installation and only produces code for the 18F242. The executable found in the
hitech subdirectory is self-installing; MPLAB should be installed before installing
the PICC-18 compiler. Some compiler options are disabled in this demo compiler.
These options are:

-D to predefine macro symbols 
-L to specify libraries to be scanned by the linker 
-L-opt to allow specification of additional linker options 
-O-opt to allow specification of additional OBJTOHEX options 
-M map file generation 
-NORT to disable runtime code inclusion 
-PRE to only preprocess source files 
-RESRAM to reserve RAM ranges 
-RESROM to reserve ROM ranges 
-U to undefine macro symbols 
-V for verbose compilation messages

In practice, the only effect of the demo limitations on the C programs included
in this book is the lack of printf support for floats and longs, due to the omission
of the -L compiler flag. Only a few book examples use printf statements with
float/long data types for program output, and the lack of support does not affect the
overall program functionality.

During installation of the PICC-18 demo compiler, you will be asked if you
want to install the MPLAB™ 6 PICC-18 Toolsuite Plugin. You should answer “yes”
to this question, as this allows you to build projects within MPLAB that specify the
PICC-18 compiler toolsuite. This plugin has been tested to be compatible with
MPLAB 7 as well.

HI-TECH PICC-18 C
Compiler Demo for the
PIC18F242

Appendix

C

ON THE CD
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Figure C.1 shows the steps required to create a project for C compilation using
the ledflash.c example. The PICC-18 tool suite is chosen in Figure C.1c; for an as-
sembly language project you would choose the Microchip MPASM™ tool suite. In
Figure C.1d, the project name determines the name of the final hex file that is pro-
duced (project_name.hex). The files ledflash.c and config.h are added to the project
in Figure C.1e. The project is compiled by using the “Project Build All” com-
mand in Figure C.1g.

Figure C.2 shows how to modify common compiler and linker options for a
project. All of the C source examples on the companion CD-ROM that contain the
main() entry function use #include statements to include other required source
and header files. This means that the only file that actually has to be entered into the
project list is the file that contains the main() entry function assuming the include
file path is set to the directory that contains the included files. Figure C.2b shows
how to set the directory search path for #include files. Different levels of compiler
optimizations can be selected as shown in Figure C.2c. A few book examples use
long and float variables within printf() statements; Figure C.2d shows how to se-
lect the appropriate printf() library assuming a full version of the compiler. Code
that is to be downloaded into the PIC18F242 using the Jolt/Colt serial bootloader
(Appendix F) must have the “-a200” linker option specified as shown in Figure
C.2e. This causes the generated code to be offset in memory by 0x0200 locations;
this is required as the bootloader firmware resides in locations 0x000 to 0x01FF.

ON THE CD
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(a) Use “Project ? Project Wizard” to create a 
project for C compilation.

(b) Step #1, select the PIC18F242 as the target device.

(c) Step #2, select
the PICC-18 Toolsuite.

(d) Step #3, name the project and select a target directory.

(e) Step #4, add file(s) to the project.

(f) At this point, the project is finished, and the project source
window shows the project files.

(g) “Project ? Build All” to compile all project files.

FIGURE C.1 Creating a project. Screenshots ©2005 Microchip Technology, Inc. Reprinted with

permission. All rights reserved.



556 Microprocessors

(a) Use “Project ? Build Options ? Project” to set options
for project compilation.

(b) The Include Path is set from the General tab under
Build Options. The include path is used to set a directory
search path for files specified in include directives.

(c) Compiler optimizations are set from the PICC-18
Compiler  tab under Build Options. Level 9 is the 
highest optimization level and is the default. 
Levels 1-9 are selectable, and all compiler 
optimizations can be turned off by selecting the OFF
option. See the compiler documentation for a 
description of the different optimization levels.

(d) Library options for different levels of  printf() support are set
from the PICC-18 Linker tab under Build Options.  Some book 
examples use long and float variables in printf() statements,
which requires the appropriate printf() library to be selected. 
Note: The demo compiler  on the book CDROM does not support
long and float types in the printf() function.  Most book examples
that use long and float variables in printf() statments have alternate
printf() statements that are compatible with the demo compiler.

(e) The Alternate Setting option from the PICC-18 Linker tab 
under Build Options is used to add the “-a200” linker flag necessary
to generate code compatible with the Jolt/Colt Bootloader.

Use the type-in field to add 
the “-a200” linker option.

FIGURE C.2 Compiler/linker options. Screenshots ©2005 Microchip Technology, Inc. Reprinted with

permission. All rights reserved.
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T
his appendix contains a few brief notes on the C programming language
based on questions asked by students when performing the laboratory exer-
cises in Appendix E, “Suggested Laboratory Exercises.” This book only cov-

ers a subset of the C language and the coverage is intended to be adequate for a
student already conversant in some other high-level language, either object ori-
ented (e.g., C++, Java) or procedural (e.g., BASIC, Pascal).

D.1 FORMATTED IO (PRINTF, SCANF, SPRINTF, SSCANF)

The formatted IO statements printf() and scanf() can be confusing if you are new
to C. This appendix only covers the formatted IO features used in this book’s exam-
ples; please refer to a C textbook if you require a more complete description. The
printf() statement is used for formatted ASCII output; within the PICC-18 C com-
piler environment the printf() library function calls the putch() function to out-
put each ASCII byte. Chapter 9, “Asynchronous Serial IO,” gives a putch() function
that outputs the byte to the PIC18Fxx2 serial port. The parameters to the printf()
function are a format string and an argument list. The format string can contain a
mixture of normal characters and conversion specifications; a conversion specifica-
tion determines how an argument value is converted to an ASCII format. Conver-
sion specifications begin with a “%” character; two “%” characters in a row are
needed if a “%” is desired in the final output string. Figure D.1a gives some exam-
ples of printf() conversion specifications. 

Notes on the C Language

Appendix

D
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A %c formats an argument as a single ASCII character, %d specifies an ASCII
decimal format, and %x is used to format an ASCII hex number. The field width is
specified as a number before the format character; %10d specifies a field width of 10
digits. Left justification is the default; a negative sign in the field width (e.g., %-10d)
performs right justification. A leading zero can be specified in the field width as in
%04x to pad the number with leading zeros. A leading l (letter l) is used in the for-
mat specification if the argument is a long rather than an int (i.e., %ld instead of %d).
A %u can be specified in place of a %d for an unsigned data type. Floating-point
(float or double) format specifications use %f or %e as shown in Figure D.1b. A for-
mat specification of the form %n.mf specifies a field width of n digits, with m digits

char c;
c = 0x41;

printf("%c      %d       %x", c, c, c);

A      65      41

printf("A:%10d B:%-10d C:%04x \n",c,c,c);

As an
ASCII
character

In
decimal

In
hex

 A:        65 B:65         C:0041{
Field width is 
10 digits,
left justified

{

Field width is 4 characters, 
pad with ‘0’ digits

char c, buf[20];
c = 0x41;

sprintf(buf,"%c %d %x", c, c, c); after execution, buf contains
A 65 41

float q;

q= 0.001234;

printf ("A: %6.3f   B: %f    C:%e\n",q, q, q);

 A:  0.001   B: 0.001234    C:1.234000e-03{

Field width is 6 digits, with three 
digits to right of decimal point

Scientific notation
{

{Field width is 
10 digits, right
 justified

No field width
or precision specified

{

(a) Some format specifications.
Replace %d with %u for unsigned int
types. Replace %d with %ld for
long types, and %d with %lu for
unsigned long types.

(b) Floating point format specifications

(c) print to an in-memory buffer

FIGURE D.1 printf() examples.
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of precision to the right of the decimal point. The %e specification causes the floating-
point number to be printed in scientific notation. The sprintf() function is used to
print the string to an in-memory buffer; the first argument to sprintf() is the char
buffer for the output string as shown in Figure D.1c.

The scanf() function is used for formatted ASCII input; within the PICC-18 C
compiler environment the scanf() library function calls the getche() function (get
character and echo) to input each ASCII byte. The getche() function is assumed to
echo its character using the putch() function. The scanf() function expects point-
ers to the variables in the parameter list; hence, the & operator (address-of operator)
is placed in front of any variables that are passed to scanf(). Figure D.2 shows ex-
amples of scanf() with %d (decimal), %x (hex), and %f (float) numbers. The leading
0x on the hex number input is optional. The scanf() function skips over any white
space (space characters, tabs, etc.) it encounters when scanning the input for a
match to the format specification. The sscanf() (string scanf()) function can be
used to read values from an in-memory buffer; the first argument to sscanf() is the
char buffer to scan. 

D.2 FOR C++ PROGRAMMERS

A simple, but common error made by C++ programmers when adjusting to C is
variable declarations. In C++, variable declarations can be placed anywhere within
a function as shown in Listing D.1. 

unsigned char c;
float q;

printf("Enter decimal number: ");
scanf("%d",&c);
printf("The number is %d\n", c);

printf("\nEnter hex number: ");
scanf("%x",&c);
printf("The hex number is %x\n", c);

printf("\nEnter a float number: ");
scanf("%f",&q);
printf("The float number is %f\n",q);

Enter decimal number: 49
The number is 49

Enter hex number: 0xEC
The hex number is ec

Enter a float number: 1.239202
The float number is 1.239202

FIGURE D.2 scanf() examples.



LISTING D.1 C++ Variable declarations.

main() {   // compiled with a C++ compiler

char c;

c = 0x41;

c++;

int i;    //variable declaration

i++;

}

However, in C the second variable declaration int i must either go at the top
of the function with the char c declaration or be enclosed in a block using {} as
shown in Listing D.2. However, be careful—variables declared within a block {} are
not visible to statements outside of that block.

LISTING D.2 C Variable declarations.

main() {   //compiled with C compiler

char c;

c = 0x41;

c++;

{ // be careful, ‘i’ scope is limited to within brackets!

int i;    //variable declaration

i++;

}

}

D.3 FOR NEW PROGRAMMERS

If you don’t have much programming experience, the number of syntax errors re-
ported by the C compiler after compiling your first program may overwhelm you.
A useful tip relevant to almost any programming language is to fix only the first
syntax error; many of the remaining errors are most probably side effects of that
first syntax error. Do not be intimidated by a listing of 100+ errors; concentrate on
fixing the first one and many of the remaining errors will vanish on the next com-
pile.

D.4 FOR EXPERIENCED C PROGRAMMERS

This book’s usage of the C language is kept fairly simple to aid the new C program-
mer’s understanding of the example programs. If you are comfortable with the C
language, you are encouraged to modify the book’s examples to make use of the
more powerful features of the language. For example, macros can be employed to
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automatically compute the numbers for the serial port baud rate, I2C bus speed,
timer interrupt periods, and so forth to make the examples independent of a par-
ticular FOSC value. In some of the more complex examples, use of struct data
types for related variables may be appropriate.

If you are an experienced C programmer (perhaps from an X86 platform),
there are many shortcuts for certain code segments discussed in book examples. For
example, the code in Chapter 10, “Interrupts and a First Look at Timers,” for plac-
ing data into a software FIFO is written as:

head = head + 1;

if (head == BUFMAX) head = 0;

ibuf[head] = RCREG

Here, BUFMAX is a power of 2, and head is a char variable. An experienced C
programmer might write instead:

ibuf[(++head)%BUFMAX] = RCREG;

This works because % is the C modulo operator and BUFMAX is a power of 2,
meaning that it is evenly divisible into 256, which is the number of possible code
values for the head variable. While the number of C statements is reduced from 3 to
1, the amount of assembly code generated is much higher as the modulo operation
requires a division operation, an expensive operation in terms of machine code and
instruction cycles on the PIC18. So, be careful when writing “tight” C code—it
might not translate into “tight” machine code once it is compiled.
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Suggested Laboratory
Exercises

Appendix

E

T
his appendix contains the laboratory exercises for a semester-length course
taught at Mississippi State University since summer 2004. We first began
teaching a PIC-based introductory microprocessor course in fall 2003 using

the PIC16F873, and switched to the PIC18F242 in summer 2004. 

E.1 LAB SETUP

Table E.1 lists the lab equipment assumed by these experiments. Each lab station
should have an oscilloscope and a multimeter. In addition, if each student does not
have a portable PC, every lab station must have a desktop PC. Each lab station
should either have a LAN connection or the lab should be wireless enabled. 

Equipment Comment

Networked PC Lab station only needs a LAN connection if student has a 
portable PC.

Multimeter Basic instrumentation.

Oscilloscope Basic instrumentation.

PICSTART This is used for programming PICs with the serial 
Programmer bootloader and initial test programs; it can be shared 

among multiple stations.

Soldering and wire Either soldering or wire wrap is used for external 
wrap tools/supplies connectors; multiple stations can share this.

Universal remote control Used by Experiment 12 for IR waveform decoding.

TABLE E.1 Suggested Lab Equipment
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Because a serial bootloader is used to program the PIC18F242 in a majority of
the hardware labs, each PC must either have a serial port or a USB-to-serial port
adapter. The lab also must have some method of programming a PIC18F242 with-
out a serial bootloader; we use a Microchip PICSTART Plus programmer (Appen-
dix F, “The Jolt/Colt Serial Bootloaders”) shared among 10 lab stations. Software
installed on each PC to support the PIC18F242 experiments are MPLAB, the HI-
TECH PICC-18 compiler, and the Jolt/Colt bootloaders (Appendix F). The lab ex-
periments consist of 13 experiments: one digital-logic based, four assembly
language based, and eight hardware based. In the last week of the semester we hold
a lab practicum to evaluate student skills for ABET assessment purposes. The hard-
ware experiments use a parts kit and a prototyping board purchased by each stu-
dent. Through the eight hardware experiments, a student builds a PIC18F242
system that has an external I2C serial EEPROM, I2C DAC, asynchronous serial in-
terface, a potentiometer, a mini-jack for audio input/output, and an IR receiver.
Wire wrap is used for external connectors like the DB9 required for the serial port;
the lab has wire wrap supplies (tools/wire) shared by the students. The lab also has
a couple of soldering irons for creating reliable connections to external connectors
if students prefer that over wire wrap. Figure E.1 shows a picture of the prototyping
board at the end of the semester after all experiments have been added to the board. 

IR Receiver
DB9

7805

MAX517PIC18F242 24LC515
LM386

MAX202 CD4053

10K PotModular Connector
for ICD2 (optional)

Pwr Switch

Audio 
Mini-jack

Pwr Conn

Crystal

Fuse

Reset sw.

10K SIP 240Ω SIP

FIGURE E.1 Protoboard at semester end.
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The parts kit list used during the fall 2004 semester is shown in Figure E.2 along
with supplier part numbers. We purchase the part kits pre-assembled from Elec-
tronix Express (www.elexp.com) at a substantially reduced price over what can be or-
dered by students in single quantities from parts suppliers. The protoboard and
wiring kit are usually purchased in a previous digital logic course. The modular con-
nector was previously included to support in-circuit programming via the Microchip
ICD2 programmer (Appendix F), but this has been dropped and is now optional.

Based on MSU experience, the following points are key for a successful lab
course using this approach:

FIGURE E.2 Parts kit list.

www.elexp.com
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It is best if students have had some previous experience with protoboards be-
fore this lab. In the MSU ECE/CSE curriculum, students are required to take a
digital logic course as a prerequisite with the digital lab experience providing
them with some protoboard experience in wiring 74XX logic. This gives them
an introduction to DIP packages, how protoboard wiring works, an introduc-
tion to an oscilloscope and a multimeter, and some basic circuit debugging
(which is greatly increased in this course!). A circuits course is not a prerequi-
site except for circuit fundamentals as presented in a physics course; we have
majors from electrical engineering, computer engineering, computer science,
and software engineering who take this lab so a circuits prerequisite is not pos-
sible.
The teaching assistants (TAs) for the lab must be talented, knowledgeable, ded-
icated, patient, and have had previous microcontroller experience to assist stu-
dents in the inevitable hardware debugging problems. We recruit our TAs from
the graduates of this course; the first TAs came from a traditional microcon-
troller course that has since been replaced by our second course in embedded
systems. We limit enrollment in each lab section to 10 students because the
hardware labs dramatically increase the “help me!” load on the TA. The first
two hardware labs are the worst from a TA load perspective when students are
bringing their initial PIC18F242 setup to life; our labs are open so students can
work on their protoboards outside of normal lab hours if needed.
The TA must have a reference board built for demo purposes and for checking
bad part problems by plugging the part into the reference board.
A spare parts supply is an absolute necessity, as students demonstrate an amaz-
ing talent for destroying ICs. The TA, course instructor, IEEE/HKN, or some
central shop can sell these. Fuses have been our top sellers.

It is rewarding to watch students with near-zero prototyping skills gain confi-
dence as the semester progresses, and show pride in their board as they build it up
from a collection of ICs and wires to something that records and plays audio in the
final experiment.

In the following experiment descriptions, the prelab activity should be com-
pleted before the student enters the lab. All of the files and zip archives referenced
in the lab descriptions are contained in the code/labs directory on the companion
CD-ROM.

E.2 EXPERIMENT 1: A STORED PROGRAM MACHINE (CHAPTERS 1, 2)

This experiment has the students implement the Number Sequencing Computer
from Chapter 2 using the digital logic simulation package from a previous digital
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logic course. At MSU, this is the Altera Maxplus package. We give the students the
design already entered in Altera Maxplus and have them write a program that out-
puts their own student ID number or phone number. The ROM module in Altera
MAXPLUS reads its initial contents from an external file; the students must assem-
ble their program and modify the ROM file that specifies the machine code for their
program. Students also step through the logic simulation within Altera MAXPLUS
and determine how many clock cycles it takes to output the two number sequences
based on the LOC input. The nsc.zip archive on the books’s supplemental lab Web
site (www.reesemicro.com) contains the Altera Maxplus design for the number se-
quencing computer in Chapter 2. In this lab, the TAs also assists the students in in-
stalling MPLAB, the Jolt Bootloader, and the PICC18 compiler on their portable PCs.

E.3 EXPERIMENT 2: PIC18XX2 INTRODUCTION (CHAPTER 3)

This experiment introduces the student to the PIC18Fxx2 instructions covered in
Chapter 3 and the MPLAB environment.

Prelab

1. Assemble and simulate the “Simple” example in Listing 3.9 within MPLAB
(filename is mptst.asm). Verify that the final value of k (location 0x02) con-
tains the expected value of 0xC9 when the goto here statement is reached. 

2. Change the value of the avalue symbol to be the decimal equivalent of the
last two digits of your student ID. If the last two digits of your student ID
are “00”, use the first two digits. Compute the new expected value of k
when the goto here statement is reached; verify this value by assembling
and simulating the program. Capture a screen shot that shows the program
memory and file register contents when the goto here statement is reached.

Lab Activity

Exploring Data Memory Storage

1. Modify the mptst.asm file so that the CBLOCK starting location is 0x80. Re-as-
semble and re-execute the program. Verify that the i, j, k variables are up-
dated at locations 0x80-0x82. When the program memory is viewed, the
instruction at program location 0x202 is now different from the original
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mptst.asm file. Record this difference, and determine the reason for this be-
havior.

2. Modify the mptst.asm file so that the CBLOCK starting location is 0x100. Re-
assemble and re-execute the program. Use the File Registers window to de-
termine what locations are changed when the i, j, k variables are modified.
Record these locations and determine the reason for this behavior. Hint:
Look at the definition of the BSR (Bank Select Register).

3. To the program in step 2, add the statement movlb 0x1 just after the main
label and before the statement movlw myid. Re-assemble and re-execute the
program. The movlb instruction is “Move Literal to Bank Select Register”;
movlb 0x1 moves the value 0x1 to the BSR (BSR = Bank Select Register).
Use the File Registers window to determine what locations are changed
when the i, j, k variables are modified. Record these locations and deter-
mine the reason for this behavior.

4. Based on the knowledge gained from steps 2 and 3, modify the mptst.asm
program so that the i, j, k variables are located at 0x200-0x202. Re-assemble,
re-execute, and verify that these locations are modified.

Exploring the Data Movement Instructions 

1. In MPLAB, open a File Registers window that shows locations 0x0000
through 0x0120. Click on the first line of “...” under the ASCII column
and type the first five letters of your first name, and the seven digits of your
phone number. Then, type enough spaces so that the entire type-in column
has been filled. Record what appears in the hex locations 0x0 through 0x0F.
Justify the reason for these values (and explain in the lab report).

2. Using the mptst.asm file as a starting point, create a new program with a se-
ries of data movement instructions that moves the contents of locations
0x0-0x7 to locations 0x100-0x107. Verify the operation of this program by
typing data of your choice into locations 0x0-0x7, executing your program,
and verifying that the data is moved to locations 0x100-0x107. Use movlb
and movf/movwf combinations to do this; you may not use the movff in-
struction in this program. Starting at location 0x200 in Program Memory,
determine the number of bytes needed for this program (most PIC18 in-
structions need 2 bytes, some need 4 bytes). 

3. Create a new version of the program done in step 2 that uses the movff in-
struction to accomplish the data movement (i.e., movff 0x0, 0x100 moves
the contents of location 0x0 to 0x100). Re-assemble, and verify that your
program exhibits the same behavior as the program in step 2. Determine
the number of bytes required for this program in the same manner as done
in step 2. Which program took fewer bytes?
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Number Sequencing Computer Revisited

The shownum.asm program emulates the execution of the Number Sequencing
Computer in Chapter 2 by implementing the program of Listing 2.1. The loc input
and dout output are emulated via memory locations. 

Single step through shownum.asm in MPLAB for both local and nonlocal num-
ber sequences. Note that location 0x0 corresponds to loc, and 0x01 to dout. Ini-
tially, loc is cleared via clrf loc,f forcing the entire number sequence to be
copied to dout. To force the shorter number sequence, either manually edit the
value of loc in the file registers or insert the statement bsf loc,0 to set the LSb
of loc to 1, giving loc a nonzero value.
Modify shownum.asm to display the digits of your phone number (or some rea-
sonable facsimile). Assemble and verify the operation.
Use the Stopwatch command in the simulator and record the instruction cycles
and time for displaying the full number sequence for a clock speed of 20 MHz.
Use the “Debugger settings” menu to change the clock speed to 8 MHz and
do the same. Verify that your recorded times match predicted times by adding
up the instruction cycle counts of each instruction, and multiply by 4x the
clock period (each instruction cycle is 4 clock periods).
Repeat #3 for displaying the truncated number sequence (loc is nonzero).

E.4 EXPERIMENT 3: UNSIGNED 8-BIT OPERATIONS (CHAPTER 4)

This experiment explores 8-bit unsigned arithmetic, logical, and shift operations
(Chapter 4). This experiment assumes the students have access to an x86 C com-
piler on either a Windows or Linux machine to verify C code results. 

Prelab

The op.zip archive contains five C program variations (ops_var{1-5}.c); a typical one
is shown in Listing E.1. The C source code has printf() statements after each com-
putation; these have been removed in Listing E.1 for space reasons. The program
variations re-arrange the order of the statements.

LISTING E.1 Unsigned 8-bit logical, arithmetic, shift operations.

#include <stdio.h>

#define bitset(var,bitno) ((var)|=(1<<(bitno)))

#define bitclr(var,bitno) ((var)&=~(1<<(bitno)))

#define bittst(var,bitno) (var & (1 << (bitno)))
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unsigned char i,j,k;

main() {

i = 0x24;  j = 0xC5;  k = 0x4D;

k++; // (a) increment

i--; // (b) decrement

k = j & i; // (c)bitwise and

i = i >> 3; // (d) right shift by 3

k = ~k; // (e) bitwise negation

k = k ^ j; // (f) bitwise XOR

i = j - k; // (g) subtraction

j = j << 2; // (h) left shift by 2

j = j | 0xC0; // (i) bitwise OR

k = k + j;  // (j) addition 

k = bitset(k,3); // (k) set a bit to ‘1’ */

j = bitclr(j,5); // (l)  clear a bit to ‘0’

printf (“i: 0x%x, j: 0x%x, k: 0x%x\n”,i,j,k);

}

1. For your assignment, if the last digit of your student ID is 0 or 1, use
ops_var1.c; if it is 2 or 3, use ops_var2.c, and so forth. Compile this program
with your favorite C compiler and note the value of i, j, k at each step. The
bitset, bitclr macros simply implement the equivalent bsf and bcf PIC18
operations.

2. The loop.zip archive contains five C program variations (loops_var{1-5}.c);
the main() code for a typical one is shown in Listing E.2. The program vari-
ations re-arrange the order of blocks a, b, c, d, and e. 

LISTING E.2 Conditional operations.

unsigned char i,j,k;

main(){

i = 0x24;  j = 0x45;  k = 0xFD;

// begin ‘a’

while ( !bittst(j,7) ) { j = j << 1; }

printf(“i: 0x%x, j: 0x%x, k: 0x%x\n”,i,j,k);

// end ‘a’

// begin ‘b’

for (j=0; j != 10; j++) {i = i + j; }

printf(“i: 0x%x, j: 0x%x, k: 0x%x\n”,i,j,k);

// end ‘b’

// begin ‘c’

do {

k--;

} while (bittst (k,3));

printf(“i: 0x%x, j: 0x%x, k: 0x%x\n”,i,j,k);

// end ‘c’

// begin ‘d’

if (i < k) {
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k--;

} else {

j++;

}

printf(“i: 0x%x, j: 0x%x, k: 0x%x\n”,i,j,k);

// end ‘d’

// begin ‘e’

if (k > j) {

i++;

} else {

j++;

}

printf(“i: 0x%x, j: 0x%x, k: 0x%x\n”,i,j,k);

// end ‘e’

}

For your assignment, if the last digit of your student ID is 0 or 1, use
loops_var1.c; if it is 2 or 3, use loops_var2.c, and so forth. Compile this program with
your favorite C compiler and note the value of i, j, k at the conclusion of each code
block a, b, c, d, and e. The bittst(var,bitno) macro returns the value of bit #bitno
in variable var.

Lab Activity

1. Convert your assigned ops_var{1-5}.c and loops_var{1-5}.c programs to
PIC18 assembly language and verify their operation in MPLAB. The printf
statements in the C code listings are only included for debugging purposes;
use the WATCH window of MPLAB to observe the values of i, j, and k as
you single step through your assembly language program. Verify that the
assembly language produces the same values for i, j, k at each step. 

2. For the ops_var program, calculate the total number of 8-bit operations
performed (each 8-bit assignment counts as 1, each logical/add/sub/inc/
dec counts as 1, and each shift operation counts as 1). For shift operations,
count each required shift as 1 (a >> 3 counts as 3 shift operations). Make
this calculation based on the C code, not the assembly code. Take the exe-
cution time value recorded for the ops_var program, and divide by the total
number of 8-bit operations to get an average execution time per 8-bit op-
eration. Take the inverse of this value to get the number of 8-bit operations
per second that can be expected from the PIC18F242 running at 20 MHz.
Compare this to what is obtained by taking the addwf instruction and com-
puting the same values based on its execution time. Why are the values dif-
ferent? Discuss this in your report.
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E.5 EXPERIMENT 4: EXTENDED PRECISION AND SIGNED
OPERATIONS (CHAPTER 5)

This experiment explores PIC18xx2 extended precision and signed operations
(Chapter 5). This experiment assumes the students have access to an x86 C com-
piler on either a Windows or Linux machine to verify C code results.

Prelab

1. The intop.zip archive contains five program variations intop_var{1-5}.c
similar to the op variations of the previous experiment except the variables
are unsigned int types. Pick a program variation in the same manner in the
previous experiment and record the values of the i, j variables after each
operation.

2. The compare.zip archive contains five program variations named un-
signed_var{1-5}.c that use unsigned int types and five variations named
signed_var{1-5}.c that use signed int types. These are similar to the
loop_ops program of the previous experiment. Pick one program variation
of each type in the same manner as the previous experiment and record the
values of the i, j variables after each code block. 

Lab Activity

1. Convert each of your assigned program variations intop_var{1-5}.c, un-
signed_var{1-5}.c, and signed_var{1-5}.c to PIC18 assembly language and
verify within MPLAB that your code produces the same values for i, j as
the original C code.

2. For the intop_var program, calculate the total number of 16-bit operations
performed (each 16-bit assignment counts as 1, each logical/add/sub/
inc/dec counts as 1, and each shift operation counts as 1). For shift opera-
tions, count each required shift as 1 (a >> 3 counts as three shift opera-
tions). Make this calculation based on the C code, not the assembly code.
Take the execution time value recorded for the intop_var program, and di-
vide by the total number of 16-bit operations to get an average execution
time per 16-bit operation. Take the inverse of this value to get the number
of  16-bit operations per second that can be expected from the PIC18 run-
ning at 20 MHz. Compare this to what is obtained by taking the addwf in-
struction, computing the same values based on its execution time, and



multiplying by 2. Compare these two values and discuss reasons for any
differences.

3. Pick the machine code for either a bov or bnov in your signed_var program
and show that the displacement value in the machine code is correct given
the PC and target address values.

E.6 EXPERIMENT 5: POINTERS AND SUBROUTINES (CHAPTER 6)

This experiment covers PIC18 subroutine and pointers, which are discussed in
Chapter 6. This experiment assumes the students have access to an x86 C compiler
on either a Windows or Linux machine to verify C code results.

Prelab

The ptrlab.zip archive contains some C programs for experimenting with pointers
and subroutines. Table E.2 describes these programs and gives student assignments
based on the last digit of their student ID number. 

Make a good faith effort to convert your assigned program to PIC18 assembly
language before your assigned lab time; use the lab time for seeking TA assistance
and debugging of your program.
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Last Digit of Student ID Assigned C Program, Parameter Block Location

0, 1, 2 or 3 strflip.c; copies s1 to s2, reversing the case of all letters. 
Use 0x58 for the location of the dostr() parameter
block (ptr1, ptr2).

4, 5, or 6 strup.c; exchange s1 and s2, upcasing all chars in the 
new s2. Use 0x5C for the location of the dostr()
parameter block (ptr1, ptr2).

7, 8, or 9 strxchg.c; exchange s1 and s2, reversing the case of all 
chars in the new s1. Use 0x60 for the location of the 
dostr() parameter block (ptr1, ptr2).

TABLE E.2 Program Assignments



Lab Activity

Pointers and Assembly Language

1. Verify that your PIC18 assembly program duplicates the actions of your as-
signed C program.

The PICC-18 C Compiler

1. The ptrlab.zip archive contains a C program named cstrcnt.c that is compat-
ible with the PICC-18 C compiler. Create a project for cstrcnt.c and com-
pile it using the PICC-18 C compiler (see Appendix C for guidance on
using the PICC-18 compiler within MPLAB). Record the number of bytes
used for program ROM and RAM data. Do not execute the program yet.

2. Using the .map file that is created, determine the memory locations for the
s1 and s2 strings. Use the file register window and examine these locations;
you will find that they contain zeros because the strings are actually stored
in program memory and are copied to data memory by the initialization
code executed before main() is reached. 

3. Begin single stepping through the program, using the Program Memory
window (not the source window) to track progress. Watch the locations as-
signed to s1 and s2; eventually, you will see characters begin appearing in
these locations as the strings are copied from program memory to data
memory. Determine the location in PROGRAM MEMORY where the s1
and s2 strings are stored and give this in your report.

4. Modify the compiler options in MPLAB to add the “–a200” option and re-
compile. You should see all program code shift down by 0x200 locations in
program memory. This option will be necessary for the hardware labs in
order to generate compatible code for the serial bootloader used to pro-
gram the PIC18F242.

5. Modify the compiler options in MBLAB to remove all compiler optimiza-
tion and compare with the values obtained in step 1.

6. Modify your assigned C program so that is it compatible with the PICC-18
C compiler and compile it with full code optimization. Fill in the memory
locations specified in Figure E.3. You will need to examine the machine
code for the ptr1, ptr2, s1 (program memory), s2 (program memory) lo-
cations, as these are not contained in the .map file.
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E.7 EXPERIMENT 6: HARDWARE STARTUP (CHAPTER 8)

This experiment has the student construct the PIC18F242 system of Figure 8.4 as
well as the serial port interface of Figure 9.15 using a protoboard. The hardware de-
bugging checklist at the end of these lab exercises is useful for identifying hardware
problems.

Prelab

1. Wire the PIC18F242 schematic shown in Figure 8.4 on your protoboard
and add the MAX 202 chip as shown in Figure 9.15 and Figure 9.16. Use
the slide switch in the parts kit to implement on/off between the power
connector and the 7805. Solder wires to the power jack to create a reliable
power connection to your board.

2. Use the 5-pin header in your parts kit for the TX, RX, Gnd pins required by
the serial port. If you do not have access to wire wrap supplies, wait until
lab time to add the external DB9 connector.

Lab Activity

ledflash.c Verification

1. Have the TA program your PIC18 with a hex file produced by compiling
the ledflash.c program. The companion CD-ROM contains a pre-compiled
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FIGURE E.3 Variable, function locations for cstrcnt.c.

ON THE CD
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ledflash.c hex file named ledflash_hspll.hex that was produced using the
PIC18 configuration options found in the config.h file, which has the HS-
PLL oscillator option enabled. The crystal will not oscillate until the PIC18
is programmed with a hex file that has the correct configuration bit settings
for using an external crystal as a clock source.

2. Apply power via your wall transformer and use a multimeter to verify that
you have 5 V to your PIC18. Use the oscilloscope and verify that your
crystal is producing a sinusoidal waveform, and that the reset button pro-
duces a low true pulse on the Vpp/MCLR# pin when pressed. Verify that
the LED on port RB1 flashes after power is applied.

Serial Port Verification

1. Use the wire wrap tool available from the TA and wire the DB9 connector
to the 5-pin header you have used to bring the TX, RX, and Gnd signals off
board. Use a serial cable and connect your board to the serial port of a PC.
Have the TA program your PIC with the echo.c program. This program
reads a character from the serial port, increments it, and then echoes it
back using a baud rate of 19200. Thus, an “a” typed from the keyboard
echoes as “b”, “b” as “c”, and so on. Use HyperTerminal or some other se-
rial port terminal program to verify that the asynchronous serial interface
on your board is working. If it does not work, use the serial port debugging
tips in Section 9.7 and the debugging checklist at the end of this appendix
to isolate the problem.

2. Have the TA program your PIC with the serial bootloader program (boot-
load_hspll.hex).

3. Compile the ledflash.c program using the PICC-18 compiler and use the
“–a200” flag to produce a hex file that is compatible with the bootloader
(the resulting hex file has the default name of ledflash.hex). The companion
CD-ROM contains a pre-compiled ledflash.c hex file named
ledflash_hspll_a200.hex that was produced using the “–a200” compiler flag
and the PIC18 configuration options found in the config.h file. Use the Jolt
or Colt bootloader (Appendix F) to download either the ledflash.hex file or
the ledflash_hspll_a200.hex file into your PIC18 and verify its operation.
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Current Measurement and reset.c Test

1. Compile the reset.c program and download it into your PIC18F242 system.
Exercise the reset.c program in the same manner as shown in Figure 8.12. 

2. Fill in the current measurements for Figure E.4 using the directions in the
following steps. See the prototyping hints at the end of this appendix for in-
structions on how to measure current using a multimeter.

3. To measure the 7805 current draw, disconnect its +5 V output from the
rest of the circuit and put the ammeter in series with the 9 V input terminal.

4. To measure the current draw of the power LED, determine the difference
in current draw when the power LED is inserted in the circuit, and when it
is removed. To calculate the expected current draw, use the equation I =
V/R; where V = Vdd 0.7 V and R = 470 . The measured and com-
puted values will differ somewhat because the pin driver and LED add extra
resistance to the circuit.

5. To determine the current draw of the PIC in normal operation, place the
PIC in sleep mode via the menu choice of the reset.c program and record
the difference in total current draw. Determine the expected current draw
for the PIC normal mode operation using the Typical IDD vs. FOSC over
VDD (HS/PLL mode) graph in the PIC18 datasheet. Note: the X-axis is the
external crystal frequency.

6. Measure the current draw of the Maxim 202/232 chip by measuring the
input current of the Vdd pin or by noting the difference in current draw
when the chip is removed from the protoboard.

7. The expected total current draw of your board is the sum of the expected
current draw of the individual components.

8. The configuration bits of the PIC18 must be changed to make HS current
measurements. These instructions assume that the current program in the
PIC18 is the reset.c program. Use the Jolt “Read All” command to read all
of the PIC18 program memory contents and current configuration bit set-
tings. Change the FOSC configuration to HS, and use the “Program Con-
fig” option to program the new configuration bit setting. After changing
the configuration bits you will need to set the baud rate to 4800, as the
PIC18 is now operating at one-fourth the clock frequency of the HS/PLL
mode. Measure the total board current draw and the PIC current draw in
the same manner as before. The expected PIC18 current draw can be found
in the typical IDD vs. FOSC over VDD (HS mode) graph in the PIC18
datasheet. You should discover that the PIC18 in HS/PLL mode consumes
about 4x the current of HS mode as it is operating 4x faster. 
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E.8 EXPERIMENT 7: LED/SWITCH IO AND INTRODUCTION TO
ASYNCHRONOUS SERIAL IO (CHAPTERS 8, 9)

This experiment has the student implement a LED/Switch IO problem using a 
finite state machine approach. The student is also introduced to the status bits of
the PIC18 USART module.

Prelab

1. Figure E.5 contains an LED/switch IO problem assignment. For your 
assigned problem, draw a state chart similar to that of Figure 8.20 and
make a good faith effort to implement the C code using the same structure
as in Figure 8.21 (the ledsw1.c file can be used as a starting point).

2. Draw the RS232 waveform for an 8-bit data value, 1 start, 1 stop bit, LSb
sent first. The 8-bit data value is based on the last digit of your Student ID
as follows: 0) “e”, 1) “F”, 2) “n”, 3) “S”, 4) “3”, 5) “Z”, 6) “z”, 7) “#”, 8) “u”,
9) “p”. Use an ASCII table to determine the 7-bit value of your character
(the 8th bit is zero).

3. Demo to the TA a spreadsheet that calculates the bit time in microseconds
for any baud rate from 2400 to 115200. Recall that a bit time is equal to one
over the baud rate, and that a microsecond is 10-6 seconds.

FIGURE E.4 Current measurements for experiment 6.
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4. Demo to the TA a spreadsheet that calculates the value to be written to the
SPBRG register given an oscillator frequency value, a target baud rate, and
either high-speed or low-speed baud rate mode. The PIC18F242 datasheet
section titled “USART Baud Rate Generator” should prove helpful.

FIGURE E.5 LED/switch IO assignment.



Lab Activity

1. Program your PIC18F242 with your LED/Switch IO solution and verify its
operation. Use a software delay (i.e., DelayMs(30)) after each test of a switch
input to protect against switch bounce.

2. In the echo.c program from the previous lab, the getch() subroutine waits
for a character to be ready in the TXREG. Modify this subroutine to detect
a framing error by checking the FERR bit in the USART status register
(RCSTA register). Turn on an LED when an error is detected. The LED
should be off after reset. Do the same for the overrun error (OERR) status
bit (this requires a second LED). Use any port bits you wish for the LED
outputs.

3. Change the baud rate from 19200 baud in HyperTerminal and verify that
a framing error condition is produced. Verify that you are checking the
correct bit in the RCSTA register. Framing errors occur when the stop bit
is detected as clear, which is most likely to happen when the actual baud
rate is lower than the expected baud rate.

4. Modify the echo.c program to prompt the user for a choice that forces
USART overrun by entering a software delay loop of five seconds or longer
in which the USART is not read. During this time, type in enough charac-
ters to cause overrun. Use the delay functions from the delay.h file.

5. Use the scope in single trigger capture mode to capture the character ap-
pearing on the RX pin of the PIC. Demonstrate that the character wave-
form you capture matches the waveform for the character you were
assigned in prelab.

E.9 EXPERIMENT 8: INTERRUPTS (CHAPTER 10)

This experiment covers material on interrupts from Chapter 10.

Prelab

1. Make a good faith effort to implement your assigned LED/Switch IO prob-
lem of the previous lab in an interrupt driven mode similar to that of Fig-
ure 10.15 using the INT0/INT1/INT2 interrupts. Use a software delay of 30
ms within the ISR to debounce the switch inputs (interrupts INT0, INT1,
INT2). This is not the most efficient way to debounce a switch input, but
is sufficient for this lab.
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2. The root_rxfifo.c program inputs a decimal number in ASCII format, com-
putes the floating-point square root, and displays the result. The serial port
is used for all I/O (19,200 baud is the default baud rate). This program uses
an interrupt approach and a receive software FIFO for serial data input as
discussed in Chapter 10. The size of the receive software FIFO is set by the
#define BUFMAX 2 statement. Read this program and ensure that you un-
derstand how the serial IO is performed as you will be modifying this pro-
gram during lab. Table E.3 gives baud rate assignments that are needed
when modifying the root_rxfifo.c program.

Lab Activity

1. Program your PIC18F242 with your LED/Switch IO solution and verify its
operation.

2. Program your PIC with the root_rxfifo program and familiarize yourself
with its operation. Type in one number at a time and verify that the floating-
point square root is computed. When compiling root_rxfifo.c, select the
printf library that supports both long and floating-point data types (see
Appendix C).

3. Open the file root_test1.txt in a text editor such as Notepad, select/copy a
range of input values, and use the HyperTerminal “Edit Paste-to-Host”
command to copy this selection into the terminal window. What happens
when a large number of entries are pasted at a time? Use the scope and de-
termine the time it takes HyperTerminal to send several successive charac-
ters when pasting characters into the buffer. RECORD THIS TIME, you
will need it to answer questions in the report. You should observe that the
root_rxfifo program operates correctly for a small number of entries pasted
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Last Digit of Student ID Baud Rate Assignment

0 or 1 4800, 19200, 57600, 115200

2 or 3 4800, 19200, 38400, 115200

4 or 5 4800, 9600, 38400, 115200

6 or 7 4800, 9600, 57600, 115200

8 or 9 4800, 19200, 38400, 115200

TABLE E.3 Baud Rate Assignments



into the window, but not for a large number. The failure is due to simulta-
neously receiving characters during transmission of the result string. While
characters are being transmitted, the receive port is not checked. At some
point, the RCREG input FIFO buffer fills to capacity, and characters are
lost. Note: When the Paste-to-Host command in HyperTerminal is used,
each character is sent at the specified baud rate. However, there is consid-
erable dead time between each character that is sent. This explains why it
takes more than the expected number of input characters to cause a buffer
overrun problem.

4. Modify the root_rxfifo.c program to use the external DIP switch in your
parts kit to select between 4 different baud rates after reset (see Table E.3).
The DIP switch contains two switches allowing four different combina-
tions. Use any two PORTB inputs you wish. Enable the weak-pullup on the
Port B pins so that external pullups are not required for these inputs. You
may need to use the low-speed mode to reach some of your assigned baud
rates. Examine the serial_init() subroutine in the serial.c include file to
understand how to pass in values for the SPBRG register and how to select
between low- and high-speed mode. Use a multimeter to verify the
close/open positions of the DIP switch. Test all four baud rates. Use an os-
cilloscope, and capture a character waveform. Be prepared to show the TA
that the bit time of the captured waveform matches the expected bit time.

5. Modify the pic_isr() subroutine to turn on an LED if a software FIFO
buffer overrun error occurs. This is not the same as the USART overrun
error. This overrun error occurs if the pic_isr() subroutine is called, and
placing another character into the software FIFO causes it to appear empty
(overrun occurs if the head pointer is equal to the tail pointer after incre-
menting and wrapping the head pointer). After turning on the error LED,
enter sleep mode to halt the PIC18. Test the program by pasting several
numbers into the HyperTerminal window, causing buffer overrun. 
Discover how many numbers it takes within approximately ±5 to cause
overrun for your second slowest baud rate.

6. Increase the software FIFO buffer size to 8. Test overrun again with the
same baud rate of the previous step and verify that the number of entries
required to cause overrun has increased. Because of how HyperTerminal
sends characters, you may find that even small increases in the software
FIFO size may greatly increase the number of entries required for overrun
or that you may not be able to force an overrun at all.

7. Overrun occurs in the root_rxfifo.c program when the input data rate ex-
ceeds the output data rate (characters needed to print the result). Using the
scope measurement you made of the time it took HyperTerminal to send
several successive characters, and justify the numbers you recorded for
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buffer overrun based on input data rate vs. output data rate. Do this by
computing the time it takes to fill up the input buffer given the rate at
which characters are being sent by HyperTerminal, and compare this to the
time it takes to print the result string. (The PIC is sending characters back at
about the maximum rate that can be sustained by the TX channel to the PC.)

E.10 EXPERIMENT 9: MORE INTERRUPTS, THE I2C BUS, AND A
SERIAL EEPROM (CHAPTER 11)

This lab covers material on the I2C bus and the 24LC515 Serial EEPROM from
Chapter 11.

Prelab

1. Add the 24LC515 Serial EEPROM to your protoboard as shown in Figure
11.25. Do not forget the 10 k pullup resistors! Connect both A1 and A0
to ground.

2. Create a spreadsheet that calculates the correct SSPADD value for a desired
I2C bus speed.

Lab Activity

The lab activity first has you verify the correct operation of the 24LC515 EEPROM,
after which this is used to capture streaming ASCII data from the serial port.

Verification of the I2C Bus Hookup and i2cmemtst.c Modifications

1. Verify that the i2cmemtst.c program operates correctly on your protoboard.
This program is discussed in Section 11.8 (main() is shown in Figure
11.32).

2. Change the wiring of the A1/A0 pins to alter the address of the EEPROM.
Modify the i2cmemtst.c program to use this new address. Use the following
values for A1/A0 based on the last digit of your student ID: a) 0,1,2 use
“01”; b) 3,4,5 use “10”; c) 6,7,8,9 use “11”. The #define EEPROM 0xA0 state-
ment in i2cmemtst.c must be changed to accommodate the new A1/A0 val-
ues. Review the address byte formatting in the 24LC515 datasheet to
determine the new value.
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3. Modify i2cmemtst.c to prompt the user to choose one of two different I2C
bus rates. One rate is 500 kHz (or as close as you can achieve), and the
other is based on the last digit of your student ID: a) 0 or 1 (50 kHz), b) 2
or 3 (100 kHz), c) 4 or 5 (175 kHz), d) 6 or 7 (250 kHz), e) 8 or 9 (325
kHz). Even though 500 kHz is above the maximum specification for the
memory part, it should still work, as datasheet specifications are very con-
servative. However, this is only being done for illustrative purposes. Never de-
sign a system that relies on a part working beyond its specified performance.

4. Demonstrate the operation of i2cmemtst.c using the modified EEPROM
address with your assigned I2C bus speed. Capture the first 5 bytes of a page
write or sequential read via the oscilloscope and explain the formatting/
purpose of each byte to the TA.

Interrupt-Driven Streaming Writes

1. Using i2cmemtst.c as a starting point, create a program that implements
streaming data capture as discussed in Section 11.9. Use the flowcharts of
Figures 11.36 and 11.37 to help your understanding of how to solve this
problem. Your program should prompt the user for either read or write
mode. In write mode, capture streaming text from the serial port and save
it to EEPROM. Test your program write mode by using the “Transfer 
Send Text File” command in HyperTerminal to send a complete file. Do
not use large files for test cases, as HyperTerminal takes too long to send
text files even with a baud rate of 115200. In read mode, dump the contents
of the serial EEPROM to the screen; detect a keypress to start or stop the
EEPROM content listing. To allow HyperTerminal to display the text with
carriage return/line feeds, add the following check in your code for charac-
ters sent to the console:

if ((c == 0xd) || (c == 0xa))

pcrlf();

else putch(c);

2. Verify that your program works for your assigned I2C bus rates.
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E.11 EXPERIMENT 10: INTRODUCTION TO DATA CONVERSION
(CHAPTER 12)

This experiment covers topics on data conversion from Chapter 12.

Prelab

1. Add the MAX 517 DAC to your protoboard. The connections are the same
as shown in Figure 12.19, except the OUT1 pin is connected to Vdd (this is
the reference voltage). Connect the AD1/AD0 inputs to ground.

2. Connect the potentiometer in your parts kit to the RA0/AN0 input of the
PIC18F242.

3. Familiarize yourself with the dactst.c code that will be used during the lab
activity. This code is similar to the code of Figure 12.10 in that it reads a
voltage on the AN0 input using the PIC18F242 ADC, and then displays the
value on the console (only the 10-bit hex value is displayed).

4. Create a spreadsheet that calculates an ADC output voltage given a Vref, an
input code value, and the number of ADC input bits. Example: For Vref =
5 V, input code of 128 (decimal), number of bits = 8, the output voltage
is 2.5 V. The Excel functions POWER(x,y); DEC2HEX(x), HEX2DEC(x)
are useful (the hex conversion is optional).

5. Create a spreadsheet that calculates a DAC output code given a Vref, Vin,
and the number of DAC output bits. Example: For Vref = 5 V, Vin =
2.5 V, number of bits = 8, the output code should be 128.

Lab Activity

Verification of DAC/ADC Operation

1. Verify that the dactest.c program functions on your protoboard.
2. Fill in the measurements for Figures E.6 and E.7. 
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dactst.c Modifications

1. Change the wiring of the AD1/AD0 pins to alter the address of the DAC.
Modify the dactest program to use this new address. Use the following val-
ues for AD1/AD0 based on the last digit of your student ID: a) 0, 1, 2 use
“01”; b) 3, 4, 5 use “10”; c) 6, 7, 8, 9 use “11”. The #define DAC 0x58 state-
ment in dactst.c must be changed to accommodate the new A1/A0 values.
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FIGURE E.7 DAC measurements.
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Review the I2C address byte formatting in the MAX517 datasheet to deter-
mine the new value.

2. Modify the dactst program to allow the user to choose one of 4 different
transformations to the output waveform: a) clipping, b) multiply by two,
c) divide by two, d) inversion. Use the clipping ranges as shown in Table
E.4 based upon the last digit of your student ID. Use shifts to do the mul-
tiply by two or divide by two. Inversion means that the input voltage value
should be subtracted from the maximum value. For example, if
input_value is the noninverted 8-bit output value for the DAC, the inverted
value would be 0xFF - input_value.

3. Verify the operation of your modified dactest program for all choices by
using an oscilloscope or multimeter to monitor the ADC input voltage and
DAC output voltage.

E.12 EXPERIMENT 11: TIMER INTRODUCTION AND WAVEFORM
GENERATION (CHAPTERS 10, 13)

This experiment covers the use of Timer2 for periodic interrupts (Chapter 10) and
PWM (Chapter 13).

TABLE E.4 Assigned Clipping Ranges

Last Digit of Student ID Clipping Range

0 Between 1.1 V and 4.3 V

1 Between 1.3 V and 3.9 V

2 Between 0.8 V and 4.1 V

3 Between 0.9 V and 4.2 V

4 Between 1.2 V and 4.4 V

5 Between 1.0 V and 4.0 V

6 Between 1.4 V and 3.8 V

7 Between 1.6 V and 4.6 V

8 between 1.5 V and 4.5 V

9 between 1.7 V and 3.7 V
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Prelab

1. Connect the audio jack connector in your parts kit to the output of the
DAC. Also connect an LED to pin RC2/CCP1 of the PICF242, and the po-
tentiometer to the RA0/AN0 input. The audio jack allows an external
speaker to be driven by the DAC output. This capability is crucial for the
last experiment, so it is tested in this experiment.

2. Demo to the TA a spreadsheet that calculates the values required for Figure
E.8. Your assigned target frequencies are in Table E.5. The frequencies in
Table E.5 use the PWM mode for generating the square wave; this does not
use the postscaler for frequency calculation. The spreadsheet should calcu-
late the PR2 values given a target frequency, and prescaling factors of 1, 4,
and 16. The spreadsheet should also truncate the PR2 value to an integer
value, and then compute the %diff between the actual frequency obtained
and desired frequency. Choose the prescale and PR2 value that gives the
lowest %diff value.

3. Become familiar with the sqwave.c, ledpwm.c, and sinegen.c programs, as
they are used in this experiment.

Lab Activity

sqwave.c Program

The sqwave.c program uses the PWM module to generate a square wave on the
RC2/CCP1 output. The program prompts the user to enter Timer2 prescale and
PR2 values.

Last Digit of Student ID Use These Frequencies

0 or 1 2500 Hz, 10 kHz, 121 kHz

2 or 3 3600 Hz, 15 kHz, 133 kHz

4 or 5 4200 Hz, 28 kHz, 144 kHz

6 or 7 5500 Hz, 37 kHz, 151 kHz

8 or 9 6100 Hz, 49 kHz, 165 kHz

TABLE E.5 Assigned Frequencies



1. Use the sqwave.c program to check the values you computed for Figure E.8.
Use a scope to monitor the output waveform on pin RC2/CCP1. 

ledpwm.c Program

The ledpwm.c program outputs a square wave of a fixed frequency, but allows 
dynamic update of the duty cycle by reading the AN0 analog input. This 10-bit
value is used to set the value of the duty cycle. Adjusting the potentiometer adjusts
the duty cycle of the square wave on the RC1/CCP1 pin. Connect an LED to the
RC1/CCP1 output so that the LED turns on when a high voltage is on the
RC1/CCP1 output.

1. Verify the operation of ledpwm.c on your PIC. What happens to the LED
brightness as you adjust the duty cycle via the potentiometer? Monitor the
waveform generated on pin RC2/CCP1 with the oscilloscope.

2. Use a multimeter to measure the current through the LED for various duty
cycles and complete Figure E.9, which requires current measurements for
two different duty cycles. The two duty cycles, based on your student ID,
are: a) 0/1 5%/25%; b) 2/3 10%/30%; c) 4/5/6 15%/35%; d) 7/8/9
20%/40%. Also, measure current at the 85% duty cycle, and at a duty cycle
midway between the two above. After recording your current measure-
ments in lines (1) and (2) of Figure E.9, compute the expected current for
line 3 (halfway between 1st and 2nd duty cycles) and line 4 (85%) duty cy-
cles. Ideally there is a linear relationship between the current and duty
cycle. Use the first two measurements to compute a straight line slope that
is used to predict the currents for the last two duty cycles.

sinegen.c Program

The sinegen.c program generates a sine wave using a table lookup approach via the
MAX517 DAC. The program prompts the user to choose between a 16-entry and a
64-entry table. Timer2 is used to trigger an interrupt that reads the next entry from
the table. The interrupt interval is set by a prescale value of 4, a postscale value of 3,
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and the PR2 value that is set by the ADC AN0 input. The sine wave period is
table_size * interrupt_interval; the 16-entry and 64-entry sine wave tables are
in sinegen.h. The PR2 value is limited by sinegen.c to be between 25 and 100.

1. Verify sinegen.c operation on your PIC. Hook the audio jack output to
some external powered speakers or headphones. Vary the period of the
sine wave via the potentiometer and make primitive music. 

2. Use the scope to monitor the output of the DAC. Note what happens for
the 16-table case when the frequency is increased to near its maximum
value. The interrupt interval becomes too small for the DAC to be updated
with the new table value because of the I2C bus speed. This causes wave-
form values to be skipped, degrading waveform quality.

3. Fill in the computations and measurements required in Figure E.10. See the
comments after the table for hints on obtaining these values.
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FIGURE E.9 PWM current measurements.

FIGURE E.10 sinegen.c measurements.



Values (a), (b) can be computed from the datasheet formula for Timer2 inter-
rupt interval.

For (c) through (f), the period of the sinewave is the interrupt interval times the
number of table entries for the sinewave; the frequency is the inverse of the period.

For (h), compute the DAC update time by multiplying the number of I2C bit
times required for the DAC update by the measured I2C bus speed. The measured
value can be obtained by using the scope on the I2C bus.

For (i), the measured DAC update time determines the minimum time inter-
val for each new sinewave value. The number of entries in the sinewave times this
value gives the minimum period of the sinewave that can be reliability generated
without skipping values. Sinewave values are skipped when the Timer2 interrupt
interval becomes less than the DAC update time.

Arbitrary Waveform Generation

1. Modify sinegen.c to generate an arbitrary waveform as described in Table
E.6. Following this table are detailed hints on how to implement the arbi-
trary waveform generator. 

Table E.6 provides the details of the arbitrary waveform that you are required
to generate. The waveform is one or more sine wave cycles, followed by one or
more triangle wave cycles, followed by one or more square wave cycles that are then
repeated. A 1x period is 64 time units; waveforms can have periods of 1x, 2x, or
0.5x. The waveform generated by sinegen.c has a 1x period by this definition. The
interrupt interval for this program should be set in the same way as in sinegen.c. The
triangle wave and square wave can also be inverted; Figure E.11 shows examples of
inverted triangle waves and square waves. If one cycle of a waveform is inverted, all
cycles are inverted.

Your program must track the current cycle number and the corresponding
waveform to be generated. The tabmax variable in sinegen.c determines the period of
a waveform; this value can be changed from cycle to cycle depending on the wave-
form being generated (i.e., for 2x period tabmax = 128, for a 0.5x period tabmax =
32). Write separate subroutines for square wave and triangle wave generation. The
easiest way to implement this capability is by using lookup tables for all three wave-
forms. An alternate method is to compute the value of each point given the current
table index. This computation is easy for the square wave and more difficult for the
triangle wave.
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Last Digit of Student ID Waveform

0 1 cyc sine, 2 cyc triangle (0.5x per), 1 cyc square (0.5x 
per)

1 2 cyc sine, 1 cyc triangle (2x per), 2 cyc square (0.5x 
per)

2 1 cyc sine, 1 cyc triangle (0.5x per), 1 cyc square (2x 
per)

3 2 cyc sine, 2 cyc triangle (2x per), 1 cyc square (2x per)

4 1 cyc sine, 2 cyc triangle (2x per, inverted), 1 cyc square 
(2x per)

5 1 cyc sine, 2 cyc triangle (2x per, inverted), 1 cyc square 
(0.5x per)

6 2 cyc sine, 1 cyc triangle (0.5x per), 2 cyc square (0.5 x 
per, inverted)

7 1 cyc sine, 1 cyc triangle (0.5x per, inverted), 1 cyc 
square (0.5 x per, inverted)

8 2 cyc sine, 2 cyc triangle (0.5x per, inverted), 1 cyc 
square (2x per)

9 1 cyc sine, 2 cyc triangle (0.5x per, inverted), 2 cyc 
square (2x per, inverted)

TABLE E.6 Waveform Assignments

FIGURE E.11 Arbitrary waveform examples.



E.13 EXPERIMENT 12: TIME MEASUREMENT AND IR WAVEFORM
DECODING (CHAPTER 13)

This program covers the use of the capture/compare module for time measurement
(Chapter 13). This lab assumes that the student has access to a universal remote
control.

PRELAB

1. Connect a momentary switch to the RC2/CCP1 input.
2. The program swdetov.c uses Timer1 and the capture module to measure

the pulse width of a momentary switch. Read this program and under-
stand its operation, as you will need to modify it to fulfill the lab require-
ments.

Lab Activity

Pulse Width Measurement Using swdetov.c

1. The swdetov.c program uses the PIC18F242 capture module to measure the
low pulse width of a momentary switch as discussed in Section 13.4. Ver-
ify the operation of swdetov.c on your PIC18F242. The “timer tics” that is
printed is the elapsed timer tics between the edges; the pulse width is the
computed time in microseconds. 

2. Fill in Figure E.12 for three button pushes. Use a scope in single trigger
mode and capture the low pulse width.
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swdetov.c Modification

1. Modify swdetov.c to use CCP2 as the input pin, capture register CCPR2,
and Timer3 as the timebase.

2. Fill in Figure E.13 for three button pushes. Use a scope in single trigger
mode and capture the low pulse width.

IR Waveform Decoding

1. Place the IR receiver module (Radio Shack PN #276-640) from your parts
kit on the protoboard, and connect the OUT pin to the RC2/CCP1 pin of
the PIC.

2. On the universal remote, locate a manufacturer setting that produces
space-width encoded output as discussed in Chapter 13 (use the oscillo-
scope to verify that the output waveform is space-width encoded). Write a
program similar to the biphase decoding program of Figures 13.22, 13.23,
and 13.24 to perform space-width decoding. Space-width decoding is eas-
ier than biphase decoding, as the only measurement required is the time
between every falling edge of the incoming waveform because “0” and “1”
bits have different periods. Only print the first 2 bytes of a received waveform.

E.14 EXPERIMENT 13: AUDIO RECORD/PLAYBACK 
(CHAPTER 14)

This experiment implements the audio record/playback project of Chapter 14.

FIGURE E.13 Momentary switch pulse width results (modified swdetov.c).



PRELAB

1. Implement the audio playback/record schematic of Figure 14.2 on your
PIC18F242 system.

2. Read Sections 14.2 and 14.3 and ensure that you understand the audio.c
code (Figure 14.3 through 14.6), as you will be modifying this code during
lab.

Lab Activity

1. Verify that you can record and playback audio at a 6 kHz sample rate using
the audio.c file.

2. Flatten the code of the playback loop within audio.c until you can achieve
an 8 kHz playback rate. This also requires running the I2C bus faster than
the maximum datasheet specification of 400 kHz.

3. If you are feeling ambitious, implement the suggested modification con-
tained in problem #1 at the end of Chapter 14!

E.15 HARDWARE DEBUGGING CHECKLIST

Debugging hardware problems requires a methodical approach and the use of
available instrumentation such as a multimeter and oscilloscope. The following are
debugging checklists that are useful for identifying hardware problems.

“My board used to work and now it doesn’t.”

1. Used multimeter to measure Vdd on PIC. yes �   no �

2. Both VSS pins on PIC are connected to ground? yes �   no �

3. Used scope to see if oscillator working. yes �   no �

4. Used scope to ensure reset line works. yes �   no �

5. Checked PIC with older test program (ledflash.c). yes �   no �

6. Checked PIC in TA reference board to see if board problem.     yes �   no �
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“My fuse keeps blowing, help!”

To track shorts, perform the following steps in order:

1. Connect the multimeter in series with power to monitor current.
2. Disconnect one half of the protoboard from the other half and determine

which half the problem is in. Only connect power for a brief period of time
to see if short still exists.

3. Remove all ICs from problem half of board and see if short is fixed.
4. If short still exists, remove any capacitors.
5. If short still exists, remove any switches.
6. If short still exists, remove any LEDs.
7. If short still exists, it must be a direct wiring connection between Vdd/Gnd.

“My RS232 interface does not work”

1. MAX202 is producing ±10 V. yes �   no �

2. MAX202 Vdd/Gnd connected. yes �   no �

3. Used scope to see if PC/HyperTerminal is transmitting. yes �   no �

4. Does HyperTerminal have the right COM port selected? yes �   no �

5. Is Flow control set to “NONE” in HyperTerminal? yes �   no �

6. Is the cable connected to the correct COM port on the PC? yes �   no �

7. Used scope to check MAX202-to-PIC (RX) link (type a 
character in HyperTerminal and verify character 
arrives RX pin of MAX202 and RX pin of PIC). yes �   no �

8. Used scope to check PIC(TX)-to-MAX202 link (program 
PIC with echo program and check if the PIC TX pin is 
echoing character).    yes �   no �

9. Used scope to check MAX202-to-PC link. yes �   no �

10. If receiving garbage, does measured bit time match baud
rate? yes �   no �

One quick tip: If power is off to your board, and your power-on LED is still
dimly lit and you have an RS232 cable connected, this may indicate that you have
reversed the TX/RX pins on your DB9 to MAX202 chip connection.



“Jolt does not work”

1. On Jolt startup, you get a “main class not found” error. Verify that your
CLASSPATH environment variable is set correctly and that the comm.jar
file (see Appendix F, Section F.2, “Jolt Installation”) is copied to the loca-
tion indicated by the CLASSPATH variable. Review all of the Jolt installa-
tion steps and verify that you have performed each correctly.

2. The Jolt Program option is not working (the progress bar does not ad-
vance). This usually indicates a problem with the serial port connection.
When trying to program, Jolt periodically sends a handshake character via
the serial port to the PIC. To debug, monitor the RX line on the PIC with
a scope and verify that that the handshake character is arriving. If no char-
acter is arriving, debug your RS232 interface following the preceding steps.
If a character is arriving, look at the TX output of the PIC—the Jolt
firmware on the PIC should be trying to respond. If the TX output has no
activity, reprogram your PIC with the bootloader firmware.

“My I2C interface does not work”

1. Verified both SCL and SDA have Vdd via pullups when idle. yes �   no �

2. Do you have SCL/SDA swapped? (SCL is the CLOCK!) yes �   no �

3. Verified transmission by PIC on SCL/SDA. yes �   no �

4. Verified I2C device address in your program. yes �   no �

5. Verified I2C device address on A1/A0 pins of EEPROM/
DAC. yes �   no �

6. Is the I2C Device (EEPROM/DAC) sending an ACK? yes �   no �

“My A/D does not work”

1. Used multimeter to check PIC A/D input voltage 
variation.                                                                                        yes �   no �

2. Is the analog input connected to the correct A/D input?         yes �   no �

3. Is PORTA configured for analog input?                                     yes �   no �

4. Used printf() statement to print individual A/D result bytes. yes �   no �
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E.16 INSTRUMENTATION AND PROTOTYPING HINTS

This section contains a few instrumentation and prototyping hints to aid you in
performing the suggested experiments.

Voltage, Resistance, Current Measurement

A digital multimeter (DMM) is a common instrument for measuring voltage, resis-
tance, and current. Figure E.14a shows how to use a DMM to measure voltage
across a resistor. A resistance measurement is made in the same manner, except the
DMM front panel buttons should be set to resistance instead of DC voltage. 

Observe that to measure voltage, no physical changes to the circuit wiring has
to be done. This is not true with current measurement, as shown in Figure E.14b.
The DMM must be placed in series with a device whose current is being measured
in order for the current to flow through the DMM and then into the device. This re-
quires physically breaking the circuit connection, and routing the wiring to the mA
and COM terminals of the DMM.

Passive Components: LEDs, Capacitors, Resistors, Switches

Figure E.15 shows some of the passive components in the parts kit of Figure E.2. A
light emitting diode (LED) conducts current when the anode has a voltage approx-
imately 0.7 V higher than the cathode; LED brightness increases as current in-
creases. The short lead is the cathode, the long lead is the anode.

The 15 pF capacitors used with the crystal in Figure 8.4 to form the PIC18F242
clock source are not polarized, which means that it does not matter which direction
the capacitors are connected in the circuit. The 0.1 μF capacitors used between
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FIGURE E.14 Voltage, current measurement.



Vdd and VSS on the PIC18 and with the MAX202 are polarized and have a clearly
marked positive (+) terminal; the negative ( ) terminal should be connected to
ground. The resistors of the parts kit in Figure E.2 are in a single inline package
(SIP) as shown in Figure E.15c, each resistor is connected between two pins on the
package. A potentiometer will have at least three terminals as shown in Figure E.15d
(the potentiometer of the parts kit in Figure E.2 has four terminals as the wiper ter-
minal is replicated on two pins). To determine the terminals marked as A and B in
Figure E.15d, use a DMM to measure the resistance between pairs of terminals
until you find the terminal pair whose resistance does not change when the poten-
tiometer is adjusted. Pushbutton switches as shown in Figure E.15e have no pin
markings; you must use the DMM to measure the resistance between terminal pairs
to determine which terminal pair is shorted (zero resistance) when the pushbutton
is pressed.

Wire Wrapping

Wire wrap is useful to create secure connections to components that do not plug
directly into the protoboard. In Figure E.1, wire wrap is used to connect to the DB9,
potentiometer, and modular connector. Figure E.16 shows the steps for creating a
wire wrap (WW) connection using a WW tool and WW wire from Radio Shack.
WW wire is 30 gauge wire, and the ends of a wire wrap connection must be stripped
before wrapping. The Radio Shack WW tool has a wire stripper contained in the
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handle. The end of the WW tool has a large center hole for fitting the tool over a
post, and a small hole on the side that is used to hold the wire. To create a WW con-
nection, cut a piece of wire of appropriate length and strip approximately 1/2 to 3/4

inch from either end. Place a stripped end into the small hole of the WW tool and
push the wire into the tool until the insulation prevents the wire from going any
further. Then, place the WW tool over a post, and twist clockwise, holding the wire
to keep it taut while wrapping. This should wrap the stripped portion of the wire
around the post. Repeat this with the other stripped end of the wire at the destina-
tion post. To unwrap, place the WW tool over the post, push down firmly, and turn
counter-clockwise.
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FIGURE E.16 Wire wrapping.



601

T
his appendix discusses use of the Jolt and Colt serial bootloaders for down-
loading PIC18F242 programs using the serial port interface. Martin Dubuc
wrote both programs, and the Jolt/Colt home pages are found at

http://mdubuc.freeshell.org/{Jolt/Colt}. The bootloader programs are self-extracting
executables named bootldr/ColtSetup.exe and bootldr/JoltSetup.exe on this book’s
companion CD-ROM. Jolt has more features than Colt in terms of viewing the
code to be programmed and altering configuration bit settings, but requires instal-
lation of the Java Runtime Environment. Both Jolt and Colt are compatible with
Windows XP.  At Mississippi State University, Colt is generally preferred by stu-
dents because of its simpler installation.

F.1 PROGRAMMING THE JOLT/COLT FIRMWARE

Each bootloader consists of two parts: firmware that resides on the PIC18 and a
client that runs on the PC. The PC client reads a hex file and sends the program
memory contents over the PC serial port to the PIC18 bootloader firmware that
programs the PIC18 program memory with the incoming bytes. EEPROM data
memory and configuration bits can be programmed by the bootloader as well. The
PIC18 bootloader firmware is the same for both Colt and Jolt. The bootloader
firmware is in a file named bootload.hex that is found within the respective default
installation directories (C:/Program Files/Colt PIC18F Bootloader, C:/Program
Files/Jolt PIC18F Bootloader). A version of the bootloader hex file with the config-
uration bits set to options used for the book PIC18F242 reference system is found
in code/labs/bootload_hspll.hex.

Programming the bootloader firmware requires use of an external PIC pro-
grammer.  Figure F.1 shows a picture of two external programmers available from
Microchip: the PICSTART Plus and the ICD2. 

The Jolt/Colt Serial
Bootloaders

Appendix
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The PICSTART Plus has a 40-pin ZIF (zero insertion force) socket for holding
PIC devices and communicates with the PC via the serial port. It can program a
wide variety of PIC microcontrollers and is the programmer the author uses in the
laboratory environment at Mississippi State University. The disadvantage of the
PICSTART Plus is that the PIC18 has to be removed from the protoboard for pro-
gramming; the Jolt/Colt bootloaders allow in-circuit programming via the serial
port.

An alternative to the Jolt/Colt bootloaders for in-circuit programming is the
ICD2 programmer, which supports both in-circuit programming and limited in-
circuit debugging of PIC microcontrollers. The ICD2 communicates with the PC
either through a serial port or a USB port. Figure F.2  shows the necessary modifi-
cation to the PIC18 startup schematic of Figure 8.4 to support the ICD2. During in-
circuit serial programming (ICSP), voltage pulses of approximately 12 V are
applied to the Vpp/MCLR pin. The LED isolates the rest of the Vdd bus from the
high-voltage pulses applied on Vpp during programming. The RB6/PGC pin is the
clock used for serial programming data sent over the RB7/PGD pin.

FIGURE F.1 PICSTART Plus and ICD2 programmers.
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If the ICD2 programmer interface is used, a serial bootloader such as Jolt is un-
necessary. One disadvantage to using the ICD2 is that if pins RB7, RB6 are driven
by other active circuitry on your board, these must be isolated during program-
ming, perhaps by DIP switches.

MPLAB is used as a front-end for both the PICSTART Plus and ICD2 pro-
grammers. Figure F.3  shows the steps for programming a PIC18 using the PIC-
START Plus programmer.

The “File Import” option (Figure F.3 b) is used for loading a pre-existing
hex file into MPLAB for programming or simulation. The “Configure Configu-
ration Bits” option (Figure F.3c) is used for examining and/or modifying configu-
ration bit settings. When programming the Jolt/Colt firmware into your PIC18, it
may be necessary to use this option to change the configuration bit setting for the
oscillator to match your system. After changing the configuration bits, the “File
Export” option is useful for saving a new copy of the hex file with the modified con-
figuration bits. Steps (d), (e), (f), and (g) in Figure F.3 show how to use the PIC-
START Plus to program a PIC18. The final programming step also includes
verification of the downloaded code by reading the PIC18 program memory and
comparing it with the target code.

FIGURE F.2 ICD2 programmer connection.
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FIGURE F.3 Using the PICSTART Plus. Screenshots ©2005 Microchip Technology, Inc. Reprinted with

permission. All rights reserved.
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F.2 JOLT INSTALLATION

The most up-to-date installation instructions and Jolt version can be found at
http://mdubuc.freeshell.org/Jolt. The following off-line installation instructions are
compatible with Jolt V1.0. Execute the self-installing executable
bootldr/JoltSetup.exe to install Jolt; the default installation location is C:\Program
Files\Jolt PIC18F Bootloader. Before running Jolt, the following steps must be com-
pleted for correct operation.

Java Runtime Environment Installation

Jolt is written in Java, and thus either the Java 2 Platform, Standard Edition (J2SE)
Java Runtime Environment (JRE) or J2SE Software Development Kit (J2SE SDK)
must be installed. A starting point for these downloads is found at
http://java.sun.com/j2se. A version-specific URL for downloading version 5.0 of the
J2SE is http://java.sun.com/j2se/1.5.0/index.jsp. The Jolt version on the companion
CD-ROM has been tested with version 5.0 of the JRE. If you are installing Java only
for use with Jolt, it is recommended that you install the runtime environment (J2SE
JRE), as it is much smaller than the software development kit. The remaining in-
structions assume that the J2SE JRE has been installed.

Java Communications API

1. The Java Communications API must be installed after the J2SE JRE instal-
lation for Jolt to communicate over the serial port. The Java Communica-
tions API is found at http://java.sun.com/products/javacomm/ and is
distributed in the form of a ZIP archive. Download this ZIP archive and
unpack it into some temporary directory on your PC. Three files must be
copied from the JavaComm API folder into the JRE folder as shown in Fig-
ure F.4.

2. Copy the win32com.dll file from the JavaComm API folder to the JRE bin
folder. If this file is not visible, use “Tools Folder Options” to change
folder options to display file extensions for known file types and to show
hidden files and folders as shown in Figure F.4 (b, c).

3. Copy the javax.comm.properties file from the JavaComm API folder to the
JRE lib folder.

4. Copy the comm.jar file from the JavaComm API folder to the JRE lib/ext
folder.

5. Two changes must also be made to system variables as shown in Figure F.5.
The CLASSPATH variable must be created and the path to the comm.jar
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file placed on it. The PATH variable must be modified to include the bin
folder of the JRE installation.
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FIGURE F.4 Copying files from JavaComm folder to Java JRE folder.
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FIGURE F.5 Modifying the CLASSPATH and PATH environment variables.
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F.3 RUNNING JOLT

If the installation steps of the previous section were completed correctly, running
the Jolt bootloader opens the Jolt window as shown in Figure F.6. The Jolt code
window displays the program bytes to be downloaded. 

FIGURE F.6 Jolt execution.
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When preparing hex files for use with Jolt, the code must be relocated to begin
at location 0x0200, as the Jolt firmware occupies the first 512 bytes of program
memory. For the PICC-18 C compiler this is accomplished by using the “–a200”
linker flag (see Appendix C, “HI-TECH PICC-18 C Compiler Demo for the
PIC18F242”). After relocation, address 0x0200 contains the reset vector, which
should be some form of branch or goto instruction. For PIC18F242 programs com-
piled with the PICC-18 C compiler, the first two bytes at location 0x0200 should be
0x0C, 0xEF (instruction word 0xEF0C, a goto). Forgetting to relocate the code dur-
ing compilation is the most common error when using Jolt. The settings menu
choice allows modification of default actions by Jolt. The “Settings Reload be-
fore Program” option is useful, as this causes Jolt to always reload a hex file before
programming. Executing “Command Program” opens the Programming De-
vice window that shows a progress bar that tracks the program download. When
“Command Program” is executed, the Jolt client sends a handshaking byte
over the serial port; when the PIC18 firmware detects this handshake byte it re-
sponds with an acknowledge byte. When the client receives the acknowledge byte,
it responds with program data. The PIC18 bootloader firmware is executed imme-
diately after reset or power up; if the firmware does not detect the handshaking byte
within two seconds, it jumps to the user program at location 0x200. The best way
to establish the PC client to PIC18 firmware connection is to either hold the PIC18
reset button down or power off the PIC18 before executing “Command Pro-
gram”; after the progress window appears, release the PIC18 reset or turn on power
to the PIC18. The debug checklist in Appendix E, “Suggested Laboratory Exer-
cises,” gives tips on debugging the serial interface and Jolt operation. The Jolt
firmware automatically detects the baud rate, so set this as high as can be reliably
supported on your system. A value of 38400 was used for the PIC18F242 reference
system in this book.

Figure F.7a shows how to read the current configuration bit settings from the
PIC18 using “Command Read All”. 

The configuration bits can then be viewed and/or modified by opening the
configuration bit window using the “Edit Config...” command (Figure F.7b).
Use “Command Program Config” to download the new configuration bit set-
tings into PIC18 system (Figure F.7c). It is recommended that you always read the
current configuration bits from the target PIC18 system before editing their values
in the Jolt configuration bit window.



F.4 COLT BOOTLOADER INSTALLATION AND EXECUTION

The Colt bootloader is a streamlined version of the Jolt bootloader. The self-
installing Colt executable named bootldr/ColtSetup.exe on the companion 
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FIGURE F.7 Modifying configuration bits with Jolt.
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CD-ROM installs the Colt PIC18 bootloader; no further installation steps are nec-
essary. Figure F.8 shows the Colt bootloader window.

All commands for locating the target hex file, program options, COM
port/baud rate settings, and initiating program download are immediately available
from this window. Programs must be relocated to begin at location 0x0200; use the
“–a200” linker flag for the PICC-18 C compiler (see Appendix C). Configuration
bits cannot be viewed or modified within Colt; they can only be downloaded into
the target PIC18 system. Colt does not support reading program memory and con-
figuration bit settings from the target PIC18 target system. Colt uses the same
firmware as Jolt, and thus automatically detects the baud rate. A value of 38400 was
used for the PIC18F242 reference system in this book.

Known Problems with Colt V0.4

Colt serial communication did not function on at least one Windows 2000 system
with Service Pack 4. Colt functioned as expected under Windows XP with Service
Pack 1.
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FIGURE F.8 Colt bootloader window.



This page intentionally left blank 



613

T
his appendix gives a hobbyist level introduction to basic circuits, and covers
the passive components used in this book’s schematics.

G.1 VOLTAGE, CURRENT, RESISTANCE

Current is the flow of electrons through a conductor. A conductor is anything that
allows current flow. A good conductor offers little resistance to current flow; in
other words, it does not take much work for current to flow within a good conduc-
tor. In rough terms, the amount of work it takes to move electrons between two
points on a conductor is voltage. The voltage difference between one end of a con-
ductor and the other end of a conductor indicates the resistance of the conductor.
If the voltage drop is high, the resistance is high; conversely, if the voltage drop is
low, the resistance is low. A voltage supply provides a source of current at a fixed
voltage level. Current is measured in Amperes (A), with a few milliamperes (mA, 1
mA = 0.001 A) being the typical current requirements of the integrated circuits
used in this book. Voltage is measured in volts (V) and resistance is measured in
ohms ( ). The PIC18 and the integrated circuits in this book require a Direct Cur-
rent (DC) voltage supply, typically with a voltage value of +5 V. A DC voltage sup-
ply means that the current flows in one direction only, and that the voltage is a
constant value, either positive or negative. By contrast, the power available for
household appliances from wall plugs is Alternating Current (AC), where the volt-
age varies in a sinusoidal fashion between ±120 V with a frequency of 60 Hz. The
AC current direction reverses itself each time the voltage value crosses 0 V. 

Circuits 001
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Ohm’s Law

A resistor is a component with a fixed resistance value that is used to control current
flow in an electrical circuit. Figure G.1  shows a basic DC circuit consisting of a DC
voltage supply and one resistor with value R.

Equation G.1 gives Ohm’s Law, which expresses the current (I) flowing through
the resistor as a function of voltage (V) and resistance (R).

(G.1)

An ideal DC voltage source supplies the current predicted by Equation G.1;
thus, a resistance of zero causes infinite current flow. A zero resistance or very low
resistance path is called a short, and causes large currents to flow. A physical power
supply obviously cannot supply infinite current, and thus will either fail after a
short period of time or blow an internal fuse, breaking the circuit path. Figure G.2
shows how a fuse is used to protect against shorts.

A fuse is a thin conductor that physically separates, breaking the connection,
after a maximum rated current is reached. In Figure G.2a, the switch is open so no
current is flowing. In Figure G.2b, the switch is closed, creating a short between
Vdd and ground. In Figure G.2c, the fuse has blown, creating an open path and
stopping current flow. 

Equation G.2 is another form of Ohm’s Law that expresses voltage across a re-
sistor as the product of current and resistance.

V = I * R (G.2)

I = 
V

R

 R V
DC voltage
supply of
V volts

 I

 Resistor with resistance of R ohms

 current flow, I = V/R, in amperes

These two points are assumed to either be connected together or
both connected to a common ground that is at 0 volts.

 +

FIGURE G.1 Voltage/current relationship with one resistor.
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Resistors in Series

Figure G.3 shows a circuit with two resistors connected in series.
In this case, the current flowing through both resistors is the same and is ex-

pressed by Equation G.3, where the total resistance of the circuit is the sum of R1
and R2.

(G.3)

Equations G.4 and G.5 give the voltages V1 and V2 across each resistor.

V1 = Is * R1 (G.4)

V2 = Is * R2 (G.5)

+

-
V a. Switch

open,
no current

Fuse

 +

 -
 V

b. Switch
closed, short
to ground

 Fuse

 High
current

 +

 -
 V

c. Fuse
blown,
no current

 Fuse

 open
circuit

 open
circuit

FIGURE G.2 Using a fuse to protect against shorts.

 R1  R2

 V1 = I * R1  V2 = I * R2

 Is = Vs/(R1 + R2)

 Vs = V1 + V2

 Vs
 +  +  +

FIGURE G.3 Resistors in series.

Is= 
Vs

(R1 R2)+
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Resistors in series form a voltage divider, with the sum of voltages across the re-
sistors equal to the voltage supply value as shown in Equation G.6.

Vs = V1 + V2 (G.6)

Voltage dividers are used in Chapter 12, “Data Conversion,” to build analog-
to-digital and digital-to-analog converters. Observe that if R1 = R2, V1 = V2 =
Vs/2; the voltage divides equally between the two resistors.

Resistors in Parallel

Figure G.4  shows a circuit with two resistors connected in parallel.

In this case, the voltage across each resistor is the same and is equal to the
power supply voltage Vs. However, the current flowing through each resistor is de-
pendent upon the resistance value as given in Equations G.7 and G.8.

(G.7)

(G.8)

Resistors in parallel form a current divider, with the sum of the currents
through the resistors equal to the total current drawn from the power supply (Is) as
shown in Equation G.9.

Is = I1 + I2 (G.9)

When measuring the total current through a system like the PIC18F242 refer-
ence board in this book, the current draw of each individual integrated circuit can
be determined by simply removing it from the board, since the current draw of
each integrated circuit adds to the total current draw. Figure G.5 illustrates this

 R1 I2 = Vs/R2

 Is = I1 + I2

 Vs
 +

 R2I1 = Vs/R1

FIGURE G.4 Resistors in parallel.

I1 = 
Vs

R1

I2 = 
Vs

R2
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concept. Observe that the integrated circuits are connected in parallel (all supplied
with the same voltage).

Polarization

Most circuit elements have two terminals through which current flows. The termi-
nals can either be polarized (positive and negative terminals) or unpolarized. A DC
power supply is polarized, it has clearly marked positive (+) and negative ( ) termi-
nals. The negative terminal is at zero volts (ground) and the positive terminal is the
voltage output. A resistor is unpolarized; its operation is not affected by the direc-
tion in which its terminals are connected in a circuit.

Diodes

A diode is a two-terminal device that allows current flow in one direction only. A
diode’s two terminals are named the anode and the cathode; when the voltage on the
anode is approximately 0.7 V higher than the cathode voltage, current flows
through the diode. Thus, a diode is a polarized device, as circuit operation is depen-
dent upon how its terminals are connected in a circuit. On physical diodes, the
cathode terminal is identified by either a band at one end or by being the shorter of
the two leads. Figure G.6 shows some simple diode circuits. 

In Figure G.6a, no current is flowing through the diode, as the anode voltage is
only 0.3 V. In Figure G.6b, current flows through the diode, as the anode voltage
is greater than the cathode voltage by more than 0.7 V. In Figure G.6c, no current
is flowing as the diode direction is reversed in the circuit; the only way for current
to flow in this circuit is if Vs produces a negative voltage. The resistor is included in
series with the diode in Figure G.6 simply to limit the current flow within the cir-
cuit. A diode has internal resistance but its value depends upon the diode type. A
light emitting diode (LED) emits visible light in proportion to the current flowing
through it; the higher the current, the brighter the light. 

I1

Is = I1 + I2 + I3 + I4

 Vs
 +

PIC

Vdd

Vss DAC
(MAX517)

Vdd

Vss

I2

EEPROM
(24LC515)

Vdd

Vss

I3

RS232
(MAX202)

Vdd

Vss

I4

FIGURE G.5 Current draw in a total system.



G.2 CAPACITORS

A capacitor is a two-terminal device that comes in both unpolarized and polarized
varieties. In the PIC18F242 startup schematic (Figure 8.4), the capacitors used with
the crystal are unpolarized, while the capacitor connected between the Vdd and Vss
pins of the PIC18F242 is polarized. Equation G.10 gives the time-dependent cur-
rent flow i(t) through a capacitor as a function of capacitance (C) and the voltage
rate of change (dv/dt) across the capacitor. 

(G.10)

In intuitive terms, Equation G.10 says that if the voltage across a capacitor is
not changing, then no current flows through the capacitor. Equation G.11 gives the
time dependent voltage across a capacitor as a function of capacitance and current. 

(G.11)

In intuitive terms, Equation G.11 says that a capacitor stores charge, increasing
its voltage, as current flows through it. Figure G.7 shows the effect of Equations
G.10 and G.11 in an RC series circuit. 

When the switch is open, the current through the capacitor and the voltage
across the capacitor are both zero. At time t = 0, the switch closes and the capaci-
tor charges up in an exponentially decaying fashion to Vs. The current jumps to its
maximum value immediately after the switch closure due to the instantaneous
change in voltage (maximum dv/dt), and then exponentially decays to zero as the
change in voltage across the capacitor (dv/dt) decreases. The Y-axis is time and is
marked in RC units, where the R*C product is called the time constant of the RC se-
ries circuit. The larger the time constant, the longer it takes for the capacitor to
charge.

618 Microprocessors

 R

(a) diode is non-conducting,
anode is not 0.7 V higher than
cathode

 Vs 
 0.3 V

 +

Cathode

Anode  R

(b) diode is conducting

I = 0 I is non-zero

 R

(c) diode is non-conducting,
anode/cathode are reversed.

 Vs 
 1.0 V

 +
 Vs 
 1.0 V

 +

I = 0

FIGURE G.6 Diode circuits.

i(t) = C 
dv

dt

v(t)= 
1

C
i dt



In the PIC18F242 reference system, the polarized capacitors placed across the
Vdd and Vss pins of the PIC18F242 are used to assist in supplying transient current
needs caused by high-frequency digital switching. Capacitors used in this manner
are called decoupling capacitors. Polarized capacitors are also used on the MAX202
RS232 interface device for charge storage when converting +5 V to the ±10 V used
for RS232 communication.
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FIGURE G.7 RC series circuit.
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Answers to Review
Problems

Appendix

I

T
his appendix contains answers to the odd-numbered review questions at the
end of Chapters 1 through 13. 

I.1 CHAPTER 1

1. 25 = 32, 26 = 64, so 6 bits.
3. 120 = 0x78 = 0b0111 1000
5. 0xF4 = 0b1111 0100
7. 0b1011 0111 = 0xB7 = 11*16 + 7 = 183
9. 0xB2 - 0x9F = 0x13. ~0x9F = ~(0b1001 1111) = 0b0110 0000 = 0x60. So

0xB2 - 0x9F = 0xB2 + ~0x9F + 0x01 = 0xB2 + 0x60 + 0x01 = 0x13.
11. See  Figure I.1.

13. 0x2A << 1 = 0x54

A

B

B
Y

A

B
Y

FIGURE I.1 CMOS 2-input NOR (problem 1.11).
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15. 0.3 * period = 20 μs; so period = 20 μs/0.3 = 66.7 μs. Frequency = 1/(66.7
μs) = 15 kHz

17. See Figure I.2. 

19. See Figure I.3.

A

B

Co

S

Ci

+

Co

0

1

SUB

B

A

~BN

N

N

When SUB = 0, S = A + B
When SUB = 1, S = A + ~B + 1 = A - B

FIGURE I.2 Adder/subtractor (problem 1.17).
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D

R

Q

RESET

D
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N
N
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EN
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N N

1
incrementer

EN

Y A

decrementer
1Dir (ADD = 1, SUB = 0)

COUNT

0

1

0

1

1

0

Other solutions are
possible.

FIGURE I.3 Up/down counter (problem 1.19).
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I.2 CHAPTER 2

1.
Location   Machine Code    Mnemonics 

START:

0           01 0111          JC LOC_IS_1

1           10 0000          OUT 0

3           10 0010          OUT 2

4           10 0101 0         OUT 5

5           10 0111          OUT 7

6           00 0000          JMP START

LOC_IS_1:

7           10 0001          OUT 1

8           10 0011          OUT 3

9           10 0110          OUT 6

10           10 1000          OUT 8

11           00 0000          JMP START

3. See Table I.1. Recall that the JC instruction takes the jump if LOC = 1.

Cycle Location Comment

1 0 OUT 2, DOUT = 2 = 0b0010, LOC = LSb = 0

2 1 OUT 5, DOUT = 5 = 0b0101, LOC = LSb = 1

3 2 JC 5, DOUT = 5 = 0b0101, LOC = LSb = 1, so take jump

4 5 OUT 9, DOUT = 9 = 0b1001, LOC = LSb = 1

5 6 JC 2, DOUT = 9 = 0b1001, LOC = LSb = 1, so take jump

6 2 JC 5, DOUT = 9 = 0b1001, LOC = LSb = 1, so take jump

7 5 OUT 9, DOUT = 9 = 0b1001, LOC = LSb = 1

8 6 JC 2, DOUT = 9 = 0b1001, LOC = LSb = 1, so take jump

9 2 JC 5, DOUT = 9 = 0b1001, LOC = LSb = 1, so take jump

10 5 OUT 9, DOUT = 9 = 0b1001, LOC = LSb = 1

TABLE I.1 Problem 2.3
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5. It takes 13 instructions.

START:

JC LOCAL

OUT 1

OUT X1

OUT X2

OUT X3

LOCAL:

OUT Y1

OUT Y2

OUT Y3

OUT Z1

OUT Z2

OUT Z3

OUT Z4

JMP START

7. The first change is to increase the number of memory locations from 16 to
32. This causes the memory address bus to increase from 4 bits (24 = 16) to
5 bits (25 = 32). This means the Program Counter has to increase from 4
bits to 5 bits. Finally, the instruction size has to increase by 1 bit because the
JC/JMP instruction data field specifies a location, which now requires 5
bits. Therefore, the new memory size is 32x7. See Figure I.4.

9. The opcode field must be increased from 2 bits to 3 bits; this changes the
memory from a 16 x 6 memory to a 16 x 7 memory (each location now
contains 7 bits).

CK

pc

LD

Q

INC

R

5
D A Q

32x7

mem
CK

outreg

LD

QD

R

4 4

MQ5

5

MQ[4:0]
DOUT

LOC

CLK
RESET#

7

MQ6

MQ6

MQ[3:0]

FIGURE I.4 Modified NSC design (problem 2.7).



I.3 CHAPTER 3

1. addwf 0x030,f = 0010 01da ffff ffff ;  destination is f, so d = 1. Loca-
tion is 0x030, which is in the access bank, so a = 0. The f field = 0x30.  So,
0010 0110 0011 0000 = 0x2630.

3. goto 0x043E = 1110 1111 k7kkk kkkk0, 1111 k19kkk kkkk kkkk8

To determine the k field, take the target address, convert to 21-bit binary
number, and discard the LSb, as the jump target address is always an even
address.
0x0043E = 0b (0 0000 0000 010)(0 0011 111)0, the digits in bold are the k
bits (19 through 0). Parentheses show the k19-k8 and k7-k0 bit groupings.
goto 0x043E = 1110 1111 0001 1111, 1111 0000 0000 0010 =
0xEF1F,0xF002

5. 0xC2A5 0xF100 is a two-word PIC18 instruction. The upper 4 bits of the
first instruction word (1100) indicate this is a movff instruction. The lower
12 bits of the first instruction word specify the source address, while the
lower 12 bits of the second instruction word specify the destination ad-
dress. Thus, this is the instruction movff 0x2A5,0x100.

7. You don’t know because BANKED means the Bank Select Register (BSR)
provides the upper 4 bits of the instruction, and the contents of the BSR
have not been specified. Even though 12 bits are specified in the address
0x230, the BSR must have the value 0x2 in it for location 0x230 to be mod-
ified.

9. The movwf and addwf instruction each require one instruction cycle, while
the goto requires two instruction cycles, for a total of four instruction cy-
cles. Each instruction cycle is four clock cycles, so a total of four instruction
cycles * 4 clocks = 16 clock cycles is required. A 16 MHz clock has a pe-
riod of 1/(16.0E6) = 6.25E-8 = 62.5 ns. The total time needed is:

16 clocks * 62.5 ns = 1000 ns = 1.0 μs
11.

movff 0x100,0x200

movff 0x101,0x201

movff 0x102,0x202

movff 0x103,0x203

13. W is zero since the operation is W – W.
15. Move literal to W (movlw) moves the value 0x5C to W. So, W = 0x5C.
17. The instruction addwf 0x5A,f adds the contents of location 0x5A to W, and

stores the result back in location 0x5A. Thus:

location 0x5A = (0x5A) + 0x3D = 0x3B + 0x3D = 0x78. 
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Location 0x5A now contains 0x78.
19.

movlb  0x2        ; must point BSR at bank2

movf   0x250,w    ; read 0x250 into W

addwf  0x251, w   ;add W to 0x251, store in w

movlb  0x0        ;point at bank 0 (not needed as 0x5A is in 

access bank)

movwf  0x05A      ;save result in 0x05A

I.4 CHAPTER 4

1. Location 0x001 = (0x001) – W = 0x7A – 0xD7 = 0xA3. Flags are C = 0
(borrow), Z = 0.

3. W = (0x000) & 0xD7 = 0xA0 & 0xD7 = 0x80. Flags are C = 0, Z = 0.
5. Location 0x4F changed to 0x00. No flags are affected, so C = 0, Z = 0.
7. Bit 4 of location 0x001 is cleared, so new value of 0x001 is 0x6A. No flags

affected, so C = 0, Z = 0.
9. W = (0x001) << 1 (shift left) =  0x7A << 1 = 0xF4. Flags are C = 0, Z = 0.

11. W = (W) ^ 0x4E = 0xD7 ^ 0x4E = 0x99. Flags are C = 0, Z = 0.
13. BSR is set to 1 because k is in bank 1; variables i, j are in the access bank so

the BSR register is not used for instructions that reference i, j using our
standard assumptions for the access bit setting.
movlb   0x1       ; set BSR to 1 because K is in bank1

bcf STATUS, C     ; clear carry

rrcf i,f          ; i = i >> 1

movf k,w          ; w = k

iorwf i,f       ; i = i | k

15.
movlb    0x1       ; set BSR to 1 because K is in bank1

clrf     i,f       ;i = 0

loop_top

movf     i

subwf    k,w       ;i-k

bz       end_loop  ;skip if i == k

incf     k         ;k++

bcf      STATUS,C  ;clear C so LSb gets a 0 value on shift

rlcf     i,f       ;i= i << 1

bra      loop_top

end_loop

...rest of code...

17. Note: !i || j is the same as i == 0 || j != 0.
movlb   0x1        ; set BSR to 1 because K is in bank1

movf    i,f        ; test i
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bz      if_body    ; do if i == 0

movf    j,f        ; test j

bz      else_body  ; do else if neither i==0 or j!=0

if_body              ; here if i==0 or j !=0

movf    i,w

addlw   2          ; w = i + 2

movwf   k          ; k = i + 2

bra     end_if     ; finished

else_body            ; here if i!=0 and j==0

bcf     STATUS,C   ; clear Carry so MSb gets 0 on shift

rlcf    k,f        ;k = k << 1

end_if

rest of code ....

19. Note that k = i * 12 = i * (8+4) = (i * 8) + (i * 4) = i << 3 + i << 2.
movlb   0x1       ; set BSR to 1 because K is in bank1

movff   i,k       ; k = i

bcf     STATUS,C  ; clear Carry so that LSb gets 0 on shift

rlcf    k,f       ; k = i << 1

bcf     STATUS,C  ; clear Carry so that LSb gets 0 on shift

rlcf    k,f       ; k = i << 2

movf    k,w       ; w = i << 2

bcf     STATUS,C  ; clear Carry so that LSb gets 0 on shift

rlcf    WREG,W    ;w = i << 3

addwf   k,f       ;k = i << 2 + i <<3

21. The machine code 0x9A04 is 0b1001 1010 0000 0100. The upper 4 bits in-
dicate that this is a BCF instruction. The next 3 bits of 101 indicate bit #5.
The access bit setting is “0” (use access bank), and the lower 8 bits is 0x04.
Thus, the instruction is BCF 0x004, 5, ACCESS.

I.5 CHAPTER 5

1.
top

movf    k,w

subwf   i,f         ; i LSB = i LSB – k LSB

movf    k+1,w

subwfb  i+1,f       ; i MSB = i MSB – k MSB

; need to do [ i – (j+k)] for comparison, use

; temporary location, do j+k first

movf    j,w

addwf   k,w         ; w = i LSB + k LSB

movwf   tmp         ;save LSB to tmp LSB, a temporary 

location

movf    j+1,w

addwfc  k+1,w       ;w = i LSB + k LSB

movwf   tmp+1       ;save MSB to tmp MSB
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movf    tmp,w

subwf   i,w         ;i LSB – tmp LSB

movf    tmp+1,w

subwfb  i+1,w       ;i MSB – tmp MSB

bnc     top         ;branch C=0, borrow, so i < (j+k)

....end of loop, rest of code...

3.
movf    i,w

iorwf   j,w          ; W = i LSB | j LSB

movwf   k            ; save to k LSB

movf    i+1,w

iorwf   j+1,w        ; W = i MSB | j MSB

movwf   k+1          ; save to k MSB

5. +42 = 0x2A,  so –42 = 0 – 42 = 0x00 – 2A = 0xD6
7. The MSb is 1, so the number is negative ( ).

Magnitude is 0x000 – 0xBA3 = 0x45D = 1117. 
Final answer: 1117.

9. The number is negative (MSb = 1), so extend with all “1”s (0xF hex digits)
so the sign extended value is value is 0xFF85.

11. 0x90 0x8A = 0x06, the flag settings are Z=0, N=0, V=0, C = 1. This is a
negative number minus a negative number, which is the same as a negative
number plus a positive number and this cannot produce two’s comple-
ment overflow.

13. 0x2A-0x81 = 0xA9, the flag settings are Z=0, N=1, V=1, C = 0. This is pos-
itive number minus a negative number, which is the same as a positive
number plus a positive number. The result should be positive, but a nega-
tive number is the result, which means that two’s complement overflow oc-
curred.

15. i > j is false as i is negative, j is positive, so k = 0 (Boolean false returns 0).
17. This is a signed right shift because k is declared as a signed char, so you

need to keep the sign digit when shifting.
0xA0  = 0b1010 0000   (-96)
0xA0 >> 1 = 0b1101 0000  = 0xD0   (-48)
0xA0 >> 2 = 0b1110 1000  = 0xE8   (-24)

19. For k >= j test, do k - j. If k >= j, then the result is positive (N = 0,V =
0). But if overflow occurs, then N = 1, V = 1.

movf   j,w

subwf  k,w         ; k - j

bov    V_1         ; branch if V = 1

bnn    if_body     ; do if_body if V = 0, N = 0

bra    end_if      ; reach here if V = 0, N = 1, skip if body

V_1

bnn    end_if      ; skip if body if V = 1, N = 0

if_body              ; reach here if N=0,V=0 or N=1,V=1

bcf   STATUS,C     ; clear C for right shift
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btfsc i,7          ; skip if number is positive (sign = 0)

bsf   STATUS,C     ; number is negative, so set C=1 to keep

sign=1

rrcf  i,f          ; do right shift

bcf   STATUS,C     ; repeat for next shift

btfsc i,7

bsf   STATUS,C

rrcf  i,f

end_if

....rest of code...

21. The instruction bc there is jumped to if C = 1. The instruction following
bc there is executed if C = 0. So, replace:

bc there     ; branch to there if C=1, but there is too far away

next

..some instruction..

with a code sequence that uses a goto there instruction, which can jump anywhere
in the program code space.

btfsc  STATUS, C     ;bit test, skip if clear

goto   there         ;not skipped if C=1, use goto statement

next

..some instruction..

I.6 CHAPTER 6

1. The address of the next instruction, or PC+4 = 0x0104.
3. If target address of the rcall is further away than –1024 or +1023 instruc-

tion words, a call instruction must be used.
5. The FSR0 SFR is changed to 0x024 by lfsr FSR0,0x024. The decf INDF0,f

instruction decrements the value of the memory location pointed to by
FSR0, so the value of location 0x024 is changed from 0xC7 to 0xC6. 

7. The FSR0 SFR is changed to 0x024 by lfsr FSR0, 0x024. The incf
POSTINC0,f instruction increments the value of the memory location
pointed to by FSR0, so the value of location 0x024 is changed from 0xC7 to
0xC8. The POSTINC0 mode causes FSR0 to be incremented after the incf in-
struction is executed, so the final value of FSR0 is 0x025.

9. Table I.2 shows the memory locations used for the char a[] array. The
content of location 0x0102 is copied to location 0x0101 by the statement
*(ptr+1) = *(ptr+2).
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11. Table I.3 shows the memory locations used for the int a[] array. The hex
memory contents are the integer values converted to two’s complement
16-bit values stored in little-endian order. Thus, –234 is 0xFF16 stored in
little-endian order as 0x16 (location 0x0100), 0xFF (location 0x0101).
Array element a[2] (locations 0x0104, 0x105) is copied to array element
a[1] (locations 0x0102, 0x103) by the statement *(ptr+1) = *(ptr+2). The
ptr variable is declared as an int * type (pointer to an integer), so the ad-
dress ptr+1 is computed as ptr+1*2 = 0x0100 +2 = 0x0102, as each int
element is 2 bytes. Similarly, the address ptr+2 is computed as ptr+2*2 =
0x0100 + 4 = 0x0104. Thus, the statement *(ptr+1) = *(ptr+2) reads as
“copy the int element starting at location 0x0104 to the int element start-
ing at location 0x0102.” 

Initial Contents Final Value Comment

0x0100   0x34 0x0100   0x34

0x0101   0x24 0x0101   0x11 New value is copied from location 0x0102

0x0102   0x11 0x0102   0x11

0x0103   0xFE 0x0103   0xFE

TABLE I.2 Solution for Problem 5.9

Initial Contents Final Value Comment

0x0100   0x16 0x0100   0x16

0x0101   0xFF 0x0101   0xFF

0x0102   0x78 0x0102 0x30 Array value a[1] is replaced by array value 
a[2]; two locations are modified.

0x0103   0x00 0x0103 0x75

0x0104   0x30 0x0104   0x30

0x0105   0x75 0x0105   0x75

0x0106   0xE0 0x0106   0xE0

0x0107   0xB1 0x0107   0xB1

TABLE I.3 Solution for Problem 5.11



13. It is assumed pointer values are passed in the s1, s2 locations of the para-
meter block. 
CBLOCK ????       ;static allocation for parameters

s1:2, s2:2, c   ;two bytes needed for each pointer

ENDC

;use FSR0 for accessing s1, FSR1 for accessing s2

movff       s1,FSR0L

movff       s1+1,FSR0H        ;FSR0 = s1

movff       s2,FSR1L

movff       s2+1,FSR1H        ;FSR1 = s2

loop_top

movf        INDF0,w           ;test *s1

bz          exit              ;exit if zero

movff       INDF0,c           ;c = *s1

movff       INDF1,INDF0       ;*s1 = *s2

movff       c,INDF2           ;*s2 = c

movf        POSTINC0,w        ;s1++

movf        POSTINC1,w        ;s2++

bra         loop_top

exit

return

15. This small C subroutine expands into a large amount of PIC18 code be-
cause of the use of long data types, and the need for computing the pointer
addresses ptr+i and ptr+j.
CBLOCK ????            ;static allocation for parameters

ptr:2, i, j, k:4;    ;need 4 bytes for k, it is a LONG

ENDC

;; multiply i,j both by 4 as they are 

;; indexes used with a LONG type pointer, so all pointer

;; indexes has to be multiplied by 4. Assume i,j < 64 so 

;; no overflow occurs. *4 is done by shifting right twice

bcf      STATUS,C

rlcf     i,f

bcf      STATUS,C

rlcf     i,f               ; i = i * 4;

bcf      STATUS,C

rlcf     j,f

bcf      STATUS,C

rlcf     j,f               ; j = j * 4;

;compute ptr+i, save in FSR1

movff    ptr,FSR1L

movff    ptr+1,FSR1H       ;FSR1 = ptr

movf     i,w

addwf    FSR1L,f

movlw    0

addwfc   FSR1H,f          ;FSR1 = ptr+i

;now do k = *(ptr+i)

;each operand is 4 bytes long, need to move each byte.

movff    POSTINC1,k        ;k =*(ptr + i) low byte

Appendix I: Answers to Review Problems 635



movff    POSTINC1,k+1      ;k = *(ptr + i) 2nd byte

movff    POSTINC1,k+2      ;k = *(ptr + i) 3rd byte

movff    POSTINC1,k+3      ;k = *(ptr + i) MSByte

; compute ptr+i, save in FSR1 (old FSR1 destroyed by

; by POSTINC1 address mode used previously

movff    ptr,FSR1L

movff    ptr+1,FSR1H       ;FSR1 = ptr

movf     i,w

addwf    FSR1L,f

movlw    0

addwfc   FSR1H,f           ;FSR1 = ptr+i

;compute ptr+j, save in FSR2

movff    ptr,FSR2L

movff    ptr+1,FSR2H       ;FSR2

movf     j,w

addwf    FSR2L,f

movlw    0

addwfc   FSR2H,f           ;FSR2 = ptr+j

; now do  *(ptr+i) = *(ptr+j)

movff    POSTINC2,POSTINC1  ;*(ptr+i) = *(ptr+j) lowbyte

movff    POSTINC2,POSTINC1  ;*(ptr+i) = *(ptr+j) 2nd byte

movff    POSTINC2,POSTINC1  ;*(ptr+i) = *(ptr+j) 3rd byte

movff    POSTINC2,POSTINC1  ;*(ptr+i) = *(ptr+j) MSbyte

;compute ptr+j, save in FSR2

movff    ptr,FSR2L

movff    ptr+1,FSR2H        ;FSR2 = ptr

movf     j,w

addwf    FSR2L,f

movlw    0

addwfc   FSR2H,f            ;FSR2 = ptr+j

; now do  *(ptr+j) = k

movff    k,POSTINC2         ;k = *(ptr+j) lowbyte

movff    k+1,POSTINC2       ;k = *(ptr+j) 2nd byte

movff    k+2,POSTINC2       ;k = *(ptr+j) 3rd byte

movff    k+2,POSTINC2       ;k = *(ptr+j) MSbyte

return

17.
CBLOCK ????           ;static allocation for parameters

ia:2, ib:2, cnt;    ;two bytes needed for each pointer

ENDC

movff       ia,FSR0L

movff       ia+1,FSR0H        ;FSR0 = ia

movff       ib,FSR1L
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movff       ib+1,FSR1H        ;FSR1 = ib

loop_top

movf        cnt,w             ;test cnt

bz          exit

movf        POSTINC1,w

addwf       POSTINC0,f        ;low byte add, ptr increment

movf        POSTINC1,w

addwfc      POSTINC0,f        ;high byte add with carry

;; don’t have to increment ia, ib as they are already

;; incremented by use of the POSTINCx addressing mode

decf        cnt,f

bra         loop_top

exit

return

19.
CBLOCK ????

s:2, c;

ENDC

movff       s,FSR0L

movff       s+1,FSR0H         ;FSR0 = s

loop_top

call        getch

movwf       c                 ; subr. return value in W!

movff       c,POSTINC0        ;*s = c, s++

movf        c,w               ;test c

bnz         loop_top

return

21. Each call to fib consumes 4 bytes on the data stack. For n = 1 or n = 0,
no additional calls are made, so the number of data stack bytes needed is 4.
For n > 1, a call is made to fib(n-1), and then a call is made to fib(n-2).
If the data stack does not overflow for the call to fib(n-1), it will not over-
flow for fib(n-2). So, for n > 1, the number of data bytes needed is 4 +
(n 1)*4 = n*4. There are 128 bytes available on the data stack, so the max-
imum value for n is n <= 128/4, or n <= 32. On the return address stack,
there is room for 31 return addresses. For n = 32, the maximum call depth
to fib is 32 (includes the first call), so the return address stack will overflow
before the data stack runs out of space. All of this is somewhat moot, how-
ever, because the char computations limit n to value of 13 to keep the result
less than 255. Using an int type for n would increase the storage required
on the stack, thus reducing the number of stack frames that could be
stored.

23. See Figure I.5.



25. Assume FSR1 is the stack pointer. Define a push as (FSR1) w;
FSR1––, or movwf POSTDEC1 pushes W on the data stack. This means the lo-
cation that the stack pointer is initialized to will contain active data after a
push is done. Define a pop as ++FSR1; W ((FSR1)), or movf PREINC1,w

pops a value from the stack into W. Thus, the stack grows toward decreas-
ing memory locations on pushes, and grows toward increasing memory lo-
cations on pops.

I.7 CHAPTER 7

1. 0x39 * 0xAD = 57 * 173 = 9861 = 0x2685
3. An 8-bit * 16-bit product needs 24 bits to avoid overflow, so a long (32-bit)

data type is required.
5. 0x93AD ÷ 0xC5 = 37805 ÷ 197 = 191 (0xBF), remainder is 178 (0xB2).
7. If the divisor is zero, this causes overflow because the MSByte of the divi-

dend is greater than or equal to the divisor. When overflow is detected, the
function aborts and returns with the carry flag set to “1”. The carry flag is
returned cleared if no overflow occurs.

9. 0xC4 as a 0.8 fixed-point number is 0.11000100 = 1*2-1 +1*2-2+1*2-6 =
0.765625.

11. 0x39 + 0x59 = 0x92 using normal binary addition. As two complement
numbers, overflow occurs as the sum of two positive numbers produced a
negative number. In signed saturating addition, the result is saturated to
the maximum positive value, or 0x39 + 0x59 = 0x7F.

13. First, convert the decimal value 0.15625 to binary.
0.15625 * 2 = 0.3125, this is less than 1, so first bit (MSb) = 0
0.3125 * 2 = 0.625, this is less than 1, so next bit = 0
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FIGURE I.5 Stack frame for ivec_add (problem 5.23).



0.625 * 2 = 1.25, this is greater than 1, so next bit = 1
1.25 – 1.0 = 0.25, 0.25 * 2 = 0.5, this is less than 1, so next bit = 0
0.5 * 2 = 1.0, this is equal to 1, so next bit = 1
– 1.0 = 0, remaining bits are 0
0.15625 in binary is 0.00101 * 20 = 1.01 * 2-3 (normalized form)
Sign bit is 1 as sign is negative. 
Exponent field is –3 + 127 = 124 = 0x7C = 01111100.
Significand field is 01000000000000000000000 (23 bits), the leading “1”

is dropped as this is understood in normalized form.
Complete number is 10111110001000000000000000000000 =

0xBE200000.
15. Assume the numbers being compared are a and b.

A. If a sign bit == b sign bit, go to step C; else go to step B.
B. If a sign bit < b sign bit, then a > b (a positive, b negative); else a < 

b (a negative, b positive) finished.
C. If a exponent field == b exponent field, go to step E; else go to step 

D.
D. If a exponent field < b exponent field, then a < b else a > b, 

finished.
E. If a significand field != b significand field, go to step F; else 

numbers are equal and return.
F. If a significand field < b significand field, then a < b else a > b, 

finished.
17. The ten’s complement of 0x58 is 0x99 - 0x58 + 1 = 0x42.
19. Listing 7.4 implements a divide algorithm for a 16-bit dividend and an 8-

bit divisor, and returns an 8-bit quotient and 8-bit remainder. The first
step of Table 7.9 divides the number by 10 (0x0A). The algorithm of List-
ing 7.4 overflows if the 8-bit divisor is greater than or equal to the MSByte
of the 16-bit dividend, so the largest number that can be converted must be
less than or equal to 0x09FF = 2559.

I.8 CHAPTER 8

1. Your answers may vary depending on the PICC-18 compiler version; this
answer was obtained with PICC-18 V8.35PL2. The map file contains: 
_main          text   000058   (location 0x0058 in program memory).

_a_delay       text   00001C   (location 0x001C in program memory).
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The variable i is not in the map file because it is an auto variable. Open
a program memory window within MPLAB and look at location a_delay()
(location 0x001C) for some code that initializes a data location to 200
(0x00ca). You should find the following code fragment a few locations
after the start of the a_delay() function:

movlw   0xc8           ;w = 0xc8

movwf   0xff6,ACCESS   ;initialize low byte of i to 0xc8

clrf    0xff7, ACCESS  ;initialize high byte of i to 0x00

So, variable int i is located in BANK 0 (because of the ACCESS bit)
using locations 0xff6 (LSByte) and 0xff7 (MSByte). This is actually in the
Special Function Registers (see Appendix A, “PIC18Fxx2 Architecture, In-
struction Set, Register Summary,” for a memory map of the Special Func-
tion Registers) with the TBLPTRL register used for the i LSByte and the
TBLPTRU register used for the i MSByte. This is possible because this sim-
ple program does not use these SFRs. This is an interesting compiler opti-
mization; the compiler takes advantage of unused SFRs, thus saving RAM
space. If you compile with the “–a200” flag to produce code compatible
with the serial bootloader, then main() and a_delay() are shifted by
0x0200:

_main          text   000258   (location 0x0258 in program memory).

_a_delay       text   00021C   (location 0x021C in program memory).

However, the location of variable i is unchanged.
3. From the OUTPUT window of MPLAB with full optimization (global op-

timization level 9) and PICC-18 V8.35PL2:

Total ROM used  80 bytes (0.5%)

Total RAM used  0 bytes (0.0%)   Near RAM used 0 bytes (0.0%)

No RAM is used because the auto variables in the a_delay() function
are allocated to unused SFRs. From the OUTPUT window of MPLAB with
optimization turn off and PICC-18 V8.35PL2:

Total ROM used   84 bytes (0.5%)

Total RAM used    4 bytes (0.5%)   Near RAM used 0 bytes (0.0%)

Observe that 4 bytes of RAM are now needed to hold the auto variables
int i,k of function a_delay().

5. This requires [(x*FOSC/12MHz)] < 256 as _dcnt is a char variable, so x <
[(256*12 MHz)/FOSC], or x < [(256*12)/30] < 102.4. If x = 102, then
[(x*30)/12] = 255, the maximum value for _dcnt.
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7. See Figure I.6.

9. See Figure I.7.
11. Between 4.5 mA and 5 mA.
13.

TRISB4 = 0; // RB4 output

TRISB6 = 1; //RB6 input

while(1) {

//toggle LED

if (LB4) RB4 = 0; else RB4 = 1;

if (!RB6) {

// switch is pushed, so delay for 1/2 second, every two times

through

// loop LED blinks so 1/2 second delay is 1 second blink

DelayMs(200); DelayMs(200); DelayMs(100); 

} else {

// switch is not pushed, delay for 1/4 second, every two

times through

// loop LED blinks so 1/4 second delay is 1/2 second blink

DelayMs(200); DelayMs(50);

}//end if

}// end while

15. This code does not include delays for switch debouncing.
TRISB = 0xF0;   //RB7-RB4 inputs, RB3:RB0 outputs

PORTB = 0;      // all LEDs are off

while(1) {

while(RB4); while(!RB4); // wait for press/release

RB0 =1; RB3 = 0;   //turn on LED0, turn off LED3

while(RB4);  while(!RB4); // wait for press/release

RB1 =1; RB0 = 0;   //turn on LED1, turn off LED0

while(RB4);  while(!RB4); // wait for press/release

RB2 =1; RB1 = 0;   //turn on LED2, turn off LED1

while(RB4);  while(!RB4); // wait for press/release

RB3 =1; RB2 = 0;   //turn on LED3, turn off LED2

}

 Vdd

 RB?

Input
Switch,
high true.

 PIC

FIGURE I.6 High true switch (problem 8.7).



17. Current varies linearly with frequency, so expected current draw would be
16 mA/4 ~ 4 mA.

19. Reading LA4 returns the last thing written to LA4, while reading RB4 reads
the external pin value. A complication is that RA4 is an open-drain output;
it can only pull low. After RA4 = 0 is done, the output pin is pulled low, so
reading RA4 returns a “0”. Reading LA4 also returns a “0”. After RA4 = 1 is
done, the output pin is now floating, so reading RA4 returns an unpre-
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persistent char reset_cnt;

main(void){
 int i;
 char c;

 serial_init(95,1); // 19200 in HSPLL mode, crystal = 7.3728 MHz
 pcrlf(); 
 if (POR == 0){
   printf("Power-on reset has occurred."); pcrlf();
   POR = 1;  // setting to bit to 1 means that will 
             // remain a '1' for other reset types
   reset_cnt = 0;
 }
 if (TO == 0) {
   SWDTEN = 0; // disable watchdog timer
   printf("Watchdog timer reset has occurred."); pcrlf();
 }
 if (RI == 0) {
   printf("Software reset has occurred!"); pcrlf(); RI = 1;
 }
 reset_cnt;
 printf("Reset cnt is: %d",i);
 pcrlf();
 reset_cnt++;
 while(1) {
   printf("'1' to enable watchdog timer"); pcrlf();
   printf("'2' for sleep mode");  pcrlf();
   printf("'3 ' for both watchdog timer and sleep mode");  pcrlf();
   printf("'4 ' software reset ");  pcrlf();
   printf("Anything else does nothing, enter keypress: ");
   c = getch();
   putch(c);
   pcrlf();
   if (c == '1') SWDTEN = 1;  // enable watchdog timer
   else if (c == '2') asm("sleep");
   else if (c == '3') {
     SWDTEN = 1;     // enable watchdog timer
     asm("sleep");
   }
   else if (c == '4') {
     asm("reset");
   }

Detects software reset.
Set RI bit back to a “1”.

 New choice for
software reset.

Do software reset

FIGURE I.7 Detecting a software reset (problem 8.9).



dictable value, it could either read as a “0” or as a “1”. Reading LA4 will re-
turn a “1”, as that is the content of the LA4 latch.

I.9 CHAPTER 9 

1. Data transfers happen at a 4 MHz rate (every 2nd clock edge), so 4 bytes
(32 bits) are transferred every 0.25 μs. Bandwidth is 4 bytes/0.25 μs =
16 MB/second.

3. 1/19200  = 5.21 e-5 = 52.1 μs
5. One bit time at 115,200 baud is 1/115,200 = 8.68 μs. Transmission time for

one 8-bit datum is 8 + 1 stop + 1 start = 10 bit times, so 10 * 8.68

us = 86.8 μs/byte. Bandwidth is bytes/second, so 1/(86.6 μs/byte) =
11,520 bytes/second = 11,520 B/s.

7. See Figure I.8.
9. The 7-bit value 0x38 (0b111000) has an odd number of 1s, so the parity bit

value must be “1” to make even parity.
11. For each bit, ±5 clocks is ±5/16 * 100% = ±31.25% error tolerance for 1

bit. Over 16 data + 1 stop + 1 stop bit, the error tolerance becomes
±31.25%/18 = 1.74 %.

13. With a 6 MHz FOSC, supported baud rate range from the listed ranges are
4800 to 38400 (above 38400 error become > 3%).

15. A framing error occurs when a stop bit is detected as a “0” bit. If the
sender’s baud rate is less than the receiver’s baud rate, the sender will still
be sending “1”s, “0”s when the receiver is expecting a stop bit. Therefore, a
framing error is more likely to occur when the sender baud rate is less than
the receiver baud rate. If the sender has a higher baud rate than the re-
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0x45 = 0b01000101 sent as biphase data

0 1 0start
bit

MSb

0 0 1 0 1

LSb

FIGURE I.8 Asynchronous serial waveform for 0x38 (problem 9.7).



ceiver, a framing occurs if the sender begins sending a second data frame
when the receiver is expecting a stop bit.

17. RS232 signaling values are –3 V to –25 V(logic 1) and +3 V to +25 V for
logic 0. The large disparity between a “0” and a “1” provides for greater
noise immunity, and hence greater reliability. For the MAX202, minimum
output swing is ±5 V. The minimum receiver low threshold is 0.8 V,
which gives abs(0.8 V – (– 5 V)) = 5.8 V low threshold noise margin.
The maximum receiver high threshold is 2.4 V, which gives 5 V – 2.4 V
= 2.6 V high threshold noise margin. By contrast, typical CMOS logic
noise margins for a 5 V supply are 0.4 V (low threshold) and 1.1 V (high
threshold).

19. You would need to reverse the order of the entries in the search table to
search highest to lowest. A problem arises in that a framing error will prob-
ably occur for the higher baud rates, as the sender is still sending data bits
when the receiver is expecting a stop bit. This means that when a FERR oc-
curs, you do not start back to the beginning of the baud rate array, but just
reset the USART module and go to the next lowest baud rate. If the end of
the baud rate array is reached and no match is found, loop back to the be-
ginning of the array and keep trying until a carriage return character is
found. Because of the FERR problems with the higher baud rates, this ap-
proach will probably take longer to find the correct baud rate than the
search from low to high baud rates.

I.10 CHAPTER 10

1. Both the retfie and return instructions pop a return address from the re-
turn address stack, and restore BSR, W, and STATUS from the shadow reg-
isters if the s bit in the return/retfie instruction word is a “1”. However,
retfie performs one additional action. Recall that when an interrupt oc-
curs, the GIE bit is cleared (GIE = 0) by the interrupt hardware so that all
interrupts are disabled when ISR is entered. As part of its execution, the
retfie instruction sets GIE = 1, thus re-enabling interrupts when the
foreground code is re-entered. 

3. Gate g1 disables priorities if IPEN = 0 by passing any low priority inter-
rupt to the high priority gating logic. If IPEN = 1, the output of gate g1 is
always zero, which has no effect on its destination OR gate. 

5. Gate g3 prevents a low priority interrupt from being generated if a high pri-
ority interrupt is pending.

644 Microprocessors



7. One possible method is shown in Listing I.1.

LISTING I.1 Problem 10.7.

interrupt isr (){

RB3 = 0;

INT0IF = 0;

}

main () {

TRISB3 = 0; RB3=0;  // RB3 is output, init low, connected to

INT0

INTEDG0 = 1;        // INT0 rising edge triggered

//enable INT0 interrupt

INT0IF=0;INT0IE=1;IPEN=0;PEIE=1;GIE=1;

while(1) {

RB3 = 1;

}

}Sß

The RB3 port is configured as an output that is initially low and is assumed
connected to the INT0 interrupt input, which is enabled for a rising edge
interrupt. The while(1){} loop continually asserts RB3 high. The first rising
edge on INT0 triggers the ISR, which resets RB3 low. When the foreground
code is resumed, RB3 is immediately re-asserted high. The code ping-
pongs between the while(1){} foreground loop and the ISR, creating a
square wave on the RB3 output. The high pulse width of the square wave
is equal to the ISR latency minus the instruction execution time it takes to
clear the RB3 output to zero within the ISR.

9. If an interrupt occurs while the software delay loop is active, the execution
time spent in the ISR is added to the software delay loop, making the delay
longer than intended. This can be prevented by disabling all interrupts via
the statement GIE = 0 before entering the software delay loop, but then
you run the risk of delaying the servicing of a pending interrupt too long.

11. The change of IPEN = 0 disabled priorities, so all interrupts are treated as
high priority interrupts. The falling edge of the button press causes both
INT1F and INT2F flags to be set. The high priority interrupt service rou-
tine is executed since all interrupts now vector to the high priority ISR.
Both flags are set, so statement A, then B is executed.

13. INT 1 is now rising edge triggered (and a high priority interrupt). The
falling edge causes INT2IF to be set, so the low priority ISR is executed as
INT2 is a low priority interrupt, which causes statement C to be executed.
The ISR exits, and a pushbutton release causes a rising edge to occur—this sets
INT1IF, causing the high priority ISR to execute, and statement B is executed.

15. Both interrupts are now low priority interrupts. The falling edge of the
button press causes both INT1F and INT2F flags to be set and triggers the
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execution of the low priority ISR. Both flags are set, so statement C, then D
is executed.

17. The change INT2IE = 0 disables the INT2 interrupt, but does not prevent
the INT2IF flag from being set. The falling edge sets the INT1IF flag as well,
triggering the high priority ISR. Because both flags are set, statement A is
executed, then statement B. If statement B is to be executed only if the
INT2 interrupt is enabled, change if (INT2IF) to if (INT2IF && INT2IE).

19. All interrupts are disabled when GIE = 0, so the ISRs are not invoked and
none of the target statements is executed.

21. Timer2 interrupt period = (PR2+1) * (4/FOSC) * PRE * POST
(1/2 kHz) = (PR2+1) *(4/10 MHz) * PRE *POST 
PR2 = [(10MHz/4) / (2 KHZ * PRE * POST) ] – 1;

Choose PRE = 4, other choices are possible. Then PR2 = 312.5/POST –1.
If POST = 1, PR2 = 311 (too large, > 255); if POST =2, PR2 ~ 155.
Use PRE = 4, POST = 2, PR2 = 155.

23. We need a ratio where: 
((PR2new+1) * PREnew * POSTnew) / ((PR2old+1) * PREold *
POSTold) = 10.
If we set PREnew = 16, keep POSTnew = POSTold, we have:

((PR2new+1) * 16 * 5)/(64 * 4 * 5) = 10
PR2new+1 = (10*64*4)/16  = 160
PR2new = 160 – 1 = 159.
Thus, the new values are POSTnew=5, PREnew = 16, PR2new = 159.

25. Timer2 Interrupt period max = TOSC * 4 * PREmax * POSTmax * 8-bit
rollover

= TOSC * 4 * 16 * 16 * 256 = 1/25MHz * 4 * 256 * 256 ~ 10.5 ms.
27. A solution is shown only for state S0; the other states are handled similarly.

This is not a very efficient solution in terms of code requirements, but it is
clear.

case S0:

if (last_state == S1) {

if (count != max) count++;

} else {

if (count != min) count--;

}

break;

I.11 CHAPTER 11

1. The clock is idle low, so CKP = 0. Data is stable on the rising clock edge,
so CKE = 1.

3. The wiper cannot be read.
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5. The MAX5408 supports 32 wiper positions.
7. If zero crossing is enabled, after a “change wiper position” command is ex-

ecuted the potentiometer will wait until the voltage across the potentiome-
ter is zero before changing the wiper. This reduces clicks and pops in an
audio application. The potentiometer has an internal timer that will time-
out after 50 ms when waiting for the zero crossing condition.

9. For the AT25256A, the total bit capacity is 256K with an organization of
32K x 8. 

11. The maximum SCK frequency is 20 MHz @ 5 V.
13. Bit 0 of the STATUS register is a “1” when a write is in progress; use a “read

status register” command to return the contents of the STATUS register.
15. The following commands will set the Intersil X9221A wiper position to the

value in wpos. This device is unusual in that the LSb of the I2C address is
not a read/write# bit.

i2c_start();     //                  A3 A2 A1 A0

i2c_put(0x5F);   // i2c address  0101 1 1  1   1 , 

i2c_put(0xA0);   // write command for altering wiper counter reg #0

i2c_put(wpos);   // write wiper position

i2c_stop();      // halt transaction

17. The maximum SCL clock frequency for the Intersil X9221A is 100 kHz.
19. The maximum SCL clock frequency for the Philips PCF8598C-2 is 100 kHz.
21. The device will send a NAK if addressed while a write is in progress.
23. For FOSC = 20 MHz, each instruction takes 4/20 MHz = 0.2 μs. An

I2C bit time is 1/400 kHz = 2.5 μs. The bytes sent are the I2C address,
MSB EEPROM address, LSB EEPROM address, and 64 data bytes for a
total of 67 bytes. Total bit times are 67*9 +start+stop = 605 bit times.
Each byte is 9 bit times because of the acknowledge bit. The estimated time
for data transfer is:
[instruction overhead] + [I2C transmission time]
[67 bytes * 20 instructions * instruction time] + [605 bits * I2C bit time]
[67 * 20 * 0.2 μs] + [605 * 2.5 μs] = 1780.5 μs.

25. SSPADD =[FOSC/(4*400 kHz)] – 1 = [30E6/(4*400e3)] – 1 = 17.75 = 18.

I.12 CHAPTER 12

1. 211 = 2048, 212 = 4096 which is > 4000, so 12 bits are needed.
3. 80 minutes * 60 = 4800 seconds, and 16 bits = 2 bytes. 

Each track is 2 bytes * 44.1E3 * 4800 = 423,360,000 for each track.
Two tracks = 2 * 423,360,000 = 846, 720, 000 bytes ~ 807 MB  (1 MB =
220).
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5. Each color has 28 combinations, so 28 * 28 * 28 = 224 ~ 16.8 Million
(16,777,216).

7. Step 1: Guess is “1000”, so Vref = 8/16 * 4 V = 2 V. Vin of 1.8 V < 2 V, so
D[3] = 0.
Step 2: Guess is “0100”, so Vref = 4/16 * 4 V = 1 V. Vin of 1.8 V > 1 V, so
D[2] = 1.
Step 3: Guess is “0110”, so Vref = 6/16 * 4 V = 1.5 V. Vin of 1.8 V > 1.5 V,
so D[1] = 1.
Step 4: Guess is “0111”, so Vref = 7/16 * 4 V = 1.75 V. Vin of 1.8 V > 1.75
V, so D[0] = 1.
The final 4-bit conversion returns “0111”.

9. The reference voltages for the seven comparators from the resistor string
are 7/8*Vref, 6/8*Vref, 5/8*Vref, 4/8*Vref, 3/8*Vref, 2/8*Vref, and
1/8*Vref. The input voltage of 2.7 V is between 6/8*Vref = 3.0 V and
5/8*Vref = 2.5 V, so the outputs of the comparators are “0011111”.

11. The PIC18 has 10 bits of resolution, so: 
1 LSb = 4.096 V/210 = 4.096 V/1024 = 0.004 V = 4 mV. 
±0.1% * 4.096 V = 0.004096 V,  so  4.096 mV / 4 mV * 100 % = 102.4 % of
a LSb.
This means that only 9 bits of the PIC18 10-bit result should be used, as the
voltage reference is not accurate enough for 10 bits.

13. 0.449 V / 5 V * 256 ~ 23 = 0x17.    3.91 V/ 5 V * 256 ~ 200 = 0xC8.
15. 0x7F = 127; 127/256 * 5 V =  2.48 V; 0x4B = 75; 75/256 * 5 V = 1.46 V;

0xCB = 203; 203/256 * 5 V = 3.96 V.
17. The principle advantage of a flash ADC over a successive approximation

ADC is speed. The principle disadvantage is that the number of transistors
(and hence silicon area) doubles for a flash ADC with each added bit of
precision.

19. The PIC18 has 10-bits of resolution, so:
1 LSb = 5 V/210 = 5 V/1024 ~ 0.00488 V = 4.88 mV ~ 5 mV.
This provides 1/2 degree ºF resolution, if one degree ºF is 10 mV.

21. We need 120 * 4 distinct codes; or 480 codes. (the “*4” is needed because
of the 0.25ºF resolution for each degree). For 480 codes, we need 9 bits as
29 = 512, which is greater than 480.

23. ADC clock choices: 
FOSC/16 = 750 kHz, is a period of 1.3 μs < 1.6 μs.
FOSC/32 = 375 kHz, is a period of 2.7 μs > 1.6 μs; use this choice as it is the
fastest clock that meets the constraint.
Configuration code is:
// AD Configuration, ADCON0 register

ADCS2 = 0;ADCS1 = 1; ADCS0 = 0;  //FOSC/32

ADON = 1;   //A/D turned on
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ADFM = 0;   // left justified

// AN3 is Vref+, VSS is Vref-, AN1, AN0 are analog inputs

PCFG3 = 0; PCFG2 = 0; PCFG1 = 0; PCFG0 = 1;

I.13 CHAPTER 13

1. Timer1 clock period is 1/(40/4 MHz) = 1.0e – 7 seconds = 0.1 μs.
1 Timer1 rollover =  0.1 μs * 2 (prescale) * 216 (16-bit timer) = 0.1 μs * 2
* 65536 = 13,107.2 μs.

3. Timer0 can have a maximum prescale value of 256, and can operate as a
16-bit timer. So,
Timer0 Clock period is 1/(20/4 MHz) = 2.0e-7 seconds = 0.2 μs.
1 Timer0 rollover = 0.2 μs * 256 (prescale) * 216 (16-bit timer) 
= 0.2 μs * 256 * 65536 = 3,355,443.2 μs. ~ 3.4 s

5. Timer1 Clock period is 1/(30/4 MHz) = 1.3e – 7 seconds = 0.13 μs.
1 Timer1 tic = 0.13 μs * 8 (prescale) = 1.07 μs; so 5 ms/(1.07 μs) =
4687.5 tics. 
Thus, 5 ms contains approximately 4688 Timer1 tics.

7. The statement delta = delta << 16 is used to implement the operation delta
* 216. The delta variable is type long, which means that it is 4 bytes.  An al-
ternate implementation is to simply move the two low bytes of delta to the
two high bytes of delta, and to zero the two low bytes. This can be done via
the following code, which could be a more efficient implementation if the
compiler does not recognize this optimization:
char *ptr;

ptr = &delta;       //get a pointer to delta

*(ptr+2) = *ptr;    // assume little endian, copy LSByte to byte[2]

*(ptr+3) = *(ptr+1) // copy byte[1] to MSByte

*ptr = 0;           // zero the LSByte

*(ptr+1) = 0;       // zero the byte[1]

9. See the comments in the code of Listing I.2 for details on this solution.

LISTING I.2 Problem 13.9.

// Need a period 2 kHz Timer1 interrupt using compare mode.

// Assume a 25 MHZ FOSC, use prescale = 1.

// Each Timer1 tic = 1/(25MHz/4) = 0.16 us

// 1/(2 kHz) = 500 us, so   500 us/0.16 us = 3125 Timer1 tics

// Pulsewidth high = 0.25 * 3125 = 781 Timer1 tics

// Pulsewidth low = 3125 - 781 = 2344 Timer1 tics

#define PWH  781  // high pulse width in timer tics

#define PWL 2344 // low pulse width in timer tics
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volatile char out_state; // tracks if output is high or low

unsigned int match;

// uses Timer1, compare & toggle mode to generate sq wave

void interrupt timer_isr(void){

if (CCP1IF) {

if (!out_state) {

out_state = 1;  // next is high pulse width

match = match + PWH;  // add pulse width high tics

} else {

out_state = 0; // next is low pulse width

match = match + PWL;  // add pulse width low tics

}

//change match register, write MSB first to avoid false match

CCPR1H = match >> 8; 

CCPR1L = match & 0xFF;

CCP1IF = 0;

}

}

main(void){

// initialize timer 1

T1CKPS1 = 0; T1CKPS0 = 0;// prescale by 1

// use internal clock, 16 bit read mode

T1OSCEN = 0;  TMR1CS = 0;  T1SYNC = 0;  T1RD16 = 1;

bitclr(TRISC,2);// set RC2/CCP1 as output

// initialize CCPR1 for compare

match = PWL;  //low pulse width initially

CCPR1 = match;

CCP1CON = 0x00; // Clear CCP1CON to set CCP1 low initially

out_state = 0;  //track output state

CCP1CON = 0x02; // toggle mode

// interrupt enable

CCP1IF = 0;   CCP1IE = 1;

TMR1ON = 1;   // enable timer 1

IPEN = 0;   PEIE = 1;  GIE = 1;

while(1);  // interrupt does all work

// of generating sqwave

}

11. See Figure I.9.
13. See Figure I.10.
15. Timer2 PWM period  = (PR2+1) * (4/FOSC) * PRE    (POST is NOT used

for PWM period)
(1/3 kHz) = (PR2+1) *(4/20 MHz) * PRE 
PR2 = [(20 MHz/4) / (3 KHZ * PRE) ] – 1;
For PRE = 1, PR2 = 1666 ( > 255, too large)
For PRE = 4, PR2 = 416 ( > 255, too large)
For PRE = 16, PR2 = 103, so use PRE=16, PR2 = 103.
For 30% duty cycle, CCPR1 = 0.3 * (103 +1) ~ 31.
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17. See the comments in the code of Listing I.3 for details on this solution.

LISTING I.3 Problem 13.17.

char print_flag;

int edges, tmr1_oflow;

interrupt isr() {

if (TMR1IF) {

TMR1IF = 0;   //clear iflag

tmr1_oflow++; // track overflows to detect idle condition

if (tmr1_oflow > 50) {

// input is idle, so set print_flag semaphore, finished

print_flag = 1;

TMR1IE = 0; CCP1IE = 0; //disable interrupts

}

}

if (CCP1IF) { // edge found!

CCP1IF = 0; // clear iflag

edges++;  //found an edge, this counter tracks number of edges

tmr1_oflow = 0; //reset

}

} //end isr

main (){

0x45 = 0b01000101 sent as biphase data

0 1 0start
bit

MSb

0 0 1 0 1

LSb

FIGURE I.9 Biphase encoding for 0x45 (problem 13.11).

0x45 = 0b01000101 sent as space-width encoded data

0 1start bit

MSb

0

LSb

0 0 1 0 1

FIGURE I.10 Space-width encoding for 0x45 (problem 13.13).



// assume TMR1, serial port configured, code not shown

CCP1CON = 0x04;  // look for falling edges

while(1) {

// clear flags

print_flag = 0; edges = 0; tmr1_oflow = 0;

printf(“Hit any key.”); pcrlf();

getch();    //wait for use to hit key

// enable interrupts

TMR1IF = 0; TMR1IE = 1; CCP1IF=0; CCP1IE = 1;

IPEN = 0;  PIE1 = 1; GIE = 1;

while(!print_flag);  // wait for idle

printf(“Edge count is %d”,edges);

pcrlf();

}// end while

}// end main

19. See the comments in the code of Listing I.4 for details on this solution. The
Timer3 interrupt and compare mode is used to generate a periodic 10 kHz
interrupt. The ISR does all of the work of generating the RB3, RB4 PWM
signals. The variable dc_rb3_cnt (dc_rb4_cnt) keeps track of the period of
the RB3 (RB4) PWM signal; when this reaches a value of 10 the RB3 (RB4)
output is set to “1”. The variable dc_rb3 (dc_rb4) sets the high pulse width
(and thus the duty cycle) of the PWM signals; when the dc_rb3_cnt3
(dc_rb4_cnt) variable is equal to dc_rb3 (dc_rb4_cnt) variable, the RB3
(RB4) output is reset to “0”. If the duty cycle variable dc_rb3 (dc_rb4) is 0,
the RB3 (RB4) output is never set high.

LISTING I.4 Problem 13.19.

// Need a period 10 kHz Timer3 interrupt using compare mode.

// Assume a 20 MHZ FOSC, use prescale = 1.

// Each Timer3 tic = 1/(20MHz/4) = 0.2 us

// 1/10 kHz = 100 us, so   100 us/0.2 us = 500 Timer3 tics

#define INTPERIOD 500

int dc_rb3, dc_rb4; // sets the duty cycle

char dc_rb3_cnt,dc_rb4_cnt; //tracks the period

unsigned int match;

void interrupt isr(void){

if (CCP2IF) {

// change compare register to next match

match = match + INTPERIOD;

CCPR2H = match >> 8;

CCPR2L = match & 0xFF;

CCP2IF = 0;

//update the RB3, RB4 outputs

if (dc_rb3 != 0) {

dc_rb3_cnt++;
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// check if high pulse width is finished

if (dc_rb3_cnt == dc_rb3) RB3 = 0;

if (dc_rb3_cnt == 10) { // period is finished

dc_rb3_cnt = 0; RB3 = 1;

}

}//end if(dc_rb3...

if (dc_rb4 != 0) {

dc_rb4_cnt++;

// check if high pulse width is finished

if (dc_rb4_cnt == dc_rb4) RB4 = 0;

if (dc_rb4_cnt == 10) {// period is finished

dc_rb4_cnt = 0; RB4 = 0;

}

}// end if(dc_rb4...

}// end if(CCP2IF)

}//end isr    main(void){

serial_init(95,1);   // 19200 in HSPLL mode, crystal = 7.3728 MHz

T3CKPS1 = 0; T3CKPS0 = 0; // initialize timer 3,  prescale by 1

// disable osc, use internal clock, use 16-bit update mode

T1OSCEN = 0;  TMR3CS = 0; T3RD16 = 1;

T3CCP2 = 1;   // use Timer3 as source for compare registers

// RB4, RB3 are outputs

TRISB4 = 0; TRISB3 = 0;

RB4 = 0; RB3 = 0;

// initialize CCPR2 for compare

match = INTPERIOD;

CCPR2 = match;

CCP2CON = 0x0A; // compare mode, CCP2IF interrupt only

// prompt user for duty cycle

printf(“Enter RB3 duty cycle (0-10)”);pcrlf();

scanf(“%d”,&dc_rb3);

printf(“Enter RB4 duty cycle (0-10)”);pcrlf();

scanf(“%d”,&dc_rb4);

if (dc_rb3) RB3 = 1;  // initialize high if non-zero duty cycle

if (dc_rb4) RB4 = 1;  // initialize high if non-zero duty cycle

// enable interrupts

CCP2IF = 0; CCP2IE = 1;  IPEN = 0;   PEIE = 1;  GIE = 1;

TMR3ON = 1;   // enable timer 3

while(1);    // interrupt does all work of generating PWM signals
}
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655

T
his book’s companion CD-ROM has the following directories:

bootldr/: Contains the Jolt/Colt serial bootloader self-installing executables
(Appendix F, “The Jolt/Colt Serial Bootloaders”).

hitech/: Contains the self-installing HI-TECH PICC-18 C Compiler for
PIC18F242 (Appendix C, “HI-TECH PICC-18 C Compiler Demo for the
PIC18F242”).

figures/chap??: Contains the book figures as .png files separated by chapters.

code/chap??: Contains assembly language and C code source files from book
examples separated by chapters. Each file has the figure or listing number that
features this example.

code/common: Contains the #include C code files needed by the book 
examples.

code/labs: Contains all of the files referenced by the lab exercises in Appendix I.

J.1 GENERAL SYSTEM REQUIREMENTS

Any personal computer capable of running Windows 2000/XP can run the software
included on the companion CD-ROM.

1. Colt Serial Bootloader (V 0.5, Martin Dubuc author, http://mdubuc.freeshell.org/
Colt/). This is a serial bootloader for the PICmicro family that includes a
PC client written in Visual C++ and PICmicro firmware (hex file pro-

About the CD-ROM

Appendix

J

http://mdubuc.freeshell.org/Colt/
http://mdubuc.freeshell.org/Colt/


vided). Once a PICmicro is programmed with the included firmware, the
PIC can be programmed by the PC client through the PC serial port, or
with a USB-to-serial port adapter. System requirements are 460 KB of free
disk space, Windows XP, and either a serial port or a USB-to-serial adapter
(see Appendix F for installation details).

2. Jolt Serial Bootloader (V 1.1, Martin Dubuc author, http:// mdubuc.freeshell.org/
Jolt/). This is a serial bootloader for the PICmicro family that includes a PC
client written in Java and PICmicro firmware (hex file provided). Once a
PICmicro is programmed with the included firmware, the PIC can be pro-
grammed by the PC client through the PC serial port, or with a USB-to-
serial port adapter. Jolt itself requires 300 KB of free disk space, Windows
2000/XP, and either a serial port or a USB-to-serial adapter. Jolt also re-
quires the installation of the Java Runtime Environment (JRE Version 5.0
or later) from Sun Microsystems (http:// java.sun.com), which requires 100
MB of free disk space, and Windows 2000/XP (see Appendix F for installa-
tion details).
Both Jolt and Colt are provided to give the user flexibility in choosing a
preferred bootloader environment. The differences between Jolt and Colt
are explained in Appendix F.

3. HI-TECH PICC-18 C Compiler (HI-TECH PICC-18 Compiler Special
Demo Version 8.35 PL2, HI-TECH Software, www.htsoft.com). System re-
quirements are 13 MB of free disk space, and Windows 2000/XP.  This is a
C compiler demo from HI-TECH software that has all the capabilities of
the full featured compiler except for the limitations noted in Appendix C.
See Appendix C for installation details.
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fixed-point and saturating, 188–192
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bit operations, 78–83
bit stuffing, destuffing, 522–523
bit variables and special function registers,

212–214
BIT_CAPTURE, BITCHANGE states, 439
bits

configuration, 221–222
described, 2
least, most significant bit (LSb, MSb),

3, 260
parity, 260
status, 264

bitwise complements, 11
bitwise logical operations, 78–83, 106–107
block diagrams

finite state machines (fig.), 35
PIC18Fxx2 (fig.), 538
watchdog timer (fig.), 226

BLOCKAGE_THRESHOLD, 500–501
bnz instruction, 110–111



book, this
for hobbyists, xxi
CD-ROM. See CD-ROM
using in academic environment,

xvii–xxi
Boolean algebra, 10–13
Booth’s algorithm, 181–182
branches

described, 40
signed, 125

branch instructions
described, 87–88
encoding, 127–128

BSR (Bank Select Register), 56, 59, 70, 83,
145

buffer overruns, 291
buffers

CMOS (fig.), 15
double buffering for interrupt-driven

writes, 364–366
first-in, first-out (FIFO), 265
trace, 320
two-transistors, 14–15

building blocks
adder/subtractor, 120–121
combinational, 17–20
sequential, 25–27

bulk USB transactions, 525
bus arbitration in I2C bus, 516–518
busses

Controller Area Network (CAN),
518–523

external memory, 511
hardware design for number sequenc-

ing program, 43
I2C, 345–348
Universal Serial Bus (USB), 523–527

C
C programming language

accessing table data from program
memory, 160–162

arrays and pointers, 146–151
bitwise complements, 11
C++ programmer notes, 559–561
code operations on 16-bit registers,

413–415
conditional tests in, 85–94
formatted IO, 557–559
functions, translating to subroutine in

PIC18, 142
machine code listing (listing), 69–70, 71
multiplication, implementing, 176–183
number sequencing task, 39–40
programs in program, compilation,

64–66
shift operations, 9–10
switch statements, 89–90

C programs
data transfer, arithmetic operations,

64–66
machine code listing for simple (list-

ing), 69
machine code listing, variables in bank

1 (listing), 71
MPLAB assembler source code for

simple (listing), 67–68
and PICC-18 C compiler, 553

cabling, RS232 standard, 270
cache controllers, 529

cache memory, 508
call graphs, 214
call instruction, machine code format for

(fig.), 141
call/return instructions, 136–141
caller, callee, subroutines, 134
CAN (Controller Area Network), 259,

518–523
capacitors

decoupling, 218
described, 618–619
pF included in parts kit, 598–599

capstone projects
audio record/playback system, 456–465
home monitoring system, 466–468
suggested project modifications,

505–506
capture mode

pulse width measurement using,
422–428

using for frequency measurement,
447–450

using for infrared decoding, 433–441
Carrier Sense Multiple Access/Collision

Detection (CSMA/CD) arbitration
(fig.), 516–518

Carry (C) flag, 84–85, 112, 119–120,
123–125

case blocks in switch statements, 90–91
CD-ROM

about, 655–656
HI-TECH software PICC-18 C com-

piler demo, 553–556
Microchip MPLAB integrated design

environment, 549
central processing unit (CPU), 52
channels

asynchronous data rate, 261
parallel port IO, basics, 254–259

char data type, unsigned, 65, 104
character data, encoding, 27–29
checklist, hardware debugging, 595–597
chip select signals, 509
chips

described, 52
transceiver, 519

chipsets described, 53
circuits

building with combinational blocks,
17–20

integrated, 52
introduction to, 613–619
sequential logic, 21–23

circular buffers, 291
clearing bits, using BCF (listing), 81
clock cycles, SPM vs. FMS (table), 46
clock signal

clock generation for PIC18, 219
and instruction execution, 73
in sequential logic circuit, 21–23
synchronous serial IO, 257–259

clock source for Timer1/Timer3, 420
CMOS (Complementary Metal Oxide

Semiconductor)
and DeMorgan’s Law, 12
logic gate implementations, 13–16
power consumption, 227–228

code optimization, 144
Colt serial bootloader, 601–611, 655–656
command sets, DS1621 Digital Thermome-

ter (table), 471

common-mode noise rejection, 519–520
compare mode, Timer1/Timer3, 428–432
comparisons

unsigned literal, 93–94
unsigned, using cpfseq, cpfsgt, cpfslt,

92–93
unsigned vs. signed (fig.), 124

Complementary Metal Oxide Semiconduc-
tor. See CMOS

compilers
described, 41
dynamic vs. static allocation, 144
HI-TECH software PICC-18 C com-

piler, 249, 553–556
PICC-18 runtime code, 214–215

compiling programs generally, 65
complements

in BCD arithmetic, 197–199
bitwise, 11
logical vs. bitwise operators, 86
and output, input, 10
and shift operations, 9–10
in signed number representation,

114–118
computers

and number sequencing computers, 47
and stored program machines, 39

conditional inputs in ASM, 34
conditional tests

in C, 85–87
equality, inequality, 89–90
zero, nonzero, 87–88

conductors, 613
configuration bits

settings, 221–222
in USART hardware system, 264

constants (literals), 59
control instructions, basic arithmetic and,

61–64
control registers/bits for asynchronous

configuration (table), 268
Controller Area Network (CAN)

bus described, 518–523
serial transmission standards, synchro-

nization, 259
controllers

described, 32
implementing as finite state machine,

34–39
implementing as stored program

machine, 39–47
conversion

See also data conversion
analog-to-digital converters (ADCs), 32
ASCII data, 199–204
binary-to-decimal, hex-to-decimal, 5–6
digital-to-analog, 391–406
converting
8-bit unsigned to 16-bit unsigned, 118
binary to ASCII-decimal representa-

tion, 200–201
binary to ASCII-hex format, 199–200
fixed-point binary numbers to deci-

mals, 189–190
unsigned decimals to fixed-point

representation, 188–189
upper- to lower-case characters,

156–157
counter ramp ADC, 376–377
counters

described, using, 26
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loop, 96
cpfseq, cpfsgt, cpfslt instructions, 92–93
CPU (central processing unit)

described, 52
and real-time operating systems,

531–532
CSMA/CD (Carrier Sense Multiple Access/

Collision Detection) arbitration (fig.),
516–518

current
measuring, 598
voltage and resistance, 613

current mode signaling, 255
Cypress Semiconductor processors, 530
Cypress Semiconductor SRAM, 509–512

D
D Flip-Flop (DFF), 23–24
DACs. See digital-to-analog converters
Dallas Semiconductor DS32KHz, 421
data

arrays of, 146
binary, 2–5
collisions, 517
conversion. See data conversion
encoding character, 27–29
frames, CAN (fig.), 521
storage. See data storage
transfer. See data transfer

data conversion
analog-to-digital conversion, 373–382
basics of, 372–373
digital-to-analog conversion, 391–406
experimenting with, 585–587
PIC18Fxx2 analog-to-digital converter,

382–391
Data EEPROM memory, 474–478
data memory location interchangeable, 57
data memory organization, PIC18Fxx2,

55–58
data sheet for PIC18Fxx2, 223–225
data stacks, 162, 169
data storage

audio, 457
nonvolatile storage on PIC18Fxx2,

475–482
serial EEEPROM, 338

Data Terminal Equipment (DTE), 270
data transfer

in bulk transaction (fig.), 527
data packets, 525
infrared (IR) transmit and receive,

433–441
I2C bus (fig.), 347
parallel and serial IO, 277–278
PIC18Fxx2, 55–58
serial, synchronous, 254
streaming data, 364–366

data types
C extended precision integers (table),

104
signed, unsigned, 65

datasheet for PIC18Fxx2, 210
debouncing

pushbutton inputs, 492
switch, using timers, 307–309

debugger, MPLAB SIM, 551–552
debugging

hardware problems, 595–597

ISRs (interrupt service routines),
319–321

serial ports, 275–277
Decimal Carry (DC) flag, 84
decimal numbers, 3–4
declarations, variable, 559–561
decoding infrared, 433–441
decoupling capacitors, 218
decrement instructions, 62
defensive programming, 350
DelayMsKill () function, 301–302
DeMorgan’s Law, 12–13, 16
designing

audio record/playback system, 456–459
autonomous robot, 494–504
finite state machines (FSMs), 34–39
hardware for number sequencing

program, 43–46
DFF (D Flip-Flop), 23–24
DFF toggle frequency, 304
differential signaling, 519
digital

logic, 2
multimeter (DMM), 598
processing generally, 32–33
poteniometer, 334–337

digital-to-analog conversion, 391–400
digital-to-analog converters (DACs)

described, 32–33, 406
flash DACs, 393
MAX518, 400–406
a PWM, 445–447
R-2R resistor ladder flash DAC,

395–400
resistor string flash DACs, 393–395

diode circuits, 617–618
Direct Current (DC), 613
directives, assembler, 68
disabled interrupts, 283
disassembly described, 42
display, LCD. See liquid crystal display
division, implementing in PIC18 assembly

language, 183–188
DMM (digital multimeter), 598
do-while {} loop structure, 95
do_config () function, 487–488
do_ircap () function, 437–439
do_settime () function, 488–490
double buffering for interrupt-driven

writes, 364–366
DOUT, output values referenced to states

(table), 37
drain, MOS transistors, 13
DRAM (Dynamic Random Access Mem-

ory)
DS1621 Digital Thermometer, 469–474
dual-inline package (DIP), 216
duplex communications, 255
dynamic memory allocation, 142–144, 169
Dynamic Random Access Memory

(DRAM), 508–510

E
EECON1 registers (table), 476
EEPROM (electrically erasable programma-

ble ROM), 55, 337–344, 356
EIA-RS232 standard, 270–273
electrically erasable programmable ROM

(EEPROM), 55
embedded systems, 209, 494

encoding
binary data, 2–5
branch instructions, 127–128
character data, 27–29
data strobe, 258
IEEE 754 floating-point, 192–195
mechanical shaft rotation, 309–315
opcode, 40–41
signed magnitude, 114–115
space-width, biphase, 434–436

epulse () function, 246
equality, inequality conditional tests

8-bit, 89–90
16-bit, 110–111

events
computing elapsed timer tics between

two, 424–427
waveform, 22

exercises
review questions. See review questions
suggested laboratory, 563–600

extended precision integers, operations,
104–114

external memory interfacing, 508–513

F
falling edge and clock signal, 21
fast call/return mode select bit, 141
fetch/execute actions and stored program

machines, 39
Fibonacci numbers, 166
field programmable gate arrays (FPGAs),

529
FIFO (first-in, first-out) buffers, 265, 291
file registers

and compiling programs, 65
described, 57

filters, reconstruction, 399
finite state machines (FSMs), 33–39, 46
first-in, first-out buffers (FIFO), 265, 289
fixed-point arithmetic, 188–192
flags

read busy, 245
setting and clearing, 84

flash ADC, 380–382
flash DACs, 393
Flash program memory read/write, 478–482
flash programmable memory, 55, 474
flashing LED, implementing, 222–223
floating-point (FP) representation, 192–196
floc operand, 57, 62
FOSC (clock frequency), 73
FPGAs (field programmable gate arrays),

529
frame pointers (FPs), 163
frames, data transmission, 521
FREE bit, 478, 480
free-running code, 301
FreeRTOs, 533
frequency

clock, 21
common units (table), 22
using capture mode for measurement,

447–450
FSMs (finite state machines), 33–39, 46
FSR0, FSR1, FSR2 registers, 152
function set command, 246
functions

combinational logic, 10–13
in USB networks, 523
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G
gate, MOS transistors, 13
general-purpose register (GPS) in data

memory organization, 56
getche () function, 289
GO/DONE# bit, 387
goto

described, 40
instruction machine code format (fig.),

63
statements, using in assembly language,

69
GPS (general-purpose register) in data

memory organization, 56
greater than (>), greater-than-or-equal

(>=)
conditional tests, 16-bit, 110–111
conditional tests, 8-bit, 90–92
operations on signed data, 123–125

ground, system, in CMOS transistors, 14

H
half-duplex communications, 255
handshakes, 525
hardware

debugging checklist, 595–597
design for stored program machines,

43–46
PIC18 subsystems, 264–270
PIC18F242 startup, experiment,

575–578
Harvard architecture, 54
hexadecimal

ASCII to binary conversion, 201–202
and binary arithmetic, 6–7
numbers, 3
subtraction, 8–10

HI-TECH software PICC-18 C compiler,
249, 553–556, 656

high-level languages vs. assembly languages,
208–210, 249

high pulse width, 21
home monitoring system design, 466–494
hubs in USB networks, 523
HyperTerminal program (Windows), 271,

273
hysteresis, 234

I
IBM processors, little- and big-endian

processors, 105
IEEE 754 floating-point encoding, 192–195
if-else statements in C (fig.), 87
if {} statements

equality, inequality conditional tests,
89–90

in while {} loops, 94–97
implementing

audio record/playback system, 459–465
autonomous robot, 494–504
finite state machines (FSMs), 34–39
flashing LED, 222–223
home monitoring system, 483–494
multiplication operations, 176–183
subroutines in assembly language,

141–145
include file paths, 554
INCLUDE statements as assembler direc-

tives, 68

increment instructions, 61–62
incremental encoders, 310
incrementer, building, 18–19
indirect addressing, 138
inequality, equality conditional tests

8-bit, 89–90
16-bit, 110–111

infrared (IR)
decoding, 433–441, 593–594
mappings for robot control (table), 503

inline assemblies, 230
inputs, conditional and unconditional, 34
installing

Java Communications API, 605–607
Jolt/Colt firmware, 605–607

instruction execution, and the clock, 73
instruction classes

arithmetic, control, 61–64
movf, 57–58

Instruction Pointer (IP), 44
Instruction Set Architecture (ISA) and

PIC18, 53
instruction sets

design, and assembly language, 39–43
PIC18Fxx2, 542–543

instruction word, 53
instructions

affects on flags, 84
branch, 87–88, 127–128

int data type, unsigned ranges, C (table),
104

integers
extended precision, 104–105
signed, 8

integrated circuits, invention of, 52
Integrated Design Environment (IDE), 67
Intel

early chips, 52
x86 processors, little- and big-endian

processors, 105
Inter I2C bus

bus arbitration in, 516–518
C function for initialing 12C master

mode, 354–355
described, 345–348
experimenting with, 583–584
on the PIC18Fxx2, 348–355

interfaces
25LC640 serial EEPROM, 337–344
numeric keypad, 315–319
PIC18 to 24LC515 I2C, 356–364
PIC18 to LCD (fig.), 244
rotary encoder, 309–315
SPI (Serial Peripheral Interface),

331–344
interrupt-driven

asynchronous data transmit, 294–296
asynchronous serial data input,

287–291
IO, 282–283
IO, state machine programming for,

299–303
IO, using software FIFO with, 291–294
writes, double buffering, 364–366

interrupt-on-change feature, 296
interrupt service routine (ISR), 282, 317
interrupt vectors, 69
interrupts

described, interrupt-driven IO,
282–283

experimenting with, 580–583

PIC18, details about, 284–287
summary on, 321–322

inverters, 14
IO

channel basics, 254–259
polled IO, 282
serial. See serial IO

isochronous USB transactions, 525
ISRs (interrupt service routines)

described, 282
writing, debugging, 319–321

J
Java Communications API, installing,

605–607
Java Runtime Environment (JRE), 605
JK Flip-Flop (JKFF), 24
Jolt/Colt firmware

programming, installing, running,
601–611

system requirements, 655–656
Jolt serial bootloader, troubleshooting, 597
jump described, 40

K
keyboard scans, 317
Kilby, Jack, 52
KxN memory device, 19–20

L
laboratory exercises

data conversion, 585–587
debugging hardware checklist, 597
extended precision and signed opera-

tions, 572–573
hardware setup, 575–578
instrumentation and prototyping hints,

598–600
interrupts, 580–583
lab setup, 563–566
LED/switch IO, asynchronous serial IO,

578–580
PIC18Fxx2 introduction, 567–569
pointers and subroutines, 573–575
stored program machine experiment,

566–567
time measurement, IR waveform

decoding, 593–594
timers, waveform generation, 587–592
unsigned 8-bit operations, 569–571

languages, programming. See programming
languages

last-in, first-out (LIFO) data structures, 137
lcase () function, 156–157
LCD. See liquid crystal display
lcd_write () function, 246
least significant bit (LSb), 3, 260
least significant byte (LSB), 104
least significant digit (LSD), 3
light emitting diode (LED)

described, 617
included in parts kit, 598
interrupt-driven, 299–303
program for PIC18F242 startup,

220–223
schematic for, 217–218
switch IO, 237–242, 578–580

liquid crystal display (LCD)
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described, 242
interfacing with module, 243–248
screen formats (fig.), 468

literals (constants), 59
little- and big-endian processors, 105
LM340T5 voltage regulator, 217
LM386 audio amplifier, 459–460
logic

binary, 2
circuits, 17–20
combinational functions, 10–13
sequential, 21–24
wired, 235

logic elements, D Flip-Flop (DFF), 23–24
logic gates, 11, 13–16
logical

operators in C (table), 78
vs. arithmetic, right shift (fig.), 122

long data type, unsigned ranges, C (table),
104

long vs. float operations, 195–196
looping

long vs. float operations, 195–196
while {} loop structures, 94–97

loops
loop counters, 96
phase locked loop (PLL), 258–259
polling, 245
software delay, 222

low pulse width, 21
LSb (least significant bit), 3
LSB (least significant byte), 104

M
machine code

described, 42
for simple C program (listing), 69–70

magnetic encoders, 310
magnitude, signed, encoding, 114–115
main () function

assembly implementation for Fibonacci
C code (fig.), 167

C program entry point, 65
calling vlshift () C function, 145
home monitoring system (figs.),

486–487
home monitoring system flowchart

(fig.), 484
robot application (fig.), 498

map files, 214
masked interrupts, 283
mathematics

ASCII data conversion, 199–204
BCD arithmetic, 197–199
fixed-point and saturating arithmetic,

188–192
floating-point number representation,

192–196
implementing integer division in PIC18

assembly language, 183–188
implementing integer multiplication in

PIC18 assembly language, 175–183
MAX518 dual 8-bit DAC, 400–406
Maxim Integrated Products MAX518,

400–406
MCP41xxx digital potentiometer, 334–337
measuring

frequency using capture mode, 447–450
pulse width, 415–419
voltage, resistance, current, 598

memory
18Fxx2 sizes (table), 55
accessing table data from program,

160–162
Data EEPROM, 475–478
dynamic allocation, 142, 162–169
EEPROM (electrically erasable pro-

grammable ROM), 55
external, interfacing, 508–513
flash programmable, 55, 474
FSM vs. stored program machine, 39
KxN device, 19–20
PIC18Fxx2, 54–55
read-only (ROM), 55
SRAM and DRAM, 508–510
subroutine assignments, 146–151
virtual, 529

memory management units (MMUs), 529
Microchip MPASM tool suite, 554
Microchip MPLAB integrated design

environment, 549–552
Microchip Technology

IDE environment, 67
PIC microcontroller families, 513–516
PIC18Fxx2 data sheet, 210

microcontrollers
high-level languages vs. assembly

languages, 208–210
introduction to, 52–53
non-PIC, 527–531
PIC family, 513–516
PIC18FXX2, 53–55

microprocessors
component datasheets, 223–225
high-level languages vs. assembly

languages, 208–210
introduction to, 52–53
numeric keypad interface, 315–319
registers, 25

MMUs (memory management units), 529
monitoring system, home, 466–494
monotonicity, 395
Moore’s Law, 372
MOS transistors and CMOS transistors, 13
most significant bit (MSb), 3, 260
most significant byte (MSB), 104
most significant digit (MSD), 3
Motorola

little- and big-endian processors, 105
Serial Peripheral Interface, 331
68XXX family of processors, 529

movf instruction, 57–58
movff instruction, 60–61
movlb instruction, 59
movlw instruction (listing), 63
movwf, movff instructions, 60–61
MPASM tool suite, 554
MPLAB assembler

machine code listing (listing), 69
source code for C language example

(listing), 67–68
MSb (most significant bit), 3
MSB (most significant byte), 104
multi-master capability, 346, 516
multiplexers

described, 17–18
time domain multiplexing (TDM), 518

multiplication, implementing in PIC18
assembly language, 175–183

mux described, 17–18

N
N-bit registers, 25
N (negative) flag, 119–120, 123–125
NAK (not-acknowledge), 347
NAND function, Boolean logic, 10–13
negation operator, logical, 86
negative (N) flag, 119–120
nested subroutines, 139
networks

of logic gates, 11
USB, topology, 523–525

Non Return to Zero Invert (NRZI) data
encoding, 525

non-return-to-zero (NRZ)
asynchronous transmission, 520
format, 258

nonvolatile
memory, 54
storage on PIC18Fxx2, 474–482

nonzero conditional tests
8-bit, 87–88
16-bit, 108–110

nop instruction, using, 71–72
NOR function, Boolean logic, 10–13
not-acknowledge (NAK), 347
NOT function, Boolean logic, 10–13
NTZ (non-return-to-zero) asynchronous

transmission, 520
number sequencing computer (NSC), 47
number sequencing program, 39–43

hardware design (fig.), 46
PIC18 assembly program for (listing),

82
numbers

binary, 3
unsigned, representation, 114–118

numeric keypad interface, 315–319

O
Ohm’s Law, 614
one-hot coding, 3, 36
one-time programmable memory, 55
opcode, 40
open-drain output, 235–236
operand, 40
operating systems, real-time, 531–533
operations

25LC640 read, write (figs.), 338–339
bitwise logical, bit, 78–83
CMOS inverter (fig.), 15
compare mode. See compare mode
extended precision and signed, experi-

ment, 572–573
floating-point operations, 195–196
mathematical. See arithmetic, mathe-

matics
PIC18Fxx2 register, control, literal table

read/write, 539–541
push, 136
push/pop to data stack (fig.), 163
shift, 9–10
shifts and rotates, 97–100
on signed data, 120–127
tristate buffer, 232, 234
unsigned 8-bit, experiment, 569–571
weak pullup, 233–234

operators
arithmetic and logical in C (table), 78
conditional tests in C (table), 86
pointer deference, 147

Index 661



optimization
code, 144
and compilation, 210–211

OR operator
bitwise operations, 78–81
logical, 10–13, 86

oscillator options, PIC18, 219
oscillator start-up timer (OST), 225
OST (oscillator start-up timer), 225
overflow (OV) flag, 84–85, 119–120
overflow, stack, 140
overflow, unsigned, 8
overflow (V) flag, 123–125
overrun errors, 266
overruns, buffer, 291

P
packet types/formats in USB (fig.), 526
parallel port IO

channel basics, 254–259
PIC18Fxx2, 231–237, 249–251

parity bits, 260
PC board, robot application prototype

(fig.), 496
performance, CMOS power consumption,

227–228
period

clock, 21
registers, 304

peripheral interrupts, 285
phase locked loop (PLL), 258–259
PIC/CAN system (fig.), 519
PIC family of microcontrollers, 513–515
PIC programmers, 601–604
PIC18

audio record/playback system resources
(table), 460

design of audio record/playback system,
456–465

home monitoring system application
(table), 483

interrupts, 282–287
robot application resources (table), 497
sleep mode, 296–299
synchronous IO on, 366–367
and synchronous serial IO, 328
timer summary, 451–452
timer2 subsystem, 304–307

PIC18C801 external bus operation (fig.),
512

PIC18F242 microprocessor
flashing LED, C program for startup,

220–223
startup schematic, 216–219
as stored program machine, 32

PIC18Fxx2 microprocessors
analog-to-digital converter, 382–391
architecture, instruction set, register

summary, 537–548
data sheet, 210, 223–225
external memory interfacing, 508–510
I2C bus on, 348–355
parallel port IO, 231–237
reset sources, 225–228
system startup, 207–231
USART hardware system, 264–270
using nonvolatile storage, 475–482

PIC18FXX2 microcontroller, 53–55
PICC-18 runtime code, 214–215
PICC-18 tool suite, 554

pin functions
parallel port IO, 231–237
PIC18Fxx2, 216–219

PLAB integrated design environment,
549–552

playback mode, audio record/playback
application, 464–465

PLUSWn addressing mode, 155
pointers

and arrays in C language, 146–151
in assembly language, 152–156
frame (FPs), 163
PIC18, experiment, 573–575
stack (SPs), 137, 161, 162, 169
subroutine with, 156–160
variable containing memory addresses

of other variables, 146
polarization, circuit, 617
polled IO, 282, 289
polling loop, 245
pop operations, 162–163
ports

parallel, operation, 231–237
serial, debugging, 275–277

POSTINCn, POSTDECn addressing modes,
153–154

postscalar, on timer, 226, 304
power consumption, CMOS (Complemen-

tary Metal Oxide Semiconductor),
227–228

power-on-reset (POR), 218, 228
power-up timer (PWRT), 225
powers of two, common (table), 4
PREINCn addressing mode, 153–154
prescalar, on timer, 304
printf statements, and C language, 553,

557–559
Program Counter (PC), 44, 73
program memory

accessing table data from, 160–162
Flash, read/write, 478–482

Programmable System-on-a-Chip (PSoC),
530

programming
defensive, 350
Jolt/Colt firmware, 601–604
state machine, for interrupt-driven IO,

299–303
programming languages

assembly vs. high-level, 208–210, 249
C. See C programming language

programs
See also specific program
assembly language, 41
compiling C, 64–66
described, 39
interrupting normal flow. See inter-

rupts
stored program machines. See stored

program machines
propagation delay, 24
prototyping hints, 598–600
pullup resistor, 218
pullup, weak, 233–234
pulse width measurement

described, 415–419
using swdetov.c, 593–594
with capture mode, 422–428

pulse width modulation (PWM), Timer2
and, 442–447

push operations, 136, 162

push/pop operations to data stack (fig.), 163
putch () function, 295
PWRT (power-up timer), 225

Q
Quadrature Encoder Interface (QEI), 515
qualifiers

interrupt, 287
variable, 214–215

quanitization errors, 375

R
R-2R resistor ladder flash DAC, 395–400
Rabbit processors, 530
RAM (random access memory)

described, 55
LCD data display (fig.), 244

rcall instruction, machine code format for
(fig.), 141

RCON register, 228–229
read busy flag, 245
read-only memory (ROM), 55
real-time operating systems (RTOS),

531–533
receivers, infrared, 434
reconstruction filters, 399
record mode, audio record/playback

application, 463–464
recursive function calls, dynamic vs. static

allocation (fig.), 143
register stacks, 141
registers

See also specific registers
C code operations on 16-bit, 413
data and control in USART subsystem,

264
EECON1 (table), 476
file, 57
N-bit, 25
period, 304
PIC18 pointer, 152
PIC18Fxx2 summary, 537–548
shadow, 141
shift, 26
special function register (SFR), 212–214
STATUS. See STATUS register
STKPTR, 138
W. See WREG register

repeated start condition, 348, 351
representation

fixed-point arithmetic, 188–192
floating-point numbers, 192–196
unsigned numbers, 114–118

reset sources for PIC18Fxx2, 225–228
reset conditions, PIC18, 228–231
reset vectors, 69
resistance, measuring, 598, 613
resistor string flash DACs, 393–395
resistors, 218, 614–617
retlw instruction, machine code format for

(fig.), 141
return address, subroutines, 136
review problems

advanced assembly language, higher
math, 204–205

answers to, 625–653
asynchronous serial IO, 278–279
data conversion, 407–409
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extended precision, signed operations,
129–131

interrupts, timers, 322–325
number systems, digital logic review,

29–30
PIC18Fxx2 introduction, 73
PIC18Fxx2 system startup, parallel port

IO, 249–251
stored program machines, 47–49
subroutines and pointers, 170–174
synchronous serial IO, 367–369
timers, 452–453
unsigned 8-bit arithmetic, logical,

conditional operations, 101–102
rising edge, and clock signal, 21
robot, design and implementation of

autonomous, 494–504
rotary encoder interface, 309–315
rotate instructions, 97–100
routines, subroutines, 134–136
RS232 standard, 270–273
RTOS (real-time operating systems),

531–533

S
sampling period, 456
saturating operations, 188–192
scanf () function, 557–559
scanning keyboard presses, 317
scheduler tasks, 531
schematics

audio record/playback system (fig.),
459

for LED, 217–218
home monitoring system (fig.), 467
for PIC18F242 microprocessor,

216–219
robot application, 495

Schmitt triggers, 233
school, using this book in, xvii–xxi
self-reset, 218
sequential logic element, 21–24
serial data transfer, 254
serial EEPROM, experimenting with,

583–584
serial IO

examples, 273–277
and shift registers, 26
synchronous, 257–259

Serial Peripheral Interface. See SPI
serial ports, verification, 576
serial ports, debugging, 275–277
SFR (special function register)

and bit variables, 212–214
in data memory organization, 56

shadow registers, 141
shift/add technique for multiplication,

177–182
shift operations, 9–10, 97–100, 112–113,

122–123
shift registers, 25–26
shifter combinational block, 19
short data type, unsigned ranges, C (table),

104
shorts

described, 218
in transistors, 15–16

sign extension
signed data operations, 125–127
signed number representation, 118

signaling
current mode, 255
differential, 519
USB electrical (fig.), 524

signed integers, 8
signed branches, 125
signed comparisons vs. unsigned compar-

isons (fig.), 124
signed data

greater than (>), greater-than-or-equal
(>=) operations on, 123–125

operations on, 120–123
shift operations on, 122–123

signed data types, 65
simplex communications, 255
sleep mode, PIC18 hardware, 296–299
software delay loop, 222, 239, 307–309
space-width encoding, 434
sparkles, 381
special function register (SFR) in data

memory organization, 56
SPI (Serial Peripheral Interface), 331–344
sprintf () function, 557–559
square root application (fig.), 289
square wave generator, 447–450
SRAM (Static Random Access Memory),

508–510
sscanf () function, 557–559
stack and call/return, 136–141
stack, data, 162
stack frames

steps in constructing (fig.), 165
and subroutines, 162–169

stack pointers (SPs), 137, 138, 162
startup

flashing LED, C code (fig.), 220
schematic for PIC18F242 microproces-

sor, 216–219
state assignment, 36
state machine programming for interrupt-

driven IO, 299–303
state machines, IO programming, 240–242
static memory allocation, 142–144
Static Random Access Memory. See SRAM
status bits, 264
STATUS register

high, low priority interrupt service
routines, 286

in PIC18, 83–85
subroutine calls, 145
two’s complement overflow, 119–120

STKPTR register, 138
stored program machines

components, instruction set design and
assembly language, 39–43

described, 33
hardware design, 43–46
vs. FMS clock cycles (table), 46

streaming data, capturing, 364–366
string functions, convert to lowercase,

156–157
subroutines

described, using, 134–136, 169
implementing in assembly language,

141–145
PIC18, experiment, 573–575
with pointers, 156–160
return values (table), 165
stack and call/return, 136–141
and stack frames, 162–169

subsystems. See specific subsystem

subtraction
/addition, extended precision opera-

tions, 107–108
BCD arithmetic, 197–199
binary and hex, 8–10

successive approximation ADC, 377–380
survey topics, 534–536
switch bounce

in mechanical encoders (fig.), 310
switch debouncing using timers, 307–309
switch statements in C, 89–90
switches, LED, 237–242
synchronous DRAM, 509
synchronous input and D Flip-Flop (DFF),

23
synchronous serial IO

introduction to, 257–259, 366–367
PIC18 and, 328
USART synchronous mode, 329–331

system requirements, CD-ROM, 655–656
systems, embedded, 209

T
T Flip-Flop (TFF), 24
TABLAT register, 160–162
table reads instructions, 160
target addresses, 63
task switching, 531–532
TBLPTR register, 160
TDM (time domain multiplexing), 518
testing

DS1621 C functions (fig.), 473
PIC18F242 functionality, 217–218

tests
unsigned conditional, 85–94
zero, nonzero conditional, 108–110

thermometer, DS1621 Digital, 469–474
time, common units (table), 22
time domain multiplexing (TDM), 518
timers

16-bit, Timer1 and Timer3, 419–422
introduction, and waveform genera-

tion, 587–592
PIC18 timer2, 304–307
power-up, 225
pulse width measurement using capture

mode, 422–428
summary on, 321–322
summary on PIC18, 451–452
switch debouncing using, 307–309
Timer0 subsystem, 412–418
Timer1, Timer3 subsystems, 419–421,

428–432
Timer2, and pulse width modulation,

442–447
using capture mode for infrared

decoding, 433–441
TINI (Tiny InterNet Interfaces) modules,

533
token packets, 525
top of the stack (TOS), 136
topics, suggested survey, 534–536
topologies, USB (fig.), 524
trace buffers, 320
transceiver chips, 519
transistors

CMOS. See CMOS
invention of, 52

transition density, 259
tristate buffer, 232, 234
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truth tables and logic operations, 11
24LC515 serial EEPROM, 356–364, 457
25LC640 serial EEPROM interface, 337–344

U
unconditional inputs in ASM, 34
underflow

stack, 139
unsigned, 8

Unicode, 27–28
Universal Serial Bus (USB)

standard, 271
synchronization, 259
topologies, signaling, transactions,

523–527
Universal Synchronous Asynchronous

Receiver Transmitter. See USART
unsigned

char, 65
comparisons, 92–93
conditional tests, 85–94
data types, 65
8-bit operations, experiment, 569–571
literal comparisons, 93–94
number conversion, 5–6
number representation, 114–118
overflow, underflow, 7, 8
vs. signed comparisons (fig.), 124

USART (Universal Synchronous Asynchro-
nous Receiver Transmitter)

hardware subsystem described,
264–270, 277

and interrupt sources, 296–297
synchronous mode, 329–331

USB (Universal Serial Bus), 259, 271,
523–527

V
vacuum tubes, 52
variable declarations in C language,

559–561
variables

assignment of extended precision, 106
bit, and special function registers,

212–214
global, 142
memory addresses of, 146
variable qualifiers (table), 215

vectors, interrupt and reset, 69
verifying serial ports, 576
virtual memory, 529
vishift () subroutine, 136
vlshift () C function

in assembly language (fig.), 144
calling from main () (fig.), 145

voice recorder, digital, 32–33
voltage, measuring, 598, 613
voltage comparator, 375
voltage regulators, 217
Von Neumann machines, 33

W
W register

in PIC18, 83
and push operations, 162
subroutine calls, 145

wakeup support, 296–297
watchdog timer (WDT), 226, 228–231, 249,

296
waveform events, 22
waveform generation, 587–592
waveforms, clock, 21
WDT (watchdog timer), 226, 228–231, 249,

296
weak pullup, 233–234
while {} loops, using, 94–97
wire wrapping, 599–600
wired logic, 235
WREG instruction, using, 71

X
XOR function, Boolean logic, 11
XOR operator, bitwise operations, 78–81

Z
zero conditional tests

8-bit, 87–88
16-bit, 108–110

zero (Z) flag, 84–85
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